
Probability in the Engineering and Informational Sciences (2023), 37:1 245–274
doi:10.1017/S0269964821000577

RESEARCH ARTICLE

Pricing VIX derivatives using a stochastic volatility model
with a flexible jump structure
Wuyi Ye† , Bin Wu† and Pengzhan Chen*

International Institute of Finance, School of Management, University of Science and Technology of China, Hefei 230026,
China. E-mail: cpz@ustc.edu.cn.
*Corresponding author. E-mail: cpz@ustc.edu.cn
†Wuyi Ye and Bin Wu contributed equally to this work and should be considered co-first authors.

Keywords: Hawkes process, Implied volatility, Jump intensity, VIX futures, VIX options

Abstract
This paper proposes a novel stochastic volatility model with a flexible jump structure. This model allows both
contemporaneous and independent arrival of jumps in return and volatility. Moreover, time-varying jump intensities
are used to capture jump clustering. In the proposed framework, we provide a semi-analytical solution for the pricing
problem of VIX futures and options. Through numerical experiments, we verify the accuracy of our pricing formula
and explore the impact of the jump structure on the pricing of VIX derivatives. We find that the correct identification
of the market jump structure is crucial for pricing VIX derivatives, and misspecified model setting can yield large
errors in pricing.

1. Introduction

The Chicago Board Options Exchange (CBOE) introduced the first volatility index, the VXO, in 1993 to
measure the market’s expectation of a hypothetical 30-calendar-day forward-looking volatility implied
by at-the-money S&P 100 index (OEX) options. In September 2003, the CBOE switched into a new
methodology to create a redefined volatility index, the VIX, which is calculated based on the weighted
prices of a portfolio of 30-calendar-day out-of-the-money S&P 500 index (SPX) calls and puts over a
wide range of strike prices. Shortly after the introduction of the new VIX, in March 2004, the CBOE
Futures Exchange first launched VIX futures contracts on the VIX index, and in February 2006, VIX
options were introduced. The VIX has gained widespread popularity and became the factor benchmark
for stock market volatility. It is colloquially referred to as the fear index. Its popularity is to some extent
due to the fact that VIX movements are negatively correlated with movements in stock returns, the most
plausible explanation being that investors trade SPX options to buy protection during periods of market
turmoil, which increases the value of the VIX. Thus, it is vital for researchers to investigate the VIX
and its derivatives in relation to the stock market.

With the rapidly increasing popularity of VIX derivatives, deriving appropriate pricing models for
VIX derivatives has attracted considerable attention. In recent decades, a growing body of literature has
documented the presence of jumps in stock returns and in return volatilities (see, e.g., [13]). Importantly,
incorporating return jumps and variance jumps into the pricing model can further improve pricing of
VIX futures and options (see, e.g., [27,29,30,32]). Psychoyios et al. [27] develops analytical valuation
models for VIX futures and options based on a stochastic volatility with jumps (SVJ) model. Sepp
[29,30] shows how to apply the SVJ model to the pricing and hedging of VIX futures and options.
Lin [22] provides a convexity adjustment approximation for the value of VIX futures by developing a
diverse stochastic volatility with a contemporaneous jumps (SVCJ) model.
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Lian and Zhu [21] presents an analytical exact solution for the VIX futures and options prices obtained
via a single integral under the SVCJ model. Furthermore, Bardgett et al. [4] extends the SVCJ model
by dividing jumps into positive and negative and derives the pricing formula of VIX options. However,
recently, the literature provides clear empirical evidence for the presence of both contemporaneous jumps
(CJs) and independent jumps (Ĳs) in the SPX and VIX1 (see, e.g., [3,9,11]). Note that the SVCĲ model
can capture both CJs and Ĳs. To the best of our knowledge, an effort to simultaneously consider CJs
and Ĳs has never been pursued in the context of pricing volatility derivatives. In addition, the Poisson
arrival intensity of the above-mentioned jump models typically specifies jumps to arrive with constant
intensity. This assumption poses problems in explaining the tendency of large movements to cluster
over time, and directly, it does not take into account the high-volatility effect or clustered jumps (see,
e.g., [1,6]). Hence, the Poisson jump-diffusion model with constant intensity is not ideal for describing
the state-dependent jump intensities or clustered jumps observed in financial markets.

Motivated by the above discussions, in this paper, we intended to provide a general stochastic volatility
model with both contemporaneous and independent arrival of jumps in a time-varying jump intensity
framework, and study the VIX option pricing problems. The proposed model stems from Bandi and
Reno [3], in which they extend the SVCJ model to a general case, that is, a stochastic volatility model
with contemporaneous and independent jumps (SVCĲ). We further extend this model to a framework
with time-varying jump intensities. Specifically, the time-varying intensities considered in this paper
can be divided into two main categories: (1) The jump intensity depends on the volatility (known as
state-dependent arrival intensity), and in particular, the jump intensity is a linear function of the spot
variance (see, e.g., [6,13,14]). The SVCĲ model with state-dependent jump intensity is labeled “SVCĲ-
I”. In this case, the SVCĲ-I model allows jumps to arrive more frequency in high-volatility regimes. In
fact, Bates [6] shows that the jump intensity can potentially be time-varying rather than constant, and a
state-dependent2 jump intensity can help explain the cross-section of stock index option prices.

Lin [22] and Cheng et al. [10] derives closed-form solutions obtained via an integral to the VIX
futures and options prices under the SVCJ model with state-dependent intensity, and they show that
volatility-dependent intensity and volatility jumps are important for pricing VIX derivatives. (2) The
Poisson jump-diffusion models allow for clustered jumps (Hawkes-type propagation), and specifically, a
single jump increases the probability of future jumps occurring (see, e.g., [1,23]). The SVCĲ model that
uses Hawkes intensity is labeled “SVCĲ-H”. In this case, the SVCĲ-H model is suitable for addressing
the clustering of events because the occurrence of an event can influence the intensity of future events.
In the literature, Jing et al. [19] provides pricing models for VIX options based on an SVJ model that
allows for clustering in the VIX, and they provide clear evidence of jump clustering when pricing VIX
options, which support self-exciting jump models.

Our study evaluates VIX futures and options using two general models, that is, SVCĲ-I and SVCĲ-
H models. The resulting pricing formula for the VIX derivatives based on the proposed models takes
the analytical form of one-dimensional Fourier integrals. Notably, the characteristic function based on
the SVCĲ model is in closed-form, while those of the characteristic function based on the SVCĲ-
I and SVCĲ-H models take numerical form. In detail, we derive the characteristic function of VIX
squared under the proposed models, as well as the linear function VIX squared of spot variance and
stochastic intensities. Notably, affine structures allow for pricing via Laplace transform methods because
the characteristic functions of spot variance and time-varying jump intensity can be efficiently—and
in some cases analytically—computed as solutions of generalized Riccati equations. Then, using the
integral transform and the characteristic function of VIX squared, we derive the pricing formulas for
VIX futures and options. In addition, we study the effects of a flexible jump on probability density of
volatility and prices of VIX futures and options by deriving a characteristic function based on these
calibrated jump-diffusion models. We seek to understand some properties of VIX implied volatility
patterns and demonstrate that the flexible jump structures have a profound impact on the pricing of

1Apart from the VIX index, volatility indexes conclude that the OVX index for crude oil, GVZ index for gold, VXAZN index for AMZN, VXAPL
index for AAPL and VXIBM index for IBM have also contained more flexible jumps [11].

2Their paper labels this “volatility-dependent”, and we call a volatility-dependent coefficient a “dependent coefficient”.
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volatility derivatives. In addition, to illustrate the performance of the proposed models, empirical studies
are conducted in which we compare the in- and out-of-sample results of VIX option pricing among
alternative models.

This study contributes to the existing literature in several ways:

(i) We propose an SVCĲ-I model and an SVCĲ-H model. The proposed models are very general, of
which models including SV, SVJ, SVCJ, SVCI-I and SVCJ-H models can be considered special
cases. Moreover, according to the empirical results of previous studies, it is more plausible that the
jump structure of the VIX contains both CJs and Ĳs when jointly calibrated to SPX and VIX data.

(ii) We present analytical formulas for VIX futures and options prices up to a one-dimensional integral
based on the proposed models, which take the state-dependent jump intensity and jump clustering
into account for pricing. In addition, we derive closed-form formulas for the characteristic function,
obtained via a numerical method for the SVCĲ-I and SVCĲ-H models and via closed form for the
SVCĲ model.

(iii) In the sensitivity analysis, we demonstrate that CJs have a more significant impact on VIX option
prices than Ĳs. In addition, the price of the VIX option is sensitive to a large dependent coefficient,
which means the stochastic jump intensity may not negligible, especially during a financial crisis.
Moreover, we find that the Hawkes-type propagation is more sensitive to the VIX option price in
the long run than in the short run.

(iv) Unlike equity options, VIX options display a downward-sloping term structure: longer maturity
VIX options have lower implied volatility than short maturity options. This persuasive feature
persists irrespective of strikes and other conditions (i.e., jump-related parameters) and is very
pronounced. As we demonstrate, the flexible jump structure contributes to varying degrees to
implied volatility. In the low strike case, the time-varying jump intensity has little effect on implied
volatility. The jump structures of CJs and Ĳs advocated in this paper have distinct and important
effects. In the future study of volatility derivatives, CJs and Ĳs should be considered simultaneously.

(v) The empirical results provide evidence that the SVCĲ-I and SVCĲ-H models significantly
outperforms other alternative models in our in- and out-of-sample dates.

This paper is organized as follows. In Section 2, we describe the general jump-diffusion model
that we consider in the study and illustrate the probability density of volatility. Section 3 presents our
pricing formulas for VIX futures and options prices based on the proposed models. Section 4 provides
some numerical verification to examine the correctness of our formulas and investigate the impact of
incorporating a flexible jump structure for VIX futures and options prices, and conduct the empirical
studies of the model comparisons. Section 5 offers our conclusions. Proofs and some technical details
are deferred to the Appendix.

2. The model and volatility distribution

2.1. Model formulation

Inspired by recent research on jump activity,3 we consider a stochastic volatility model with both CJs
and Ĳs in a time-varying jump intensity framework. The following dynamics are proposed to model the
S&P 500 index, 𝑆𝑡 , under the risk-neutral probability measure Q:

⎧⎪⎪⎨⎪⎪⎩
d𝑆𝑡
𝑆𝑡

= (𝑟 − 𝑞 − 𝜁𝜆𝐶𝑡 − 𝜁𝜆𝑆𝑡 ) d𝑡 +
√
𝑉𝑡 d𝑊𝑆

𝑡 + (𝑒𝐽𝑆 − 1) d𝑁𝐶
𝑡 + (𝑒𝐽𝑆 − 1) d𝑁𝑆

𝑡 ,

d𝑉𝑡 = 𝜅(𝜃 −𝑉𝑡 ) d𝑡 + 𝜎𝑉

√
𝑉𝑡 d𝑊𝑉

𝑡 + 𝐽𝑉 d𝑁𝐶
𝑡 + 𝐽𝑉 d𝑁𝑉

𝑡 ,

(1)

where 𝑟 is the risk-free rate and 𝑞 is the dividend. 𝑊𝑆
𝑡 and 𝑊𝑉

𝑡 are correlated Brownian motions with
d𝑊𝑆

𝑡 d𝑊𝑉
𝑡 = 𝜌 d𝑡. {𝑁𝐶

𝑡 , 𝑁
𝑆
𝑡 , 𝑁

𝑉
𝑡 } is an independent trivariate Poisson processes with time-varying rate

3See, for example, Bandi and Reno [3], Da Fonseca and Ignatieva [11], Chen and Ye [9] and Wu et al. [31].
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Table 1. Summary of jump intensities.

Model Jump intensity Key references

SVCĲ 𝜆𝑖𝑡 = 𝜆𝑖 , 𝑖 ∈ {𝐶, 𝑆,𝑉} Bandi and Reno [3], Chen and Ye [9]
SVCĲ-I 𝜆𝑖𝑡 = 𝜆1,𝑖 + 𝜆2,𝑖𝑉𝑡 , 𝑖 ∈ {𝐶, 𝑆,𝑉} Eraker [14], Cheng et al. [10]
SVCĲ-H d𝜆𝑖𝑡 = 𝛼𝑖 (𝜆𝑖∞ − 𝜆𝑖𝑡 ) d𝑡 + 𝐽𝑖𝜆 d𝑁 𝑖

𝑡 , 𝑖 ∈ {𝐶, 𝑆,𝑉} Aït-Sahalia et al. [1], Luo et al. [23]

Note. 𝐽𝑖𝜆 ∼ Exp(𝜇𝑖𝜆) with mean 𝜇𝑖𝜆, 𝑖 ∈ {𝐶, 𝑆,𝑉}.

𝜆𝐶𝑡 , 𝜆𝑆𝑡 and 𝜆𝑉𝑡 , respectively. The jumps 𝐽𝑆 and 𝐽𝑉 occur simultaneously in the asset price and volatility
and are driven by 𝑁𝐶

𝑡 . The independent price jump 𝐽𝑆 and volatility jump 𝐽𝑉 are driven by 𝑁𝑆
𝑡 and

𝑁𝑉
𝑡 , respectively. The jump sizes are assumed to have the following distributions: 𝐽𝑉 ∼ exp( 𝜇̄𝑉 ) with

mean 𝜇̄𝑉 , 𝐽𝑆 | 𝐽𝑉 ∼ 𝑁 ( 𝜇̄𝑆 + 𝜌𝐽 𝐽𝑉 , 𝜎̄
2
𝑆). In addition, 𝜁 � EQ (𝑒𝐽𝑆 − 1) = 𝑒 𝜇̄𝑆+𝜎̄2

𝑆/2/(1 − 𝜌𝐽 𝜇̄𝑉 ) − 1 and
𝜁 � EQ (𝑒𝐽𝑆 − 1) = 𝑒𝜇𝑆+𝜎2

𝑆/2 − 1.
Since the time-varying jump intensity is very popular in recent studies, for example, Bates [7] and

Aït-Sahalia et al. [1] report that more jumps occur during more volatile periods, we consider three
cases as follows. (1) We first consider the stochastic volatility model with both CJs and Ĳs in Bandi
and Reno [3] and Chen and Ye [9], that is, 𝜆𝑖𝑡 = 𝜆𝑖 is constant for 𝑖 ∈ {𝐶, 𝑆,𝑉}. (2) The jump intensity
is a linear function (e.g., [4,10]) of the instantaneous variance, and in this case, we name the model
“SVCĲ-I” (note that the SVCĲ model is a special case of the SVCĲ-I model, where the dependent
coefficient 𝜆2,𝐶 = 𝜆2,𝑆 = 𝜆2,𝑉 = 0). (3) The jump intensity ramps up in response to the occurrences of
jumps, making further jumps more likely to follow (called “jump propagation”, see, e.g., [1]), and in
this case, we denote the model “SVCĲ-H”. A summary of the model specifications is given in Table 1.
Our models embrace most of the important derivative pricing models in the literature (such as SVJ,
SVĲ, SVCJ and SVCJ-H, i.e., [1,5,14,24]).

The VIX is primarily related to spot volatility, and we are particularly interested in the effect of the
flexible jump structure on spot volatility. In the next section, we study the distributional properties of
volatility with respect to CJs and Ĳs.

2.2. Volatility distribution and jumps

To study how jumps affect volatility, we illustrate the probability density of volatility with CJs and Ĳs.
The probability density function of volatility

√
𝑉𝑇 can be obtained through Monte Carlo simulation with

500,000 sample paths. Then, we plot the probability density function of volatility at time 𝑇 .
Figure 1 shows how the CJs and Ĳs of volatility pushes the distribution toward the equilibrium mean

level. When the volatility process is examined separately, the CJs should yield the same effect strength
as the independent jump. When the jump intensity increases, the volatility of volatility seems to be
invariant and the shape of the distribution of volatility tends to be stable.

Naturally, the impact of contemporaneous and independent jumps on volatility cannot be ignored.
Jumps in volatility can clearly improve understandings of the dynamics of spot volatility. In addition,
Psychoyios et al. [27] argues that incorrectly omitting jumps may cause considerable problems in VIX
futures and option pricing. Cheng et al. [10] argues that by accounting for return jumps and volatility
jumps, the stochastic volatility model can further improve the performance of VIX option pricing
formulas. In the next section, we derive formulas for VIX futures and option pricing.

3. The pricing problem

In this section, we turn to the analytical formulas for VIX futures and options (European call options)
in the proposed frameworks. The definition of the price of VIX futures at an initial time to maturity 𝑇
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Figure 1. Probability density function of volatility over a 1-year horizon with different jump intensities,
based on the SVCĲ model. The parameter values are shown in Table 2; we simulate 500,000 sample
paths of data with length of time 𝑇 .

Table 2. Summary of parameter settings.

Parameters 𝑟 𝜃 𝜅 𝜎𝑉 𝜁 𝜁 𝜎𝑆 𝜎̄𝑆 𝜌𝐽 𝜇𝑉 𝜇̄𝑉
√
𝑉0(%) 𝜆𝐶0

SVCĲ model 0.0319 0.008 3.46 0.14 −0.1 −0.1 0.0001 0.0001 −0.38 0.05 0.05 8.7 —
SVCĲ-I model 0.0319 0.008 3.46 0.14 −0.1 −0.1 0.0001 0.0001 −0.38 0.05 0.05 8.7 —
SVCĲ-H
model

0.0319 0.008 3.46 0.14 −0.1 −0.1 0.0001 0.0001 −0.38 0.05 0.05 8.7 1.5

𝜆𝑆0 𝜆𝑉0 𝜆𝐶 𝜆𝑆 𝜆𝑉 𝜆2,𝐶 𝜆2,𝑆 𝜆2,𝑉 𝜆𝐶∞ 𝜆𝑆∞ 𝜆𝑉∞ 𝛼𝑖 𝜇𝑖𝜆
(𝜆1,𝐶 ) (𝜆1,𝑆) (𝜆1,𝐶)

SVCĲ model — — 1.5 1.5 0.5 — — — — — — — —
SVCĲ-I model — — 1.5 1.5 0.5 20 20 20 — — — — —
SVCĲ-H
model

1.5 0.5 1.5 1.5 0.5 — — — 1.4 1.4 0.45 3 0.4

Note. The superscript 𝑖 ∈ {𝐶, 𝑆,𝑉}.

is given by

𝐹 (𝑇) = E0 [VIX𝑇 ] =
∫ ∞

0
𝑥 𝑓VIX𝑇

(𝑥) d𝑥. (2)

The price of the European VIX call option at an initial time to maturity 𝑇 and strike 𝐾 is given by

𝐶 (𝑇, 𝐾) = 𝑒−𝑟𝑇 E0 [(VIX𝑇 − 𝐾)+] = 𝑒−𝑟𝑇
∫ ∞

0
(𝑥 − 𝐾)+ 𝑓VIX𝑇

(𝑥) d𝑥. (3)

Here, 𝑓VIX𝑇
(𝑥) is the conditional probability density function of VIX𝑇 , and E𝑡 (· ) is conditional

on filtration F𝑡 at the current time t. In the sequel, we suppress the superscript and subscript in the
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expectation operator for notational convenience. We have presented the definitions of prices of options
and futures for the VIX, so the question arises, how do we calculate its prices? To address the pricing in
the VIX expression, we apply the flexible integral transformation to the formula for futures and options,
and they become terse integrals involving the characteristic function VIX2

𝑇 . Notably, these integral
transformations can be expressed as

E[√𝑥] = 1
2
√
𝜋

∫ ∞

0

1 − E(𝑒−𝑠𝑥)
𝑠3/2 d𝑠, (4)

E[(√𝑥 − 𝐾)+] = 1
2
√
𝜋

∫ ∞

0
Re

[
1 − erf(𝐾√𝜙)

𝜙3/2 E(𝑒𝜙𝑥)
]

d𝜙𝐼 , (5)

where the 𝑠 ∈ R+ is a real number, 𝜙 = 𝜙𝑅 + 𝜙𝐼 𝑖 is a complex number with 𝜙𝑅 ∈ R+ and 𝜙𝐼 ∈ R,
and erf(𝑍) is a complex error function (see Eq. (14)). A real part of 𝜙 greater than zero due to the
integral in Eq. (5) exists if and only if Re(𝜙) > 0. The first equation is a mathematical result obtained
using Fubini’s theorem (proposed by [28]), and the second equation is an integral transform using the
Parseval identity (proposed by [20,26]). Then, the characteristic functions are the pivotal requirements,
which are given by the following section.

3.1. Characteristic function

In this subsection, we present the conditional characteristic functions of 𝑉𝑇 and (𝜆𝐶𝑇 , 𝜆𝑆𝑇 , 𝜆𝑉𝑇 ) under the
risk-neutral measure. The characteristic function L : C1 → C1 of some process 𝑋𝑇 is defined as

L(𝜙;𝑇 − 𝑡, 𝑋𝑡 ) � E𝑡 (𝑒𝜙𝑋𝑇 ),

where 𝑇 � 𝑡 and 𝜙 ∈ D𝑥 , and D𝑥 denotes the complex domain of L(𝜙;𝑇 − 𝑡, 𝑋𝑡 ), that is

D𝑥 = {𝜙 ∈ C : E[E𝑡 (𝑒𝜙𝑋𝑇 )] < ∞}.

The advantage of affine models is that their characteristic function has an exponentially affine form
(see [13]), and thus, various transformations can be quasi-analytically calculated by solving a system of
ordinary differential equations (ODEs).

Proposition 1 (Characteristic function of 𝑉𝑇 under the SVCĲ-I model). If the spot variance 𝑉𝑡 follows
the dynamics given by Eq. (1) and the intensities are represented as linear functions of 𝑉𝑡 , Duffie et al.
[13] shows that for any 𝜙 ∈ D𝑣 , where D𝑣 denotes the complex domain of L(𝜙; 𝜏,𝑉𝑡 ), the exponentially
affine expression below holds:

L(𝜙; 𝜏,𝑉𝑡 ) � E𝑡 (𝑒𝜙𝑉𝑇 ) = 𝑒ℎ1 (𝜙,𝜏)𝑉𝑡+ℎ2 (𝜙,𝜏) , (6)

where 𝜏 = 𝑇 − 𝑡 and ℎ1(𝜙, 𝜏), ℎ2(𝜙, 𝜏), ℎ3(𝜙, 𝜏) are solutions of the system of ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝜏
ℎ1 (𝜙, 𝜏) = −𝜅ℎ1 (𝜙, 𝜏) + 1

2
𝜎2
𝑉 ℎ

2
1 (𝜙, 𝑡) + 𝜆2,𝐶

(
1

1 − 𝜇̄𝑉 ℎ1(𝜙, 𝜏)
− 1

)
+ 𝜆2,𝑉

(
1

1 − 𝜇𝑉 ℎ1(𝜙, 𝜏)
− 1

)
,

𝜕

𝜕𝜏
ℎ2 (𝜙, 𝜏) = 𝜅𝜃ℎ1 (𝜙, 𝜏) + 𝜆1,𝐶

(
1

1 − 𝜇̄𝑉 ℎ1(𝜙, 𝜏)
− 1

)
+ 𝜆1,𝑉

(
1

1 − 𝜇𝑉 ℎ1 (𝜙, 𝜏)
− 1

)
,

with the initial conditions ℎ1(𝜙, 0) = 𝜙, ℎ2(𝜙, 0) = 0.
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Proof. We prove this in Appendix B. �

Notably, the SVCĲ model is a special case of the SVCĲ-I model. When 𝜆2,𝐶 = 𝜆2,𝑆 = 𝜆2,𝑉 = 0,
the SVCĲ-I model degenerates into the SVCĲ model. Although it is only the fading of the 𝜆2,𝐶 ,
𝜆2,𝑆 and 𝜆2,𝑉 parameters, the analytical solution exists for the characteristic function under the SVCĲ
model.

Corollary 1 (Characteristic function of 𝑉𝑇 under the SVCĲ model). The conditional charac-
teristic function of the instantaneous variance 𝑉𝑇 is given by the following exponentially affine
expression:

L(𝜙; 𝜏,𝑉𝑡 ) � E𝑡 (𝑒𝜙𝑉𝑇 ) = 𝑒ℎ1 (𝜙,𝜏)𝑉𝑡+ℎ2 (𝜙,𝜏)+ℎ3 (𝜙,𝜏) , (7)

where 𝜏 = 𝑇 − 𝑡 and ℎ1(𝜙, 𝜏), ℎ2(𝜙, 𝜏), ℎ3(𝜙, 𝜏) are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ1(𝜙, 𝜏) = 2𝜅𝜙
𝜎2
𝑉 𝜙 + (2𝜅 − 𝜎2

𝑉 𝜙)𝑒𝜅𝜏
,

ℎ2(𝜙, 𝜏) = −2𝜅𝜃
𝜎2
𝑉

ln

(
1 + 𝜎2

𝑉 𝜙

2𝜅
(𝑒−𝜅𝜏 − 1)

)
,

ℎ3(𝜙, 𝜏) = 2𝜆𝐶 𝜇̄𝑉
2𝜅𝜇̄𝑉 − 𝜎2

𝑉

ln

(
1 + (𝜎2

𝑉 − 2𝜅𝜇̄𝑉 )𝜙
2𝜅(1 − 𝜇̄𝑉 𝜙)

(𝑒−𝜅𝜏 − 1)
)

+ 2𝜆𝑉 𝜇𝑉

2𝜅𝜇𝑉 − 𝜎2
𝑉

ln

(
1 + (𝜎2

𝑉 − 2𝜅𝜇𝑉 )𝜙
2𝜅(1 − 𝜇𝑉 𝜙)

(𝑒−𝜅𝜏 − 1)
)
,

with the initial conditions ℎ1(𝜙, 0) = 𝜙, ℎ2(𝜙, 0) = ℎ3(𝜙, 0) = 0, with 𝜙 ∈ D𝑣 . In addition, under this
model, 𝜙𝑅 satisfies

𝜙𝑅 < min

(
2𝜅

𝜎2
𝑉 (1 − 𝑒−𝜅𝜏) ,

1
𝜇𝑉

,
2𝜅

𝜎2
𝑉 (1 − 𝑒−𝜅𝜏) + 2𝜇𝑉 𝜅𝑒−𝜅𝜏

,
1
𝜇̄𝑉

,
2𝜅

𝜎2
𝑉 (1 − 𝑒−𝜅𝜏) + 2𝜇̄𝑉 𝜅𝑒−𝜅𝜏

)
.

Proof. We prove this in Appendix B. �

Proposition 2 (Characteristic function of (𝑉𝑇 , 𝜆𝐶𝑇 , 𝜆𝑆𝑇 , 𝜆𝑉𝑇 ) under the SVCĲ-H model). If the spot
variance 𝑉𝑡 follows the dynamics given by Eq. (1) and the intensity satisfies the bottom row of Table 1,
then the conditional joint characteristic function of the instantaneous variance and intensities, for any
𝝓 that belongs to their complex domain of L(𝝓; 𝜏,𝑉𝑡 , 𝜆

𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ), is given by the following exponential

affine form:

L(𝝓; 𝜏,𝑉𝑡 , 𝜆
𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ) � E𝑡 (𝑒𝜙1𝑉𝑇 +𝜙2𝜆

𝐶
𝑇 +𝜙3𝜆

𝑆
𝑇 +𝜙4𝜆

𝑉
𝑇 )

= 𝑒ℎ1 (𝝓;𝜏)𝑉𝑡+ℎ2 (𝝓;𝜏)𝜆𝐶
𝑡 +ℎ3 (𝝓;𝜏)𝜆𝑆

𝑡 +ℎ4 (𝝓;𝜏)𝜆𝑉
𝑡 +ℎ5 (𝝓;𝜏) ,
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where 𝝓 = (𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5) and ℎ1(𝝓, 𝜏), ℎ2 (𝝓, 𝜏), ℎ3(𝝓, 𝜏), ℎ4 (𝝓, 𝜏), ℎ5(𝝓, 𝜏) are solutions of the
system of ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ1 (𝝓, 𝜏) = 2𝜅𝜙1

𝜎2
𝑉 𝜙1 + (2𝜅 − 𝜎2

𝑉 𝜙1)𝑒𝜅𝜏
,

𝜕

𝜕𝜏
ℎ2 (𝝓, 𝜏) = −𝛼𝐶ℎ2(𝝓, 𝜏) + 1

1 − 𝜇̄𝑉 ℎ1(𝝓, 𝜏)
× 1

1 − 𝜇𝐶𝜆 ℎ2(𝝓, 𝜏)
− 1,

𝜕

𝜕𝜏
ℎ3 (𝝓, 𝜏) = −𝛼𝑆ℎ3(𝝓, 𝜏) + 1

1 − 𝜇𝑆𝜆ℎ3(𝝓, 𝜏)
− 1,

𝜕

𝜕𝜏
ℎ4 (𝝓, 𝜏) = −𝛼𝑉 ℎ4(𝝓, 𝜏) + 1

1 − 𝜇𝑉 ℎ1(𝝓, 𝜏)
× 1

1 − 𝜇𝑉𝜆 ℎ4 (𝝓, 𝜏)
− 1,

𝜕

𝜕𝜏
ℎ5 (𝝓, 𝜏) = 𝜅𝜃ℎ1 (𝝓, 𝜏) + 𝛼𝐶𝜆𝐶∞ℎ2(𝝓, 𝜏) + 𝛼𝑆𝜆𝑆∞ℎ3 (𝝓, 𝜏) + 𝛼𝑉 𝜆𝑉∞ℎ4(𝝓, 𝜏),

with the initial conditions ℎ1(𝝓, 0) = 𝜙1, ℎ2 (𝝓, 0) = 𝜙2, ℎ3(𝝓, 0) = 𝜙3, ℎ4(𝝓, 0) = 𝜙4, ℎ5(𝝓, 0) = 0,
with 𝜙1 ∼ 𝜙4 ∈ D𝑣 .

Proof. We prove this in Appendix B. �

Since the above ODEs of ℎ2, ℎ3 and ℎ4 of the SVCĲ-I and SVCĲ-H models4 have no analytical
solutions, we use a numerical method, such as the Runge-Kutta algorithm, to solve these ODEs.

3.2. Pricing VIX futures and options

In this section, we present our model framework for pricing VIX futures and options, which is a
general case of the previous affine pricing frameworks developed in the previous literature. First, simple
affine state dynamics are employed to price the VIX in explicit form in general equilibrium; then, the
generalized Laplace payoff transform analysis is conducted and performed to derive a pricing formula
for VIX futures and options as a single integral.

The characteristic functions of variance and intensities have been discussed above. To find the
characteristic functions of the VIX, a natural idea is to explore VIX squared as a linear function of
instantaneous variance and intensities. Fortunately, Duan and Yeh [12] provide a linear expression for
the relationship between the VIX and variance in a stochastic volatility model. Therefore, we generalize
and derive this expression under the SVCĲ-I and SVCĲ-H models. In Lemma 1, we derive the linear
relation between the state variable (i.e., the instantaneous variance and time-varying intensity) and the
30-calendar-day VIX under these three models.

Lemma 1 (Linear property of VIX). The VIX2 is simply given by an affine transformation of the spot
variance and time-varying intensities. The 30-day VIX index is a measure of the risk-neutral expected
volatility of the SPX over the next 30 calendar days. Specifically, the calculation formula of VIX squared
at a given time 𝑡 is given by

VIX2
𝑡 (𝜏) =

2
𝜏
E𝑡

[∫ 𝑡+𝜏̃

𝑡

(
d𝑆𝑢
𝑆𝑢

− d log 𝑆𝑢
)]

,

where 𝜏 = 30
365 . To express the VIX as an explicit function in state variables, we follow Duan and Yeh

[12] in using the affine property of VIX squared. Lemma 1 shows that we can transform VIX squared
into state variables 𝑉𝑡 and 𝜆𝑡 .

4If the jump component 𝐽 𝑖
𝜆 d𝑁 𝑖

𝑡 of the Hawkes intensity is set to Brownian motion, then the characteristic function of the SVCĲ-H model
becomes a quasi-closed-form solution.
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(1) For the SVCĲ-I model,
VIX2

𝑡 = 𝑎𝑉𝑡 + 𝑏, (8)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑎 = 𝜂(1 + 2𝜆2,𝐶 (𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 ) + 2𝜆2,𝑆 (𝜁 − 𝜇𝑆)),

𝑏 =
𝐵

𝐴
(1 − 𝜂) + 2(𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 )

(
𝜆1,𝐶 + 𝜆2,𝐶 𝐵

𝐴
(1 − 𝜂)

)
+ 2(𝜁 − 𝜇𝑆)

(
𝜆1,𝑆 + 𝜆2,𝑆 𝐵

𝐴
(1 − 𝜂)

)
.

(9)

Here, 𝜇̄𝑉 � E(𝐽𝑉 ), 𝜇𝑉 � E(𝐽𝑉 ), 𝜁 � E(𝑒𝐽𝑆 − 1), 𝜁 � E(𝑒𝐽𝑆 − 1) and 𝜂 = (1 − 𝑒−𝐴𝜏̃)/𝐴𝜏,
𝐴 = 𝜅 − 𝜆2,𝑉 𝜇𝑉 − 𝜆2,𝐶 𝜇̄𝑉 and 𝐵 = 𝜃𝜅 + 𝜆1,𝑉 𝜇𝑉 + 𝜆1,𝐶 𝜇̄𝑉 . For convenience, we abbreviate
VIX𝑡 (𝜏) as VIX𝑡 . When 𝜆2,𝐶 = 𝜆2,𝑆 = 𝜆2,𝑉 = 0, this linear relationship can be applied to the SVCĲ
model. This linear function can also be expressed as a linear function of 𝑉𝑡 and 𝜆𝑡 if we substitute
𝜆𝑡 = 𝜆1 + 𝜆2𝑉𝑡 into the linear result above.

(2) For the SVCĲ-H model,
VIX2

𝑡 = 𝑎𝑉𝑡 + 𝑏𝜆𝐶𝑡 + 𝑐𝜆𝑆𝑡 + 𝑑𝜆𝑉𝑡 + 𝑒, (10)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎 =
1 − 𝑒−𝜅 𝜏̃

𝜅𝜏
,

𝑏 =
𝜇̄𝑉 (𝜑(𝛽𝐶) − 𝑎)

𝜅 − 𝛽𝐶
+ 2𝜑(𝛽𝐶 )(𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 ),

𝑐 = 2𝜑(𝛽𝑆)(𝜁 − 𝜇𝑆),

𝑑 =
𝜇𝑉 (𝜑(𝛽𝑉 ) − 𝑎)

𝜅 − 𝛽𝑉
,

𝑒 =

(
𝜃 + 𝜆̃𝐶 𝜇̄𝑉 + 𝜆̃𝑉 𝜇𝑉

𝜅

)
(1 − 𝑎) + 2𝜆̃𝐶 (𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 )(1 − 𝜑(𝛽𝐶 ))

+ 2𝜆̃𝑆 (𝜁 − 𝜇𝑆)(1 − 𝜑(𝛽𝑆)) − 𝜇̄𝑉 𝜆̃
𝐶

𝜅 − 𝛽𝐶
(𝜑(𝛽𝐶 ) − 𝑎)

− 𝜇𝑉 𝜆̃
𝑉

𝜅 − 𝛽𝑉
(𝜑(𝛽𝑉 ) − 𝑎),

(11)

where 𝑎 ∼ 𝑒 are constants. Here, 𝛽𝑖 = 𝛼𝑖 − 𝜇𝑖𝜆, 𝜆̃𝑖 = 𝜆𝑖∞𝛼
𝑖/𝛽𝑖 and 𝜑(𝑥) = (1 − 𝑒−𝑥𝜏̃)/𝑥𝜏,

𝑖 ∈ {𝐶, 𝑆,𝑉}.

Proof. We prove this in Appendix B. �

Many studies make use of this linear relationship. Indeed, this linear relationship plays an important
role in connecting the latent volatility to the observable VIX in the market. Lemma 1 derives the linear
relationship between the VIX𝑇 and the two state variables: 𝑉𝑇 and 𝜆𝑇 . Thus, we can exploit this linear
function relationship to obtain the explicit analytical formula for the prices of VIX futures and options
under different models. As stated at the beginning of this section, we derive the formulas by the direct
integral transformations to calculate the prices of VIX derivatives. See Theorem 1 for the calculation
of VIX futures5 and Theorem 2 for the calculation of VIX options.

5The standard convergence of futures prices to the underlying prices as time to maturity approaches 0 holds regardless of whether the underlying
is tradable.
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Theorem 1 (VIX future pricing). Using the transformation of Eq. (4) and the characteristic function
of VIX squared, the price of a VIX future, 𝐹 (𝑇), is given by the following formula:

𝐹 (𝑇) = E[VIX𝑇 ] = 1
2
√
𝜋

∫ ∞

0

1 − E(𝑒−𝑠VIX2
𝑇 )

𝑠3/2 d𝑠. (12)

(1) For the SVCĲ-I model,

E(𝑒−𝑠VIX2
𝑇 ) = 𝑒−𝑏𝑠L(−𝑎𝑠;𝑇,𝑉𝑡 ),

where 𝑠 ∈ R+, and the initial value VIX2
0 = 𝑎𝑉0 + 𝑏 and 𝑎, 𝑏 are defined in Eq. (9).

(2) For the SVCĲ-H model,

E(𝑒−𝑠VIX2
𝑇 ) = 𝑒−𝑒𝑠L((−𝑎𝑠,−𝑏𝑠,−𝑐𝑠,−𝑑𝑠);𝑇,𝑉𝑡 , 𝜆

𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ),

and the initial value VIX2
0 = 𝑎𝑉𝑡 + 𝑏𝜆𝐶0 + 𝑐𝜆𝑆0 + 𝑑𝜆𝑉0 + 𝑒 and 𝑎 ∼ 𝑒 are defined in Eq. (11).

Proof. We prove this in Appendix B. �

Notably, the integrals in this paper are integrable, the conditions of the Fubini theorem are satisfied,
and the order of integration in Theorems 1 and 2 can be interchanged. Others, such as the Feller condition
2𝜅𝜃 > 𝜎2

𝑉 , will not be elaborated in the rest of this paper, as the authors have verified its rationality.

Remark 1. The VIX futures prices have a single one-dimensional numerical integration, but for a
hypothetical futures contract written on VIX squared (introduced by [15]), which has a closed-form
expression, since VIX squared is a linear function of 𝑉𝑇 and 𝜆𝑇 , the VIX squared futures prices under
the SVCĲ-H model are

𝐹VIX2 (𝑇) = E(VIX2
𝑡 ) = 𝑎E(𝑉𝑡 ) + 𝑏E(𝜆𝐶𝑡 ) + 𝑐E(𝜆𝑆𝑡 ) + 𝑑E(𝜆𝑉𝑡 ) + 𝑒.

A European VIX call renders its holder the right, but not obligation, to obtain the difference between
the VIX index at an expiration date 𝑇 and a pre-specified strike 𝐾 . Compared to an equity option, it
is more convenient to directly calculate price of a VIX call without normalization. The no-arbitrage
condition implies that the VIX call price is represented by the following theorem.

Theorem 2 (VIX call option pricing). Using the transformation of Eq. (5) and the characteristic
function of VIX squared, the price of a VIX call option, 𝐶 (𝑇, 𝐾), is given by the following formula:

𝐶 (𝑇, 𝐾) = E[(VIX𝑇 − 𝐾)+] = 𝑒−𝑟𝑇

2
√
𝜋

∫ ∞

0
Re

[
1 − erf(𝐾√𝜙)

𝜙3/2 E(𝑒𝜙VIX2
𝑇 )

]
d𝜙𝐼 , (13)

where 𝜙 = 𝜙𝑅 + 𝑖𝜙𝐼 is the complex Laplace transform variable with 𝜙𝐼 ∈ R and 𝜙𝑅 > 0 and where the
complex error function erf(𝑍) is defined by

erf(𝑍) = 2√
𝜋

∫ 𝑍

0
𝑒−𝑠

2 d𝑠.

(1) For the SVCĲ-I model,

E(𝑒𝜙VIX2
𝑇 ) = 𝑒𝑏𝜙L(𝑎𝜙;𝑇,𝑉𝑡 ),

with the initial value VIX2
0 = 𝑎𝑉0 + 𝑏.
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Table 3. Prices of VIX futures.

The prices of VIX futures

𝜏 𝐹MC 𝐹 Abs. err. Rel. err. (%) 𝜏 𝐹MC 𝐹 Abs. err. Rel. err. (%)

SVCĲ model
0.1 22.3377 22.3523 0.0146 0.07 0.60 25.1417 25.1606 0.0189 0.08
0.2 23.3200 23.3339 0.0139 0.06 0.70 25.3236 25.3430 0.0194 0.08
0.3 24.0283 24.0390 0.0107 0.04 0.80 25.4724 25.4724 0.0000 0.00
0.4 24.5427 24.5438 0.0011 0.00 0.90 25.5510 25.5643 0.0133 0.05
0.5 24.8841 24.9040 0.0199 0.08 1.00 25.6133 25.6294 0.0161 0.06

SVCĲ-I model
0.1 24.6669 24.6861 0.0192 0.08 0.60 31.5863 31.5675 0.0188 0.06
0.2 26.5831 26.5851 0.0020 0.01 0.70 32.3936 32.3689 0.0247 0.08
0.3 28.1785 28.1713 0.0072 0.03 0.80 33.0491 33.0500 0.0009 0.00
0.4 29.4914 29.5015 0.0101 0.03 0.90 33.6240 33.6301 0.0061 0.02
0.5 30.6170 30.6217 0.0047 0.02 1.00 34.1369 34.1252 0.0117 0.03

SVCĲ-H model
0.1 22.4989 22.5147 0.0158 0.07 0.60 25.6647 25.6673 0.0026 0.01
0.2 23.5532 23.5838 0.0306 0.13 0.70 25.8799 25.8920 0.0121 0.05
0.3 24.3523 24.3672 0.0149 0.06 0.80 26.0475 26.0567 0.0092 0.04
0.4 24.9300 24.9407 0.0107 0.04 0.90 26.1729 26.1775 0.0046 0.02
0.5 25.3580 25.3603 0.0023 0.01 1.00 26.2622 26.2662 0.0040 0.02

Note. Here 𝜏 is time to maturity (or the tenor of VIX derivatives), 𝐹MC are prices of VIX futures
calculated by Monte Carlo simulation, and 𝐹 are prices of VIX futures calculated by our formula. We
simulate 200,000 sample paths and include 1,000 observations (1 year) in each path.

(2) For the SVCĲ-H model,

E(𝑒𝜙VIX2
𝑇 ) = 𝑒𝑒𝜙L((𝑎𝜙, 𝑏𝜙, 𝑐𝜙, 𝑑𝜙);𝑇,𝑉𝑡 , 𝜆

𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ),

with the initial value VIX2
0 = 𝑎𝑉𝑡 + 𝑏𝜆𝐶0 + 𝑐𝜆𝑆0 + 𝑑𝜆𝑉0 + 𝑒.

Proof. We prove this in Appendix B. �

Our formulas are extremely efficient and accurate for calculating the futures and options prices of
VIX𝑇 , regardless of whether the model considers both CJs and Ĳs or time-varying intensities. We use
clever integral transformations, and the formula involves only a single integral and thus exhibits more
efficiency. In the next section, we perform some numerical experiments to verify the correctness of our
formulas by comparing the results calculated by the Monte Carlo simulation with the results obtained
by our formulas.

4. Numerical analysis

To verify the correctness of our formulas, we perform numerical analysis in this subsection for com-
parison (similar to [2,18,25]). We use Monte Carlo simulations with 200,000 sample paths on a short
discrete time grid to approximate the true options and futures. The numerical results are displayed in
Tables 3 and 4.
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Table 4. Prices of VIX call options.

The prices of VIX call options

𝐾 𝐶MC 𝐶 Abs. err. Rel. err. (%) 𝐶MC 𝐶 Abs. err. Rel. err. (%)

SVCĲ model
𝜏 = 0.1 𝜏 = 0.4

22 1.1928 1.2030 0.0102 0.86 3.0601 3.0563 0.0038 0.12
23 1.0131 1.0239 0.0108 1.07 2.5842 2.5870 0.0028 0.11
24 0.8720 0.8853 0.0133 1.53 2.1949 2.1987 0.0038 0.17
25 0.7577 0.7635 0.0058 0.77 1.8779 1.8662 0.0117 0.62
26 0.6498 0.6558 0.0060 0.92 1.5724 1.5791 0.0067 0.43

𝜏 = 0.2 𝜏 = 0.8
22 2.0615 2.0574 0.0041 0.20 3.7582 3.7458 0.0124 0.33
23 1.7483 1.7450 0.0033 0.19 3.1641 3.1551 0.0090 0.28
24 1.4955 1.4968 0.0013 0.09 2.6448 2.6604 0.0156 0.59
25 1.2807 1.2824 0.0017 0.13 2.2418 2.2412 0.0006 0.03
26 1.0817 1.0946 0.0129 1.19 1.8704 1.8845 0.0141 0.75

SVCĲ-I model
𝜏 = 0.1 𝜏 = 0.4

24 1.9718 1.9958 0.0240 1.22 6.2080 6.2147 0.0067 0.11
26 1.6249 1.6279 0.0030 0.18 5.1987 5.2265 0.0278 0.53
28 1.3233 1.3377 0.0144 1.09 4.3978 4.4102 0.0124 0.28
30 1.0868 1.0920 0.0052 0.48 3.6976 3.7151 0.0175 0.47
32 0.8704 0.8856 0.0152 1.75 3.0953 3.1211 0.0258 0.83

𝜏 = 0.2 𝜏 = 0.8
24 3.6460 3.6687 0.0227 0.62 9.2919 9.2856 0.0063 0.07
26 2.9985 3.0224 0.0239 0.80 8.0026 7.9942 0.0084 0.10
28 2.5067 2.5077 0.0010 0.04 6.8464 6.8865 0.0401 0.59
30 2.0585 2.0730 0.0145 0.70 5.8967 5.9236 0.0269 0.46
32 1.7005 1.7063 0.0058 0.34 5.0675 5.0834 0.0159 0.31

SVCĲ-H model
𝜏 = 0.1 𝜏 = 0.4

22 1.3558 1.3512 0.0046 0.34 3.4622 3.4565 0.0057 0.16
23 1.1506 1.1455 0.0051 0.44 2.9608 2.9555 0.0053 0.18
24 0.9945 0.9892 0.0053 0.53 2.5414 2.5364 0.0050 0.20
25 0.8602 0.8548 0.0054 0.63 2.1807 2.1753 0.0054 0.25
26 0.7419 0.7368 0.0051 0.69 1.8667 1.8611 0.0056 0.30

𝜏 = 0.2 𝜏 = 0.8
22 2.3096 2.3087 0.0009 0.04 4.3153 4.3151 0.0002 0.00
23 1.9663 1.9650 0.0013 0.07 3.6920 3.6919 0.0001 0.00
24 1.6929 1.6915 0.0014 0.08 3.1599 3.1595 0.0004 0.01
25 1.4584 1.4570 0.0014 0.10 2.7016 2.7010 0.0006 0.02
26 1.2531 1.2517 0.0014 0.11 2.3050 2.3045 0.0005 0.02

Note. Here 𝜏 is time to maturity (or the tenor of VIX derivatives), 𝐶MC are prices of VIX options
calculated by Monte Carlo simulation and 𝐶 are prices of VIX options calculated by our formula. K is
the strike price. We simulate 200,000 sample paths and include 1,000 observations (1 year) in each path.
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4.1. Monte Carlo simulations

Euler discretization can be used to approximate the path of the variance and intensity processes over
a discrete interval; in this case, we choose a discrete time small enough for Δ𝑡 = 1/1, 000. The
discretization of the variance and intensity processes are

𝑉𝑡 = 𝑉𝑡−1 + 𝜅(𝜃 −𝑉𝑡−1)Δ𝑡 + 𝜎𝑉

√
|𝑉𝑡−1 |

√
Δ𝑡𝜖𝑡 + 𝐽𝑉 𝑁𝐶

𝑡 + 𝐽𝑉 𝑁𝑉
𝑡 ,

𝜆𝑖𝑡 = 𝜆1,𝑖 + 𝜆2,𝑖𝑉𝑡 , (SVCĲ-I model, 𝑖 ∈ {𝐶,𝑉}),
𝜆𝑖𝑡 = 𝜆𝑖𝑡−1 + 𝛼𝑖 (𝜆𝑖∞ − 𝜆𝑖𝑡−1)Δ𝑡 + 𝐽𝑖𝜆𝑁

𝑖
𝑡 , (SVCĲ-H model, 𝑖 ∈ {𝐶, 𝑆,𝑉}),

where 𝜖𝑡 ∼ N(0, 1), 𝐽𝑉 ∼ exp ( 𝜇̄𝑉 ), 𝐽𝑉 ∼ exp (𝜇𝑉 ), 𝐽𝑖𝜆 ∼ exp (𝜇𝑖𝜆), 𝑁 𝑖
𝑡 ∼ Bernoulli(𝜆𝑖𝑡−1Δ𝑡) (𝜆𝑖𝑡−1 is

constant for the SVCĲ model).
With the sample path of variance and intensities (if any), we calculate the sampling VIX path

according to VIX2
𝑇 = 𝑎𝑉𝑇 + 𝑏𝜆𝐶𝑇 + 𝑐𝜆𝑆𝑇 + 𝑑𝜆𝑉𝑇 + 𝑒 or VIX2

𝑇 = 𝑎𝑉𝑇 + 𝑏. Then, we obtain the VIX
futures6 by (1/𝑁)∑𝑁

𝑖=1 VIX𝑇 ,𝑖 and VIX options by (1/𝑁)∑𝑁
𝑖=1(VIX𝑇 ,𝑖 − 𝐾)+, where 𝑁 is the number

of trajectories and VIX𝑇 ,𝑖 is the value in 𝑖th trajectory at time 𝑇 .
To measure the error between the Monte Carlo method and the results calculated by our formulas,

we provide two measures: absolute error and relative error, which are defined as follows:

absolute error = |𝑉 −𝑉MC |,

relative error =
|𝑉 −𝑉MC |

𝑉MC
,

where 𝑉 = 𝐹, 𝐶 represent futures and options, respectively.
In our experiments, we supposed all parameters (see Table 2). In fact, suitable arbitrary parameters

have no effect on the accuracy of our formula calculation.

4.2. Accuracy check

Table 3 shows the comparison of VIX futures prices obtained from our formula and Monte Carlo
simulations, Table 4 shows the comparison of VIX options prices obtained from our formula and Monte
Carlo simulations. The Monte Carlo simulation uses 200,000 sample paths and each path with time steps
of 1/1,000. We list the results of the three models for given parameters and find that all three models
match perfectly with those obtained from the Monte Carlo simulations.

It is clear that the differences between the results of our futures pricing formula and the Monte Carlo
simulation results (the 200,000 Monte Carlo simulated trajectories) are very small, and the relative error
range is between 0% and 0.13%. This confirms the accuracy of our futures calculation formula.

The differences between our formula’s option prices and the simulation results are small, in the
range of 0% to 1.75%. If we regard the Monte Carlo price as the benchmark, then this adequately
demonstrates that both our option pricing formula and futures pricing formula are accurate. We have
reason, theoretically, to believe that even with different calculation formulas, as long as the given
parameters and model are the same, the pricing results are consistent. For the SVCĲ-H model, since the
SVCĲ model is a special case of the SVCĲ-I model, to more reliably verify the formula of the SVCĲ-I
model, we take 𝜆2,𝐶 , 𝜆2,𝑆 and 𝜆2,𝑉 to be the large value of 20.

Compared with futures contracts written on commodities and equities, VIX futures are quite unusual.
As time to maturity increases substantially, the prices of VIX futures flatten out and become less
sensitive to the time to maturity. In the limiting case, VIX futures prices tend toward a constant, this
phenomenon of the term structure of VIX futures prices is in line with the observed traded VIX futures
prices in the CBOE (see, e.g., [16]). This phenomenon is due to volatility’s mean-reverting nature,

6Both VIX futures and options in this paper need to be multiplied by 100 in the specific calculation.
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Figure 2. The prices of VIX futures and options over long maturities, based on the SVCĲ-H model.

which means that over the long run, volatility tends to revert its long-run average. For the SVCĲ-I
model, E(𝑉𝑇 ) 𝑇→∞−→ (𝜃𝜅 + 𝜆1,𝐶 𝜇̄𝑉 + 𝜆1,𝑉 𝜇𝑉 )/(𝜅 − 𝜆2,𝐶 𝜇̄𝑉 − 𝜆2,𝑉 𝜇𝑉 ) is the long-run mean of variance.
For the SVCĲ-H model, E(𝑉𝑇 ) 𝑇→∞−→ (𝜅𝜃 + 𝜆̃𝐶 𝜇̄𝑉 + 𝜆̃𝑉 𝜇𝑉 )/𝜅 is the long-run mean of variance, and
lim𝑇→∞ E(𝜆𝑖𝑇 )

𝑇→∞−→ 𝜆̃𝑖 (𝑖 ∈ {𝐶, 𝑆,𝑉}) are the long-run means of intensities. All of these limits above
mean that as time-to-maturity increases, prices are becoming less sensitive to initial volatility or jump
intensities changes. The existence of these limits confirms that as the time-to-maturity increases, the
futures price tends toward a constant.

lim
𝑇→∞

𝐹 (𝑇) = Constant, (14)

where the constant is a value independent of the VIX. The left panel of Figure 2 illustrates the prices of
VIX futures approaching a constant (based on the SVCĲ-H model).

For this property of volatility, it is natural that the price of its options tends to be close to zero at long
maturities. We can also derive this from our formula for options pricing (Eq. (13)), where the integral
is bounded, and 𝑒−𝑟𝑇 goes to zero as 𝑇 increases.

lim
𝑇→∞

𝐶 (𝑇, 𝐾) = 0. (15)

The right panel of Figure 2 illustrates the prices of VIX options are approaching a constant. Therefore,
at long maturities, the VIX call option will become worthless and less sensitive (which is in line with
the results of the models of [16,21]).

4.3. Sensitivity analysis

To further study the jump structure, we investigate the sensitivity of the VIX options with respect to the
parameters of the jump parameters in Figures 3–5. To identify the ceteris paribus effects on the VIX
options, we change one or more parameters while holding all remaining parameters fixed. For each
parameter set, we plot the 3D diagram of VIX options against time to maturity and the parameters to be
studied.

Naturally, considering the upward jump risk in the model, the call price would increase. Eraker et
al. [17] shows that the SVCJ and SVĲ models exhibit similar behavior, but the SVĲ model is more
flexible than the SVCJ model. Therefore, we may also be concerned about how the jump factors affect
VIX futures and options in detail under the more general jump-diffusion models. This section examines
how jump factors impact VIX derivatives pricing. These prices of VIX derivatives are calculated from
our pricing formulas. Figure 3 illustrates the sensitivity of a VIX call option to CJs and Ĳs in volatility
and time to maturity under the SVCĲ model.
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Figure 3. The prices of VIX options (𝐾 = 25), based on the SVCĲ model.

Figure 3 illustrates the scenarios for different types of jumps, showing that the call price is affected
by various jumps (by setting different jump intensities), especially for CJs. In particular, the top panels
of Figure 3 show that the VIX call price is more sensitive to CJs for long-term contracts. These results
are in line with the markets because CJs are frequently accompanied by crises and systemic risks, while
most Ĳs occur independently of variance and are relatively accidental. Therefore, from the perspective
of the pricing of VIX derivatives, CJs deserve more attention.

Figure 4 illustrates the scenarios for different 𝜆2,𝐶 , 𝜆2,𝑆 and 𝜆2,𝑉 , showing that the call prices are
relatively sensitive to the time-varying intensities, especially for large 𝜆2,𝐶 , 𝜆2,𝑆 and 𝜆2,𝑉 . Alternatively,
by removing the time-varying component of intensities, which is achieved by setting 𝜆2,𝐶 = 𝜆2,𝑆 =
𝜆2,𝑉 = 0, we can obtain the SVCĲ model. In addition, a large 𝜆2,𝐶 , 𝜆2,𝑆 and 𝜆2,𝑉 are also associated
with higher derivative prices and is more sensitive to time to maturity. Therefore, when the coefficient
𝜆2,𝐶 , 𝜆2,𝑆 and 𝜆2,𝑉 of the time-varying component of jump intensity may be large, we may not be able
to ignore its effect on pricing.

Figure 5 shows the sensitivity of a VIX call price to the impacts of jumps in intensity and time to
maturity in the short run and long run (by setting 𝛼𝐶 , 𝛼𝑆 and 𝛼𝑉 to a large value or small value), which
shows that the VIX call prices with 𝛼𝐶 = 𝛼𝑆 = 𝛼𝑉 = 2 (long run) are more sensitive than VIX call
prices with 𝛼𝐶 = 𝛼𝑆 = 𝛼𝑉 = 15 (short run). This is because of the significant difference in the mean-
reversion speed of intensity. For the SVCĲ-H model, VIX squared is not only related to spot variance
but also linearly related to time-varying jump intensities. Thus, intensities can affect VIX squared not
only by acting on spot variance but can also directly affect VIX squared.

In summary, although variance jumps in CJs and Ĳs are both important to the pricing of VIX options,
CJs seem to be more important. The time-varying intensity as a linear function of variance seems to be
important in pricing VIX derivatives when variance has a large effect on intensity. More important, the
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Figure 4. The prices of VIX futures and options (𝐾 = 26), based on the SVCĲ-I model.

Figure 5. The prices of VIX options (K=26), based on the SVCĲ-H model.

mean-reversion of intensity mitigates the value of jumps in intensity. In the case of fast mean-reversion
speed, the jumps in intensity seem to have little effect on pricing VIX calls.

4.4. Impact of jumps in implied volatility

To characterize the pricing of VIX call options, we investigate implied volatility. Specifically, we
perform numerical tests to investigate the behavior of the implied volatility of VIX options. Recall that
the implied volatility 𝜎

implied
𝑡 associated with 𝐹 (𝑇) and 𝐶 (𝑇, 𝐾) is defined by inverting the Black and

Scholes [8] formula (see Appendix A for details). Figure 6 shows the implied volatility with the strike
price under different maturities and𝑉0. Figures 7 and 8 illustrate the implied volatility patterns generated
by varying jump parameters. Table 5 reports the implied volatility with respect to the maturity and strike
under the SVCĲ model with different jump patterns.

There are several noteworthy features of implied volatility.
First, in the SVCĲ model, for a given strike, the implied volatility is greater for short-maturity options

(left panel of Figure 6). That is, the term structure of implied volatility is downward sloping irrespective
of the level of VIX. To understand why this is, it is crucial to understand that implied volatility, in this
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Figure 6. Implied volatility for VIX option in the SVCĲ model. Note. In the left panel, we set varying
values of maturity in the SVCĲ model. In the right panel, we set varying values of spot variance 𝑉0 and
a fixed maturity at 𝜏 = 0.5 in the SVCĲ model.

Figure 7. Implied volatility for VIX option with maturity 𝜏 = 0.5 with respect to the SVCĲ model and
SVCĲ-I model. Note. In the left panel, we set varying values of the jump intensity of contemporaneous
and volatility-independent jumps in the SVCĲ model. In the right panel, we set varying values of the
dependent coefficient in the SVCĲ-I model.

case calculated from the Black–Scholes model for pricing an option on VIX futures, assumes that the
underlying follows a random walk. If a given process is a random walk, its forecasted variance increases
linearly with the forecast horizon. VIX options exhibit a downward-sloping term structure, and therefore,
the VIX variance does not increase proportionally with the forecast horizon. Rather, it suggests that the
VIX is not a martingale.

Second, the shapes of the implied volatility uniformly form a concave “frown” rather than the usual
convex “smile” seen in most equity options, such as SPX options.

Third, low (high) strikes, over some strike range, generally have low (high) implied volatilities,
suggesting a positively skewed underlying distribution. Unlike equity options, which exhibit a negative
skew in implied volatility, implied volatility in VIX options exhibits positive skew. Notably, accounting
for positive jumps in volatility can explain the positive implied volatility skew exhibited by options
written on volatility such as CBOE’s VIX options. For the SVCĲ-H model, VIX squared would be a
linear function of 𝑉𝑡 and 𝜆𝑡 . Similarly, the positive jumps in 𝜆𝑡 can also be explained by the positive
VIX implied volatility skew.

Fourth, the implied volatility values decrease as the initial variance𝑉0 increases but not significantly.

https://doi.org/10.1017/S0269964821000577 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000577


262 W. Ye et al.

Figure 8. Implied volatility for VIX option with maturity 𝜏 = 0.5 in the SVCĲ-H model. Note. In the left
panel, we set the mean reversion of both intensities very low (𝛼𝐶 = 𝛼𝑆 = 𝛼𝑉 = 2, implying long-run
intensities) and set varying values of jump size intensities in the SVCĲ-H model. In the right panel, we
set the mean reversion of both intensities very high (𝛼𝐶 = 𝛼𝑆 = 𝛼𝑉 = 15, implying short-run intensities)
and set varying values of jump size intensities in the SVCĲ-H model.

In the rest of this section, we investigate the sensitivity of the implied volatility of VIX options to the
jump-related parameters in the proposed models. To identify the ceteris paribus effects on the implied
volatility, we change the specified jump-related parameters while holding all remaining parameters
fixed. For each parameter set, we plot the implied volatility curve against the strike.

For the SVCĲ model, Figure 7 shows the implied volatility under different jump structures against
the strike. As the figure shows, the CJs and Ĳs are evident: the structures under CJs and Ĳs have
different implied curves, but for a given jump intensity, the implied volatility is greater for Ĳs. The
implied volatility of Ĳs is indistinguishable, and the implied volatility curve is very close. However
for CJs, there is a significant decreasing trend given increases in 𝜆𝑉 over some strike range. Moreover,
the impact of these CJ and Ĳ jump structures on implied volatility is consistent at different maturity
horizons. Table 5 shows the VIX implied volatility surface under different jump structures against strike
and maturity. In addition, we know from the previous section on option sensitivity that Ĳs are not
sensitive to option prices, while CJs are considerably more sensitive. This point of view reflects the
significance of distinguishing CJs and Ĳs in our model. During the financial crisis, there were relatively
more CJs, while Ĳs generally predominate (evidence from [9]). This is reflected by the fact that our
stochastic volatility model contains both CJs and Ĳs.

For the SVCĲ-I model, the left panel of Figure 7 shows the implied volatility against the dependent
coefficient 𝜆2,𝐶 and 𝜆2,𝑉 . We observe that the yellow curve is close to the green curve and that the red
curve is close to the purple curve, which means that if 𝜆2,𝐶 and 𝜆2,𝑉 are of the same value, then the
impact on implied volatility is similar. However, note that, in the low strike, the implied volatility on
𝜆2,𝐶 is smaller, in the high strike, it is greater, relative to implied volatility on 𝜆2,𝑉 of the same value.
In the low strike, the implied volatility in the non-zero dependent coefficient is close to the implied
volatility for a zero dependent coefficient. In our SVCĲ-I model, therefore, when a strike is small, the
effect of the dependent coefficient on implied volatility is relatively small.

In the previous section, we illustrated the option sensitivity in the long run (𝛼𝐶 = 𝛼𝑆 = 𝛼𝑉 = 2)
and short run (𝛼𝐶 = 𝛼𝑆 = 𝛼𝑉 = 15). We are interested in the implied volatility patterns generated by
different mean reversions of jump intensity. Figure 8 shows the result when we condition on high and
low mean reversion intensity. We see that the implied volatility curves are almost always increasing with
respect to jump size intensity increases, especially under long-run mean reversion. In the short-run case,
jump size intensity has no significant effect on implied volatility. However, for a low strike, it does not
appear to have much effect on implied volatility. Our model shows that as maturity increases, the futures
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Table 5. Implied volatility for the SVCĲ model.

Strike 𝜏 = 0.1 𝜏 = 0.5 𝜏 = 1

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

𝜆𝐶

23 0.6162 0.5441 0.4343 0.2958 0.2615 0.2047 0.1905 0.1552 0.0741
24 0.6621 0.6005 0.5084 0.3128 0.2826 0.2368 0.2034 0.1731 0.1237
25 0.7017 0.6474 0.5672 0.3270 0.2996 0.2600 0.2143 0.1871 0.1479
26 0.7360 0.6870 0.6150 0.3391 0.3134 0.2778 0.2235 0.1985 0.1648
27 0.7658 0.7208 0.6547 0.3494 0.3249 0.2919 0.2315 0.2079 0.1778
28 0.7918 0.7496 0.6881 0.3583 0.3345 0.3035 0.2383 0.2159 0.1881
29 0.8145 0.7744 0.7163 0.3659 0.3427 0.3131 0.2443 0.2227 0.1967
30 0.8343 0.7957 0.7403 0.3726 0.3496 0.3211 0.2495 0.2284 0.2038
31 0.8515 0.8141 0.7609 0.3783 0.3556 0.3279 0.2540 0.2334 0.2098
32 0.8666 0.8300 0.7785 0.3832 0.3606 0.3337 0.2579 0.2377 0.2149
33 0.8797 0.8436 0.7935 0.3875 0.365 0.3386 0.2613 0.2414 0.2193

𝜆𝑉

23 0.7684 0.8454 0.8854 0.3624 0.3885 0.3958 0.2376 0.2475 0.2447
24 0.8070 0.8827 0.9217 0.3756 0.4000 0.4065 0.2476 0.2571 0.2544
25 0.8404 0.9142 0.9520 0.3867 0.4095 0.4151 0.2562 0.2649 0.2623
26 0.8692 0.9410 0.9772 0.3962 0.4173 0.4220 0.2635 0.2715 0.2688
27 0.8943 0.9636 0.9982 0.4042 0.4237 0.4276 0.2698 0.2771 0.2741
28 0.9160 0.9828 1.0157 0.4111 0.4291 0.4321 0.2752 0.2817 0.2785
29 0.9347 0.9991 1.0302 0.4170 0.4335 0.4357 0.2799 0.2856 0.2822
30 0.9510 1.0127 1.0421 0.4220 0.4371 0.4386 0.2839 0.2889 0.2852
31 0.9650 1.0242 1.0519 0.4262 0.4400 0.4408 0.2873 0.2916 0.2876
32 0.9771 1.0337 1.0597 0.4298 0.4423 0.4424 0.2903 0.2939 0.2896
33 0.9874 1.0415 1.0660 0.4328 0.4442 0.4437 0.2928 0.2958 0.2912

Note. The table reports implied volatility for VIX options with respect to maturity and strike in the
SVCĲ model, as well as the jump intensities of contemporaneous and volatility-independent jumps. 𝜏
is the maturity, and 𝜆𝐶 and 𝜆𝑉 are jump intensities.

price also increases and exhibits the concave “frown” pattern. This implies that VIX option-implied
volatility is positively correlated with the VIX itself. In the SVCĲ-H model, a fluctuating 𝜆𝑡 process
is important in shaping the positive correlation between implied volatility and the VIX. This can be
interpreted to mean that, first, as 𝜆𝑡 increases, it drives up the VIX because the VIX loads positively on
it; second, it also drives up implied volatility and thereby increases the prices of VIX calls. Part of this
phenomenon is strikingly similar to the price sensitivity of options discussed previously.

4.5. Empirical studies

In this section, we introduce market data and investigate whether the flexible jump structure improves
pricing performance of VIX options. The market data used in this paper include VIX futures, LIBOR
and VIX options that provided by the CBOE and OptionMetrics. The sampling dates are June 21, 2017
(Wednesday) as in-sample data for model calibration, and June 22, 2017 (Thursday) as out-of-sample
data for evaluating model performance. We filter the option data as follows: (1) we use the mid price
(the average of the best bid and best ask) as the market VIX option price; (2) we eliminate any options
with zero bid-quote and trading volumes; and (3) we consider only VIX call options because the trading
volume of VIX calls is more than puts. Table 6 provides the summary statistics of VIX option data
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Table 6. Summary statistics of VIX option data.

In-sample Out-of-sample

𝑚 ≤ −0.1 −0.1 < 𝑚 < 0.1 𝑚 ≥ 0.1 𝑚 ≤ −0.1 −0.1 < 𝑚 < 0.1 𝑚 ≥ 0.1

Observations 32 34 128 38 41 161
Average prices 3.0047 1.3103 0.5115 3.1526 1.3402 0.5238
Average implied
volatility

0.5805 0.8238 1.2023 0.5826 0.7918 1.1144

Note. The table is divided into three categories based on moneyness (defined as 𝑚 := ln(𝐾/𝐹) with the
strike price of option 𝐾 and corresponding VIX future price 𝐹) on June 21, 2017 (in-sample) and June
22, 2017 (out-of-sample). The reported observation is the number of VIX call option contracts.

Table 7. Calibrated model parameters.

𝜅 𝜃 𝜎𝑉 𝜇̄𝑆 𝜇𝑆 𝜎̄𝑆 𝜎𝑆 𝜇̄𝑉 𝜇𝑉

SV model 0.0044 0.0303 0.3056 — — — — — —
SVCĲ model 0.7545 0.0248 0.5668 0.0023 0.0054 0.0438 0.0145 0.0004 0.0002
SVCĲ-I model 1.0955 0.0001 0.1395 0.0290 0.0111 0.0204 0.0305 0.0637 0.0001
SVCĲ-H model 0.5984 0.0001 0.1294 −0.0134 0.0114 0.4992 0.0388 0.0001 0.0035

𝜌𝐽 𝜆𝑆0 𝜆𝐶 𝜆𝑆 (𝜆1,𝑆) 𝜆𝑉 𝜆2,𝑆 𝛼𝑆 𝜆𝑆∞ 𝜇𝑆𝜆
SV model — — — — — — — — —
SVCĲ model 1.3041 — 2.0225 26.4619 19.2791 — — — —
SVCĲ-I model −0.1854 — 0.1395 0.0919 6.1053 139.2725 — — —
SVCĲ-H model 0.0178 3.1585 5.2248 — 0.0001 — 11.2192 0.9578 11.6707

Note. The table exhibits the calibration results of VIX option for SV, SVCĲ, SVCĲ-I, and SVCĲ-H
modes. The parameters are backed out by minimizing the mean-square error between market and model
option prices by using the in-sample data (June 21, 2017).

divided into three categories based on moneyness. Here, moneyness is defined as 𝑚 := ln(𝐾/𝐹) with
the strike price of option 𝐾 and corresponding VIX future price 𝐹.

For ease of comparison among different models, four typical models are considered: SV model,
SVCĲ model and two generalized forms of SVCĲ model by allowing independent return jump to be
self-exciting (i.e., SVCĲ-I and SVCĲ-H). Table 7 presents the estimated results by minimizing the
mean-square error between market prices and model option prices. The estimated value of 𝜆2,𝑆 is
139.2725 of SVCĲ-I model, which implies that state-depend jump intensity may not be ignored. The
estimated value of 𝛼𝑆 and 𝜇𝑆𝜆 of the SVCĲ-H model are 11.2192 and 11.6707, respectively, which
implies that Hawkes-type propagation also plays a very important role.

Next, we compare the performance among different models based on the mean absolute percentage
errors (MAPE), which is defined as:

MAPE =
1
𝑁𝑡

𝑁𝑡∑
𝑖=1

|𝐶Model
𝑖 − 𝐶Market

𝑖 |
𝐶Market
𝑖

,

where 𝑁𝑡 is the number of VIX call option contracts on day 𝑡, 𝐶Market
𝑖 is the market price of contract 𝑖

and 𝐶Model
𝑖 represents the model-implied price of contract 𝑖.

Figure 9 presents a cross-sectional VIX option pricing performance on in-sample data for different
maturities and moneyness. It is clear that our proposed models can match market VIX option prices
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Figure 9. In-sample pricing performance of VIX options against moneyness on June 21, 2017. Note.
The moneyness is defined as ln(𝐾/𝐹) with the strike price of option 𝐾 and corresponding VIX future
price 𝐹.

well for the long maturity date and OTM options. Furthermore, the advantage of our models over the
benchmark model are most significant for short maturity date and ITM options. Figure 10 shows a cross-
sectional VIX option pricing performance on out-of-sample data for different maturities and moneyness
and have a similar behavior with in-sample result. Table 8 gives the in-sample and out-of-sample pricing
errors of VIX option across different categories of moneyness and maturity, respectively. Clearly, both
SVCĲ-I and SVCĲ-H have better performance than other models in all categories. Additionally, we
find that the SVCĲ-I and SVCĲ-H have similar performance. Note that the long-term maturity and
OTM options show the lowest price errors. Overall, our models provide the best in-sample fitting and
out-of-sample prediction across all moneyness and maturities.

5. Conclusion

Motivated by the growing literature on VIX derivatives and their popular introduction in major
exchanges, this paper studies the pricing problem for VIX futures and options based on the SVCĲ
model with a flexible jump structure. In addition, we study how the jump structure impacts the volatility
distribution and VIX derivatives, and carry out the empirical comparison studies of alternative models
for the VIX option pricing. This study contributes to the existing literature in several ways. First, the
proposed SVCĲ model is a very general model, of which models including the SV, SVJ, SVĲ and SVCJ
models can be considered special cases. We present analytical formulas for VIX futures and options
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Figure 10. Out-of-sample pricing performance of VIX options against moneyness on June 21, 2017.
Note. The moneyness is defined as ln(𝐾/𝐹) with the strike price of option 𝐾 and corresponding VIX
future price 𝐹.

Table 8. VIX option pricing errors.

Moneyness Days to maturity

MAPE (%) All 𝑚 ≤ −0.1 −0.1 < 𝑚 < 0.1 𝑚 ≥ 0.1 𝐷𝑇𝑀 ≤ 30 30 < 𝐷𝑇𝑀 < 90 𝐷𝑇𝑀 ≥ 90

In-sample pricing errors
SV model 9.9193 20.1947 58.0315 46.2791 50.6585 35.8740
SVCĲ model 4.4570 9.7571 41.6781 39.5579 35.4060 15.8623
SVCĲ-I model 3.7263 7.8712 16.3842 18.3622 11.4337 7.4698
SVCĲ-H model 2.4545 6.0640 18.4292 16.7267 18.0794 7.4191
Out-of-sample pricing errors

SV model 9.3477 23.7656 58.4931 43.8478 53.7140 36.3758
SVCĲ model 5.3175 11.0137 40.2510 37.6433 35.6615 16.2374
SVCĲ-I model 4.2094 5.6733 18.6127 19.9527 13.7097 9.1499
SVCĲ-H model 2.6773 5.3930 24.7757 26.4507 16.4090 11.7231

Note. It presents in-sample (June 21, 2017) and out-of-sample (June 22, 2017) option pricing errors for
different ranges of moneyness and maturity for the SV, SVCĲ, SVCĲ-I and SVCĲ-H models.
Abbreviations: MAPE, mean absolute percentage errors; m, moneyness; DTM, days to maturity.
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prices up to an integral based on the proposed model, which can be considered an extension of the clas-
sical Heston model and the jump-diffusion model. Second, we incorporate the volatility-dependent jump
intensity and Hawkes intensity into the SVCĲ model and derive the pricing formulas for VIX futures
and options prices. Third, having a “fat tail” in the volatility distribution may be caused by incorporat-
ing jumps into stochastic volatility model, and contemporaneous jumps have a greater effect on VIX
derivative prices than do independent jumps. Fourth, the flexible jump structures contribute to varying
degrees to implied volatility. Finally, the in- and out-of-sample results indicate that our proposed mod-
els have excellent pricing performance among alternative models. Overall, our models can be used to
price a wide range of derivatives, which can be achieved by using the Fourier transform technique, and
the stochastic jump intensity may not negligible, especially during a financial crisis.
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Appendix A. Black–Scholes implied volatility

We investigate the implied volatility of VIX calls; in contrast to equity options, the underlying asset of
a VIX option is not the VIX index itself. Instead, it is a VIX futures contract with same maturity as
the VIX option. Thus, we need equate the pricing formula of options on futures in Black and Scholes
[8] with the VIX option price either in the data or obtained from the model and then invert the formula
to obtain the implied volatility. Specifically, consider a VIX call with strike 𝐾 , time to maturity 𝑇 and
underlying option price 𝐹 (𝑇). Then, the price of the VIX call should be given by

𝐵𝑆(𝐹 (𝑇), 𝐾, 𝑇, 𝑟, 𝜎) = 𝑒−𝑟𝑇 [𝐹 (𝑇) · 𝑁 (𝑑1) − 𝐾 · 𝑁 (𝑑2)],

where

𝑑1 =
ln(𝐹 (𝑇)/𝐾) + 𝜎2𝑇/2

𝜎
√
𝑇

,

𝑑2 = 𝑑1 − 𝜎
√
𝑇.

Therefore, the model-implied volatility 𝜎
implied
𝑡 should solve

𝐶 (𝑇, 𝐾) = 𝐵𝑆(𝐹 (𝑇), 𝐾, 𝑇, 𝑟, 𝜎implied
𝑡 ),

where 𝐶 (𝑇, 𝐾) is given by Eq. (13) and 𝑟 is the risk-free rate.

Appendix B. Proofs

Proof of Proposition 1. The conditional characteristic function of 𝑉𝑇 is defined as L(𝜙; 𝜏,𝑉𝑡 ) �
E
Q
𝑡 (𝑒𝜙𝑉𝑇 ). By adopting the temporal variable, 𝜏 = 𝑇 − 𝑡, it can be deduced from the Feynman-Kac

theorem that L(𝜙; 𝜏,𝑉𝑡 ) is governed by the following PIDE:

0 = −𝜕L
𝜕𝜏

+ 𝜅(𝜃 −𝑉𝑡 ) 𝜕L
𝜕𝑉𝑡

+ 1
2
𝜎2
𝑉𝑉𝑡

𝜕2L
𝜕𝑉2

𝑡

+ 𝜆𝐶𝑡 EQ𝑡 (L(𝜙; 𝜏,𝑉𝑡 + 𝐽𝑉 ) − L(𝜙; 𝜏,𝑉𝑡 ))

+ 𝜆𝑉𝑡 EQ𝑡 (L(𝜙; 𝜏,𝑉𝑡 + 𝐽𝑉 ) − L(𝜙; 𝜏,𝑉𝑡 )), (B.1)

with L(𝜙; 0, 𝑉𝑇 ) = 𝑒𝜙𝑉𝑇 . Define 𝑋𝑡 = (ln 𝑆𝑡 , 𝑉𝑡 )′, 𝑊𝑡 = (𝑊𝑆
𝑡 ,𝑊

𝑉
𝑡 )′ and 𝜆(𝑋𝑡 ) = (𝜆𝐶𝑡 , 𝜆𝑆𝑡 , 𝜆𝑉𝑡 )′ and the

Markov process 𝑋𝑡 equivalent to

d𝑋𝑡 = (M + K𝑋𝑡 ) d𝑡 + Σ(𝑋𝑡 ) d𝑊𝑡 + 𝐽 d𝑁𝐶
𝑡 + 𝐽 d𝑁𝑡 ,
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where

Σ(𝑋𝑡 ) =
[√

𝑉𝑡 0
0 𝜎𝑉

√
𝑉𝑡

]
; 𝐽 =

[
𝐽𝑆 0
0 𝐽𝑉

]
; 𝐽 =

[
𝐽𝑆 0
0 𝐽𝑉

]
;

d𝑁𝐶
𝑡 = (d𝑁𝐶

𝑡 , d𝑁𝐶
𝑡 )′; d𝑁𝑡 = (d𝑁𝑆

𝑡 , d𝑁𝑉
𝑡 )′.

The affine dependence of M, K, Σ(𝑋𝑡 )Σ(𝑋𝑡 )′ and 𝜆(𝑋𝑡 ) are given by

M = (𝑟 − 𝑞 − 𝜁𝜆𝐶𝑡 − 𝜁𝜆𝑆𝑡 , 𝜅𝜃)′,

K =

[
0 − 1

2
0 −𝜅

]
,

Σ(𝑋𝑡 )Σ(𝑋𝑡 )′ =
[
𝑉𝑡 0
0 𝜎2

𝑉𝑉𝑡

]
= 𝐻𝑉𝑡 ,

𝜆(𝑋𝑡 ) = 𝑙0 + 𝑙1𝑋𝑡 ,

where

𝐻 =

[
1 0
0 𝜎2

𝑉

]
; 𝑙0 = (𝜆1,𝐶 , 𝜆1,𝑆 , 𝜆1,𝑉 )′; 𝑙1 =

⎡⎢⎢⎢⎢⎣
0 𝜆2,𝐶

0 𝜆2,𝑆

0 𝜆2,𝑉

⎤⎥⎥⎥⎥⎦ .
Thanks to the affine structure of the SVCĲ-I model, the characteristic function L(𝜙; 𝜏,𝑉𝑡 ) admits an
analytic solution of the following exponentially affine form Duffie et al. [13].

L(𝜙; 𝜏,𝑉𝑡 ) = 𝑒ℎ1 (𝜙,𝜏)𝑉𝑡+ℎ2 (𝜙,𝜏) . (B.2)

Substituting Eq. (B.2) into PDE (B.1), we have

0 = −
(
𝑉𝑡

𝜕

𝜕𝜏
ℎ1 (𝜙, 𝜏) + 𝜕

𝜕𝜏
ℎ2(𝜙, 𝜏)

)
+ 𝜅(𝜃 −𝑉𝑡 )ℎ1(𝜙, 𝜏) + 1

2
𝜎2
𝑉𝑉𝑡ℎ

2
1(𝜙, 𝜏)

+ (𝜆1,𝐶 + 𝜆2,𝐶𝑉𝑡 )EQ𝑡 (𝑒𝐽
𝑉 ℎ1 (𝜙,𝜏) − 1) + (𝜆1,𝑉 + 𝜆2,𝑉𝑉𝑡 )EQ𝑡 (𝑒𝐽

𝑉 ℎ1 (𝜙,𝜏) − 1). (B.3)

Since PDE (B.3) holds for all arbitrary 𝑡 and 𝑉𝑡 , this reduces the problem to solving two much simpler
ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝜏
ℎ1 (𝜙, 𝜏) = −𝜅ℎ1 (𝜙, 𝜏) + 1

2
𝜎2
𝑉 ℎ

2
1 (𝜙, 𝑡) + 𝜆2,𝐶

(
1

1 − 𝜇̄𝑉 ℎ1(𝜙, 𝜏)
− 1

)
+ 𝜆2,𝑉

(
1

1 − 𝜇𝑉 ℎ1(𝜙, 𝜏)
− 1

)
,

𝜕

𝜕𝜏
ℎ2 (𝜙, 𝜏) = 𝜅𝜃ℎ1 (𝜙, 𝜏) + 𝜆1,𝐶

(
1

1 − 𝜇̄𝑉 ℎ1(𝜙, 𝜏)
− 1

)
+ 𝜆1,𝑉

(
1

1 − 𝜇𝑉 ℎ1 (𝜙, 𝜏)
− 1

)
,

with the initial conditions

ℎ1 (𝜙, 0) = 𝜙, ℎ2(𝜙, 0) = 0.

The ODEs cannot be solved in closed form, but they can be solved numerically. �

Proof of Corollary 1. The conditional characteristic function of 𝑉𝑇 is defined as L(𝜙; 𝜏,𝑉) �
E
Q
𝑡 (𝑒𝜙𝑉𝑇 ). According to the Feynman-Kac theorem, L(𝜙; 𝜏,𝑉𝑡 ) can be solved by the following partial
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integro-differential equation (PIDE)

0 = −𝜕L
𝜕𝜏

+ 𝜅(𝜃 −𝑉𝑡 ) 𝜕L
𝜕𝑉𝑡

+ 1
2
𝜎2
𝑉𝑉𝑡

𝜕2L
𝜕𝑉2

𝑡

+ 𝜆𝐶EQ𝑡 (L(𝜙, 𝜏,𝑉𝑡 + 𝐽𝑉 ) − L(𝜙, 𝜏,𝑉𝑡 ))

+ 𝜆𝑉 EQ𝑡 (L(𝜙, 𝜏,𝑉𝑡 + 𝐽𝑉 ) − L(𝜙, 𝜏,𝑉𝑡 )), (B.4)

with L(𝜙; 0, 𝑉𝑡 ) = 𝑒𝜙𝑉𝑡 . According to Duffie et al. [13], the solution to this PIDE is closed form and
can be written in exponentially affine form

L(𝜙; 𝜏,𝑉𝑡 ) = 𝑒ℎ1 (𝜙,𝜏)𝑉𝑡+ℎ2 (𝜙,𝜏)+ℎ3 (𝜙,𝜏) . (B.5)

Similarly, we substituted Eq. (B.5) into PDE (B.4), and by the arbitrariness of 𝑡 and𝑉𝑡 , using the property
of the affine structure, we derive a system of ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝜏
ℎ1(𝜙, 𝜏) = −𝜅ℎ1 (𝜙, 𝜏) + 1

2
𝜎2
𝑉 ℎ

2
1(𝜙, 𝑡),

𝜕

𝜕𝜏
ℎ2(𝜙, 𝜏) = 𝜅𝜃ℎ1 (𝜙, 𝜏),

𝜕

𝜕𝜏
ℎ3(𝜙, 𝜏) = 𝜆𝐶

(
1

1 − 𝜇̄𝑉 ℎ1(𝜙, 𝜏)
− 1

)
+ 𝜆𝑉

(
1

1 − 𝜇𝑉 ℎ1(𝜙, 𝜏)
− 1

)
,

with the initial conditions

ℎ1 (𝜙, 0) = 𝜙, ℎ2(𝜙, 0) = 0, ℎ3(𝜙, 0) = 0.

The solutions to ℎ1(𝜙, 𝜏), ℎ2 (𝜙, 𝜏) and ℎ3(𝜙, 𝜏) are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ1(𝜙, 𝜏) = 2𝜅𝜙
𝜎2
𝑉 𝜙 + (2𝜅 − 𝜎2

𝑉 𝜙)𝑒𝜅𝜏
,

ℎ2(𝜙, 𝜏) = −2𝜅𝜃
𝜎2
𝑉

ln

(
1 + 𝜎2

𝑉 𝜙

2𝜅
(𝑒−𝜅𝜏 − 1)

)
,

ℎ3(𝜙, 𝜏) = 2𝜆𝐶 𝜇̄𝑉
2𝜅𝜇̄𝑉 − 𝜎2

𝑉

ln

(
1 + (𝜎2

𝑉 − 2𝜅𝜇̄𝑉 )𝜙
2𝜅(1 − 𝜇̄𝑉 𝜙)

(𝑒−𝜅𝜏 − 1)
)

+ 2𝜆𝑉 𝜇𝑉

2𝜅𝜇𝑉 − 𝜎2
𝑉

ln

(
1 + (𝜎2

𝑉 − 2𝜅𝜇𝑉 )𝜙
2𝜅(1 − 𝜇𝑉 𝜙)

(𝑒−𝜅𝜏 − 1)
)
.

To ensure that the functions ℎ2 (𝜙, 𝜏) and ℎ3 (𝜙, 𝜏) are well defined and continuous functions of 𝜙, we
constrain the real part of the expressions inside the logarithm to always be positive:

𝜎2
𝑉 𝜙

2𝜅
(𝑒−𝜅𝜏 − 1) > −1,

(𝜎2
𝑉 − 2𝜅𝜇̄𝑉 )𝜙

2𝜅(1 − 𝜇̄𝑉 𝜙)
(𝑒−𝜅𝜏 − 1) > −1, and

(𝜎2
𝑉 − 2𝜅𝜇𝑉 )𝜙

2𝜅(1 − 𝜇𝑉 𝜙)
(𝑒−𝜅𝜏 − 1) > −1.

By simplifying the above equations, we can obtain that

𝜙𝑅 < min

(
2𝜅

𝜎2
𝑉 (1 − 𝑒−𝜅𝜏) ,

1
𝜇𝑉

,
2𝜅

𝜎2
𝑉 (1 − 𝑒−𝜅𝜏) + 2𝜇𝑉 𝜅𝑒−𝜅𝜏

,
1
𝜇̄𝑉

,
2𝜅

𝜎2
𝑉 (1 − 𝑒−𝜅𝜏) + 2𝜇̄𝑉 𝜅𝑒−𝜅𝜏

)
.

Therefore, 𝜙𝑅 can be set as a reasonable value under the above conditions. In this paper, we set
𝜙𝑅 = 1. �
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Proof of Proposition 2. The conditional characteristic function of (𝑉𝑇 , 𝜆𝐶𝑇 , 𝜆𝑆𝑇 , 𝜆𝑉𝑇 ) is defined as
L(𝝓; 𝜏,𝑉𝑡 ,
𝜆𝐶𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ) � EQ𝑡 (𝑒𝜙1𝑉𝑇 +𝜙2𝜆

𝐶
𝑇 +𝜙3𝜆

𝑆
𝑇 +𝜙4𝜆

𝑉
𝑇 ). According to the Feynman-Kac theorem, L(𝝓; 𝜏,𝑉𝑡 ,

𝜆𝐶𝑡 , 𝜆
𝑆
𝑡 , 𝜆

𝑉
𝑡 ) can be solved by the following PIDE

0 = −𝜕L
𝜕𝜏

+ 𝜅(𝜃 −𝑉𝑡 ) 𝜕L
𝜕𝑉𝑡

+ 1
2
𝜎2
𝑉𝑉𝑡

𝜕2L
𝜕𝑉2

𝑡

+ 𝛼𝐶 (𝜆𝐶∞ − 𝜆𝐶𝑡 )
𝜕L
𝜕𝜆𝐶𝑡

+ 𝛼𝑆 (𝜆𝑆∞ − 𝜆𝑆𝑡 )
𝜕L
𝜕𝜆𝑆𝑡

+ 𝛼𝑉 (𝜆𝑉∞ − 𝜆𝑉𝑡 )
𝜕L
𝜕𝜆𝑉𝑡

+ 𝜆𝐶𝑡 EQ𝑡 (L(𝝓; 𝜏,𝑉𝑡 + 𝐽𝑉 , 𝜆𝐶𝑡 + 𝐽𝐶𝜆 , 𝜆
𝑆
𝑡 , 𝜆

𝑉
𝑡 ) − L(𝝓; 𝜏,𝑉𝑡 , 𝜆

𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ))

+ 𝜆𝑆𝑡 EQ𝑡 (L(𝝓; 𝜏,𝑉𝑡 , 𝜆
𝐶
𝑡 , 𝜆

𝑆
𝑡 + 𝐽𝑆𝜆 , 𝜆

𝑉
𝑡 ) − L(𝝓; 𝜏,𝑉𝑡 , 𝜆

𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ))

+ 𝜆𝑉𝑡 EQ𝑡 (L(𝝓; 𝜏,𝑉𝑡 + 𝐽𝑉 , 𝜆𝐶𝑡 , 𝜆
𝑆
𝑡 , 𝜆

𝑉
𝑡 + 𝐽𝑉𝜆 ) − L(𝝓; 𝜏,𝑉𝑡 , 𝜆

𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 )), (B.6)

with L(𝝓; 0, 𝑉𝑡 , 𝜆
𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ) = 𝑒𝜙1𝑉𝑡+𝜙2𝜆

𝐶
𝑡 +𝜙3𝜆

𝑆
𝑡 +𝜙4𝜆

𝑉
𝑡 . Define 𝑋𝑡 = (ln 𝑆𝑡 , 𝑉𝑡 , 𝜆

𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 )′, 𝑊𝑡 =

(𝑊𝑆
𝑡 ,𝑊

𝑉
𝑡 , 0, 0, 0)′ and 𝜆(𝑋𝑡 ) = (𝜆𝐶𝑡 , 𝜆𝑆𝑡 , 𝜆𝑉𝑡 )′, and the Markov process 𝑋𝑡 is equivalent to

d𝑋𝑡 = (M + K𝑋𝑡 ) d𝑡 + Σ(𝑋𝑡 ) d𝑊𝑡 + 𝐽 d𝑁𝐶
𝑡 + 𝐽 d𝑁𝑡 ,

where

Σ(𝑋𝑡 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
𝑉𝑡 0 0 0 0
0 𝜎𝑉

√
𝑉𝑡 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐽𝑆 0 0 0 0
0 𝐽𝑉 0 0 0
0 0 𝐽𝐶𝜆 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; 𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐽𝑆 0 0 0 0
0 𝐽𝑉 0 0 0
0 0 0 0 0
0 0 0 𝐽𝑆𝜆 0
0 0 0 0 𝐽𝑉𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

d𝑁𝐶
𝑡 = (d𝑁𝐶

𝑡 , d𝑁𝐶
𝑡 , d𝑁𝐶

𝑡 , 0, 0)′; d𝑁𝑡 = (d𝑁𝑆
𝑡 , d𝑁𝑉

𝑡 , 0, d𝑁𝑆
𝑡 , d𝑁𝑉

𝑡 )′.

The affine dependence of M, K, Σ(𝑋𝑡 )Σ(𝑋𝑡 )′ and 𝜆(𝑋𝑡 ) is given by

M = (𝑟 − 𝑞, 𝜅𝜃, 𝛼𝐶𝜆𝐶∞, 𝛼
𝑆𝜆𝑆∞, 𝛼

𝑉 𝜆𝑉∞)′,

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
2 −𝜁 −𝜁 0

0 −𝜅 0 0 0
0 0 −𝛼𝐶 0 0
0 0 0 −𝛼𝑆 0
0 0 0 0 −𝛼𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ(𝑋𝑡 )Σ(𝑋𝑡 )′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑉𝑡 0 0 0 0
0 𝜎2

𝑉𝑉𝑡 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐻𝑉𝑡 , where 𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 𝜎2

𝑉 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Thanks to the affine structure in the SVCĲ-H model, the solution to this PIDE can be written in the
following form

L(𝝓; 𝜏,𝑉𝑡 , 𝜆
𝐶
𝑡 , 𝜆

𝑆
𝑡 , 𝜆

𝑉
𝑡 ) = 𝑒ℎ1 (𝝓;𝜏)𝑉𝑡+ℎ2 (𝝓;𝜏)𝜆𝐶

𝑡 +ℎ3 (𝝓;𝜏)𝜆𝑆
𝑡 +ℎ4 (𝝓;𝜏)𝜆𝑉

𝑡 +ℎ5 (𝝓;𝜏) . (B.7)

Substituting Eq. (B.7) into PDE (B.6), we have

0 = −
(
𝑉𝑡

𝜕

𝜕𝜏
ℎ1(𝝓, 𝜏) + 𝜆𝐶𝑡

𝜕

𝜕𝜏
ℎ2 (𝝓, 𝜏) + 𝜆𝑆𝑡

𝜕

𝜕𝜏
ℎ3(𝝓, 𝜏) + 𝜆𝑉𝑡

𝜕

𝜕𝜏
ℎ4(𝝓, 𝜏) + 𝜕

𝜕𝜏
ℎ5(𝝓, 𝜏)

)
+ 𝜅(𝜃 −𝑉𝑡 )ℎ1(𝝓, 𝜏) + 1

2
𝜎2
𝑉𝑉𝑡ℎ

2
1 (𝝓, 𝜏) + 𝛼𝐶 (𝜆𝐶∞ − 𝜆𝐶𝑡 )ℎ2(𝝓, 𝜏) + 𝛼𝑆 (𝜆𝑆∞ − 𝜆𝑆𝑡 )ℎ3(𝝓, 𝜏)

+ 𝛼𝑉 (𝜆𝑉∞ − 𝜆𝑉𝑡 )ℎ4(𝝓, 𝜏) + 𝜆𝐶𝑡 EQ𝑡 (𝑒𝐽
𝑉 ℎ1 (𝝓,𝜏)+𝐽𝐶

𝜆 ℎ2 (𝝓,𝜏) − 1) + 𝜆𝑆𝑡 EQ𝑡 (𝑒𝐽
𝑆
𝜆 ℎ3 (𝝓,𝜏) − 1)

+ 𝜆𝑉𝑡 EQ𝑡 (𝑒𝐽
𝑉 ℎ1 (𝝓,𝜏)+𝐽𝑉

𝜆 ℎ4 (𝝓,𝜏) − 1). (B.8)

Since PDE (B.8) holds for all arbitrary 𝑡, 𝑉𝑡 , 𝜆𝐶𝑡 , 𝜆𝑆𝑡 and 𝜆𝑉𝑡 , this reduces the problem to solving four
much simpler ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝜏
ℎ1 (𝝓, 𝜏) = −𝜅ℎ1 (𝝓, 𝜏) + 1

2
𝜎2
𝑉 ℎ

2
1(𝝓, 𝑡),

𝜕

𝜕𝜏
ℎ2 (𝝓, 𝜏) = −𝛼𝐶ℎ2(𝝓, 𝜏) + 1

1 − 𝜇̄𝑉 ℎ1(𝝓, 𝜏)
× 1

1 − 𝜇𝐶𝜆 ℎ2(𝝓, 𝜏)
− 1,

𝜕

𝜕𝜏
ℎ3 (𝝓, 𝜏) = −𝛼𝑆ℎ3(𝝓, 𝜏) + 1

1 − 𝜇𝑆𝜆ℎ3(𝝓, 𝜏)
− 1,

𝜕

𝜕𝜏
ℎ4 (𝝓, 𝜏) = −𝛼𝑉 ℎ4(𝝓, 𝜏) + 1

1 − 𝜇𝑉 ℎ1(𝝓, 𝜏)
× 1

1 − 𝜇𝑉𝜆 ℎ4 (𝝓, 𝜏)
− 1,

𝜕

𝜕𝜏
ℎ5 (𝝓, 𝜏) = 𝜅𝜃ℎ1 (𝝓, 𝜏) + 𝛼𝐶𝜆𝐶∞ℎ2(𝝓, 𝜏) + 𝛼𝑆𝜆𝑆∞ℎ3 (𝝓, 𝜏) + 𝛼𝑉 𝜆𝑉∞ℎ4(𝝓, 𝜏),

with the initial conditions

ℎ1 (𝝓, 0) = 𝜙1, ℎ2(𝝓, 0) = 𝜙2, ℎ3(𝝓, 0) = 𝜙3, ℎ4 (𝝓, 0) = 𝜙4, ℎ5(𝝓, 0) = 0.

The solutions to the Riccati equation of ℎ1(𝝓, 𝜏) is

ℎ1 (𝝓, 𝜏) = 2𝜅𝜙1

𝜎2
𝑉 𝜙1 + (2𝜅 − 𝜎2

𝑉 𝜙1)𝑒𝜅𝜏
.

The ODEs cannot be solved in closed form except for ℎ1(𝝓, 𝜏), but they can be solved numerically. �

Proof of Lemma 1. For the SVCĲ-H model, given 0 < 𝑡 < 𝑠, by applying Itô’s Lemma to 𝑒𝜅𝑡𝜆𝑖𝑡
(𝑖 ∈ {𝐶, 𝑆, 𝑉}) we obtain

𝜆𝑖𝑠 = 𝜆𝑖𝑡𝑒
−𝛼𝑖 (𝑠−𝑡) + 𝜆𝑖∞(1 − 𝑒−𝛼

𝑖 (𝑠−𝑡) ) +
∫ 𝑠

𝑡

𝑒−𝛼
𝑖 (𝑠−𝑢)𝐽𝑖𝜆 d𝑁 𝑖

𝑢 ,

and the conditional expectation of 𝜆𝑖𝑠 on F under the risk-neutral measure is

E𝑡 (𝜆𝑖𝑠) = 𝜆𝑖𝑡𝑒
−(𝛼𝑖−𝜇𝑖

𝜆) (𝑠−𝑡) + 𝜆̃𝑖 [1 − 𝑒−(𝛼
𝑖−𝜇𝑖

𝜆) (𝑠−𝑡) ], (B.9)

where 𝜆̃𝑖 = 𝜆𝑖∞𝛼
𝑖/𝛽𝑖 and 𝛽𝑖 = 𝛼𝑖 − 𝜇𝑖𝜆 > 0. Then, Eq. (B.9), an application of Itô’s Lemma under the

risk-neutral measure to obtain d(𝑒𝜅𝑡𝑉𝑡 ) and then integrating, and an application of the law of iterated
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expectations together imply

E𝑡 (𝑉𝑠) = 𝑉𝑡𝑒
−𝜅 (𝑠−𝑡) + 𝜃 (1 − 𝑒−𝜅 (𝑠−𝑡) )

+ 𝜇̄𝑉

[
𝜆𝐶𝑡 − 𝜆̃𝐶

𝜅 − 𝛽𝐶
(𝑒−𝛽𝐶 (𝑠−𝑡) − 𝑒−𝜅 (𝑠−𝑡) ) + 𝜆̃𝐶

𝜅
(1 − 𝑒−𝜅 (𝑠−𝑡) )

]
+ 𝜇𝑉

[
𝜆𝑉𝑡 − 𝜆̃𝑉

𝜅 − 𝛽𝑉
(𝑒−𝛽𝑉 (𝑠−𝑡) − 𝑒−𝜅 (𝑠−𝑡) ) + 𝜆̃𝑉

𝜅
(1 − 𝑒−𝜅 (𝑠−𝑡) )

]
.

Notably, E𝑡 (𝜆𝑖𝑠) and E𝑡 (𝑉𝑠) are both increasing in 𝑠. Finally, for 𝜅 ≠ 𝛼,

1
𝜏
E𝑡

(∫ 𝑡+𝜏̃

𝑡

𝑉𝑠 d𝑠
)
= 𝜑(𝜏)𝑉𝑡 + 𝜃 (1 − 𝜑(𝜏)) + 𝜇̄𝑉

[
𝜆𝐶𝑡 − 𝜆̃𝐶

𝜅 − 𝛽𝐶
(𝜑(𝛽𝐶 ) − 𝜑(𝜏)) + 𝜆̃𝐶

𝜅
(1 − 𝜑(𝜏))

]
+ 𝜇𝑉

[
𝜆𝑉𝑡 − 𝜆̃𝑉

𝜅 − 𝛽𝑉
(𝜑(𝛽𝑉 ) − 𝜑(𝜏)) + 𝜆̃𝑉

𝜅
(1 − 𝜑(𝜏))

]
,

where 𝜑(𝑥) = (1 − 𝑒−𝑥𝜏̃)/𝑥𝜏. The definition of the CBOE VIX formula is

VIX2
𝑡 (𝜏) =

2
𝜏
E𝑡

[∫ 𝑡+𝜏̃

𝑡

(
d𝑆𝑢
𝑆𝑢

− d log 𝑆𝑢
)]

=
1
𝜏
E𝑡

(∫ 𝑡+𝜏̃

𝑡

𝑉𝑢 d𝑢
)
+ 2
𝜏
E

(∫ 𝑡+𝜏̃

𝑡

(𝑒𝐽𝑆 − 𝐽𝑆 − 1) d𝑁𝐶
𝑢

)
+ 2
𝜏
E

(∫ 𝑡+𝜏̃

𝑡

(𝑒𝐽𝑆 − 𝐽𝑆 − 1) d𝑁𝑆
𝑢

)
= 𝑉𝑡𝜑(𝜏) + 𝜆𝐶𝑡

[
𝜇̄𝑉 (𝜑(𝛽𝐶 ) − 𝑎)

𝜅 − 𝛽𝐶
+ 2𝜑(𝛽𝐶 )(𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 )

]
+ 𝜆𝑆𝑡 [2𝜑(𝛽𝑆)(𝜁 − 𝜇𝑆)]

+ 𝜆𝑉𝑡

[
𝜇𝑉 (𝜑(𝛽𝑉 ) − 𝑎)

𝜅 − 𝛽𝑉

]
+

(
𝜃 + 𝜆̃𝐶 𝜇̄𝑉 + 𝜆̃𝑉 𝜇𝑉

𝜅

)
(1 − 𝑎)

+ 2𝜆̃𝐶 (𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 )(1 − 𝜑(𝛽𝐶)) + 2𝜆̃𝑆 (𝜁 − 𝜇𝑆)(1 − 𝜑(𝛽𝑆))

− 𝜇̄𝑉 𝜆̃
𝐶

𝜅 − 𝛽𝐶
(𝜑(𝛽𝐶 ) − 𝑎) − 𝜇𝑉 𝜆̃

𝑉

𝜅 − 𝛽𝑉
(𝜑(𝛽𝑉 ) − 𝑎). (B.10)

For the SVCĲ-I model, we obtain

E𝑡 (𝑉𝑠) = 𝑉𝑡𝑒
−𝐴𝜏̃ + 𝐵

𝐴
− 𝐵

𝐴
𝑒−𝐴𝜏̃ ,

where 𝐴 = 𝜅 − 𝜆2,𝑉 𝜇𝑉 − 𝜆2,𝐶 𝜇̄𝑉 and 𝐵 = 𝜃𝜅 + 𝜆1,𝑉 𝜇𝑉 + 𝜆1,𝐶 𝜇̄𝑉 , and then

VIX2
𝑡 (𝜏) =

1
𝜏
E𝑡

(∫ 𝑡+𝜏̃

𝑡

𝑉𝑢d𝑢
)
+ 2
𝜏
E

(∫ 𝑡+𝜏̃

𝑡

(𝑒𝐽𝑆 − 𝐽𝑆 − 1) d𝑁𝐶
𝑢

)
+ 2
𝜏
E

(∫ 𝑡+𝜏̃

𝑡

(𝑒𝐽𝑆 − 𝐽𝑆 − 1) d𝑁𝑆
𝑢

)
= 𝑉𝑡𝜂[1 + 2𝜆2,𝐶 (𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 ) + 2𝜆2,𝑆 (𝜁 − 𝜇𝑆)] + 𝐵

𝐴
(1 − 𝜂)

+ 2(𝜁 − 𝜇̄𝑆 − 𝜌𝐽 𝜇̄𝑉 )
[
𝜆1,𝐶 + 𝜆2,𝐶 𝐵

𝐴
(1 − 𝜂)

]
+ 2(𝜁 − 𝜇𝑆)

[
𝜆1,𝑆 + 𝜆2,𝑆 𝐵

𝐴
(1 − 𝜂)

]
.

�
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Proof of Theorem 1. Using the transform (4), the pricing problem of VIX futures can be computed as
follows:

𝐹 (𝑇) = E[VIX𝑇 ] = 1
2
√
𝜋

∫ ∞

0

1 − E(𝑒−𝑠VIX2
𝑇 )

𝑠3/2 d𝑠, (B.11)

where 𝑠 ∈ R+. Fortunately, we know the relationship between VIX square and state variables (see
Lemma 1), so the above formula can be calculated. Specifically, for SVCĲ-I model, the pricing formula
can be transformed into

𝐹 (𝑇) = 1
2
√
𝜋

∫ ∞

0

1 − E(𝑒−𝑠 (𝑎𝑉𝑇 +𝑏) )
𝑠3/2 d𝑠. (B.12)

For the SVCĲ-H model, the pricing formula can be transformed into

𝐹 (𝑇) = 1
2
√
𝜋

∫ ∞

0

1 − E(𝑒−𝑠 (𝑎𝑉𝑇 +𝑏𝜆𝐶
𝑇 +𝑐𝜆𝑆

𝑇 +𝑑𝜆𝑉
𝑇 +𝑒) )

𝑠3/2 d𝑠. (B.13)

�

Proof of Theorem 2. Using the transform (5), the pricing problem of VIX options can be computed as
follows:

𝐶 (𝑇, 𝐾) = E[(VIX𝑇 − 𝐾)+] = 𝑒−𝑟𝑇

2
√
𝜋

∫ ∞

0
Re

[
1 − erf(𝐾√𝜙)

𝜙3/2 E(𝑒𝜙VIX2
𝑇 )

]
d𝜙𝐼 , (B.14)

where 𝜙 = 𝜙𝑅 + 𝑖𝜙𝐼 ∈ 𝑍 , 𝜙𝐼 ∈ R and 𝜙𝐼 ∈ R+. Fortunately, we know the relationship between VIX
square and state variables (see Lemma 1), so the above formula can be calculated. Specifically, for
SVCĲ-I model, the pricing formula can be transformed into

𝐶 (𝑇, 𝐾) = 𝑒−𝑟𝑇

2
√
𝜋

∫ ∞

0
Re

[
1 − erf(𝐾√𝜙)

𝜙3/2 E(𝑒𝜙 (𝑎𝑉𝑇 +𝑏) )
]

d𝜙𝐼 . (B.15)

For the SVCĲ-H model, the pricing formula can be transformed into

𝐶 (𝑇, 𝐾) = 𝑒−𝑟𝑇

2
√
𝜋

∫ ∞

0
Re

[
1 − erf(𝐾√𝜙)

𝜙3/2 E(𝑒𝜙 (𝑎𝑉𝑇 +𝑏𝜆𝐶
𝑇 +𝑐𝜆𝑆

𝑇 +𝑑𝜆𝑉
𝑇 +𝑒) )

]
d𝜙𝐼 . (B.16)

�
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