
J. Fluid Mech. (2024), vol. 986, A28, doi:10.1017/jfm.2024.273

On the aeroelastic bifurcation of a flexible panel
subjected to cavity pressure and inviscid oblique
shock

Yifan Zhang1,2, Kun Ye1,2,† and Zhengyin Ye1,2

1School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, PR China
2National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, PR China

(Received 9 July 2023; revised 6 March 2024; accepted 7 March 2024)

The aeroelasticity of a panel in the presence of a shock is a fundamental issue of great
significance in the development of hypersonic vehicles. In practical engineering, cavity
pressure emerges as a crucial factor that influences the nonlinear dynamical characteristics
of the panel. This study focuses on the aeroelastic bifurcation of a flexible panel subjected
to both cavity pressure and oblique shock. To this end, a computational method is
devised, coupling a high-fidelity reduced-order model for unsteady aerodynamic loads
with nonlinear structural equations. The solution is meticulously tracked by continuous
calculations. The obtained results indicate that cavity pressure plays a pivotal role in
determining the bifurcation and stability characteristics of the system. First, the system
exhibits hysteresis behaviour in response to the ascending and descending dynamic
pressures. The evolution of hysteresis behaviour originates from the phenomenon of
cusp catastrophe. Second, variations in cavity pressure induce three types of bifurcation
phenomena, exhibiting characteristics akin to supercritical Hopf bifurcation, subcritical
Hopf bifurcation and saddle-node bifurcation of cycles. The system’s response at the
critical points of these bifurcations manifests as long-period asymptotic flutter or explosive
flutter. Lastly, the evolution of the dynamical system among these three types of
bifurcations is an important factor contributing to the discrepancies observed in certain
research results. This study enhances the understanding of the nonlinear dynamical
behaviour of panel aeroelasticity in complex practical environments and provides new
explanations for the discrepancies observed in certain research results.
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1. Introduction

Panel flutter, as a classic problem in the field of aeroelasticity, poses detrimental effects
on the structural fatigue life, and compromises the performance and safety of vehicles.
Noteworthy contributions on this matter have been made by Dowell (1970, 1974) and
Mei, Abdel-Motagaly & Chen (1999), providing comprehensive reviews. In recent years,
hypersonic vehicles have garnered increasing attention (Urzay 2018). Shock phenomena is
one of the typical features in hypersonic flow, widely present in both internal and external
flow configurations, such as the intricate shock structures found in a scramjet engine inlet
(Matsuo, Miyazato & Kim 1999; Urzay 2018). The presence of shock gives rise to an
accentuation of the nonlinear and unsteady characteristics of aerodynamic loads, which, in
turn, lead to even greater complexity in the aeroelastic characteristics of the panel (Shinde
et al. 2019; Boyer et al. 2021; Brouwer et al. 2021; He et al. 2022; Shinde, McNamara &
Gaitonde 2022). Moreover, these complex aeroelastic characteristics significantly impact
the performance of the vehicles (Bhattrai et al. 2022; Liu et al. 2022). Hence, the issue
of panel flutter in the presence of a shock represents a fundamental problem in the
development of hypersonic vehicles (McNamara & Friedmann 2011; Dowell 2015).

The aeroelasticity of the panel in the presence of a shock has been a subject of
continuous interest among scholars in the past decade. Numerous preliminary explorations
using numerical simulations and experimental approaches have been conducted in this
area. In terms of numerical simulations, Visbal (2012) studied the aeroelasticity of
a two-dimensional panel subjected to an oblique shock in inviscid flow. The study
unveiled self-excited panel vibrations, and summarised the flutter characteristics and flow
field structures under typical shock strengths. Notably, complex nonlinear bifurcation
behaviour was observed in the dynamical system under a shock strength of 1.4. An
et al. (2021) investigated the nonlinear aeroelastic responses of four curved panels of
different curvature subjected to oblique shock in two-dimensional inviscid flow. The study
demonstrated significant nonlinear effects, with the dynamical system exhibiting multiple
solutions under different initial conditions. Transitions between these solutions were
also observed. Boyer et al. (2018, 2021) extended the investigation to three-dimensional
flow and found that shock strength significantly influences the stability characteristics
of the panel. In comparison to inviscid flow, the presence of viscosity induces flutter
dominated by higher-order modes. Shinde et al. (2019) performed a direct numerical
simulation (DNS) of the shock/boundary-layer interaction on a flexible wall. The
promoting effect of the flexible panel on flow transition was analysed using the proper
orthogonal decomposition (POD) method. Brouwer, Gogulapati & McNamara (2017)
investigated the influence of surface deformation on shock-induced separation using the
Reynolds-averaged Navier–Stokes (RANS) method. Based on that study, they further
developed the application of enriched piston theory in the context of shock-induced
panel flutter (Brouwer & McNamara 2019). Ye & Ye (2018) conducted stability analysis,
and discovered that the critical flutter dynamic pressure exhibits nonlinear and sensitive
variations in response to the location of shock impingement. Li et al. (2019) investigated
the inhibitory effect of surface velocity feedback control on shock-induced panel flutter
in both viscous and inviscid flows. He et al. (2022) studied the aeroelastic behaviour
of a panel in the presence of an irregular shock reflection and observed the onset of
divergence at low dynamic pressures. In terms of experimental studies, Spottswood,
Eason & Beberniss (2013), Spottswood et al. (2019) conducted a series of innovative
experiments to investigate the fluid–structure interaction (FSI) behaviour of panels in
shock/boundary-layer interaction under different turbulent and thermal flow conditions.
Willems, Gülhan & Esser (2013) experimentally measured the deformation and vibration
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of panels in a shock/boundary-layer interaction and compared the results with numerical
simulations. They observed that panel vibration is influenced by its static deformation
component. Brouwer et al. (2021) investigated the flutter behaviour of panels in turbulent
flow and a shock/boundary-layer interaction, measuring the limit cycle oscillations (LCO)
induced by shock waves. Daub, Willems & Gülhan (2016) designed an experimental set-up
where the unsteady shock was generated using a pitching oscillating wedge. Under the
influence of high-frequency oscillating shock, a larger amplitude vibration of the panel
was observed.

In practical engineering applications, the behaviour of the panel is influenced not only
by unilateral aerodynamic loads, but also by the combined effect of cavity pressure
underneath. Previous studies by Dowell (1966) and Visbal (2014) have demonstrated the
significant impact of cavity pressure on the aeroelastic characteristics of the panel. The
unbalanced cavity pressure induces additional shock/expansion wave systems, resulting
in changes in the unsteady aerodynamic force characteristics (Visbal 2014; Gramola,
Bruce & Santer 2020). Studies have shown that this phenomenon further enhances the
nonlinear characteristics of the system. Under the absence of shock, Dowell (1966)
highlighted the symmetric influence of static pressure difference on the critical dynamic
pressure of flutter. Another work (Dowell 1982) reported the suppressive effect of
static pressure difference on the chaotic response of buckled panels. Ye & Ye (2021)
theoretically studied the stability boundary of panels in supersonic airflow using the
Lyapunov method, emphasising the significant role of the coupling between static
deformation and aerodynamic forces in greatly enhancing the aeroelastic stability of
the panel. Under the presence of shock, Visbal (2014) conducted preliminary research
on three different cavity pressure cases in inviscid flow, and the results indicated that
the variation of cavity pressure has a significant impact on the characteristics of the
dynamical system. Experimental findings by Spottswood et al. (2019) revealed that
the dynamical characteristics of the panel are highly sensitive to sudden changes in
cavity pressure. However, due to the inherent limitations of the experiment, drawing
mechanistic conclusions becomes challenging. Gramola et al. (2020) found through
experiments that cavity pressure significantly alters the deformation of the panel, thereby
affecting the flow field structure. However, the study does not address the dynamic
behaviour of the panel. Liu et al. (2022) investigated the aeroelastic behaviour of the
panel in an isolator under different cavity pressures using the URANS method. Their
findings indicated a significant influence of cavity pressure on the motion of shock trains
and the unsteady aerodynamic characteristics. Brouwer et al. (2021, 2022) examined
the influence of the shock/boundary-layer interaction on the flutter characteristics of
the panel through experiments and enriched piston theory. The advanced experiment
unveiled that even subtle variations in cavity pressure exhibit intricate nonlinear effects
on the aeroelastic system of the panel subjected to an oblique shock. The vibration
characteristics of the panel exhibited disparities with the cavity pressure increasing or
decreasing.

In summary, cavity pressure plays a pivotal role in modulating the aeroelastic
characteristics of the panel subjected to an oblique shock. Presently, ongoing research
has identified three primary configurations concerning the cavity pressure underneath the
panel: (1) average pressure on the upper surface (e.g. Visbal 2012; Li et al. 2019; An et al.
2021); (2) pressure distribution that maintains zero initial static pressure difference (e.g.
Ye & Ye 2018; He et al. 2022); (3) specific pressure value (e.g. Visbal 2014; Daub et al.
2016; Gramola et al. 2020; Brouwer et al. 2021, 2022). These studies demonstrate that the
aeroelastic system of the panel subjected to both cavity pressure and oblique shock exhibits
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Figure 1. Schematic of a panel subjected to both cavity pressure and oblique shock.

rich nonlinear behaviour. A certain level of cavity pressure can either enhance the stability
boundary, thereby suppressing instability (e.g. Visbal 2014), or alter the characteristics of
the system, leading to complex bifurcation and chaotic phenomena (e.g. Brouwer et al.
2021). However, the current research on this issue is still in its early stages, and the
underlying mechanisms through which cavity pressure affects this dynamical system are
not yet fully understood.

To examine the nonlinear dynamical behaviour and mechanisms of a panel subjected
to both cavity pressure and inviscid oblique shock, a reduced-order model (ROM)
for unsteady aerodynamic loads based on computational fluid dynamics (CFD) is
established. Then, an FSI analysis method is developed by coupling computational
structure dynamics (CSD). The calculations consider the variation of non-dimensional
dynamic pressure in both ascending and descending directions, and the tracking of
solutions is achieved through continuous parameter variation. The study investigates
the aeroelastic system of the panel subjected to both cavity pressure and inviscid
oblique shock, exploring hysteresis behaviour, catastrophe phenomena and bifurcation
characteristics.

2. Physical model

The computational model is depicted in figure 1. A two-dimensional flexible panel is
embedded in a rigid plane with simple supports at both ends, i.e. no deflection and
zero-moment conditions. The free stream of Mach 2 is parallel to the rigid plane. The
structural parameters are consistent with those of Visbal (2012) and Gordnier & Visbal
(2002). The midpoint of the flexible panel is subjected to an oblique shock. The incident
and reflected shocks divide the flow region into three parts, with pressure denoted as
p1, p2 and p3, respectively, where p1 = p∞. This study represents the shock strength by
the pressure ratio of p3/p1, which corresponds to the inviscid shock reflection on the
rigid plate. This definition aligns with those presented by Visbal (2012) and Brouwer
& McNamara (2019). The pressure inside the cavity underneath the panel is denoted as
pc. The present study investigates the nonlinear dynamical behaviour of the panel under
different cavity pressures and incoming dynamic pressures for the case of p3/p1 = 1.4.
During the vibration of the panel, the cavity pressure is assumed to be constant. It means
that the cavity pressure is manifested through the pressure difference across the panel. This
study does not consider the dynamic changes in cavity pressure caused by the motion of
the panel.
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Figure 2. Aeroelastic calculation framework.

3. Numerical method

The calculation framework in this study, as shown in figure 2, mainly consists of three
parts: the calculation of structural deformation (see § 3.1), the calculation of aerodynamic
loads (see § 3.2) and the time marching method that couples the two (see § 3.3).

3.1. Calculation method for structural deformations
The von Kármán large deformation equation is solved by using Galerkin’s method, which
serves as the computational structure dynamics module in this study. Considering a
one-dimensional isotropic flat plate, the upper surface of the panel is subjected to unsteady
aerodynamic load p, while the lower surface is exposed to a constant cavity pressure pc.
Following the approaches outlined by Dowell (1966), Gordnier & Visbal (2002) and Visbal
(2012), the equation of motion for the panel is derived based on Hamilton’s principle and
von Kármán large deformation theory as

ρh
∂2w
∂t2

+ D
∂4w
∂x4 − (N0 + Nx)

∂2w
∂x2 + �p = 0, (3.1)

where

D = Eh3

12(1 − ν2)
, (3.2a)

Nx = Eh
2l(1 − ν2)

∫ l

0

(
∂w
∂x

)2

dx = 6
D
h2l

∫ l

0

(
∂w
∂x

)2

dx, (3.2b)

�p = p − pc, (3.2c)

where D is plate stiffness, Nx is applied in-plane force, and �p represents the pressure
difference between the upper and lower surfaces of the panel. See the nomenclature
(Appendix G) for definitions of the other symbols. To simplify the equations, the following
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non-dimensional parameters are introduced:

W ≡ w
h

, ξ ≡ x
l
, τ ≡ t

√
D

ρhl4
, (3.3a)

�p ≡ l4

Dh
�p, λ ≡ 2l3

Dβ
q∞, β ≡

√
M2 − 1, (3.3b)

R0 ≡ l2

D
N0, Rx ≡ l2

D
Nx. (3.3c)

By substituting the aforementioned non-dimensional parameters, (3.1) can be written as

∂2W
∂τ 2 + ∂4W

∂ξ4 − (R0 + Rx)
∂2W
∂ξ2 + �p = 0. (3.4)

Equation (3.4) is discretised into ordinary differential equations by the use of Galerkin’s
method. According to the simply supported boundary condition, the non-dimensional
displacement of the panel, denoted as W, satisfies

W(ξ, τ ) =
∞∑

i=1

[qi(τ ) sin(iπξ)], (3.5)

where qi is the ith generalised displacement and sin(iπξ) is the ith mode. Substituting
(3.5) into (3.4) and multiplying both sides of the equation by sin(nπξ), by using the
orthogonality of the mode shapes, we can integrate both sides of the equation over the
panel length, resulting in

d2qn

dτ 2 +
(

(nπ)4 + R0(nπ)2 + 3(nπ)2
Nmode∑
i=1

(iπqi)
2

)
qn

+ 2
∫ 1

0
(�p sin(nπξ)) dξ︸ ︷︷ ︸
aerodynamic term

= 0. (3.6)

Here we consider that the deformation of the panel is mainly composed of the
superposition of the first Nmode modes, i.e. n = 1, 2, . . . , Nmode. Based on the experience
from Dowell (1966) and Visbal (2012), this study considers Nmode = 6.

Expanding the last term in (3.6), and introducing pressure coefficient Cp ≡ ( p −
p∞)/q∞ and cavity pressure coefficient Cpc ≡ pc/p∞, we obtain∫ 1

0
(�p sin(nπξ)) dξ

=
∫ 1

0

(
l4

Dh
( p − pc) sin(nπξ)

)
dξ

= λ l
2h

β

( ∫ 1

0
(Cp sin(nπξ)) dξ︸ ︷︷ ︸

generalised aerodynamic force

− 2
γ M2

1 − cos(nπ)

nπ
(Cpc − 1)︸ ︷︷ ︸

cavity pressure term

)
. (3.7)
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The generalised aerodynamic force (Lucia, Beran & Silva 2004) is defined as

fn ≡
∫ 1

0
(Cp sin(nπξ)) dξ. (3.8)

By introducing the state variable e = {q1, q2, . . . , qNmode, q̇1, q̇2, . . . , q̇Nmode}T, and
combining (3.6), the nonlinear dynamics equations of the panel can be rewritten as

den

dτ
= en+Nmode,

den+Nmode

dτ
= −

(
(nπ)4 + R0(nπ)2 + 3(nπ)2

Nmode∑
i=1

(iπei)
2

)
en

− λ l
h
β

(
fn − 2

γ M2
1 − cos(nπ)

nπ
(Cpc − 1)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

According to the general framework for dynamical systems, the equivalent system of (3.9)
is

ė = F(e, f ), (3.10)

where e is the vector of state variable and f is the vector of generalised aerodynamic force.

3.2. Calculation method for aerodynamic loads

3.2.1. Computational fluid dynamics method
The Euler equations described by the arbitrary Lagrangian–Eulerian (ALE) method are
solved in this study using a verified in-house code (Ye et al. 2022). The cell-centred
finite-volume method is applied to solve the above governing equations. The main
numerical methods are as follows. The improved advection upstream splitting method
(AUSM+) is used to derive the convective flux. The implicit dual time-stepping (DTS)
method is employed for time marching, and the lower–upper symmetric Gauss–Seidel
(LU-SGS) algorithm is used in the iteration of the pseudo-time step. In terms of boundary
conditions, the free-slip boundary condition is applied at the wall, and the non-reflecting
boundary condition is applied at the far field.

3.2.2. Reduced-order model for unsteady aerodynamic loads
To improve the calculation efficiency, a reduced-order model for unsteady aerodynamic
loads based on the AutoRegressive with eXogenous input (ARX) model (Gao & Zhang
2020; Ye et al. 2022) is established through the system identification technique. The ARX
model for a multi-input multi-output system can be given by

y[k] =
na∑

i=1

Ai y[k−i] +
nb−1∑
i=0

Bi u[k−i] + e[k], (3.11)

where y[k] and u[k] are the output and input in the kth observation, respectively; e[k] is the
noise in the kth observation; Ai and Bi are the parameter matrices to be identified; and na
and nb are the order of output and input terms, respectively, which are hyper-parameters
of the model.
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For the specific issue in this study, we have

y[k] = { f [k]
1 , f [k]

2 , . . . , f [k]
Nmode

}T, u[k] = {q[k]
1 , q[k]

2 , . . . , q[k]
Nmode

}T. (3.12a,b)

An appropriate training signal (u series) should be designed based on prior knowledge, and
the corresponding response signal ( y series) can be obtained by CFD/CSD computations.
The parameter matrices Ai and Bi will be determined through the least squares method
using these training data, i.e. u series and y series (Gao & Zhang 2020).

3.3. Time marching method for aeroelastic equations
In this study, an improved Runge–Kutta method, as proposed by Zhang, Jiang & Ye
(2007), is employed to solve (3.9). This method uses a third-order Lagrange polynomial
interpolation for the aerodynamic forces, offering both efficiency and robustness.
Combining with (3.10), the specific marching steps are given by

e[n+1] = e[n] + �τ(k1 + 2k2 + 2k3 + k4)/6, (3.13)

k1 = F(e[n], f [n]),

k2 = F(e[n] + �τ k1/2, f [n+0.5]),

k3 = F(e[n] + �τ k2/2, f [n+0.5]),

k4 = F(e[n] + �τ k3, f [n+1]),

⎫⎪⎪⎬
⎪⎪⎭ (3.14)

f [n+1] = (4 f [n] − 6 f [n−1] + 4 f [n−2] − f [n−3]),

f [n+0.5] = (35 f [n] − 35 f [n−1] + 21 f [n−2] − 5 f [n−3])/16.

}
(3.15)

4. Computational configuration

4.1. Computational model
Figure 3 presents the grid and corresponding boundary conditions used in the CFD
simulation. This study does not involve the calculation of flow in the boundary layer,
but for computational accuracy and grid deformation considerations, the grid near the
panel has been appropriately refined. The shock is generated through a designed wedge,
with a shock strength of p3/p1 = 1.4. The compression surface of the wedge is extended
appropriately to ensure that the expansion fan behind the wedge does not affect the load on
the flexible panel. Figure 4 presents the contour of the density gradient in the initial flow
field. The positions of the shock and expansion waves in the initial flow field are consistent
with the scope of this study.

4.2. Establishment of the reduced-order model for unsteady aerodynamic loads
The main source of time cost in this study is the prediction of complex unsteady
aerodynamic loads. A reduced-order model for unsteady aerodynamic loads is established
based on the ARX model (Sjöberg et al. 1995; Raveh 2004; Gao et al. 2017), which
possesses the advantages of simple form and efficient computation.

Figure 5(a) shows the training signals of generalised displacement used to drive the
forced vibration. A sweeping signal with a wide frequency range is employed as the
training signal (Gao et al. 2017), with a length of 3000 and a sampling frequency of 4000
τ−1. Figure 6 displays the power spectral density (PSD) of the training signals, covering
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Figure 3. Computational grid and boundary conditions.
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Figure 6. Power spectral density of training signals.

the main frequencies of the actual CFD/CSD response (Ljung 1999). Figure 5(b) presents
the generalised aerodynamic forces obtained through CFD/CSD computations for each
mode of the panel under the excitation of the training signals.

Determining the hyperparameters, namely na and nb, is pivotal in the process of
model establishment. For the problem addressed in this study, with a Mach number
of 2, preliminary calculations indicated no subsonic conditions in the flow field at any
given moment. This implies that disturbances from the structure to the flow field can
only propagate downstream within the Mach cone at the disturbance location. However,
for a finite-length plate, the duration of this disturbance’s impact on the generalised
aerodynamic forces of the panel is also finite. In other words, the generalised aerodynamic
forces at any given moment should be determined by the unsteady effects of structural
disturbances over a finite period, along with the unsteady flow itself. In the case of the
supersonic flow investigated in this study, the inherent unsteady effects of the flow are
notably weak. This is evident in the response to forced vibrations (see figure 5): the
aerodynamic force stabilises rapidly after the cessation of displacement input. Hence, for
this problem, it can be approximately considered that the generalised forces are dominated
by the generalised displacements, i.e. the current generalised force is independent of past
generalised forces. The model’s parameter na characterises the intrinsic unsteady effects of
flow, while nb characterises the structural disturbances’ unsteady effects on the flow. Based
on the above analysis, na can be assumed as 0, while nb should be assigned an appropriate
value. To ascertain the optimal value of nb, we construct models with different nb values
and assess the corresponding modelling errors. A comparative analysis of these errors
enables us to determine the most suitable nb value. The modelling error, as defined by
(4.1), quantifies the extent to which the model accurately captures the training generalised
aerodynamic forces (Ye et al. 2022):

emodel =

N∑
i=1

| f̂ [i] − f [i]|

N∑
i=1

|f [i]|
. (4.1)
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Figure 7. Normalised modelling error versus nb.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

emodel 0.0008 % 0.0037 % 0.0048 % 1.6250 % 0.0106 % 0.0229 %
R2 0.9997 0.9974 0.9997 0.9982 0.9996 0.9964
RMSE 4.7 × 10−7 2.2 × 10−6 1.1 × 10−6 3.4 × 10−6 2.0 × 10−6 4.7 × 10−6

Table 1. Modelling error.

Figure 7 presents the variation of normalised modelling errors versus different values of
nb. The modelling errors of individual modal orders are normalised using their maximum
and minimum values. It can be observed that the range of nb between 60 and 140 exhibits
favourable error performance. Additionally, a comparison with the CFD/CSD results
demonstrates that the model displays enhanced robustness when nb is set to 60, resulting
in a strong agreement between the predicted values of the reduced-order model and the
actual CFD/CSD results. Table 1 provides the modelling errors, root mean square errors
(RMSEs) and R2 scores for the case of na = 0 and nb = 60. In this case, the model is
equivalent to the Volterra model or Wiener filter (Silva 1993; Raveh 2001; Silva 2005;
Balajewicz & Dowell 2012). Further evaluation of the model is detailed in Appendix C.

5. Stability analysis of fixed points

Non-equilibrium cavity pressure significantly influences the fixed point (i.e. the static
equilibrium position of the panel) (see Dowell 1966; Visbal 2014). However, conventional
numerical simulation methods based on CFD/CSD are limited to detecting stable fixed
points. The analysis of unstable fixed points relies more on theoretical methods, which
further require the existence of analytic expressions (see Ye & Ye 2018). The reduced-order
model established in § 4.2 provides a pathway for establishing a theoretical analysis
framework based on CFD/CSD.

5.1. Static deformation characteristics
The static aerodynamic force expression is derived from the reduced order model.
For (3.11), considering a static process, we have y[k] = y[k−1] = · · · = y[k−na],
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Figure 8. (a) Plate deformations and (b) bar graph of generalised displacements with λ = 300.

u[k] = u[k−1] = · · · = u[k−nb+1]. Thus, the static aerodynamic force can be simplified as

ỹ = ((I − Ã)
−1

B̃)ũ, (5.1)

where Ã = ∑na
i=1 Ai, B̃ = ∑nb−1

i=0 Bi, ũ is the generalised displacement vector of the panel
with static deformation, while ỹ is the generalised aerodynamic force under the static
deformation.

For the structural equation, setting the time derivative of the left-hand side of (3.9) to
zero yields the static structural equation as F(e, f ) = 0, where f can be given by (5.1) as

f = ((I − Ã)
−1

B̃)e + f 0, (5.2)

where f0 is a constant vector related to the training of the reduced-order model (Gao et al.
2017). Note that (5.2) stands as an explicit expression. Therefore, within the equation
F = 0, F is a function dependent solely on e. We term this equation derived from the
reduced-order model as the static aeroelastic equation based on ROM. This study employs
the trust region method (see Moré & Sorensen 1983) to solve this nonlinear equation with
multiple inputs and outputs, considering various cavity pressures and dynamic pressures.

Figure 8(a) presents the deformations of the panel at several cavity pressures when
λ = 300. Even at this relatively low dynamic pressure, CFD/CSD computations are
capable of capturing these stable fixed points. The results obtained from both methods
are in excellent agreement. Furthermore, figure 8(b) provides a bar graph of generalised
displacements, with the transparent blue plane representing the zero plane. The first
generalised displacement exhibits evident variations with cavity pressure. Overall, the
deformations are primarily attributed to the contributions from the first three generalised
displacements. The proportion of the first mode increases rapidly and dominates as the
cavity pressure deviates further from the mean pressure. Figure 9 illustrates the variations
of the first three generalised displacements with cavity pressure, indicating larger
dynamic pressures induce greater changes. It is noteworthy that the second generalised
displacement displays non-monotonic variations, with its maximum values exhibiting
nonlinear changes with dynamic pressure, while the cavity pressures corresponding to
the maximum values generally exhibit linear changes with dynamic pressure.
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Figure 9. First three generalised displacements versus cavity pressure.

5.2. Linear stability of fixed points
Note that the calculations in § 5.1 demonstrate the existence of fixed point solutions under
a wide range of cavity pressures and dynamic pressures. This section will examine the
stability of these fixed points.

To begin, an analytic expression for the aeroelastic system is established. Following the
procedures outlined in Appendix D, a state-space model corresponding to the aerodynamic
reduced-order model can be obtained. Combining this model with the structural equation,
i.e. (3.10), leads to

ė = F(e, f ),

ẋ = G(x, e),

}
(5.3)

where

f (x, e) = Ccx + {Dc O} · e + f 0, G(x, e) = Ac x + {BcO} · e, (5.4a,b)

correspond to the output equation and state equation of the state-space model, respectively.
A similar coupling method is also adopted by Gao et al. (2017), Silva & Bartels (2004) and
Ye et al. (2022). Let the state variables be denoted as r = {e, x}. The aeroelastic equation,
denoted as (5.3), can be expressed as ṙ = H(r). Linearising the system at its fixed points,
the Jacobian matrix is given by

J =

⎧⎪⎪⎨
⎪⎪⎩

I O O

E − λ l
h
β Dc O −λ l

h
β Cc

Bc O Ac

⎫⎪⎪⎬
⎪⎪⎭ . (5.5)

The elements of the matrix E are

E ij =

⎧⎪⎨
⎪⎩

−6(iπ)2( jπ)2q0,iq0,j if i /= j,

−(iπ)4(1 + 9q2
0,i) − R0(iπ)2 − 3(iπ)2

Nmode∑
n=1,n /= i

(nπq0,n)
2 if i = j, (5.6)
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Figure 10. Stability of fixed points in the λ− Cpc plane.

where q0,i is the ith generalised displacement of the fixed point under corresponding
cavity pressure and dynamic pressure, which has been calculated in § 5.1. Examining the
eigenvalues Ω of the matrix J at each fixed point, any Real Ωi > 0 signifies an unstable
fixed point; otherwise, it is deemed stable (see Khalil 2002, chap. 4).

Figure 10 presents the stability of the fixed points. The influence of cavity pressure on
stability does not exhibit symmetric distribution about the mean pressure, differing notably
from the case of a free stream condition (see Dowell 1966; Gordnier & Visbal 2002). For
cases where the cavity pressure is less than the mean pressure, all fixed points are stable.
The unstable region is mainly concentrated in the Cpc > 1.208 range, where the critical
value exhibits a significant slope. This implies that cavity pressures below this threshold
significantly enhance the stability of the panel with static deformation. The important
threshold of Cpc = 1.208 will be referenced frequently in subsequent discussions. The
minimum critical dynamic pressure appears at approximately Cpc = 1.215. Furthermore,
after Cpc > 1.248, the unstable region disappears. In other words, fixed points can be
unstable only when 1.208 < Cpc < 1.248; otherwise, the panel always has a stable static
deformation solution. This leads to two changes in the stability of the system as the cavity
pressure varies.

5.3. Stability from the perspective of energy transfer
The findings in § 5.2 indicate that fixed points become unstable only under limited cavity
pressure for a certain dynamic pressure. The stability characteristics of FSI systems are
fundamentally governed by the energy transfer between the fluid and the structure. From
an energy perspective, numerous scholars have investigated the stability of FSI systems
(Morse & Williamson 2009; Zhu, Su & Breuer 2020; Menon & Mittal 2021; Cheng et al.
2023).

The energy extracted from the flow to the flexible panel over a cycle can be expressed
as

E∗(τ ) =
∫ τ

τ−�τ

∫ l

0
( pc − p)ẇ dx dτ. (5.7)
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Figure 11. Time series of energy transfer at fixed points with λ = 1000.

Using the non-dimensionalisation procedure detailed in § 3.1 and substituting the
definition of generalised aerodynamic forces (3.8), we have

E∗(τ ) = hl
Nmode∑
i=1

∫ τ

τ−�τ

∫ 1

0
( pc − p) sin(iπξ)q̇i dξ dτ

= λDh
2l2

β

Nmode∑
i=1

∫ τ

τ−�τ

(
2

γ M2
1 − cos(iπ)

iπ
(Cpc − 1) − fi

)
q̇i dτ. (5.8)

Note that there is no damping term in the structural equation (3.9), thus, the sign of E∗
directly indicates the amplification or suppression of oscillation amplitude (Cheng et al.
2023).

We investigated three cases with Cpc = 1.2, 1.23 and 1.25 corresponding to the unstable
fixed point and two stable fixed points on either side, as shown in figure 10. CFD/CSD
calculations are performed under specific initial conditions. For the unstable fixed point,
the panel is released from the fixed point position. For the stable fixed points, the panel is
displaced from their fixed point positions and then released (with a negative offset of 10 %
in the second generalised displacement q2). Figure 11 illustrates the energy transfer at these
three fixed points. When the cavity pressure is low (Cpc = 1.2, blue line), the additional
energy input from displacing the fixed point causes E∗ to fluctuate around 0 initially, and
quickly tends to 0 over time, indicating an equilibrium energy transfer between the flow
and the structure (Cheng et al. 2023). Considering the total energy transfer over time 0
to 1, we have

∫ 1
0 E∗ dτ < 0, which means the structure releases energy to the flow. This

energy dissipation causes structural vibration decay and tends towards the fixed point,
corresponding to the stable region in figure 10. As the cavity pressure increases to the
unstable region (Cpc = 1.23, red line), a significant reversal in the direction of energy
transfer occurs. It can be observed that E∗ diverges towards the positive half-axis during
oscillations, with

∫ 1
0 E∗ dτ > 0. This indicates that the structure periodically absorbs

energy from the flow, with increasing absorption, preventing the structure from stabilising
at the fixed point. With further increase in cavity pressure (Cpc = 1.25, green line), the
direction of energy transfer reverses again. This makes the Cpc = 1.25 case similar to that
of Cpc = 1.2, with

∫ 1
0 E∗ dτ < 0. In this case, the structure releases energy to the flow and

the system returns to the stable region.
In summary, changes in cavity pressure result in two reversals in the direction of energy

transfer between the flow and the structure. This leads to an evolution of the stability of the
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Figure 12. Response at 3/4 chord of the panel with Cpc = 1.2, λ = 580.

fixed points from stable to unstable and back to stable, as depicted in figure 10. Therefore,
the unstable region in figure 10 is limited.

6. Panel flutter characteristics

6.1. Limit cycle oscillation characteristics
Numerical simulations based on ROM/CSD are conducted to analyse the flutter
characteristics of the panel under different cavity pressures. The time marching method
in § 3.3 is used. The simulations are performed for states within the ranges of cavity
pressure coefficient Cpc = 1.18 to 1.23 and non-dimensional dynamic pressure λ = 320
to 580. The initial state is set to Cpc = 1.2 and λ = 580 with specific initial conditions, i.e.
first generalised velocity q̇1 = 100.0, while the remaining generalised displacements and
velocities are 0. The selection of this initial condition is aimed at steering the system
into a limit cycle trajectory rather than a fixed point. The initial conditions satisfying
this requirement are not unique, and one of them is chosen here. A more detailed
discussion will follow in § 7. The response of the displacement, generalised displacements
and generalised velocities are presented in figures 12 and 13, which indicate the panel
exhibits a limit cycle oscillation. The deflection of the panel is primarily governed by
the first three generalised displacements. The first generalised displacement exhibits only
slight oscillation, whereas the second and third generalised displacements have larger
amplitudes. Furthermore, the equilibrium positions of the first and second generalised
oscillations significantly deviate from the zero point.

Responses under different cavity pressures are obtained by altering cavity pressure after
the initial state has been fully developed. Figure 14 illustrates the limit cycle amplitudes
for different cavity pressures, with the dash-dotted line indicating the slope of amplitude
at Cpc,mean. It can be observed that the amplitudes exhibit a nonlinear decrease with the
cavity pressure increasing, and this nonlinear trend becomes more pronounced for cavity
pressure coefficients exceeding 1.208, which is the critical threshold where the unstable
fixed points begin to appear in § 5. These regularities indicate that in the computation
of panel flutter under the influence of an oblique shock, the presence of uncertainties in
the calculation results can be attributed to the deviation between the actual and target
cavity pressures. Specifically, in practical computations, achieving a pressure distribution
that strictly conforms to the theoretical results of inviscid shock is challenging due to
factors such as grid distribution, numerical schemes and even the characteristics of the
solver itself. This can lead to a biased estimation of the mean pressure. In figure 14, even
slight variations in cavity pressure can induce considerable changes in amplitude. This
observation provides a partial explanation for the dispersed results based on calculations
designed according to mean cavity pressure, e.g. results reported by Visbal (2012) and Li
et al. (2019) (see figure 37).
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Figure 13. (a) Generalised displacement and (b) generalised velocity with Cpc = 1.2, λ = 580.
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6.2. Hysteresis behaviour and catastrophe phenomena
The direction of parameter changes in nonlinear systems can induce different branches
of solutions, leading to complex hysteresis behaviour (Visbal 2014; Boyer et al. 2021;
Brouwer et al. 2021). Therefore, following Visbal (2014) and An et al. (2021), this study
considers both ascending and descending λ under different cavity pressures. In the case
of ascending λ, the dynamical system initiates from a static solution at λ = 320 and, after
the response is fully developed, increases λ to compute the subsequent state. Conversely,
in the case of descending λ, the dynamical system initiates from a flutter solution at
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Figure 15. Hysteresis behaviour and its evolution with cavity pressure.

λ = 580 and, after the response is fully developed, decreases λ to compute the subsequent
state. To minimise disturbances caused by parameter changes and ensure a smoother
evolution of the system, small increments are employed for parameter progression (�λ =
0.25, �Cpc = 0.001).

The amplitude at the 3/4 chord of the panel versus λ is shown in figure 15 when the
cavity pressure changes around the mean pressure (i.e. Cpc,mean ≡ 1.2). The amplitudes
for different λ are represented by coloured dots, and the amplitudes at the same cavity
pressure are connected by grey solid lines. The presence of a visible grey line indicates a
discontinuous jump of the system at that point.

The results in figure 15 indicate that the system is highly sensitive to changes in cavity
pressure. The system exhibits complex hysteretic behaviour, particularly when the pressure
is above the mean value (i.e. Cpc,mean ≡ 1.2). The range of pressure is classified into three
phases based on the hysteresis characteristics exhibited by the system.

Phase I (1.18 < Cpc � 1.208): within the range of investigated dynamic pressures, no
flutter occurs in the ascending process, while a critical dynamic pressure is observed in
the descending process. The system transitions from the flutter state to the static deformed
state through a discontinuous jump at the critical dynamic pressure during λ descent. The
hysteresis loop has not fully formed in this phase.
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Figure 16. Structure of hysteresis loop for different cavity pressure: (a) width of the hysteresis loop;
(b) centre position of the hysteresis loop.

Phase II (1.208 < Cpc � 1.227): critical dynamic pressures are observed in both
ascending and descending processes, with different critical values for each. In both
processes, the system transitions through discontinuous jumps. In this phase, a complete
hysteresis loop is formed within the investigated λ, and the hysteresis loop is compressed
as the cavity pressure increases.

Phase III (1.227 < Cpc � 1.23): critical dynamic pressures are observed in both
ascending and descending processes, with identical critical values for each. The system
transitions through continuous evolution, where hysteresis behaviour completely vanishes,
and the ascending and descending solutions perfectly coincide.

The structure of the hysteresis loop in Phase II as a function of cavity pressure coefficient
is presented in figure 16. In figure 16(a), the width of the hysteresis loop monotonically
decreases with cavity pressure, eventually converging to 0 at the end of Phase II. In
figure 16(b), the centre position of the hysteresis loop initially decreases and then increases
with the cavity pressure, reaching its minimum value at a cavity pressure coefficient of
1.213. By examining figures 15 and 16, an important observation can be made, i.e. with
the change of cavity pressure, the process of compression and vanishing of the hysteresis
loop is precisely the gradual attenuation of discontinuous transitions in the dynamical
system, which leads to a smooth evolution system.

In the hysteresis phenomena of Phases I and II, the solutions of the system exhibit
high sensitivity to initial conditions. Conducting simulations with fixed initial conditions
under different dynamic pressures can lead to unexpected results, where the solutions
fall into either the upper or lower branch of the hysteresis loop, thus potentially yielding
biased conclusions. This finding provides supplementary and comparative insights into the
phenomenon of solution jumps observed in the calculations presented by An et al. (2021).
However, for solutions already in the upper or lower branch, a small disturbance will not
change their branch. At this point, the system exhibits a certain level of self-sustaining
behaviour (Wei & Yabuno 2019). Systems within the hysteresis loop inherently possess
multiple solutions, and significant disturbance can still change the branch of the solution.
The states before the disturbance depicted in figure 17 correspond to the flutter and
static solutions at λ = 400 in figure 15(d). As shown in figure 17(a), at τ = 110.22, we
suppress 80 % of the amplitudes of the first three generalised velocities, resulting in the
system transitioning from the flutter state to the static deformation state after sufficient
development. Conversely, as shown in figure 17(b), at τ = 36.74, a gain on the first three
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Figure 17. Response at 3/4 chord of the panel before and after the disturbance that (a) transitions the flutter
state into static deformation and (b) transitions the static deformation into flutter state.

generalised velocities is applied. The magnitude of this gain is equivalent to 80 % of their
amplitudes in the corresponding flutter solution. This stimulation induces a transition from
the static deformation state to the flutter state after sufficient development.

The preceding analysis indicates that the evolution of these hysteresis loops exhibits
typical characteristics of a cusp catastrophe (Lopez 1994; Arnold 2003). Our focus now
shifts to examining the variations of solutions within the parameter plane of λ and Cpc.
Figure 18 provides more states of different cavity pressures and visualises them in a
three-dimensional space. The figure showcases the catastrophe surface (Strogatz 2018,
chap. 3) in the λ− Cpc plane, as represented by the amplitudes at the 3/4 chord of the
panel. It allows us to know the forms of solutions and their evolutionary trends within the
parameter plane. Figure 18(a,b) represent the cases of ascending and descending dynamic
pressure, respectively, and figure 18(c) combines the information from panels (a) and (b).
The directional arrows in the figure indicate the direction of dynamic pressure change. The
red lines beneath the surface illustrate the projection of the critical dynamic pressure onto
the λ− Cpc plane. To provide a more intuitive explanation, a schematic representation of
figure 18(a,b) is presented in figure 19, where the red arrows describe the behaviour of the
solutions as the dynamic pressure changes.

Combining figures 18 and 19, it can be observed that regardless of whether the dynamic
pressure is ascending or descending, the system undergoes a sharp and discontinuous
transition between the flutter and static deformation states at specific positions where the
surface cracks. As the cavity pressure increases, the intensity of this transition gradually
attenuates and eventually transforms into a continuous evolution after Cpc > 1.227. The
projection of the critical dynamic pressure in figure 18(c) highlights the region between
the λcr,ascend and λcr,descend, which represents the hysteresis structure. Based on figure 18,
the critical dynamic pressures of ascending and descending processes intersect at the
boundary between Phase II and Phase III. After entering Phase III, the ascending and
descending critical dynamic pressures merge into the same line.
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Figure 19. Schematic representation of the catastrophe surface with (a) λ ascending and (b) λ descending.

To sum up, the variations in λ and Cpc lead to the following phenomena.

1. The stability boundaries of the system (i.e. the critical dynamic pressures of
ascending and descending processes) intersect and form a cusp.

2. At the cusp, the changes in the system stability transition from discontinuous jumps
to continuous smooth evolutions.
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These analyses indicate that the disappearance of the hysteresis loop and the formation
of the cusp are induced by the variations in cavity pressure. The variations trigger a
cusp catastrophe phenomenon (Arnold 2003) in the parameter plane of cavity pressure
coefficient and non-dimensional dynamic pressure. Due to the inherent complexity of the
dynamical system, providing rigorous theoretical proof for this catastrophe phenomenon
is challenging. Following the methodology presented by Liu & Dowell (2004), this
study employs meticulous numerical methods to determine the evolution pattern of the
dynamical system in the parameter plane. The results demonstrate that the system exhibits
the principal characteristics of a cusp catastrophe phenomenon.

Similar cusp catastrophe phenomena have also been observed in various other nonlinear
systems (Lopez 1994; Böttcher, Nagler & Herrmann 2017), indicating the existence of
perilous explosive branch transitions in the dynamical system (Arnold 2003). As depicted
in figure 18, such branch transitions occur between Phase II and Phase III, highlighting
a crucial finding: the cavity pressure can modulate the stability characteristics of the
system. In contrast to the sharp transitions in Phases I and II, when the cavity pressure falls
within Phase III, the dynamical system exhibits a more moderate response and the critical
dynamic pressure for flutter is higher. Effectively harnessing this favourable feature might
potentially enhance the performance of vehicles in extreme operating conditions.

7. Three types of bifurcation induced by cavity pressure

The fundamental nature of the cusp catastrophe phenomenon triggered by cavity pressure
lies in its influence on the critical dynamic pressure and how the system transitions at
the critical point. Furthermore, the cavity pressure modifies the locations and types of the
bifurcations in the system. To examine the variations in system bifurcations under different
cavity pressures, an analysis is conducted on the changes in the critical dynamic pressure,
which represents the location of the bifurcation occurrence.

Using the fixed points obtained in § 5.1 and limit cycles obtained in § 6.1, figure 20
illustrates the variations of the critical dynamic pressure in the parameter plane of
non-dimensional dynamic pressure and cavity pressure coefficient. The solid lines in
three different colours represent the critical dynamic pressures obtained in the ascending
and descending processes, which correspond to the projections in figure 18. The square
dots are the stability boundary of fixed points obtained in § 5.2, which is in excellent
agreement with the position where fixed points disappear and become a limit cycle in
the numerical calculations. As depicted in figure 20, the λcr,ascend (i.e. the blue and green
lines) and the λcr,descend (i.e. the red line) exhibit a pronounced asymmetric distribution on
either side of the mean pressure (i.e. Cpc,mean ≡ 1.2). With an increase in cavity pressure,
both the λcr,ascend and λcr,descend initially decrease and then increase. At the boundary
between Phase I and Phase II (i.e. Cpc = 1.208), the λcr,ascend begins to appear within the
investigated range of dynamic pressure. At the boundary between Phase II and Phase III
(i.e. Cpc = 1.227), the critical dynamic pressure lines start merging, forming a cusp.

It is important to note that the critical dynamic pressure in the ascending process (red
line) in figure 20 shows a tendency to extend downwards to Phase I at the cavity pressure
coefficient of 1.208. This suggests the possibility of a λcr,ascend in the high λ range of
Phase I. Therefore, after considering a wider range of λ, a reevaluation of the boundary
between Phase I and Phase II becomes necessary, and the situation of the existence of
λcr,ascend at various cavity pressures cannot be disregarded. Further computations indicate
that when the cavity pressure coefficient is 1.207, the system exhibits a λcr,ascend at λ =
2420, and when the cavity pressure coefficient is 1.206, the λcr,ascend exceeds 5000. In
other words, after considering a larger range of λ, the current extent of Phase I needs
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Figure 20. Critical dynamic pressure in the λ− Cpc plane.

to be further narrowed. This implies that previous studies, which only focused on the
mean cavity pressure, failed to identify the presence of the λcr,ascend. This occurrence is
attributed to the fact that the λcr,ascend is concealed by the cavity pressure in an extremely
high λ region, which extended beyond the scope investigated in those studies.

The evolution of solution patterns before and after bifurcation provides insights into
the characteristics of the bifurcation (Strogatz 2018, chap. 8). In figure 20, the critical
dynamic pressure line divides the λ− Cpc plane into three zones. These zones correspond
to three combinations of flutter or static solutions resulting from the ascending and
descending processes. Bifurcations occur at the boundaries between adjacent zones, and
the transitions of solutions on both sides of these boundaries characterise the properties
of the bifurcation. Due to the complexity of the studied object, and the absence of precise
and analysable theoretical models, it is not possible to definitively determine the exact
type of the bifurcations solely through limited numerical observations (or experiments)
(Wei & Yabuno 2019). The present study investigates the evolution of the solutions and
their phase portraits in detail, but this observational information is still insufficient to be
considered ‘complete’. Therefore, the classification of bifurcations is prefixed with ‘quasi’
indicating that based on the observations, it can be concluded that the bifurcation exhibits
the principal characteristics of a specific type of bifurcation.

As shown in figure 20, the bifurcations spanning different zones under different cavity
pressures are classified into three types based on the evolution of solutions in the phase
portraits:

Zone A ↔ Zone C, quasi-supercritical Hopf bifurcation;
Zone B ↔ Zone C, quasi-subcritical Hopf bifurcation;
Zone B ↔ Zone A, quasi-saddle-node bifurcation of cycles.

The three types of bifurcations occur individually or in combination at different
cavity pressures. As shown in figure 20, the quasi-supercritical Hopf bifurcation
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Figure 21. Phase portraits on both sides of the critical point under typical cavity pressure in the bifurcation of
Zone A–C: (a) λ < λcr; (b) λ > λcr.

occurs in Phase III, the quasi-subcritical Hopf bifurcation occurs in Phase II and the
quasi-saddle-node bifurcation of cycles occurs at the cavity pressures excluding Phase III,
partially overlapping with the region where the quasi-subcritical Hopf bifurcation occurs.

7.1. Zone A–Zone C: quasi-supercritical Hopf bifurcation
First, the bifurcations across Zone A and Zone C are analysed, which exclusively take
place in Phase I.

Figure 21 shows the phase portraits on both sides of the bifurcation point of Zone A–C,
with a chosen cavity pressure coefficient of 1.23. The stable and unstable fixed points are
marked by the blue cross and circle respectively, while the limit cycle is represented by a
red trajectory. The arrows in the figure indicate the behaviour of the solutions around the
fixed point or limit cycle. This figure illustrates the characteristics of the solutions before
and after the bifurcation. Before the bifurcation, the solutions converge to the fixed point,
whereas after the bifurcation, the fixed point disappears and the system transitions into
limit cycle oscillation.

Figure 22 shows the evolution of the solutions at the bifurcation of Zone A–C for
typical cavity pressures. Several dynamic pressures are chosen in the neighbourhood of
the bifurcation point to demonstrate the evolution of the solutions as the system traverses
the bifurcation. In figure 22, the distinction between ascending and descending dynamic
pressures is still maintained, with the arrows representing the sequence of the evolution.
Unlike figure 21, figure 22 focuses more on the changes that occur in the solutions when
approaching and departing the bifurcation point. The coordinates chosen in both figures
are q2, q̇2 and q3, which correspond to the three components exhibiting larger amplitudes
in the solutions. To provide a clearer explanation, the development process of the solutions
is omitted here, and only the fixed point or limit cycle in a fully developed system
is presented. In figure 22, the solutions obtained during the ascending and descending
processes are identical, which confirms the absence of hysteresis behaviour in this cavity
pressure range (i.e. Phase III). As discussed in § 6.2, the system exhibits a continuous
evolution at this point. Taking the case of descending dynamic pressure depicted in
figure 22(b) as an example, as the system traverses the critical dynamic pressure from
small to large, the fixed point expands into a limit cycle. Under this cavity pressure, when
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the dynamic pressure approaches the right-sided limit of the critical dynamic pressure, the
system exhibits a sufficiently small limit cycle.

The potential unstable structure is numerically investigated by stimulations of multiple
initial conditions before and after the bifurcation point (Strogatz 2018; Liu & Dowell
2004). With q2 and q̇2 as the variables and other components as fixed values, figure 23
illustrates the basin of attraction at a cavity pressure coefficient of 1.23. The corresponding
phase portraits are marked by the blue cross, blue circle and red trajectory, which have the
same meaning as in figure 21. This result indicates that the system before and after the
bifurcation of Zone A–C always exhibits a single solution, without any unstable regions.

The preceding discussion indicates that the bifurcation of Zone A–C exhibits the
characteristics of a supercritical Hopf bifurcation (Shukla & Alam 2011). In an idealised
case, a rule of thumb for supercritical Hopf bifurcations is that as the system parameter
approaches the critical value, the size of the limit cycle gradually increases according
to a proportion of

√
λ− λcr (Strogatz 2018, chap. 8). For the high-dimensional complex

system studied in this paper, the topology of the limit cycle is highly distorted, and there
is no standard measurement for the size of the limit cycle. Here, the size of the limit cycle
is defined as (qi)max − (qi)fixed, where (qi)max is the maximum value of the ith generalised
displacement of the limit cycle and (qi)fixed is the ith generalised displacement of the
fixed point at the critical point. Figure 24 shows the variation of the limit cycle size at
the bifurcation point for a cavity pressure coefficient of 1.23. It can be observed that the
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to reach the bifurcation point with λ descending.

size of the limit cycle measured by q2 and q3 is in good agreement with the theoretical
formula under a certain proportionality factor. This further confirms the assertion that the
supercritical of Zone A–C is characterised by supercritical Hopf bifurcation.

Figure 25 presents the response and phase portraits of the system at the bifurcation
point of Zone A–C, providing the dynamic process of the transition between fixed point
and limit cycle shown in figure 22. Figure 25(a,b) depict the cases where λ approaches
the bifurcation point from different directions. The figure indicates that in this subcritical
Hopf bifurcation, the growth or shrinkage of the limit cycle unfolds at an extremely
slow pace, to the extent that the trajectories in its phase portrait almost fill the entire
interior of the limit cycle. The envelope of the response exhibits a monotonic and
smooth curve, devoid of sudden amplification or attenuation of its amplitude. Overall,
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Figure 26. Phase portraits on both sides of the critical point under typical cavity pressure in the bifurcation
of Zone B–C: (a) λcr,descend < λ < λcr,ascend; (b) λ > λcr,ascend .

the flutter generated through this bifurcation manifests in a more subdued manner. At the
critical point, a small-amplitude limit cycle gradually emerges, exhibiting a long-period
asymptotic instability. However, correspondingly, when the dynamic pressure decreases
and the system regains stability, the convergence process of flutter also takes a long time.

7.2. Zone B–Zone C: quasi-subcritical Hopf bifurcation
The bifurcation crossing Zone B and Zone C occurs at λcr,descend in Phase II (i.e. cavity
pressure coefficient of 1.208−1.227). Figures 26 and 27 present the phase portraits and
the evolution of the solution at the bifurcation point for Cpc = 1.21. The meanings of the
markers in the figures are similar to those in figures 21 and 22.

As shown in figure 26(a), there is a stable limit cycle and a stable fixed point in Zone B,
while in figure 26(b), there is only a stable limit cycle in Zone C. Moreover, the transition
between Zone B and Zone C can occur through three distinct paths, namely as follows.

Path 1: the fixed point in Zone B to the limit cycle in Zone C (i.e. with λ ascending,
figure 26a to figure 26b).
Path 2: the limit cycle in Zone B to the limit cycle in Zone C (i.e. with λ ascending,
figure 26a to figure 26b).
Path 3: the limit cycle in Zone C to the fixed point in Zone B (i.e. with λ descending,
figure 26b to figure 26a).

In the case of Path 2 and Path 3, the solutions maintain the topological structure of a limit
cycle, regardless of whether the dynamic pressure is ascending or descending. Conversely,
for Path 1, as the dynamic pressure descends, the fixed point suddenly disappears and is
replaced by a single limit cycle.

Figure 27 presents the details of the transitions occurring in Path 1. The direction of
the arrows represents the sequence of the evolution as the dynamic pressure descends.
As indicated by the dashed arrow in figure 27, the transition from the fixed point to
the limit cycle occurs suddenly (Strogatz 2018, chap. 8). In further computations, this
jumping phenomenon persists and does not disappear as the intervals of dynamic pressure
decrease. Compared with the case where the size of the limit cycle size tends to zero in the
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Figure 28. Basin of attraction at Cpc = 1.21.

quasi-supercritical bifurcations, the size in figure 27 exhibits a non-zero minimum value.
As the dynamic pressure descends and crosses the bifurcation point, the original fixed
point loses stability and gives rise to a stable limit cycle with a larger amplitude. With
further increases in the dynamic pressure, the size of the limit cycle continues to grow.

Figure 28 investigates the influence of initial conditions when the cavity pressure
coefficient is 1.21. The meanings of the marks are similar to those in figure 23. The
bifurcation of Zone B–C corresponds to the range λ = 420 ∼ 500 in the figure. The
unstable structures appear at the boundary between the black and white points. These
unstable structures gradually collapse to the fixed point as λ ascends, eventually resulting
in the collision and engulfment of the unstable structure with the fixed point. Following
the disappearance of unstable structures (i.e. at λ = 500 in figure 28), the system becomes
entirely attracted to the limit cycle.
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Figure 29. Response and its phase portrait at the critical point in the bifurcation of Zone B–C.

The above results indicate that the bifurcation of Zone B–C exhibits characteristics
of subcritical Hopf bifurcation (Subramanian, Sujith & Wahi 2013; Pasche, Avellan &
Gallaire 2021). Building upon this, this study further analyses the response characteristics
of Path 1 during the bifurcation. Figure 29 presents the response and phase portrait of the
system at the bifurcation point of Zone B–C, corresponding to the dynamic process of the
jump shown in figure 27. Specifically, figure 29 showcases the state with Cpc = 1.21 as a
representative, while other bifurcations of Zone B–C exhibit similar characteristics.

Compared with the previous subcritical Hopf bifurcation, the occurrence of flutter
behaviour in this subcritical bifurcation is more perilous. First, the time course of the
limit cycle growth is shorter. Second, from the perspective of the response envelope, there
is an explosive process during the growth of the limit cycle, characterised by a sharp
increase in amplitude. This phenomenon is also confirmed by the phase portrait. Compared
with figure 25(a), the trajectory distribution of solutions in figure 29 during the transition
process from the fixed point to the limit cycle is noticeably sparser, indicating a rapid and
pronounced change process.

7.3. Zone B–Zone A: quasi-saddle-node bifurcation of cycles
The bifurcation crossing from Zone B to Zone A occurs in all cavity pressure ranges except
Phase III and during the process of decreasing dynamic pressure. Notably, in Phase II, the
bifurcations of Zone B to A and Zone B to C coexist, resulting in two critical dynamic
pressures. Therefore, in addition to the more general case represented by the state with
Cpc = 1.19, figure 30(a,b) specifically select the state with Cpc = 1.21 as a representative
of Zone B–A bifurcation in Phase II. As shown in figure 30, there is a single stable fixed
point in Zone A, while both a stable fixed point and a stable limit cycle are in Zone B. The
transition between Zone A and Zone B can occur through three distinct paths, namely as
follows.

Path 1: the limit cycle in Zone B to the fixed point in Zone A (i.e. with λ descending,
figure 30b to figure 30a).
Path 2: the fixed point in Zone B to the fixed point in Zone A (i.e. with λ descending,
figure 30b to figure 30a).
Path 3: the fixed point in Zone A to the fixed point in Zone B (i.e. with λ ascending,
figure 30a to figure 30b).

For Path 2 and Path 3, the solutions maintain the topological structure of a fixed point,
regardless of whether the dynamic pressure is ascending or descending. Conversely, for
Path 1, as the dynamic pressure descends, the limit cycle suddenly disappears and is
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Figure 30. Phase portraits on both sides of the critical point under typical cavity pressure in the bifurcation
of Zone B–A: (a) λ < λcr,descend; (b) λcr,descend < λ < λcr,ascend; (c) λ < λcr; (d) λ > λcr.

replaced by a single fixed point. In terms of the topological structure of solutions, the
states with Cpc = 1.21 and Cpc = 1.19 exhibit consistent patterns. The presence of Zone
B–C bifurcation in Phase II does not introduce any new topological structures in the
phase portraits. Among the states considered in this study with cavity pressure coefficients
ranging from 1.18 to 1.227, all the bifurcations of Zone B–C follow the same qualitative
patterns. Therefore, in this case, the analysis of the evolution at the bifurcation point is
focused on the states where Cpc = 1.21.

Figure 31 shows the details of the transitions in Path 1. As indicated by the solid arrow
in figure 31, as the dynamic pressure approaches the critical value, the limit cycle starts
to stack and the size of the limit cycle gradually converges to a non-zero value. After the
dynamic pressure crosses the critical value, as shown by the dashed arrows in figure 31,
the limit cycle suddenly disappears and the system only has a fixed point solution. This
transition from a limit cycle to a fixed point does not disappear as the dynamic pressure
interval decreases.

The influence of initial conditions is also investigated here, and the bifurcation of
Zone B–A corresponds to the process of λ = 360 ∼ 420 shown in figure 28. When
λ = 380 and 400, the system exhibits an unstable structure with a complex topology,
which evolves from the general case at λ = 420. Furthermore, when λ = 360, the unstable
structure completely disappears and the system is entirely attracted by the limit cycle.
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Figure 31. Evolution at the critical point under typical cavity pressure in the bifurcation of Zone B–A.
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Figure 32. Basin of attraction at Cpc = 1.19.

The same characteristics are also observed in the example of Cpc = 1.19 shown in
figure 32, indicating that the development of this unstable structure and its erosion of
the attractor region of the limit cycle are common features in such bifurcations of Zone
B–A. Regarding the complex case of λ = 400, the unstable structure considering q3
is depicted in figure 33. By incorporating the q3 dimension, it can be observed that
this unstable structure exhibits multi-layered characteristics. This structure possesses a
complex high-dimensional topology, and the low-dimensional projection presented here
merely represents its local features. However, it is clear that this unstable structure
approaches and compresses the attractor region of the limit cycle as the dynamic pressure
descends.

The half-stable cycle that burns in the collision is the principal characteristic of the
saddle-node bifurcation of cycles (Wei & Yabuno 2019; Zhu et al. 2020). From the
neighbourhood of this half-stable cycle, the trajectories of the solutions can be classified
into two types: one is attracted to the half-stable cycle itself, while the other is repelled
to the fixed point (Holmes 1977). To locate this half-stable cycle, we start from the
neighbourhood of the limit cycle solution and observe the trend of the solutions. This
action is accomplished by introducing a small perturbation to the system, with each
component of the solution being perturbed individually. The perturbation value is set to
1 % of the amplitude of that component, and both positive and negative perturbations are
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Figure 34. Stability of limit cycles under different λ, Cpc = 1.21.

considered. The results indicate that in the bifurcation of Zone B–A, the limit cycle at
the critical dynamic pressure attracts only part of the perturbations while repelling others,
with the solutions repelled by the limit cycle eventually attracting to the fixed point.

Figure 34 shows several states of the system. At a non-dimensional dynamic pressure
of 374.75 (i.e. the critical dynamic pressure for Cpc = 1.21), the limit cycle attracts
perturbations in the positive direction of q̇2 and repels perturbations in the negative
direction. This behaviour indicates that the limit cycle at the critical dynamic pressure
exhibits a half-stable state. Furthermore, when λ > λcr, the limit cycle attracts all
neighbouring trajectories and becomes stable. Conversely, when λ < λcr, the limit cycle
disappears and any perturbations are attracted to the single fixed point. The existence of
this half-stable cycle further confirms the characteristics of a saddle-node bifurcation of
cycles in the bifurcations of Zone B–A (Strogatz 2018, chap. 8).

In the bifurcations of Zone B–A under different cavity pressures, the topological
structure of the solutions is similar, but there are certain differences in the system’s
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Figure 35. Response and its phase portrait at the critical point in the bifurcation of Zone B–A for
(a) Cpc = 1.21, (b) Cpc = 1.205 and (c) Cpc = 1.19.

response characteristics at the bifurcation. Figure 35 presents the response and phase
portraits of the system at the bifurcation points for three typical cavity pressures. Here, we
focus on the dynamic process of the limit cycle-to-fixed point transition in Path 1, where
the system starts from the limit cycle and reaches the bifurcation point with the dynamic
pressure descending. Specifically, figure 35(a) corresponds to a state with Cpc = 1.21 in
Phase II, figure 35(b) represents a state with Cpc = 1.205 in Phase I, where Cpc is greater
than Cpc,mean, and figure 35(c) represents a state with Cpc = 1.19 in Phase I, where Cpc is
lower than Cpc,mean.

Compared with the shrinkage of the limit cycle in supercritical Hopf bifurcation
(figure 25b), a common feature in the three cases shown in figure 35 is that the shrinkage
of the limit cycle occurs over a shorter period and there is an explosive decrease in the
amplitude. However, the difference among these three cases lies in the fact that, as the
cavity pressure decreases, the shrinkage of the limit cycle experiences a longer bottleneck
(Strogatz 2018, chap. 4).
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The characteristics of this bottleneck are also different under different cavity pressures.
As shown in figure 35(a), corresponding to Phase II, the amplitude of the limit cycle first
undergoes a slight monotonic decrease and then exhibits an explosive reduction.

In figure 35(b), corresponding to Phase I, after reaching the bifurcation point, the
amplitude of the limit cycle starts to oscillate rhythmically. The frequency of this rhythmic
behaviour gradually decreases over time, while the maximum amplitude increases. The
limit cycle remains in this rhythmic behaviour for a considerable period before entering an
explosive reduction process. During this bottleneck, the rhythmic behaviour initially shows
a diverging tendency but suddenly transitions to a stage of convergence of amplitude.

Upon further examination of figure 35(c), where the cavity pressure is lower than
Cpc,mean, the bottleneck lasts longer, and the rhythmic behaviour exhibits more intricate
details. Figure 35(c) also provides the magnified views of the dashed boxes. In this
case, the rhythmic behaviour of the limit cycle is initially less pronounced. However,
over an extended period of evolution, this rhythmic behaviour gradually diverges, leading
to a significant increase in the limit cycle’s amplitude at the end of the bottleneck.
Subsequently, an explosive reduction in amplitude occurs.

In general, for this quasi-saddle-node bifurcation of cycles, the disappearance of the
limit cycle is rapid, accompanied by a significant explosive reduction in amplitude. The
majority of the time during the limit cycle shrinkage process is dedicated to traversing
the bottleneck (Strogatz 2018, chap. 4), which increases in length as the cavity pressure
decreases. During the bottleneck, the limit cycle exhibits rhythmic behaviour, which can be
interpreted as the system’s response to the disturbance of ‘the dynamic pressure gradually
approaching the bifurcation critical point’. This rhythmic behaviour gradually diverges
over time and, once it reaches a certain level of divergence, the system undergoes a rapid
convergence in amplitude, marking the end of the limit cycle shrinkage process.

8. Conclusions

In this study, the bifurcation characteristics of a panel subjected to both oblique shock and
cavity pressure are investigated using the CFD/CSD and reduced-order model methods.
The hysteresis behaviour and catastrophe phenomena resulting from these effects are also
analysed. The main conclusions are as follows.

(i) The amplitude and critical dynamic pressure of the dynamical system exhibit
varying degrees of nonlinear changes under different cavity pressures. This
phenomenon introduces additional uncertainty in the calculation of panel flutter in
the presence of shock, as even slight changes in cavity pressure can have a significant
impact. This finding provides a partial explanation for the dispersion of results
observed in the previous studies by Visbal (2012) and Li et al. (2019).

(ii) The cavity pressure governs the hysteresis behaviour of the dynamical system. This
hysteresis behaviour introduces multi-stability and makes the system highly sensitive
to initial conditions. Calculations that employ fixed initial conditions can lead to
unpredictable results falling onto either the upper or lower branch of the hysteresis
loop. The present study provides supplementary analysis and comparative insights
into the jump phenomenon reported by An et al. (2021).

(iii) The variation of cavity pressure triggers the cusp catastrophe phenomenon in
the cavity pressure coefficient – non-dimensional dynamic pressure plane. As the
cavity pressure changes, the transition of the system at the cusp point, where
the ascending and descending critical pressures merge, shifts from continuous
evolutions to explosive growth. Appropriate cavity pressure allows the system to
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exhibit long-period asymptotic instability characteristics, effectively preventing the
occurrence of dangerous explosive flutter.

(iv) The investigated system displays three types of bifurcation phenomena, exhibiting
characteristics akin to supercritical Hopf bifurcation, subcritical Hopf bifurcation
and saddle-node bifurcation of cycles, respectively. These bifurcations occur
individually or in combination under different cavity pressures. This evolution of
the bifurcations, driven by changes in cavity pressure, is the root cause of the cusp
catastrophe. In the supercritical Hopf bifurcation, the system smoothly enters or
exits the flutter state. However, in both subcritical Hopf bifurcation and saddle-node
bifurcation of cycles, the transition of the system involves an unavoidable explosive
process. Moreover, in the saddle-node bifurcation of cycles, the limit cycle exhibits
rhythmic behaviour, and the duration and magnitude of this behaviour increase as
the cavity pressure decreases.

This study contributes to a deeper understanding of the nonlinear dynamical behaviour
of panels in real complex environments. It provides new explanations for the discrepancies
reported in previous research on the aeroelasticity of panels. Additionally, the study
highlights the significant potential of cavity pressure in modulating the stability
characteristics of the system. Specifically, a specific level of cavity pressure (i.e. Phase
III) not only introduces moderate instability characteristics to the system, but also expands
the stability boundary. Harnessing this favourable feature could potentially enhance the
performance of vehicles in extreme operating conditions. Therefore, future research will
focus on exploring methods to use cavity pressure as a means to improve the stability
characteristics of the system.

Supplementary material. Supplementary materials are available at https://doi.org/10.1017/jfm.2024.273.
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Appendix A. Grid convergence analysis

To eliminate the influence of the grid on the calculation of unsteady aerodynamic loads,
three mesh scales are used to verify grid convergence in this study. The number of cells is
approximately 20 000, 40 000 and 80 000, respectively. Figure 36(a) compares the pressure
distribution on the panel in the initial flow field. The results from the medium and fine
grids are generally consistent, and the shock strength and location meet the requirements.
Figure 36(b) presents the comparison of the responses at the 3/4 chord of the panel. The
results from the medium and fine grids are also in good agreement. Subsequent numerical
simulations are performed using the fine grid.

Appendix B. Validation of the CFD/CSD methods

Validation computations are conducted to ensure the reliability of the numerical method.
For the present issue, i.e. the panel flutter in the presence of a shock, figure 37 shows the
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Figure 36. Results of the three mesh scales: (a) comparison of the pressure distribution on the panel in the
initial flow field; (b) comparison of the responses at 3/4 chord of the panel.
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Figure 37. (a) Amplitude and (b) frequency at 3/4 chord versus dynamic pressure in the shock case,
compared with those of Visbal (2012) and Li et al. (2019).

comparison between the present results and those from Visbal (2012) and Li et al. (2019).
A case with the shock strength of p3/p1 = 1.4 is chosen for the validation computations.
The figure shows that the results of this study are slightly different from those of Visbal
(2012), but generally consistent with those of Li et al. (2019). The comparisons indicate
that the numerical method used in this study is reliable.

Appendix C. Evaluation of the ROM

To further assess the performance of the model, a random signal (Ye et al. 2022), as
depicted in figure 38(a), is devised to evaluate the predictive capability of the model.
Figure 39 presents the PSD of the test signal, which exhibits a slightly narrower
frequency range compared with the training signal. Figure 38(b) showcases the generalised
aerodynamic forces obtained through CFD/CSD computations, serving as the true values
for model evaluation. Figure 40 presents the prediction of ROM and CFD for the first three
generalised aerodynamic forces, which are in good agreement. Detailed errors are shown
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Figure 38. Test data for the unsteady aerodynamic model: (a) test signals and (b) generalised aerodynamic
forces.
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Figure 39. Power spectral density of test signals.

in table 2. The established reduced-order model demonstrates a commendable capability
to accurately predict the unsteady aerodynamic forces in the present study.

The FSI performance is also studied. The aeroelastic response is calculated using the
method in § 3.3. Figure 41 presents a comparison between the ROM/CSD and CFD/CSD
for predictions of the responses, where epos, eamp and efreq is the relative error of static
deformation position, amplitude and frequency, respectively. The reduced-order model
provides predictions for responses that are nearly identical to those of the full-order model,
demonstrating good performance in FSI computations.

Appendix D. Conversion between mathematical models

We achieve the conversion from a difference equation model to a continuous-time
state-space model through the following steps. Let

x = H{ y[k−1] y[k−2] · · · y[k−na] u[k−1] u[k−2] · · · u[k−nb−1]}T, (D1)
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Figure 40. Comparison of the prediction for the first three generalised aerodynamic forces.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

emodel 0.0006 % 7.8422 % 0.0020 % 7.0350 % 0.0052 % 11.0547 %
R2 0.9969 0.9957 0.9994 0.9973 0.9994 0.9952
RMSE 3.5 × 10−7 7.1 × 10−7 3.8 × 10−7 1.0 × 10−6 5.9 × 10−7 1.4 × 10−6

Table 2. Error in prediction of random signals.

where

na

na

nb – 1

nb – 1

1 21

2

3

3

32

2 3

(D2)
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Figure 41. Comparison of time history responses with (a) λ = 300, (b) λ = 400 and (c) λ = 500.

The discrete-time difference equation described by (3.11) can be reformulated into a
discrete-time state-space model as

x[k+1] = Adx[k] + Bdu[k],

y[k+1] = Cdx[k] + Ddu[k],

}
(D3)

where

na

d d 0

na nb – 2

nb – 1

1

2

1

2

1

2

(D4)

d 0d (D5)

The sample time �τ of the model is a function of λ as

�τ = �τtrain

√
λ

λtrain
, (D6)

where �τtrain and λtrain are the time step and non-dimensional dynamic pressure
used in the training process of the model (see Gao et al. 2017; Ye et al. 2022).
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Further, by employing bilinear transformation (see Oppenheim & Schafer 2010, chap. 7),
the discrete-time state-space model is converted into a continuous-time state-space model
as

ẋ = Acx + Bcu,

y = Ccx + Dcu.

}
(D7)

Appendix E. Determination of initial condition in the continuous calculations

The results from Visbal (2012, 2014); Boyer et al. (2018) demonstrate the characteristic of
multi-steady states in the dynamical system under the assumption that the cavity pressure
is equal to the mean pressure on the top surface, which means that the system’s solutions
are dependent on the initial conditions. The introduction of variation of cavity pressure
further complicates the system. The dimension of the initial conditions for this system
is 12 (i.e. q1, q2, . . . , q6, q̇1, q̇2, . . . , q̇6), and exhaustive exploration of all possible initial
conditions within a 12-dimensional space is computationally infeasible given the current
computing resources. Moreover, simulations conducted with specific initial conditions
may result in a misleading conclusion in the context of a multi-steady-state system (Liu &
Dowell 2004).

To study the bifurcation characteristics of the system in detail, it is essential to analyse
the evolution of the solutions during the continuous variation of parameters (Li et al.
2012; Visbal 2014). Thus, in this study, starting from an initial solution of the system, the
parameters are incrementally adjusted with sufficiently small steps to meticulously track
the changes in the solutions. In this approach, the initial conditions for different cases are
determined through a ‘relay’ strategy, where the results of the current state serve as the
initial conditions for the subsequent state after the time-domain response of the current
state has fully developed and stabilised. Here, ‘fully developed and stabilised’ refers to the
system reaching a stable fixed point or closed trajectory. This method effectively captures
the evolution of the solutions during parameter changes and mitigates the issue of the
results jumping between multiple solutions caused by the initial value.

This study does not impose restrictions on the specific vibration positions of the system
when changing parameters. To demonstrate that changing parameters at different vibration
positions does not affect the system’s solutions, multiple cases are validated. Figure 42
presents an extreme example of a critical case. The non-dimensional dynamic pressure λ
is changed at different positions within one period. The green line represents the response
of the system that has fully developed before λ changes, exhibiting limit cycle oscillations.
The red line represents the response of the system after λ change. It can be observed that
the development of all the red lines is nearly identical and the system reaches a fixed point
after a certain period. Consistent conclusions are obtained for other validated cases. For a
system that has fully developed and stabilised, the timing of parameter changes does not
affect the nature of the solution.

Appendix F. Validation of the main conclusions by CFD/CSD

CFD/CSD calculation is used to verify the conclusions obtained by ROM/CSD in § 7.
Figure 43 shows the corresponding errors, with the marks representing the states obtained
from the CFD/CSD calculations. The × marks correspond to the results for static
deformation, while the • marks represent the results for limit cycle oscillation. The
numbers above and below the mark are the relative error between the ROM/CSD result
and the CFD/CSD result at that point. For static deformation, the relative error of the
panel deflection at 3/4 chord is provided, and for limit cycle oscillation, the relative errors
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Figure 42. Response when λ changes at different vibration positions.
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Figure 43. Errors between ROM/CSD results and CFD/CSD results for (a) λ ascending and (b) λ descending.

of the panel deflection amplitude and the dominant frequency at 3/4 chord are presented.
The response errors shown in figure 43 are consistently small for all the key states, and the
location of the critical dynamic pressure is also consistent. This comparative analysis of
errors serves to validate the reliability of the results obtained in this study.
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Appendix G. Nomenclature

Cp = pressure coefficient
Cpc = cavity pressure coefficient
Cpc,mean = the cavity pressure coefficient corresponding to the

mean pressure on the top surface of the panel
D = plate stiffness
E = modulus of elasticity
E∗ = energy extracted from the flow to the flexible panel

over a cycle
e, r = state vector of aeroelastic equations
emodel = model error
e[k] = noise of model at time k
fflutter = flutter frequency
f = generalised aerodynamic force
f̂ = generalised aerodynamic force estimated by the

model
h = plate thickness
l = plate length
M = Mach number
N = length of data
Nmode = total of mode
N0 = initial in-plane force
Nx = applied in-plane force
na = order of output term
nb = order of input term
p = pressure
pc = cavity pressure
p∞ = free stream static pressure
qi, qn = generalised displacement of ith (or nth) mode
R0 = initial in-plane force (non-dimensional)
Rx = applied in-plane force (non-dimensional)
St = non-dimensional frequency
t = time
u[k] = input of model at time k
V grid = velocity of control volume
W = plate deflection (non-dimensional)
w = plate deflection
x = streamwise coordinate
y[k] = output of model at time k
z = vertical coordinates
λ = dynamic pressure (non-dimensional)
λcr,ascend = critical dynamic pressure of ascending process

(non-dimensional)
λcr,descend = critical dynamic pressure of descending process

(non-dimensional)
ν = Poisson’s ratio
ξ = plate coordinate (non-dimensional)
ρ = plate density
τ = time (non-dimensional)
�p = pressure difference across the panel

�p = external loads (non-dimensional)
�τ = time step (non-dimensional)

986 A28-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.273


Aeroelastic bifurcation of a flexible panel

Subscripts
∞ = free stream
amp = amplitude
cr = critical
freq = frequency
pos = equilibrium position
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