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Abstract. In this paper, we introduce a nonlinear dynamical model for 
Chandler wobble including resonance excitation, bifurcation dissipation, 
frequency modulation, parameter resonance and visco-elastic long-time 
attenuation. 

1. Introduction 

Chandler wobble (CW) can be distinguished in polar motion observations. Its 
excitation and attenuation mechanism needs to be discussed in the case of visco-
elasticity. Melchior (1957) discussed frequency modulation of the CW. We ob­
tained frequency modulation from the IERS data. Lambeck (1980) points out 
that excitation may be caused by unstable annual excitation, and that attenu­
ation should be caused mainly by visco-elasticity. But, how and how much the 
CW is excited and attenuated by the annual excitation function, can be discussed 
according to the author's recent papers published in Chinese. Vondrak (1989) 
worked out the frequency instability of the CW and regarded it as an interest­
ing problem. Gao Bu-xi (1993) obtained yearly CW amplitude and frequency 
by Fourier convolution, and provided amplitude modulation of the amplitude-
dependence. So, the instability of CW may be a key point for studying excitation 
and attenuation. 

What is the reason for the instability in the CW? Wang (1998) raises a 
nonlinear resonance excitation mechanism, and points out that annual excita­
tion provides energy transfer to the CW. Wang (1999a) obtains a main period 
solution and bifurcation of the CW in the nonlinear dynamical case, and points 
out that there may exist bifurcation dissipation. Later, the author (1999b) dis­
cusses the fact that frequency modulation of 3% may be the cause of an observed 
18.6-year periodic variation. Then, CW frequency modulation of about 2-3% 
may cause amplitude modulation on a scale of 40 years with an amplitude of 
70%. Recently the author showed that a sub-CW of 7-month period may be 
excited by a nonlinear bifurcation from annual excitation. 

In the past century, sufficient accurate geodesy for polar motion and many 
successful results for its mechanism have been obtained. Of course, in those 
physical factors observed by many advanced approaches, it has not been con­
firmed which one excites and damps the Chandler wobble and how. So, most 
geophysical mechanisms of polar motion are possible. Perhaps, the main reason 
why we couldn't confirm geophysical mechanisms is that the astro-geodynamics 
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used all along has been only linear. If a little nonlinearity is introduced into the 
research, then the knowledge of polar motion would be improved. 

2. Resonance Excitation 

Physically in the Earth's rotation, there exists no motion of period 1.19 years 
identical with that of the CW. It may only be an annual excitation function 
that is close enough to transfer energy to the CW. However, the frequency of 
the annual excitation is fr = 1, and its quality factor is about Qr = 40. For CW, 
fc = 0.842, Qc = 50 ~ 70, and the difference e = \fr - fc\ = 0.158. Relatively, 
e/fc — 0.19, so would annual excitation transfer energy to the CW resonance? 

To begin, we consider the Earth's sway equations 

Y'/a-X = -i,u 

X'/a + X = Tp2. (1) 

Under linear damping and forced sway model, adding linear damping in the 
CW differential equation and letting its damping attenuation index be A(> 0), 
the dynamical equations become 

X' + XX + aY = ffip2, 

Y' + XX-aY = -ofa. (2) 

Distinguishing variables X and Y, 

X+ 2XX + OJ2X = Arujccos(urt + /3). (3) 

Noting that the ellipticity of the CW orbit is about 0.01, the CW amplitude 
U can be approximated by a simple harmonic oscillation. So, Equation (3) 
represents the CW amplitude. The right hand side of (3) would come from 
annual excitation. Solving (3) by the complex amplitude method, it is easy to 
get the complex amplitude of the solution as: 

(u>2 — u2) — 2iXui* c 
C = Aruep2 I ' . l T l = aetS. (4) 

(u2 -u;) + 4A2wjf 
Here, the real amplitude a and phase 6 have the form, 

tan<5=-2 j ' (5) 
v/(wc

2 - UJ2)2 + AX2UJ2 ' 

where, a represents the contribution of resonance to X, and 6 represents the 
phase delay after the occurrence of resonance. But, in fact, we set S as positive 
by the relation tan 6 = tan(^ — 180°) and noting that the real phase delay should 
be (6 — 180). By (9), it can be seen that, if UJT = wc, then 6 = 90°, i.e. the phase 
would be —90°; if ur « wc, and LOT > uic, then tan 8 > 0, i.e., the real phase 
(8 - 180°) would be in the interval of -90° to -180°. We can see that when 
fr —* fc the damping attenuation index A tends to infinity by (4). 
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Thus, in considering damping, the resonance excitation solution of CW 
should be of the form 

X = A'ce~Xt cos(uct + <f>') + a cos(wrt + S). (6) 

By (6), the frequency wc should decay to zero in its attenuation period, 
and the energy loss of overcoming the damping would need to be provided by 
resonance in the second term of the right hand side in (6). The energy which 
the CW absorbs from annual excitation by resonance in unit time is 

_ 2\XdX 2XX2 2Xa V sin(wr< + 6) ._. 
E = ; = = . (7) 

Letting e = fr — fc, and averaging over time, we get the average transfer 
energy, i.e. the excitation energy from the annual excitation to the CW: 

Here terms smaller than e and A are deleted. Thus, the ratio which the 
annual excitation transfer to the CW by nonlinear resonance excitation is: 

^li=^x l 0 0 %- (9) 

Estimating by (9), conserving CW energy, the rate of the transfer of energy 
from annual excitation to CW should be r) = 9.1%, where A = 0.051, e = 0.161. 
By this, it can be shown that more than 90% of the energy from the annual 
excitation function would excite annual polar motion and less than 10% of the 
energy would transfer to the CW. 

If we take the CW inherent frequency fc = 0.839, average amplitude Ac = 
135 mas, and annual excitation amplitude Ar = 90 mas, average phase variation 
from IERS polar motion data, or delay phase S — 180° = 113.4°, then we can in­
versely obtain from the upper formulations: average resonance forcing frequency 
fc = 7 = 0.88, average attenuation index Ac = 0.0426449, average attenuation 
period r = 23.5yr, and average quality factor Q = 63. Statistics in Table 1 
provide important information on the CW variation. 

3. Theoretical Solution 

Annual excitation forcing frequency Q. would replace wr and the forcing phase 
<j> would replace (3. (3) would be easily solved by integration as (5) and (6) in 
Section 2 of this paper. However, the third term of the left-hand side of (3) 
should be replaced by a sinX term. Then, the CW should be considered as a 
nonlinear plane pendulum with linear damping, and periodic in the form 

X+ 2XX+ u2
csinX = Aru>ccos(Qt + <f>). (10) 

sin X can be expanded into a Taylor series and approximated by adding a non­
linear term. We take one nonlinear term only in (10). Then the equation would 
be 
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Table 1. Parameters for resonance excitation of Chandler wobble. 

Term 
CW Amplitude 
CW Frequency 
CW Period 
Phase Difference 
Backward Phase 
Resonance Frequency 
Resonance Period 
Outlier 
CW Relax.Expon. 
CW Reson.Freq.Diff. 
CW Freq.Qual.Factor 
CW Relax.Period 

Symb. 
Ac 
fc 
Tc 
6 
S - 180° 

h 
Tr 
/ r 1 9 3 7 
A 
€ 

Qc 
T 

Mean 
132.5 
.8425 
433 
64.2 
-115.8 
.8813 
414.2 
.8143491 
.0414612 
.0388 
62.8 
23.6 

St.Var. 
82.3 
.027 
13.56 
13.3 

.0608751 
26.8 
i / y r 
.0242648 
.03446 
25.6 
9.9 

Min 
15.5 
.77 
474.3 
20.0 
-160.0 
.8301613 
439.7 
period: 
.021482 
.006302 
25 
9.2 

Max 
250 
.87 
417.4 
77.6 
-102.4 
1.1239017 
324.8 
448.2day 
.1085535 
.1934 
122 
46.5 

Appen. 
0'.'001 
i / y r 
day 
deg 
deg 
i / y r 
day 
Maybe false 
i / y r 
i / y r 
% 
yr 

X + 2XX + u>2
cX - ^OJ2

CX3 = Aruc cos(Qt + <j>). (11) 

Usually, the X 3 term in (11) may be canceled. It is of the order of 10~13. 
On the contrary, in nonlinear theory, there are many cases in which a tiny 
nonlinearity can change the result. See Hao Bai-lin (1989). 

Equation (11) is a standard Duffing one, and there are several standard 
methods of solution. Guckenheimer and Holmes (1983) surveys the Duffing 
equation in 2 dimensions thoroughly. We quote here the process of the pertur­
bation method in one dimension, and then discuss amplitude and frequency in 
a 2-dimensional explanation of the CW solution. 

The very last solution of (11) is 

Xi = AQ COS T + fiAi cos T + 
32u>2 

cos3r + 0(/x2), 

where 
7-= ft* - $ 0 - A«$i ~0{n2). 

(12) 

(13) 

In fact, (12) is a special solution of (11), and superposing the common 
solution and the special solution, we have, cutting off 0(fi2) terms, 

8A3 

X = A0exp(-Xt)cos(u0t + $0) + (^o + M i ) c o s r + —-^cos3r. (14) 

As discussed in Section 2, the first term of the right hand side in (14) 
would die away by damping, so that the frequency wc would be quenched with 
time whereas a new phase (13) would alternate. This process is called module 
alternation. The new frequency 0 would be different and close to the quench­
ing frequency uc. fl would replace wc as the inherent frequency and attenuate 
gradually and another new frequency would alternate. 

Taking F = Aruc, say, AT = 70 mas, UJC = 0.84(27r) and the initial value 
of fl as 0 = uT = ^:, then three real (positive) roots of (J4O) can be obtained 
and ignoring negative ones, we have: AQI = 135, A02 = 36.839, A03 = 105.037. 
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Figure 1. Resonance curve for f > 0.84. 

Substituting into (14) and noticing that $ 0 should be negative: $0i = -113?87, 
$02 = -90?67, $03 - 93?03. 

For the first group of the solution, we find A0i = 135 « 132, $oi = -113?87. 
This is the average CW solution that we can usually obtain. AQ\ exactly con­
forms to reality. On the other hand, we see in Section 1 that the backward phase 
caused by resonance excitation is —113?4, and 6 = 180° — 113?4 = 66?6. It is 
interesting that, though we add a X 3 term in the equation, the result still holds 
and the backward phase calculated is —113° identical to the result without the 
X 3 term. Hence, this group of the solution is exactly the CW periodic one we 
always have known. 

The second group of the solution is A02 = 36.839, $02 = -90?67. The third 
group is AQZ = 105.037, $03 = —93?04. Since we have not solved the complex 
amplitude for the approximate Duffing equation, the respective frequencies of 
the two groups are not obtained directly. According to the number of solutions, 
it can be known that the two solutions would possess period-doubling and half-
period respectively, i.e. the frequency of the second solutionis (1/2) x 0.84 X(2TT) 
whereas that of the third solution is 2 x 0.84 x (2TT). It is also interesting 
that the phase delays of the two solutions are nearly —90°. Unfortunately, the 
two solutions are unstable, for the stability condition is not satisfied, while the 
unstable solution cannot be observed. Later in this paper, the stable bifurcation 
solutions are provided by the parametric resonance model. 

In Gao (1993), an amplitude-dependence curve is obtained from the statis­
tical result, and it is pointed out that, if frequency decreases, amplitude would 
increase and vice versa. However, we provide a resonance curve under the res­
onance excitation model of two branches, in which amplitude decreases if fre­
quency decreases down to the inherent one 0.840, while amplitude increases if 
frequency increases up to the inherent one. The result can be seen in Figure 1 
and (15) and (16). 

It can be said that the main energy of the CW is lost in overcoming the 
visco-elastic damping. As said in section 2, it is illustrated by the CW solution 
(12) that almost all of the energy loss dissipated by visco-elastic damping is 
replenished by resonance excitation from the annual excitation of the CW. Also, 
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Figure 2. Resonance curve for f < 0.84. 
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Figure 3. IERS amplitude-frequency graph. 

we discuss the energy loss of the CW caused by nonlinear terms, and see that this 
part of the energy loss is evidently replenished by resonance excitation from an 
annual excitation too. However, there exists another part of energy loss shown 
in the solution called bifurcation dissipation. 

/ = -0.0333/rcAm + 1.0315(/ > 0.840) (15) 

/ = 0.0084ZraJ4m + 0.7846(/ < 0.840) (16) 

It is the instability of phase resetting that produces the instability of the 
sway frequency, so that the energy transfer ratio r] of the resonance excitation 
fluctuates and makes the related stable annual excitation excite resonantly the 
unstable CW with a different frequency and variable amplitude. (5) shows the 
phase delay 8 would be quite sensitive to frequency so that a minute variation of 
the frequency would cause a great deviation in 6. In (7) 8 appears in the form of 
tan£, and tan<5 is more sensitive. Here it is evident that a minute nonlinearity 
would cause a huge variation. 
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By analysis in section 2, it can be seen that a stable CW should have an 
average phase of about —113°. If this value deviates only about 15°, the CW 
would preserve a regular sway. But as the deviation of the phase varies over 
20°, we would see a phase loss event by which the CW could not have a regular 
amplitude any longer and the frequency moreover would not return to regularity 
for nearly 10 years. Now using ILS coefficients in Gao Bu-xi (1993), it can be 
seen that phase loss appears significantly from 1923 on. The phase loss for 21 
years makes the CW amplitude drop to a minimum, of 35.5 mas in 1927 and 
the period to 385 days. But we can explain the resuming of the event by phase 
resetting. Accumulating the phase resetting series, we obtain the phase loss 
—349°, i.e., in 21 more years, the total phase loss comes to about —360°. By (7), 
it can be seen that there exists a function of period 180°, say, tan 8 , so perhaps 
the minimum amplitude should resume in about 1930 where the accumulated 
phase loss came to —180°. But, notice also (7) we can see that 8 is a function of 
frequency of period 360°, then for amplitude and frequency to resume regular 
case, there should be accumulated a phase loss to 360°. Therefore, the CW 
resumed entirely by 1943 its amplitude after phase loss accumulated to 360°, so 
that there is no phase loss and minimum amplitude event in the coming years. 

4. Parameter Resonance 

There are evidently two peaks and three valleys, showing about a 32.5-year 
average modulation. In Figure 4, Ya shows a trend of equation y=3.5016a-
3.4428. Subtracting the trend Ya is also seen to have a similar variation with a 
32.5-year period. 

The CW frequency is very unstable. It is not easy to observe perturbation in 
the CW phase variation time series. Okubo (1982) introduces a phase difference 
8 — ( 1 / / — 1) X 360°, which shows the phase difference directly relating to the 
reciprocal of the frequency. It modulates in a range of average 66?6 (or —113?4). 
There are many more perturbation periods in the phase difference time series. 
An evident period is an 18.6-year period seen by spectral analysis. So, the phase 
difference has an 18.6-year perturbation period, and the frequency also has an 
18.6-year perturbation period. 

The perturbation of the CW amplitude is about 40 years. This 40-year 
scale variation of CW has been noticed by many authors. Ye and Huang (1990) 
show that variation related to a 40-year scale in Earthquake rhythm (Zhu 1992). 
Here a possible analysis of this amplitude perturbation is provided. 

As pointed out previously, Xa and Ya are perturbed within a 32.5-year 
period, and the phase difference is perturbed within an 18.6-year period. The 
amplitude is related to positions and frequency so that its perturbation period 
would be the perturbation of 32.5-year and 18.6-year, i.e. it would be the 
minimum common multiple of 32.5 and 18.6. The minimum common multiple is 
only defined in integer numbers. However, Wang (1998) provides a generalized 
expression for the minimum common multiple. As [32.5/18.6] = l, where [n] 
is defined as the integer part of n, then the period of amplitude Am is T = 
32.5 x 18.6/(32.5 - 18.6) = 43.5439 years. 

The CW frequency time series is very stable, but possesses a correlation 
coefficient less than 0.08. Melchior (1957) obtains a frequency modulation of 
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Figure 4. x and y time series. 

about 4% with the ILS data. Okubo (1982) finds frequency modulation of 
about 1.4%. Thus, there is no frequency modulation. Here we find a frequency 
modulation of about 2.9% with the IERS data. Furthermore, from a spectrum of 
CW frequency time series using pseudo-period analysis we detect an ~18.6-year 
pseudo-period, i.e. a period of not very significant detection. 

By the relation between frequency and phase difference, we investigate the 
phase difference 6. There is an 18.6-year period in the 6 time series. This 
shows that the CW frequency is modulated by the generalized minimum common 
multiple in Okubo (1982). The modulation of the position axis with a 32.5 year 
period can be seen as a frequency resonance of period 1.193 year and 18.6 years 
and 8.85 years. The perturbation period of the CW amplitude would be the 
resonance period of 32.5 years and 18.6 years. It is almost entirely identical with 
the previous estimation. Here we investigate what amount of perturbation would 
occur in the CW amplitude associated with 2.9% frequency modulation. As the 
two parameters are perturbed at the same time, CW is a so-called parameter 
resonance. The main condition of resonance is that the real frequency fi of the 
system is close to that of the perturbation frequency w0 of A and wc. 

The parameter resonance model appears as a nonlinear equation. The CW 
amplitude would satisfy a variable coefficient nonlinear differential equation. Let 
A0 be the perturbation amount of attenuation index, Aw be that of frequency, 
w0 the modulation frequency of wc and A, A the average attenuation index, Ar 

the annual excitation amplitude, and Q, the forcing frequency. 

* T + « ( « ) * - + « * ) * = 7 (0 , d7) 

a(t) = 2X(t) = 2A + 2Xocosojo0(t) = (wc + Awcosw0<)2- (18) 

As the parameter is varying with time, a solution of the equation would 
be very difficult. Wang (1999c) gives a reasonable solution. Set wc = 0.8425, 
w0 = wc ± Aw, Aw = 1/43.5 = 0.0228, A = 0.04248, A0 = 0.021. It gives an 
amplitude perturbation of 104.1 mas on the basis of the average CW amplitude 
of 132.5 mas for the ILS data. In fact, the real observation of the ILS has 
a minimum of 10-20 mas, and a maximum of 249.6 mas. In the parameter 
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resonance solution of period, the phase difference varies from —113.4° to —116.4°, 
and the period varies from 440.7 days to 429.3 days. 

5. Bifurcation solution of sub-CW 

Some authors have obtained sub-CW of 7-month period from the IERS data and 
estimated an amplitude of about 10 mas. However, there exists no excitation of 
7-months period in the atmosphere, ocean or others. Here, a possible mechanism 
of nonlinear dynamics is provided by a parameter resonance time dependence 
model. The solution of (3) in the condition of (18) is of the form 

a = aoexp{F(9,0o)}, (19) 

where 

Here, d\ ' 

(20o) = t a n - 1 

a0 

wp-\-2 UJQ — 2 
1 

+ 
y— sin(w07r) 

. wo+2 wo —2 

(2/ir)ATcos0o 

4\ac — WQ| — d\ s m 2 ^ 0 — d-2 cos 2#o 

+ r i wo+2 wo —2 
2A ^ sin(w07r) + Stt(i _ cos(2w07r)) 

(20) 

(21) 

+ O(10-6), 

42 ) = + wo + 2 WQ — 2 
(1 - COS(2W0TT)) + —(sin(w07r) 

It Z7T 
+ O(10-6). (22) 

Then, the maximum amplitude of sub-CW can be solved by replacing #o as 
±#o/2. If the solution is obtained by +#o/2, then sub-CW can be provided. By 
(20), it can be shown 

a0 = 0.2929875Ar = 17.97 as I8(mas) (23) 

So, the sub-CW of 7-month period should possess a maximum amplitude of 
18 mas. According to the solution (22), the sub-CW ought to have a minimum 
of 0. Thus, we obtain the amplitude of the average sub-CW as about 9 mas. 
That is identical to the observational result given by some authors mentioned 
above. 

Examining the stability condition of the bifurcation solution, it can be seen 
that the condition is satisfied. So, the sub-CW solution of 7 months is stable and 
can be observed. As to the double-period CW, it can be solved by replacing #o 
with —0o/2 and getting its maximum amplitude. But it is so weak that it would 
be lost in the CW and is not easily detected. Since the excitation of 7-month 
period cannot be found in physical phenomena, the sub-CW may be caused by 
bifurcation of the annual excitation function. 
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6. Conclusion 

The amplitude and frequency of the CW are unstable or modulated by long-
term astronomical forces. An amplitude dependence can be explained by a 
nonlinear dynamics model. Excitation of the C W can be obtained by a resonance 
excitation model and energy loss by visco-elasticity is replenished by an annual 
excitation function. Supposing that the frequency of the CW is modulated 
as observed by the frequency time series, according to a parameter resonance 
model, the amplitude of the CW would be modulated by about 20% ~ 180% 
of the average CW — identical to observations. By the parameter resonance 
model, the sub-CW can be found to be 9 mas with a period of 7 months, so 
the sub-CW is only excited by nonlinear bifurcation from the annual excitation 
function. 
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