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Abstract
In today’s insurance market, numerous cyber insurance products provide bundled coverage for losses resulting
from different cyber events, including data breaches and ransomware attacks. Every category of incident has its
own specific coverage limit and deductible. Although this gives prospective cyber insurance buyers more flexibility
in customizing the coverage and better manages the risk exposures of sellers, it complicates the decision-making
process in determining the optimal amount of risks to retain and transfer for both parties. This article aims to build
an economic foundation for these incident-specific cyber insurance products with a focus on how incident-specific
indemnities should be designed for achieving Pareto optimality for both the insurance seller and the buyer. Real
data on cyber incidents are used to illustrate the feasibility of this approach. Several implementation improvement
methods for practicality are also discussed.

1. Introduction
In May 2021, Colonial Pipeline, one of the largest oil pipeline systems in the United States (US), was hit
by a ransomware attack and had a shutdown for five days; see Office of Cybersecurity, Energy Security,
and Emergency Response (2021). In November 2020, Amazon Web Services, a major cloud service
provider that many businesses rely on had a severe outage triggered by an operating system configuration;
see Greene (2020). In 2017, Equifax, one of the three largest US credit reporting agencies, experienced a
major data breach that exposed the private records of nearly 150 million American citizens; see Equifax
(2017). In 2016, a class action was brought against Meta Platforms (formerly known as Facebook) for
failing to comply with the Biometric Information Privacy Act in Illinois, and the case was settled for $650
million in 2021; see Holland (2021). These examples illustrate the extraordinary exposure of modern
businesses to cyber risk and their possible devastating consequences.

The events listed above represent a wide range of incidents that are considered cyber-related, and
they are common in this digital world where business operations rely heavily on data and cyber systems.
Cyber insurance products are designed to mitigate the impact of such incidents, offering businesses a
means to shield themselves from losses. The insurability of cyber losses is examined in Dacorogna et al.
(2023), in which their loss expectations are shown to be finite. These cyber insurance products typically
cover losses resulting from various perils. As summarized in Romanosky et al. (2019), Marotta et al.
(2017), Woods et al. (2017), some cyber insurance policies indemnify losses caused by ransomware,
and some policies cover liabilities resulting from data breaches (DB). Indeed, it is common for a single
policy to cover losses resulting from various types of cyber incidents.
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1.1. Existing form of cyber insurance
To ensure risk exposures are manageable, many cyber insurance policies specify sublimits and separate
deductibles for individual coverages. For example, AIG (2019) allows for setting limits and deductibles
individually for events such as cyber extortion and computer crime. Romanosky et al. (2019) surveyed
67 policies and found many of them use sublimits. In this article, these sublimits and deductibles shall be
referred to as incident-specific limits, or simply limits, and incident-specific deductibles or deductibles.
Policies that cover multiple cyber perils with incident-specific limits and deductibles are, therefore,
called incident-specific cyber insurance policies. The scope of this study, though, does not include the
cases in which there is a limit or deductible at the aggregate policy level, which shall be deferred to
future research.

Provided that cyber risk is a collective term referring to the risks of multiple types of cyber inci-
dents, and businesses typically demand a risk management strategy that is holistic and, at the same
time, can address the subtle differences among various incident types, purchasing an incident-specific
cyber insurance policy is then a natural choice for businesses to meet such a need.

Although incident-specific insurance offers advantages to both buyers and sellers, these policy struc-
tures make the process of selecting cyber insurance coverage more complex for potential buyers. Given
that most companies already have difficulties in determining the appropriate amount of coverage (see
Johansmeyer 2021), this problem will only be more of an obstacle that hinders cyber insurance purchases
if companies have to impromptu configure the amounts of coverage for individual incident types.

1.2. Related work
Literature on cyber risk modeling often recognizes the distinct risks associated with different types
of cyber incidents and rarely considers cyber risk as a singular entity. In Zeller and Scherer (2022),
the researchers conducted a survey of cyber risk assessment and modeling techniques and introduced
a new marked point process model. This model is based on the understanding that different types of
incidents, such as Data Breach, Business Interruption, and Fraud/General, require distinct approaches.
In Eling and Wirfs (2019), the authors argued that cyber risks are subcategories of operational risk and
used cyber-related data from a database of operational losses to model the loss of four types of cyber
incidents, including the ones caused by actions of people, system failure, internal process failure, and
external events. In Amin (2017), the author considered the same four categories of cyber risks and used
Bayesian networks to model the relationship between risk categories and risk factors. In Ghadge et al.
(2019), the authors proposed a different set of incident types for supply chain cyber risk management,
including physical threats, breakdown, indirect attacks, direct attacks, and insider threats.

Consistent with prevailing cyber insurance practices and the approach of distinguishing between var-
ious types of incidents in risk modeling literature, research on cyber insurance also discusses policies
on an incident-specific basis. Braun et al. (2023) discusses the transfer of cyber risk by insurers through
insurance-linked securities. The feasibility of risk transfer depends on the model risk associated with
the cyber peril, and several perils, such as DB and ransomware attacks, are identified as low model risk
perils. Awiszus et al. (2023) offer a summary of the literature on cyber insurance pricing based on the
premise that cyber risks fall into distinct categories and should be modeled accordingly. From an insur-
ance perspective, Kesan and Zhang (2020a) suggest a cyber peril categorization method based on the
magnitude and type of loss triggered by cyber events. Wang (2019) proposes the concept of innovative
cyber insurance, which has itemized insurance coverages, that is, separate coverages for different cyber
losses, as a key feature. These studies emphasize that cyber risk, while commonly viewed as a collective
of several related risks, actually includes numerous subcategories that should be addressed distinctly
within insurance practices.

Many studies have examined the differing statistical properties of various cyber perils, which vali-
date the incident-specific design of cyber insurance. However, as previously mentioned, the flexibility
of such policies makes it challenging for both buyers and sellers to determine the appropriate indemnity
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parameters, including incident-specific limits and deductibles. Yet, few have explored how to struc-
ture risk sharing between buyers and sellers of incident-specific cyber insurance to accommodate the
difference in covered cyber perils.

Moreover, although the differences among various types of cyber risks are widely recognized, the
existing studies on cyber insurance pricing rarely touch on the indemnity aspect of policy design. In stud-
ies regarding cyber insurance pricing, full coverage or partial coverage with predetermined deductibles
or limits is typically assumed.

Antonio et al. (2021) propose a Markov-based dynamic model that incorporates the clustering struc-
ture of network nodes to assess cyber risk. The premium is determined based on the standard deviation
principle under the context of a full transfer of risk. Eling and Jung (2018) estimate the statistical prop-
erties of various types of cyber risks based on real data and models the dependence among them using
copula. With the estimated statistics and copulas, the authors further calculated the insurance premi-
ums under the assumption that there is no deductible or limit. A similar effort is made in Eling and
Loperfido (2017). With the estimated statistical properties of various types of DB, the authors com-
puted the amounts of premiums to be charged for full coverage based on several premium principles.
Xu and Hua (2019) develop epidemic models for cybersecurity risk assessment for estimating infection
probabilities and cost functions. Insurance premiums for full coverage are derived based on both the
standard deviation principle and the equivalent utility principle.

Some studies incorporate considerations for partial coverage. Awiszus et al. (2023) offer an overview
of various premium principles for pricing idiosyncratic cyber risks based on the statistical properties of
claims rather than losses. However, how the choice of indemnities impacts claim sizes is out of the scope.
Fahrenwaldt et al. (2018) model the spread of cyber threats in a network using an interacting Markov
chain and computes expected losses using a mean-field approximation. For insurance pricing, both the
cases of full insurance and the existence of a policy limit are discussed, but the policy limit is treated as
given. Herath and Herath (2011) uses copulas to model the dependence between the number of nodes
and the loss, which is further used to model the loss distribution. Premiums are determined under the
assumption that deductibles and limits are given.

A review of the literature on cyber insurance suggests that most studies focus on the pricing problem
with fixed total or partial coverage. Few aim to solve for the optimal amount of coverage. One study in this
regard, as an example, is Shetty et al. (2010). The authors formulate cyber insurance as a policyholder’s
utility maximization problem, wherein the premium is calculated as the expected amount of indemnity.
Then, the indemnified amount is derived as a function of the loss when moral hazard is present. The
analysis focuses on the conditions required for a cyber insurance market to exist and the impact of cyber
insurance on cybersecurity. The heterogeneity among different types of cyber risks and the properties
of the indemnity function, however, fall outside the scope of this article.

1.3. Proposed workflow for determining coverage
Provided that incident-specific cyber insurance is a norm in practice but lacks a technical foundation that
justifies the determination of coverage amounts, it is in the interests of both insurers and companies, who
seek insurance coverage, to make the process of determining incident-specific coverage easy to under-
stand, compatible with the existing underwriting procedures, and mutually beneficial to both parties. To
this end, we shall address the aforementioned problem of determining incident-specific coverage from
a bilateral perspective.

Drawing inspiration from Asimit et al. (2021), which shows that an environment-specific indemnity
profile could be Pareto optimal for both the buyer and seller, in this paper, we propose an economically
sound workflow that determines the appropriate amount of incident-specific coverage. By doing so, it
helps the insured and the insurer reach a Pareto optimality, such that the risk taken by either of the two
parties cannot be further reduced without increasing the other’s risk. How such a problem should be
formulated and how both parties’ risks are measured are elaborated in Section 2.
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Figure 1. Workflow of designing incident-specific cyber insurance coverage.

The diagram in Figure 1 illustrates this workflow, which consists of three major parts: (I) the incident-
specific cyber insurance problem, which serves as the central pillar of this workflow and assigns optimal
amounts of risk to the policyholder and the insurer; (II) model inputs, in which severity and incident type
can be estimated and statistically learned based on historical cyber incident data and the underwriting
process, together with the policyholder’s and insurer’s preferences information for the decision-making
part; and (III) the solver for the optimal insurance problem, which can be implemented using either an
exact method or an approximated but quick method depending on whether there is a time constraint. The
solver produces specifications of the incident-specific insurance coverage, which is the final and desired
outcome of this workflow.

Regarding Part (III), a practical scenario is that the insurer needs to provide a quote and a coverage to
a prospective customer on-the-fly. We shall show that using the exact method may result in a long waiting
time, and thus the quick method, which generates the results almost instantly, can be a workaround in
that situation.

In this article, we shall detail the key components of the proposed workflow for designing incident-
specific cyber insurance coverage and then demonstrate it with numerical examples.
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1.4. Findings and contributions
First, based on the incident-specific insurance design problem, the cyber insurance contract supplied by
the proposed workflow must be reducing the aggregate cyber risk of a company, as an insurance buyer,
and the insurer after the risk transfer; the contract must also be mutually beneficial to both the insured
and the insurer since a paid premium is less than the buyer’s cyber risk reduction while is able to cover
the risk taken by the insurer. However, their aggregate cyber risk reduction is not necessarily effective, in
the sense that some insurance buyers might pay more premium than their reduction in the aggregate risk
with the insurer; this is indeed observed from the numerical examples presented in Section 5. Second,
the proposed workflow is computationally tractable in scenarios that require the specifications of an
incident-specific policy to be delivered promptly, such as quick quotes and coverage services, compared
to other conventional methods.

Therefore, the contributions of this article are as follows. First, cyber insurance policies commonly
cover multiple perils, but the determination of incident-specific coverage amounts lacks justification in
practice and literature. The proposed workflow leads to insurance specifications that are justified and
economically sound to both the insured and the insurer. Second, the proposed workflow is data-driven
and compatible with the existing underwriting procedures. All the data required by this workflow can be
obtained from public or proprietary sources by underwriters, which results in no additional work on the
frontend. Third, we numerically show that, while the designed incident-specific cyber insurance contract
must be rational to both the insured and the insurer, the risk transfer might not be always effective, in
the sense that the premium transaction can exceed the reduction in the insured’s and insurer’s aggregate
risk by the transfer. Lastly, this article overcomes the possible computational challenges arising from the
implementation of such a workflow, making it versatile and adaptable to different scenarios depending
on the amount of time permitted to produce results.

The rest of this paper is organized as follows. Section 2 formulates the problem of designing incident-
specific cyber insurance as an optimization problem. Section 3 discusses the method and the data that
we used to obtain the necessary model inputs. Given the model inputs, Section 4 describes the cross
entropy method and how it is used to solve the proposed problem as well as presents and discusses some
numerical results. Section 5 presents the use of function approximation to address some computational
challenges in the process of solving the optimization problem. We conclude in the last section with
discussions of potential applications and future works.

2. Design of incident-specific cyber insurance
2.1. Buyer and seller’s Pareto optimality
Incident-specificity in this study means that, although the insurance product is designed as a package
with coverage for a variety of cyber incident types, the coverage for each incident type has its own
indemnity function. In addition, a major characteristic of the policy design is that different types of
cyber incidents are mutually exclusive, that is, every incident precisely belongs to a unique category.
Therefore, the occurrence of one incident would only trigger one and only one corresponding incident-
specific coverage. This point will be further illustrated with real data in later sections. Then, the problem
of interest in this study is how to determine the incident-specific indemnity functions.

To formulate this problem, let (�, F) be a measurable space, let P be a probability measure on (�, F),
and let K= {1, 2, . . . , K} be the set of indices of insurable incident types with cardinality K . For a
cyber incident of any type, denote the random variable of the realized nonnegative loss as (X)I{O=k},
where X is the loss resulting from a particular cyber event and the indicator function I{O=k} takes the
value of 1 if the Occurred incident type O is k, for some k ∈K, and takes the value of 0 otherwise.
Furthermore, let Ik be the incident-specific Indemnity function, for incident type k ∈K; that is, the
insurance buyer receives Ik(X)I{O=k} after an incident. The amount of loss Retained by the buyer is
Rk(X)I{O=k} = (X)I{O=k} − Ik(X)I{O=k}, which could be nonzero in the scenario that an incident-specific
indemnity does not fully cover the corresponding loss.
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The price to acquire such an incident-specific insurance policy is paid by the buyer via a sin-
gle premium π . From the buyer’s perspective, the total loss at the end of the policy period is,
π +∑K

k=1 Rk(X)I{O=k}, where the summation is the result of the mutual exclusivity of incident types.
The risk-sharing counterparty, that is, the seller, correspondingly bears the risk of value

∑K
k=1 Ik(X)I{O=k}

in exchange for receiving the premium π , thus making the loss at the end of the policy period,
−π +∑K

k=1 Ik(X)I{O=k}. In this study, any potential return generated by the premium during the policy
period is neglected for simplicity.

To support the decision-making regarding configurations of the contract consisting of the incident-
specific indemnity functions and the policy premium, assume that the Buyer and the Seller are endowed
with risk measures ρB and ρS, respectively, and the Pareto optimality is to be achieved with respect to the
risk measures on their post-transfer risk positions, so that neither of the two parties can attain a lower
risk, evaluated by the risk measure, without the other party’s risk being increased. Then, as extended in
Asimit et al. (2021) and first proved in Theorem 3.1 of Asimit and Boonen (2018),1 if their risk measures
are translation invariant,2 their Pareto optimality is achieved by the contract which minimizes:

F(I1, I2, . . . , IK , π ; X, O) = ρB

(
K∑

k=1

Rk(X)I{O=k} + π

)
+ ρS

(
K∑

k=1

Ik(X)I{O=k} − π

)
.

With their risk measures being translation invariant and the policy premium π being a deterministic
decision variable, the objective function, with a slight abuse of notation, can be simplified to

F(I1, I2, . . . , IK; X, O) = ρB

(
K∑

k=1

Rk(X)I{O=k}

)
+ ρS

(
K∑

k=1

Ik(X)I{O=k}

)
,

The minimization problem that solves the ex-ante specified Pareto optimal incident-specific indemnity
functions is then given by

min
(I1,I2,...,IK )∈I

F(I1, I2, . . . , IK; X, O), (2.1)

where, with Id being the identity function, the solution space

I := {(I1, I2, . . . , IK) : 0 ≤ Ik ≤ Id, Ik and Rk are non-decreasing, ∀k ∈K}
adheres to two fundamental principles in insurance – (1) the buyer is compensated partially or fully for
a loss, but cannot make a profit from the compensation and (2) the ex-post moral hazard that a falsely
larger claim is made to reduce the buyer’s deductible or the seller’s indemnity payout should be avoided.

Finally, the ex-ante specified Pareto optimal policy premium is given by the rationality constraints of
the buyer and seller:

ρB

(
K∑

k=1

Rk(X)I{O=k} + π

)
≤ ρB (X) ,

ρS

(
K∑

k=1

Ik(X)I{O=k} − π

)
≤ ρS (0) = 0,

1 While Asimit and Boonen (2018) allow multiple insurers in the problem setting, the result that we utilize herein is mainly from
Asimit et al. (2021). This is because Asimit and Boonen (2018) did not study the risk- sharing problem with multiple indemnity
environment.

2 A risk measure ρ is called translation invariant if ρ (Y + c) = ρ (Y) + c, for any random variable Y and real constant c.
Translation invariance is satisfied by most of the practical risk measures.
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in which the right-hand side of the inequalities is the risk measures on both parties’ pre-transfer risk
positions. By the translational invariance of their risk measures, these can be simplified as

ρS

(
K∑

k=1

Ik(X)I{O=k}

)
≤ π ≤ ρB (X) − ρB

(
K∑

k=1

Rk(X)I{O=k}

)
. (2.2)

in which the incident-specific indemnity and retained functions are Pareto optimal solved in (2.1). Thus,
at the Pareto optimality, the policy premium is not disentangled from the respective risks taken by the
buyer and the seller. Varying the Pareto optimal policy premium choice within this interval traces the
entire Pareto frontier. Note that in this paper, the premium is derived from an economic perspective; in
the insurance practice, an insurer could charge a premium based on an actuarial price.

Therefore, in the remainder of this study, the main focus is on the design of incident-specific
indemnity functions.

2.2. Optimal indemnities with Value-at-Risk preferences
The choice of risk measures, ρB and ρS, depends on the buyer and the seller’s own risk management
appetites. A practical choice that satisfies the translational invariance is value-at-risk (VaR), which is
a standard risk measure for the capital requirement in the Basel II/III framework for the international
banking system (see Basel Committee on Banking Supervision 2011) and the Solvency II framework for
UK/European-based insurance companies (see European Union 2009). In this paper, we mainly study
the case when both the buyer and the seller adopt VaR as their risk measures, which is noted as VaR-
VaR; the cases with risk measures given by Tail Value-at-Risk (TVaR) shall also be discussed. The VaR
is defined as follows:

VaRγ (Y) = inf{y ∈R : P(Y ≤ y) ≥ γ }, (2.3)

where Y is a random variable and γ ∈ (0, 1) is the risk tolerance level.
With the VaR risk preferences, Asimit et al. (2021) showed that the indemnity functions in the sub-

solution space I \ I1 are at least suboptimal for Problem (2.1), where

I1 := {(I1, I2, . . . , IK) ∈ I : Ik(X) = (X − dk)+ or Ik(X) = X − (X − dk)+,

dk ∈ [0, ess sup(X)], for each k ∈K}, (2.4)

and ess sup(X) is the essential supremum of X under the probability measure P. This implies that, for
each incident-specific coverage, either a deductible or a policy limit, denoted by dk, should be imple-
mented. Within the solution space in (2.4), solving the infinite-dimensional Problem (2.1) is thus reduced
to solving the following finite-dimensional, but combinatorial, minimization problem:

min
d∈RK+ ,

θ∈{0,1}K

F(d, θ ; X, O) = min
d∈RK+ ,

θ∈{0,1}K

[
VaRα (LS(d, θ ; X, O)) + VaRβ (LB(d, θ ; X, O))

]
, (2.5)

where

• θ = (θ1, θ2, . . . , θK), and for each k ∈K, θk ∈ {0, 1} is the choice between a limit or a deductible
being implemented. Here, we set θk = 0 if an incident-specific limit is placed, and θk = 1 if a
deductible is implemented instead;

• d = (d1, d2, . . . , dK) are the amounts of incident-specific limits or deductibles, depending on
which of the two is imposed on the coverage for each incident type;

• α and β are choices of risk tolerance levels of the seller and the buyer, respectively;
•

LS(d, θ ; X, O) =
K∑

k=1

(
θk (X − dk)+ + (1 − θk)

(
X − (X − dk)+

) )
I{O=k}, (2.6)
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and

LB(d, θ ; X, O) =
K∑

k=1

(
(1 − θk) (X − dk)+ + θk

(
X − (X − dk)+

) )
I{O=k}, (2.7)

are the seller’s and the buyer’s loss random variables, respectively, after agreeing with an
insurance contract.

To solve Problem (2.5) for Pareto optimal θ and d, the probability distributions of LS and LB in (2.6)
and (2.7) are necessary model inputs to calculate the VaRs in the objective objective function; these are
discussed in Section 3. Though Problem (2.5) is of finite-dimensional in d, it is also of combinatorial
type such that the number of combinations in θ grows exponentially in K , making the minimization
problem not mathematically tractable; see the number of cases to consider in of cases to consider in
Proposition 3.1 of Asimit et al. (2021) which seeks explicit optimal indemnities even if K = 2. Section
4 discusses a numerical method and its algorithm to solve the combinatorial optimization problem.

2.3. Optimal indemnities with Tail Value-at-Risk preferences
It is well known that the VaR is not sub-additive,3 which explains much of its criticism. Indeed, the Basel
III and Solvency II frameworks put advocate on the TVaR, which is sub-additive. The TVaR is defined
as follows:

TVaRγ (Y) = 1

1 − γ

∫ 1

γ

VaRη(Y)dη,

where Y is a random variable and γ ∈ (0, 1) is the risk tolerance level.
When both the buyer and the seller adopt TVaR as their risk measures, which is denoted as TVaR-

TVaR, Problem (2.1) is rather trivial in that its optimal solution would assign the full risk in all indemnity
environments to either the buyer or the seller. As a matter of fact, this even holds true if their parametric
risk measures ρB and ρS (i) are translation invariant and sub-additive, (ii) are of the same type of risk
measures which only differ by their parameters, and (iii) are non-decreasing in their parameters. These
hold for the TVaR with different risk tolerance levels. To show this, suppose that the seller’s risk measure
ρS is parametrized by α and is denoted as ρα, while the buyer’s risk measure ρB is parametrized by β

and is denoted as ρβ ; assume that β ≤ α. In the case of the TVaRs, α and β are their respective risk
tolerance levels. Then indeed, for any (I1, I2, . . . , IK) ∈ I,

ρβ

(
K∑

k=1

(X)I{O=k}

)
= ρβ

(
K∑

k=1

Ik(X)I{O=k} +
K∑

k=1

Rk(X)I{O=k}

)

≤ ρβ

(
K∑

k=1

Ik(X)I{O=k}

)
+ ρβ

(
K∑

k=1

Rk(X)I{O=k}

)

≤ ρα

(
K∑

k=1

Ik(X)I{O=k}

)
+ ρβ

(
K∑

k=1

Rk(X)I{O=k}

)
,

where the first equality is by definition, the first inequality is due to the sub-additivity of ρB, and the
second inequality is by the monotonicity in the risk measure’s parameter. Therefore, in the case that
β ≤ α, the optimal solution of Problem (2.1) is no coverage for any indemnity environment, that is Ik ≡ 0,
for all k ∈K; in the case that α ≤ β, with similar arguments, the optimal solution of Problem (2.1) is of
full coverage in all indemnity environments that Ik ≡ Id, for all k ∈K. Hence, it is not interesting to study
the case when the translation invariant risk measures ρB and ρS are both sub-additive, and in particular
the TVaR-TVaR case.

3 A risk measure ρ is called sub-additive if ρ (Y + Z) ≤ ρ (Y) + ρ (Z), for any random variables Y and Z .
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This is actually in line with Dhaene et al. (2008), which finds that if the risk measure used for capital
requirements is too sub-additive, a merged portfolio would have a lower capital requirement than the
total capital requirement for standalone portfolios. This results in a greater shortfall, that is, the actual
loss minus the required capital, for the combined portfolio. In our study, since the risk measure is used
as a direct representation of the magnitude of risk instead of a capital requirement, the sub-additivity
encourages the merging of risk.

Nevertheless, if the buyer adopts the VaR as the risk measure, and the seller adopts the TVaR as the
risk measure, or vice versa, Problem (2.1) could be nontrivial. Without loss of generality, we consider the
case when the seller adopts the TVaRα risk preference, while the buyer adopts the VaRβ risk preference.
Following the same proof as of Theorem 4.1 in Asimit et al. (2021), one can show that Problem (2.1) is
reduced to solving the following finite-dimensional, but combinatorial, minimization problem:

min
d1,d2∈RK+ ,

θ∈{0,1}K

[
TVaRα

(
LS(d1, d2, θ ; X, O)

)+ VaRβ

(
LB(d1, d2, θ ; X, O)

)]
, (2.8)

where d1 = (
d(1)

1 , d(1)
2 , . . . , d(1)

K

)
, and d2 = (

d(2)
1 , d(2)

2 , . . . , d(2)
K

)
. Correspondingly,

LS(d1, d2, θ ; X, O) =
K∑

k=1

(
θk

((
X − d(1)

k

)
+ − (

X − d(2)
k

)
+

)
+

(1 − θk)
(

X − (
X − d(1)

k

)
+ + (

X − d(2)
k

)
+

) )
I{O=k}

and

LB(d1, d2, θ ; X, O) =
K∑

k=1

(
(1 − θk)

((
X − d(1)

k

)
+ − (

X − d(2)
k

)
+

)
+

θk

(
X − (

X − d(1)
k

)
+ + (

X − d(2)
k

)
+

) )
I{O=k}.

That is, if θk = 1, d(1)
k represents the deductible specific to incident type k, and d(2)

k represents the cor-
responding limit, and the seller covers the loss between d(1)

k and d(2)
k . If θk = 0, the buyer is responsible

for the loss between d(1)
k and d(2)

k while the seller will cover the remaining loss. All other symbols are
defined in the same way as in Problem (2.5).

With this setup, the solution can still be trivial if β ≤ α, which makes it optimal for the buyer to take
all the risk, and therefore, no insurance is purchased. Nontrivial risk sharing will occur if β > α. To see
this, for risk levels α and β that satisfy 0 ≤ β ≤ α ≤ 1 and risk measures ρS and ρB being TVaRα and
VaRβ , respectively, we can show the following relationship,

VaRβ

(
K∑

k=1

(X)I{O=k}

)
≤ TVaRα

(
K∑

k=1

Ik(X)I{O=k}

)
+ VaRβ

(
K∑

k=1

Rk(X)I{O=k}

)
. (2.9)

To begin with, the subadditivity of TVaR suggests the inequality as follows:

TVaRα

(
K∑

k=1

Ik(X)I{O=k}

)
≥ TVaRα

(
K∑

k=1

(X)I{O=k}

)
− TVaRα

(
K∑

k=1

Rk(X)I{O=k}

)

= 1

1 − α

∫ 1

α

[
VaRγ

(
K∑

k=1

(X)I{O=k}

)
− VaRγ

(
K∑

k=1

Rk(X)I{O=k}

)]
dγ .

(2.10)
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Next, we show that the integrand is increasing in γ . Since the indemnity function Ik( · ) is nondecreasing,
for any x ≤ x′,

K∑
k=1

[
Ik(x

′)I{O=k} − Ik(x)I{O=k}
]≥ 0;

K∑
k=1

[(
Id(x′) − Rk(x

′)
)
I{O=k} − (Id(x) − Rk(x)) I{O=k}

]≥ 0;

K∑
k=1

[
Rk(x

′)I{O=k}
]− K∑

k=1

[
Rk(x)I{O=k}

]≤ K∑
k=1

[
Id(x′)I{O=k}

]− K∑
k=1

[
Id(x)I{O=k}

]
.

With this result, according to Theorem 3.B.5. in Shaked and Shanthikumar (2007), the dispersive order
of the retained loss random variable and the total loss random variable is as follows:

K∑
k=1

[
Rk(X)I{O=k}

]≤disp

K∑
k=1

[
(X)I{O=k}

]
; (2.11)

that is,
∑K

k=1

[
Rk(X)I{O=k}

]
is smaller than

∑K
k=1

[
(X)I{O=k}

]
in dispersive order. By the definition of

dispersive order,
[
VaRγ

(∑K
k=1 XI{O=k}

)− VaRγ

(∑K
k=1 Rk(X)I{O=k}

)]
is increasing in γ . Therefore, the

inequality in Equation (2.10) can further proceed as follows to obtain the inequality in Equation (2.9),

TVaRα

(
K∑

k=1

Ik(X)I{O=k}

)
≥ 1

1 − α

∫ 1

α

[
VaRγ

(
K∑

k=1

(X)I{O=k}

)
− VaRγ

(
K∑

k=1

Rk(X)I{O=k}

)]
dγ

≥ 1

1 − α
(1 − α)

[
VaRα

(
K∑

k=1

(X)I{O=k}

)
− VaRα

(
K∑

k=1

Rk(X)I{O=k}

)]

= VaRα

(
K∑

k=1

(X)I{O=k}

)
− VaRα

(
K∑

k=1

Rk(X)I{O=k}

)

≥ VaRβ

(
K∑

k=1

(X)I{O=k}

)
− VaRβ

(
K∑

k=1

Rk(X)I{O=k}

)
,

where the last inequality is the results of that α ≥ β and the dispersive order of the retained loss and the
total loss.

While the majority of the rest of this paper will focus on the VaR-VaR preferences, some numerical
results associated with the TVaR-VaR preferences corresponding to a nontrivial case will also be given
in Section 4.3.

3. Model inputs
The distributions of the seller’s and the buyer’s loss random variables in (2.6) and (2.7) belong to
the mixture class. Therefore, model inputs to solve Problem (2.5) are (i) the index set K of insurable
cyber incident types; (ii) the probabilities, p = (p1, p2, . . . , pK), of an incident falling into an individ-
ual category, where pk = P(O = k), for k ∈K (note that, due to the mutual exclusivity of incident types,∑K

k=1 pk = 1); and (iii) the incident-specific severity of the ground-up loss (X)I{O=k}, for k ∈K.
A dataset from Advisen consisting of historical cyber incidents is used to obtain the inputs to deter-

mine the loss random variables. In the dataset, there are 103,061 historical cyber incidents. Its earliest
observation dates back to 1987, and the latest observation was recorded in September 2018. This dataset
has 125 explanatory variables coded for each incident, which can generally be categorized into four
groups as follows: (i) nature of the incident, (ii) victim company information, (iii) consequences of the
incident, and (iv) information from any associated lawsuits. With the information on incident types and
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Table 1. Number of historical cyber incidents in each category.

Incident categories Number of observations
(PV) Privacy Violation 51,315
(DB) Data Breach 26,492
(FE) Fraud and Extortion 4464
(ITE) IT Error 2102
Other 565

loss amounts, we can build statistical models to predict the probability vector p and the conditional
severity distribution of (X)I{O=k}, for k ∈K. The data and models shall be further elaborated on in the
following subsections.

3.1. Types of cyber incident
This paper focuses on the cyber incidents that took place in the US, which represent close to 80% of all
observations. Based on the country information provided for each incident in the dataset, we extract a
sample of all US-based incidents, and the sample size is 84,938.

The response variable is the cyber incident type. The different incident types are the following:
(1) cyber extortion, (2) data – malicious breach, (3) data – physically lost or stolen, (4) data – unin-
tentional disclosure, (5) denial of service (DDOS)/system disruption, (6) digital breach/identity thief,
(7) identity – fraudulent use/account access, (8) industry controls and operations, (9) IT – configura-
tion/implementation errors, (10) IT – processing errors, (11) network/website disruption, (12) phishing,
spoofing, social engineering, (13) privacy – unauthorized contact or disclosure, (14) privacy – unau-
thorized data collection, and (15) skimming, physical tampering. Similar to Kesan and Zhang (2020b),
in this paper, these 15 categories are grouped into four types, which are (1) data breach, (2) fraud and
extortion, (3) IT error, and (4) privacy violation (PV). The following provides a brief description of
each type of cyber incident classified and, together with the “other” level, Table 1 shows the number of
observations for each type of cyber incident classified. Abbreviations in parentheses will occasionally
be adopted throughout this paper for clear exposition.

• Privacy violation (PV) incidents occur when companies collect or disclose individuals’ sensi-
tive information, such as personally identifiable information and financial information, without
receiving consent from those individuals.

• Data breaches (DB) are incidents in which data storage devices are breached, causing a pos-
sible leakage of confidential information. These incidents can be caused by either hacking
activities or the loss of physical devices.

• Cyber incidents in the fraud and extortion (FE) category are similar to traditional frauds and
extortion events, but take place in cyberspace. Cyber frauds typically have forged digital identity
involved, such as phishing attacks, and commonly in cyber extortion events, information, and
information systems are held hostage by intruders for financial gain.

• In IT error (ITE) events, there is no malicious intent involved. They are caused by incorrectly
configured or operating IT systems.

3.2. Incident type occurrence probabilities
Company-specific information is useful when estimating the occurrence probabilities of different inci-
dent types. For example, it is reasonable to assume that technology companies with lots of customer data
are more likely to experience DB than manufacturing companies, whereas manufacturers with complex
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industrial control systems are more prone to IT errors that cause disruptions than technology companies.
Therefore, we use company characteristics such as industry as predictors for the occurrence probabilities.
In this subsection, we present several predictive models that we experimented with for this purpose and
make comparisons among them. This approach is similar to insurance rate making, which determines
insurance premiums based on the risk characteristics of the insurance buyers.

Selected explanatory variables
Among all explanatory variables available in this dataset, we desire manageable and meaningful explana-
tory variables, and therefore the variable selection process incorporates the following considerations.

• The values of some variables can only be observed after the occurrence of an incident, at which
point the type of incident is already known. For example, the settlement cost of a lawsuit asso-
ciated with an incident is not observable when the incident occurs, and thus this cost has no
impact on the type of the incident. Such variables are ruled out from the models.

• Categorical explanatory variables that have a large number of levels and are downstream in the
hierarchy, if any, are removed. For example, among the explanatory variables that represent the
geographical information of a company, the one that contains city information is removed, but
the one with state information is kept. Likewise, explanatory variables that are more granular
industry classification codes, such as Standard Industrial Classification (SIC) codes with more
than 2 digits, are removed. This helps reduce the dimensionality of the explanatory variable
space when categorical explanatory variables need to be dummified in the modeling process.

• For each of the remaining categorical explanatory variables, categories that have too few obser-
vations are combined. For example, for the explanatory variable STATE, which has the state
information of the victim company, all states that are associated with fewer than 1000 obser-
vations are combined into one category, named “Other”. This procedure helps mitigate the
possible problem that those small categories become absent in training set after the train-test
split. Moreover, with fewer categories, the dimensionality of the sample is more manageable
after the categorical explanatory variables are dummified.

• Auxiliary information, such as the IDs of companies and incidents, provides no predictive
power and thus is removed.

As a result, there are 8 explanatory variables remaining. Table 2 shows the summary statistics of all
these explanatory variables; their descriptions are provided in Appendix A.

To provide an overview, the processed and cleaned sample contains 84,938 observations of cyber
incidents, with the cyber incident type as the multi-class categorical response variable, and 8 explana-
tory variables, of which 3 are numerical, and 5 are categorical. For categorical explanatory variables,
since many of them, such as state and industry, have more than two levels and are nonordinal, they are
numerically coded by dummification. In addition, the three numerical explanatory variables are highly
right skewed, as suggested by their summary statistics, which are expected to have a negative impact on
the performance of some linear models that will be tested. Therefore, each of the numerical explanatory
variables is log-transformed. For testing and comparing the performance of different models, 30% of all
observations are selected at random and used as the holdout sample, while the remaining 70% are for
training classifiers.

Multi-class classification
Predicting which type an incident falls into once it occurs is essentially a multi-class classification prob-
lem. In this study, we explored several commonly used classification models, including decision trees,
random forests, gradient-boosted trees, linear discriminant analysis, multinomial logistic regression, and
multilayer perceptron. In the end, we build a stacking classifier on top of these models for any possible
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Table 2. Summary statistics of explanatory variables. For each categorical explanatory variable, information is displayed for
at most four categories with the most number of observations. Other levels are used for modeling, but are truncated in this
table for ease of reading.

Explanatory variable Summary statistics

Numerical Min. 1stQu. Median Mean 3rdQu. Max.
EMP 0.0 18.0 130.0 14,098.0 2120.0 2,768,886.0
log(EMP+1) 0.0 2.9 4.9 5.3 7.7 14.8
NCASE 0.0 0.0 47.0 5338.0 1024.0 242,599.0
log(NACASE+1) 0.0 0.0 3.9 4.0 6.9 12.4
REV 0.0 3.2 31.2 6629.2 617.5 496,785.0
log(REV+1) 0.0 1.4 3.5 4.2 6.4 13.1

Categorical Levels

MON JAN MAR APR FEB (8 other levels) Missing
count 23,101 6182 5856 5788 42,592 1419

STATE CA Other NY MA (20 other levels) Missing
count 13,915 11,519 6835 5934 46,361 374

CTYPE PRV PUB OTHER – – Missing
count 54,584 25,967 4387 – – 0

IND I H G E (4 other levels) Missing
count 43,932 22,465 5897 4058 8586 0

YEAR BEFORE2012 AFTER2012 – – – Missing
count 49,282 34,237 – – – 1419
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performance gains. Because all these methods are well established and documented in a broad volume
of literature, we shall only provide brief and mostly qualitative overviews of them in Appendix B and
focus instead on their performance and prediction results.

Model comparisons
Table 1 suggests that the four incident categories are unbalanced, and a large part of them are within the
types of data breach and privacy violation types. In this circumstance, several metrics, as summarized
in Grandini et al. (2020), could be used to evaluate model performance. In this paper, we shall report the
balanced accuracy of each model as a proxy of its performance. The balanced accuracy score is defined
as follows:

Balanced accuracy = 1

2K

(
K∑

k=1

( ∑N
i=1 I{Oi=Ôi=k}∑N

i=1 I{Oi=Ôi=k} +
∑N

i=1 I{Oi=k 	=Ôi}

+
∑N

i=1 I{Oi=Ôi 	=k}∑N
i=1 I{Oi=Ôi 	=k} +∑N

i=1 I{Ôi=k 	=Oi}

))
,

(3.1)

where

• N is the size of the test set;
• Oi and Ôi are the observed and the predicted occurring incident types of record i, respectively,

for i = 1, 2, . . . , N.

The one-versus-all metric evaluates the model performance by comparing the predictions in one
class against those in the combination of all other classes. Specifically, for each k ∈K,

∑N
i=1 I{Oi=Ôi=k} is

the number of true positives with respect to incident type k,
∑N

i=1 I{Oi=k 	=Ôi} is the false-negative count,
and

∑N
i=1 I{Oi=Ôi 	=k} and

∑N
i=1 I{Ôi=k 	=Oi} correspond to true negatives and false positives, respectively.

Therefore, 1
2

( ∑N
i=1 I{Oi=Ôi=k}∑N

i=1 I{Oi=Ôi=k}+
∑N

i=1 I{Oi=k 	=Ôi}
+

∑N
i=1 I{Oi=Ôi 	=k}∑N

i=1 I{Oi=Ôi 	=k}+
∑N

i=1 I{Ôi=k 	=Oi}

)
represents the kth class-specific bal-

anced accuracy, and Equation (3.1) represents the average of these balanced accuracy values across all
classes.

After all the classifiers are tuned and trained, their performance in terms of the balanced accuracy of
the predictions in the test set (holdout sample) is presented in Table 3. The table shows the by-class bal-
anced accuracy of each classifier as well as the average across all classes, and the best score is highlighted
in each class or among all averages.

To summarize the performance comparison among different models, it is easy to observe that stacking
models overall outperform their individual base classifiers. The best by-class accuracy scores and the
best average accuracy score are all achieved by stacking models. Second, the distinction between the
three stacking models is small. This suggests that the inclusion of classifiers other than tree-based models
does not substantially improve the model performance. In addition, the by-class accuracy scores and the
average balanced accuracy score attained by stacking models are generally close to 80%, which is a
reasonably large proportion. Based on these three observations, the stacking classifier built on top of the
three tree-based classifiers is adopted to predict incident-type occurrence probabilities.

The numerical results, in terms of the predicted probabilities of the four incident types given different
sets of company and incident characteristics, are presented in Table 11 of Section 5.

3.3. Incident-specific loss severity
After predicting the occurrence probability of individual incident type, the next step is to model the loss
severity conditioning on a given incident type. Therefore, another useful attribute of the dataset is the
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Table 3. Comparison of classification models.

By-class balanced accuracy

Classifier PV DB FE ITE Average
Decision tree 0.8373 0.7827 0.6369 0.6357 0.7231
Random forest 0.8506 0.7976 0.7151 0.7193 0.7707
Gradient boosted trees 0.8534 0.7993 0.7270 0.6991 0.7697
Linear discriminant analysis 0.7005 0.6777 0.5244 0.5746 0.6193
Multinomial logistic regression 0.7054 0.6817 0.4744 0.4864 0.5870
Multilayer perceptron 0.7515 0.7138 0.8571 0.4864 0.7022
Stack (Trees) 0.8592 0.8021 0.7823 0.7799 0.8059
Stack (Linear classifiers excluded) 0.8622 0.8030 0.7865 0.7698 0.8054
Stack (All) 0.8616 0.8032 0.7760 0.7789 0.8049

Table 4. Summary statistics of losses by incident type.

Type Count Min. 1st Qu. Median Mean 3rd Qu. Max.
PV 2016 30 4838 28,572 4,606,605 501,556 1,000,000,000
DB 610 1 18,195 202,500 11,835,168 1,677,500 4,000,000,000
FE 1137 180 10,025 137,817 11,884,945 1,700,000 1,750,000,000
ITE 215 200 20,000 194,850 4,994,540 1,050,000 200,000,000
All 3978 1 6511 60,000 7,112,494 945,287 4,000,000,000

Table 5. Pairwise comparison between empirical distributions of different incident types
using pairwise two-sample Kolmogorov–Smirnov test.

PV DB FE ITE
PV – reject reject reject
DB 0.00E+00 – reject reject
FE 0.00E+00 0.00E+00 – reject
ITE 2.83E-05 1.70E-06 2.84E-05 –

loss information for each incident. Excluding observations that belong to the “other” category, among
all 84,373 incidents that belong to one of the 4 cyber incident categories, there are 3978 observations
with known losses. The summary statistics of those losses are shown in Table 4.

Prior to fitting any reasonable distributions to each conditional loss, it is essential to realize that
the conditional loss distributions could be significantly different among cyber incident types. Table 5
shows the pairwise two-sample Kolmogorov–Smirnov (KS) tests on empirical loss distributions among
various incident types. The numbers below the diagonal are the p-values of these KS tests. Based on
the significance level 0.05, a p-value lower than this level suggests that the null hypothesis, that the two
empirical samples being compared are from the same underlying distribution, should be rejected. Due
to symmetry, the statistical decisions are noted above the diagonal. The result shows that the difference
among the conditional losses of the four incident types is statistically significant, and hence there is
the necessity of individually modeling each incident type’s loss severity, justifying the incident-specific
insurance coverage.

In addition, to show that the loss severity distributions are mainly conditional on incident types but not
on additional explanatory variables, we performed an ANOVA test with two linear regression models.
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Table 6. ANOVA test between the full model and the model with only incident type as its
explanatory variable.

Full Simple
Residual degrees of freedom 2783 2829
Residual sum of squares 2.33 × 1019 2.38 × 1019

Difference in degrees of freedom −46
Difference in sum of squares −4.71 × 1017

F statistic 1.2238
p-value 0.1447

One is a full model with total loss as the response variable, and with incident type, as well as all explana-
tory variables summarized in Table 2. The other model is a simple linear regression, and it has the total
loss as the response variable, but has incident type as its only explanatory variable. The ANOVA test
result, presented in Table 6, shows that the p-value of the test, 0.1447, is higher than any common choices
of significance level, for example, 0.05, 0.01, etc. Therefore, we can conclude that the additional explana-
tory variables in Table 2 for the full model contribute little to the explanation of the variance in losses.
This lack of explanatory power could be an artifact of the limited data size, which makes it infeasible
to build company-specific severity models, but this situation can potentially be improved by a growing
number of cyber incident records.

Figure 2 shows that the majority of the cases realize moderately small losses, and a small number
of cases realize substantial losses, indicating that the conditional loss distributions of all incident types
are likely to be right skewed. Therefore, we explore well-known distributions that could capture such a
skewness, namely log normal, exponential, gamma, and Weibull, for each cyber incident type.

The parameters of each distribution are fitted using the maximum likelihood estimation method. All
fitted distributions for the same cyber incident type are then compared based on their Akaike information
criterion (AIC), which is defined as

AIC = 2N̂ − 2 ln (L̂),

where N̂ is the number of parameters to be estimated, and L̂ is the maximum likelihood of the fitted
model; a model with a smaller AIC value is better. Table 7 summarizes the best-fitted loss distribu-
tions for all cyber incident types. A comparison of the AICs of different fitted distributions is presented
in Table D1 of Appendix D.1. The distribution fitting results suggest that it is most appropriate to
treat losses of different incident types as log-normal random variables with different log-mean and
log-standard-deviation parameters, as given in Table 7.

3.4. Section summary
Thus far, all the necessary model inputs for solving Problem (2.5) are obtained based on a dataset of
historical cyber incidents. A brief recapitulation of the key findings in this section is as follows:

• In this study, the incident-specific cyber insurance policy would provide coverage for four types
of incidents, including privacy violation, data breach, cyber fraud and extortion, and IT errors,
that is, K = 4.

• The occurrence probabilities of individual incident types are specific to each company and
incident, and the probability vector p = (p1, p2, . . . , pK) is obtained by feeding the selected com-
pany and incident features into a trained stacking classifier. This classifier achieves a balanced
accuracy score of around 80%, as defined in Equation (3.1), for each incident type, which is
superior to all other predictive models surveyed (see Table 3).
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Table 7. Best fitted loss distribution of each
incident type.

Type Distribution μ σ

PV log-normal −2.5996 3.2798
DB log-normal −0.7916 3.1122
FE log-normal −3.4100 2.8577
ITE log-normal −1.9557 3.3629

All losses.

Losses greater than or equal to $10 million.
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Figure 2. Histogram of losses of different incident types.

• Incident-specific losses are statistically significant to be different in terms of severity.
Additional explanatory variables, apart from the incident type, do not seem crucial for modeling
the loss severity. Log-normal distributions provide the best fit for all conditional loss severity
with the estimated parameters presented in Table 7.

This section demonstrates the feasibility of obtaining the model inputs necessary to solve Problem
(2.5) from real-world data. With approximately 80% balanced accuracy scores associated with pre-
dictions of incident types and well-fitted condition loss severity distributions, they are expected to be
practical and reliable to proceed to the next step.

4. Solution by cross-entropy method
As discussed before, even with the necessary model inputs to solve Problem (2.5), despite the finite-
dimensional minimization problem, it is also combinatorial and, therefore, cannot be solved analytically
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to derive the Pareto optimal θ and d, which are denoted as θ
∗ and d∗. In this paper, we resort to the cross-

entropy method (CEM) proposed in Rubinstein (1999, 2001). The following subsection provides a brief
review of the CEM adopting our own minimization problem in (2.5).

4.1. Brief review of cross-entropy method
To simplify the notations, let z = (d, θ) ∈Z=R

4
+ × {0, 1}4, and simply write the objective function in

Problem (2.5) as F (z) (keeping in mind that it depends on the (conditional) distributions of X and O
which are model inputs from Section 3). Thus, Problem (2.5) is minz∈Z F (z), with z∗ ∈Z being denoted
as its optimal solution.

The CEM is a numerical method to solve Problem (2.5) by adopting a probabilistic approach, solv-
ing the approximation counterpart of z∗ as follows: for any τ being larger but close enough to F (z∗),
solve an u∗ (τ ) ∈ U which maximizes P (F (Z) ≤ τ ; u), where Z follows a distribution with a parametric
density function f (z; u), for z ∈Z and u ∈ U, and U is the parameter set for the distributions of Z under
consideration. Without knowing z∗, the level τ in this approximation counterpart could not be chosen
appropriately. The CEM then proposes a two-phase approach to construct a sequence

{(
τ̂t, ût

)}∞
t=1

such
that it will converge to an

(
τ̂ , û

)
, where

(
τ̂ , û

)
is close to (F (z∗) , u∗), and thus serves as an approx-

imation for the unknown (F (z∗) , u∗), and where u∗ ∈ U such that f (·; u∗) is the corresponding Dirac
density of the Dirac delta distribution δz∗ .

The main steps of the two-phase construction are as follows. Initialize an û0 ∈ U, and let t iterate
through 1, 2, . . . with

(
τ̂t, ût

)
being updated in each iteration. The τ̂t, for t = 1, 2, . . ., is defined as the

-th quantile of the sample drawn from the distribution f
(·; ût−1

)
, where  ∈ (0, 1) is close to 0 but

is moderately small and uniform for all t = 1, 2, . . .; in turn, the ût, for t = 1, 2, . . ., is defined as the
maximizer of the following problem:

max
ut∈U

Ê

[
I{F(Z)≤τ̂t} ln f (Z; ut) ; ût−1

]
, (4.1)

where Ê
[·; ût−1

]
represents the estimated mean of the same sample drawn from the distribution

f
(·; ût−1

)
. This two-phase update repeats itself until the estimated variance of the next sample drawn

from the updated distribution f
(·; ût

)
is small enough and the τ̂t does not change from those in the last

few update steps (see Benham et al., 2017). Therefore, the main idea of the construction is to first esti-
mate an unknown level τ̂t being larger but close enough to F (z∗) as it is the -th sample quantile with
 being close to 0 using the parameter ût−1, and second, to estimate a parameter ût such that the event{
F (Z) ≤ τ̂t

}
with Z ∼ f

(·; ût

)
is much more likely to happen, compared to the case that Z ∼ f

(·; ût−1

)
when its likelihood is given by a moderately small , so to sequentially maximize P

(
F (Z) ≤ τ̂t; ut

)
.

In the second phase, the estimated parameter ût is to minimize the cross-entropy between the unknown
optimal density, for importance sampling, and a reference density in the same parametric family; this is
equivalent to maximizing (4.1).

Note that in solving (4.1), only the observations in the sample drawn from the distribution f
(·; ût−1

)
satisfying the event condition, F (Z) ≤ τ̂t, are useful to calculate its objective; this motivates the intro-
duction of an elite sample consisting of observations in the original sample satisfying the condition.
Algorithm 1 provides the pseudo-code of the CEM.

4.2. Implementation considerations and results
The actual implementation of this optimization problem consists of two parts, including computing the
objective function and implementing the CEM.

The objective function is the sum of the VaRs of both parties. As suggested by Equations (2.6) and
(2.7), the distribution of either the buyer’s or the seller’s loss random variable is a mixture of distribu-
tions of incident-specific losses, and the mixture distribution has no closed-form quantile function that
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Algorithm 1: Cross-Entropy Method
Input: ∈ (0, 1) //Elite sample proportion
1 f (·; ·) //Parametric distribution of Z
2 û0 //Initial parameter for f (·; ·)
3 ν //Variance stopping criterion
4 l //Lag between iterations in which approximated optimums are compared
5 N //Sample size
6 F //Objective function
Output: Sample from f (·; û) //Approximation of z∗

7 t ← 0
8 NE ← � N� //Elite sample size

9 Draw random sample
{
z(t)
1 , z(t)

2 , . . . , z(t)
N

}
from distribution with density f(·; ût)

10 Calculate element-wise sample variances V
(t)
k , for k = 1, 2, . . . , 2K

11 Δ ← ∞
12 while max

(
V

(t)
1 , V

(t)
2 , . . . , V

(t)
2K

)
> ν or Δ �= 0 do

13 y
(t)
i ← F (z(t)

i ) for i = 1, 2, . . . , N

14 Select elite sample E(t) =
{
z(t)

i : F
(
z(t)

i

)
= y

(t)
(i) , i = 1, 2, . . . , NE

}

15 τ̂t ← y
(t)
(NE)

16 if t ≥ l then
17 Δ ← max(|τ̂t − τ̂t−1|, |τ̂t − τ̂t−2|, . . . , |τ̂t − τ̂t−l|)
18 end
19 Obtain an estimate ût+1 using the elite sample E(t)

20 t ← t + 1

21 Draw random sample
{
z(t)
1 , z(t)

2 , . . . , z(t)
N

}
from distribution with density f(·; ût)

22 end
23 T ← t

24 return z(T )
1 //Arbitrarily choosing the first observation because

observations are similar due to small variance

returns the VaR of concern easily. Therefore, relying on the mixture distribution function, we adopted
a lookup approach to numerically find a point that satisfies Equation (2.3) on a fine grid. In this study,
risk tolerance levels of the seller and the buyer are set at α = 0.95 and β = 0.9, respectively.

Although the CEM has a guaranteed asymptotic convergence (see, for example, Rubinstein, 2002;
Margolin, 2005), the number of iterations needed to meet the stopping criteria is uncertain because of the
randomness introduced during the sampling processes. Therefore, a common approach to addressing this
issue in algorithm implementation is adding additional stopping rules to ensure that the running time of
optimization tasks is manageable. Typical rules may include enforcing a maximum number of iterations
and assuming convergence if the value of the objective function has not experienced a large enough
improvement for a predefined number of iterations. These rules, along with the randomness in sampling,
cause the algorithm in our implementation to not always converge timely and not always stop at the same
value. As suggested by Benham et al. (2017), the optimization process shall be repeated several times
for quality investigation and assurance. Hence, for each set of incident probabilities predicted based on
certain company and incident characteristics, we ran 50 trials of the CEM to solve the optimization with
different random seeds, while holding other specifications constant (see Appendix C). Results from all
trials are stored for further analysis.

Table 9 shows the results of five out of those 50 trials. Trial 5 converged to an “optimum” larger
than that achieved by Trial 1, suggesting that the algorithm could possibly stop at a non-optimal point.
This highlights the necessity of multiple trials. Another observation is that, although most of the trials
reach a converging state after a few numbers of iterations (see, e.g., Trials 1, 4, and 5), there exist initial
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Table 8. Descriptive statistics on the number of seconds (s) spent on finding the optimal
insurance design using the CEM.

Organization

1 2 3 4 5
Count 50 50 50 50 50
Mean (s) 211.13 108.06 104.13 123.65 125.21
Standard deviation (s) 317.31 160.15 162.98 181.67 185.44
Minimum (s) 24.97 11.68 9.62 15.41 14.84
25% Quantile (s) 43.58 20.27 22.62 27.85 25.94
50% Quantile (s) 68.18 34.78 36.63 45.37 40.52
75% Quantile (s) 155.92 86.31 83.39 99.20 94.85
Maximum (s) 975.61 538.80 539.01 612.82 542.56
Sum (s) 10,556.59 5402.97 5206.36 6182.30 6260.34

random states that cause the program to fail to meet the convergence criteria when the preset maximum
number of iterations is reached, for example, Trials 2 and 3. Unless reducing the maximum number of
iterations at the risk of more non-convergent trials, the great gap between numbers of iterations needed by
different trials brings the challenge that even in a multiprocessing environment, congestion occurs when
computational resources are occupied by those long-running trials, making solving the optimization
problem with repeating trials time consuming.

Table 8 shows the amount of time spent on finding optimal insurance designs for 5 individual orga-
nizations using the CEM. The computation is done on 4 IBM POWER9 CPU cores. For each company,
it takes around 2 min to complete each trial. Given that we ran 50 trials for each company, the running
time generally could easily exceed an hour.

Other than the long running time problem, the solution to the minimization problem in Equation (2.5)
is not unique, as presented in Asimit et al. (2021) for the case of two incident types. The value of each
element of d∗ could lie in some intervals, composed of points that result in the same minimum. Table 9
shows that although both Trial 1 and 4 reached the converging state and attained the same minimum,
their solutions, d∗ in particular, differ. Nevertheless, the results provide common ground for insurers and
policyholders in designing an incident-specific cyber insurance contract. As shown in Table 9, based on
the company’s own characteristics and the risk preferences of the company and the insurer, both parties
should agree that in comprehensive cyber insurance covering PV, DB, FE, and ITE, a policy limit should
be implemented for PV, whereas deductibles should be applied to other incident-specific coverages, since
θ

∗ = (0, 1, 1, 1). While holding the risk of both parties unchanged, deductible, and limit amounts can be
negotiated for other possible considerations, one of which is discussed in the next section.

Despite the computational challenges and nonunique solutions, the benefit of such an incident-
specific insurance contract is readily seen from the comparison between the risks taken by both parties
with and without insurance. In the following, refer to Trials 1–4. If the company chooses not to buy
an incident-specific policy specified in Table 9, it will take the risk of $13.6984 million. If it chooses
to get covered, the appropriate amount of premium π (in millions) paid by the buyer should satisfy
$2.2977 ≤ π ≤ $4.6595 according to Inequality (2.2) and that will yield a risk reduction of $4.6595
million, which is always greater than the paid premium. From the insurer’s perspective, the insurance
contract will bring a risk of $2.2977 million, but that will be fully compensated by the collected premium.
As a result, both parties are mutually benefited in their own objectives; their aggregate risk is reduced by
$2.3618 million, from $13.6984 million to $11.3366 million, which could be effective if the premium is
agreed to be lower than the reduced aggregate risk in its range; that is, $2.2977 ≤ π ≤ $2.3618 ≤ $4.6595
(in millions). Again, note that the premium discussed in this paper is derived economically and could
be actuarially priced in the insurance practice.
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Table 9. Results of five trials of CEM with the same set of predicted incident probabilities.

Trial 1 2 3 4 5
p∗

1 (PV) 0.3383
p∗

2 (DB) 0.5717
p∗

3 (FE) 0.0700
p∗

4 (ITE) 0.0200

Random seed 0 8 13 6 2
No. of iterations 11 401 401 41 54
Convergence status Variance

converged
Not

converge
Not

converge
Variance
converge

Variance
converged

Optimum (millions) 11.3366 11.3381
θ ∗

1 (PV) 0 0
θ ∗

2 (DB) 1 1
θ ∗

3 (FE) 1 1
θ ∗

4 (ITE) 1 1
d∗

1 (millions, PV) 0.0531 0.0474 0.1074 0.0511 0.0334
d∗

2 (millions, DB) 0.1011 0.1153 0.0982 0.1276 0.0941
d∗

3 (millions, FE) 0.1167 0.0210 0.0107 0.0979 0.0520
d∗

4 (millions, ITE) 0.1151 0.0195 0.0435 0.0314 0.0585

Buyer’s risk without
insurance (millions)

13.6984 13.6984

Buyer’s risk with
insurance (millions)

9.0389 9.0389

Buyer’s risk reduction
(millions)

4.6595 4.6595

Seller’s risk without
insurance (millions)

0.0000 0.0000

Seller’s risk with
insurance (millions)

2.2977 2.2992

Seller’s risk increase
(millions)

2.2977 2.2992

Aggregate risk
without insurance
(millions)

13.6984 13.6984

Aggregate risk with
insurance (millions)

11.3366 11.3381

Aggregate risk
reduction (millions)

2.3618 2.3603

Premium range
(millions)

[2.2977, 4.6595] [2.2992,
4.6595]

4.3. Results under TVaR-VaR preferences
Table 10 shows the results of optimal risk sharing between the insurance seller and buyer under TVaR-
VaR preferences, as described in Section 2.3. The results are compared to the optimum attained under the
VaR-VaR preferences as shown in Table 9 with the same set of model inputs except for the risk levels. As
mentioned in Section 2.3, when the VaR-preference party has a lower risk level than the TVaR-preference
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Table 10. Comparisons between the risk-sharing results of different choices of risk measures.

TVaR-VaR VaR-VaR
p∗

1 (PV) 0.3383
p∗

2 (DB) 0.5717
p∗

3 (FE) 0.0700
p∗

4 (ITE) 0.0200

Level of risk α = 0.80 β = 0.99 α = 0.95 β = 0.90
Convergence Variance converged Variance converged
Num. of iterations 83 41

Optimum 202.9893 11.3366
Deductibles
/Limits d(1)∗

1 = 11.33 d(2)∗
1 = 50.45 d∗

1 = 51117.87
d(1)∗

2 = 1.76 d(2)∗
2 = 13.05 d∗

2 = 127614.41
d(1)∗

3 = 97.19 d(2)∗
3 = 196.76 d∗

3 = 97876.93
d(1)∗

4 = 141.36 d(2)∗
4 = 143.79 d∗

4 = 31376.75
θ ∗

1 1 0
θ ∗

2 0 1
θ ∗

3 0 1
θ ∗

4 1 1

Buyer’s risk without insurance (millions) 403.8644 13.6984
Buyer’s risk with insurance (millions) 11.3411 9.0389
Buyer’s risk reduction (millions) 392.5233 4.6595

Seller’s risk without insurance (millions) 0.0000 0.0000
Seller’s risk with insurance (millions) 173.4689 2.2992
Seller’s risk increase (millions) 173.4689 2.2992

Aggregate risk without insurance (millions) 403.8644 13.6984
Aggregate risk with insurance (millions) 184.8100 11.3381
Aggregate risk reduction (millions) 219.0544 2.3603

Premium range (millions) [173.4689, 392.5233] [2.2992, 4.6595]

party, the VaR-preference party will take all the risks. Therefore, to demonstrate a nontrivial case, the
buyer’s risk level is raised to β = 0.99, the seller’s risk level is set to α = 0.80, and the aggregate risk is
shared between the buyer and the seller.

5. Function approximation
In Section 4.2, two computational challenges are discussed in the implementation of the optimization
algorithm, including the numerical evaluation of quantiles of loss random variables and random states
that lead to non-convergent trials. Both challenges induce a long running time and could make this policy
design less practical in the production environment. To speed up the computation process, we make use
of function approximation to find a target function, which establishes a more direct mapping between
incident properties, including their occurrence probabilities and severities, and the parameters of the
eventual indemnity functions in the incident-specific policy. Note that in this study, the distribution
parameters of the incident severities are fixed and only the probabilities vary depending on company
characteristics; therefore, speaking more precisely, the mapping is only between incident probabilities
and indemnity function parameters.
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In this section, we distinguish between true solutions, which are obtained by using CEM to approx-
imately solve Problem (2.5), and fitted solutions, which are obtained through function approximation.
By using fitted solutions to approximate true solutions, such that the fitted solutions result in the same
optimum in Problem (2.5) as the true solutions, the end goal is that once a company’s characteristics
are fed into the trained stacking classifier built in Section 2, the corresponding probability vector can be
used as inputs of the approximate function to generate the parameters of the optimal incident-specific
cyber insurance, that is, θ̂ and d̂.

5.1. Sample selection
Provided that the true solutions to Problem (2.5) are nonunique, as shown in Section 4, the mapping
between p and

(
θ

∗, d∗) is one-to-many. This could potentially lead to a lack of fit and suboptimal
fitted solutions. The suboptimality is a result of the fact that the true solutions of individual d∗

k , for
k = 1, . . . , K, are on disjoint intervals on the real line (see Asimit et al. 2021), but the function approxi-
mation process can can easily disregard that premise if, with respect to the same set of probabilities, the
divergence between the fitted solution and all true solutions, for example, mean squared error or mean
absolute error, is to be minimized because the fitted value could plausibly be outside the intervals where
the true solutions reside in.

Therefore, instead of looking for a fitted solution with the smallest average deviation from all true
solutions, it is more guaranteed to find an optimal fitted solution close to one of the true solutions. In
this study, to identify a unique true solution, we choose the one that minimizes the seller’s expected loss
among nonunique true solutions. That is, the solution selected for function approximation is, therefore,
arg min(d,θ )∈SELs(d, θ ; X, O), where S is the set of Pareto optimal

(
θ

∗, d∗) computed by the CEM. This
strategy serves as an illustration of how a unique true solution can be chosen based on additional prefer-
ences, while in practice, alternative preferences can be used to compare among the nonunique solutions
to Problem (2.5) and choose the best one.

5.2. Function approximation procedure
Because d depends on θ , the function approximation follows a two-step process. The relationship
between probabilities p and the types of indemnities θ is first approximated, for which p are seen as
are seen as features, and θ are seen as labels. Because each θk, for k = 1, . . . , K, takes the value of either
0 or 1 and is not mutually exclusive, predicting θ is a multi-label classification problem. Then, multi-
label classification problem. Then, conditioning on θ , the mapping the mapping between probabilities
p and the amounts of incident-specific deductibles or limits d shall be limits d shall be approximated,
and this is a multi-output regression problem. Because there are 2K distinct values of θ , the number
of regression models to build is 2K . The target function to be approximated then consists of both the
classification model and the conditional regression models.

Let G : (0, 1)K → {0, 1}K be the classifier and Hθ : (0, 1)K →R
K
+ be the conditional regression mod-

els depending on θ . In addition, the sample created in Section Section 5.1 is split into a training set
{(ps; θ

∗
s , d∗

s )}S1
s=1 and a test set {(pS1+s; θ

∗
S1+s, d∗

S1+s)}S2
s=1, where S1 and S2 are the sizes of the two sets,

respectively. The function approximation procedure can be summarized in Algorithm 2.
For the evaluation of the fitted solutions produced on the test set, error is defined as the difference

between the values of the objective function in Problem (2.5) when true solutions and fitted solutions
are provided, respectively, that is, εs = F(d∗

s , θ ∗
s ; X, O) − F(d̂s, θ̂ s; X, O). The θ̂ s; X, O). The error rate is

used as a performance measure of the target function, which represents the ratio of predictions made on
the test set resulting in the same optimums as true solutions.
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Algorithm 2: Function Approximation: Model training and testing

//Training

Input: {(ps; θ∗
s ,d

∗
s)}S1

s=1, initial classifier G0, initial regression models H0
θ

Output: Trained classifier G∗, trained regression models H∗
θ

1 Training the multi-label classifier G0 on the training set with p as features and θ as
labels

2 for θ ∈ {0, 1}K do
3 Training the multi-output regression model H0

θ on the training set with p as
features and d as labels

4 end
//Testing

Input: {(pS1+s; θ∗
S1+s,d

∗
S1+s)}S2

s=1, trained classifier G∗, trained regression models H∗
θ

Output: Error rate, fitted solutions {(θ̂S1+s, d̂S1+s)}S2
s=1

5 for s = 1, 2, . . . , S2 do
6 θ̂S1+s ← G∗(pS1+s)
7 d̂S1+s ← H∗

θ̂S1+s
(pS1+s)

8 S1+s ← F (d∗
S1+s,θ

∗
S1+s;X,O) − F (d̂S1+s, θ̂S1+s;X,O)

9 end

10 Error rate ←
(∑S2

s=1 I{εS1+s �=0}
) /

S2

5.3. Numerical results
For each distinct set of probabilities p, 50 corresponding true solutions are computed using the CEM,
each of which has a different random state, and then among them, a unique true solution, which
minimizes the seller’s expected loss, is selected for the sample in function approximation.

The computation of individual optimization tasks with specifications as shown in Appendix C is
parallelized on 96 CPU cores. During each 24-h wall-clock time, the average number of unique true
solutions that can be generated is around 790. This computationally intense process highlights the neces-
sity of the use of function approximation in practice. For both the classification and regression tasks,
we build tree-based models using the LightGBM framework (see Ke et al. 2017), with a training set
of size 2201. Table 11 shows the fitted solutions of five organizations, provided their organizational
characteristics.

This table summarizes multiple aspects of the workflow proposed in this paper. First, there are indeed
different optimal incident-specific insurance designs for organizations of distinct characteristics. The
presented organizations vary in litigation history, size, ownership, location, and industry. These char-
acteristics can be used as rating factors in the underwriting process, and the insurer should be able to
conveniently collect these pieces of information on the insurance buyer. This result validates the practice
of coverage being designed in an incident-specific manner.

Second, similar to the results shown in Table 9 of Subsection 4.2, Table 11 demonstrates how both the
insured and the insurer can mutually benefit from an incident-specific cyber policy. Indeed, Organization
1 is the same organization used to derive the results in Table 9, and the numbers regarding risks with
and without insurance and the premium range are identical in both tables. We shall relegate readers to
Subsection 4.2 for a detailed account of the policy being mutually beneficial to both parties. In addition,
the same conclusion can be drawn from the other four organizations presented in Table 11, suggesting
that the proposed incident-specific policy can offer such a benefit to organizations of different character-
istics. However, Table 11 shows that the effectiveness of aggregate cyber risk reduction does not always
hold. A risk-sharing arrangement that satisfies the inequalities in Equation (2.2), and thus ensures that
the risk-sharing is rational, can be ineffective. Specifically, the scenario where no rational premium can
be effective happens when the indemnity functions satisfy that
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Table 11. Comparisons between exact solutions solved by the CEM and fitted solutions by function
approximation.

Organization 1 2 3 4 5
NCASE 55 652 28 3300 270
EMP 4500 25,105 119 16,000 7908
REV (millions) 461.47 40,653.00 0.72 2662.68 1448.391
CTYPE Private Public Private Public Other
STATE Other California Arizona Connecticut Florida
IND Services Services Retail Trade Transportation

and Public
Utilities

Public
Administration

Incident occurrence
AFTER2012 Yes Yes Yes Yes Yes
MON January January January March March

p1 0.3383 0.4401 0.4700 0.4340 0.2300
p2 0.5717 0.3340 0.3400 0.4360 0.4800
p3 0.0700 0.1764 0.1600 0.0600 0.1900
p4 0.0200 0.0495 0.0300 0.0700 0.1000

θ̂1 0 1 1 0 0
θ̂2 1 1 1 1 1
θ̂3 1 0 0 1 1
θ̂4 1 0 0 1 0

d̂1 (millions) 0.1430 0.0968 0.0943 0.1318 0.1094
d̂2 (millions) 0.1502 0.0901 0.0924 0.1636 0.1852
d̂3 (millions) 0.0957 0.0904 0.0781 0.0918 0.1477
d̂4 (millions) 0.0768 0.1490 0.1249 0.0974 0.1228

CEM optimum
(millions)

11.3366 7.4182 7.7513 9.7930 9.2889

Function
approximation
optimum
(millions)

11.3366 7.4197 7.7513 9.7930 9.2889

Error (millions) 0.0000 0.0015 0.0000 0.0000 0.0000

Buyer’s risk
without insurance
(millions)

13.6984 8.5989 8.7049 11.4981 11.3691

Buyer’s risk with
insurance
(millions)

9.0389 6.9697 7.4837 5.9956 6.5337

Buyer’s risk
reduction
(millions)

4.6595 1.6292 1.2212 5.5025 4.8354
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Table 11. Continued

Organization 1 2 3 4 5
Seller’s risk

without insurance
(millions)

0.0000 0.0000 0.0000 0.0000 0.0000

Seller’s risk with
insurance
(millions)

2.2977 0.4500 0.2676 3.7974 2.7552

Seller’s risk
increase
(millions)

2.2977 0.4500 0.2676 3.7974 2.7552

Aggregate risk
without insurance
(millions)

13.6984 8.5989 8.7049 11.4981 11.3691

Aggregate risk with
insurance
(millions)

11.3366 7.4197 7.7513 9.7930 9.2889

Aggregate risk
reduction
(millions)

2.3618 1.1792 0.9536 1.7051 2.0802

Premium range
(millions)

[2.2977,
4.6595]

[0.4500,
1.6292]

[0.2676,
1.2212]

[3.7974,
5.5025]

[2.7552,
4.8354]

�B

2
≤ �S ≤ �B,

where �B = ρB (X) − ρB

(∑K
k=1 Rk(X)I{O=k}

)
and �S = ρS

(∑K
k=1 Ik(X)I{O=k}

)
represent the buyer’s reduc-

tion in risk and the seller’s risk increase by the risk sharing, respectively. Indeed, while the premiums
to be charged for Organizations 1, 2, and 3 could be lower than their respective aggregate cyber risk
reductions, the premiums to be charged for Organizations 4 and 5 must be larger than their respective
aggregate risk reductions.

Lastly, in most cases, the target function can produce solutions that yield exactly the same optimum as
the true solutions generated by the CEM. A small percentage of the fitted solutions are non-optimal; see,
for example, Organization 2. This problem can potentially be mitigated by employing a larger training
set to train the target function. Overall, an error rate of 0.22 on the test set of size 790 is attained. That is,
78% of the fitted solutions result in the same optimal risks as those given by the true solutions. The slight
compromise in accuracy leads to high computational efficiency. For a test set of size 5, the time needed
for computing the fitted solutions is approximately 0.068 s. The running time here and the running time
of the CEM presented in Table 8 are measured on the same hardware. Compared to the aforementioned
CEM, which may take hours to solve the problem, the usage of function approximation makes it much
more feasible to generate policy specifications on the fly in the production environment.

6. Conclusions and future directions
In this paper, we proposed a workflow for the design of incident-specific cyber insurance. It consists of
three key components, including the estimation of model inputs using public and proprietary data in the
underwriting process, the Pareto optimal objective based on the insured’s and the insurer’s preference
orderings by their risk measures, and solvers for the optimization problem. The cases in which both
parties have VaR preferences, the buyer uses VaR, and the seller has a TVaR preference, are discussed.
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Using real cyber incident data, we showed how this workflow generates incident-specific policies that
lower the total risk taken by the insured and the insurer. We also demonstrated that the proposed workflow
can be time efficient with the help of function approximation if there is a time constraint on the delivery
of results.

The implications of this work for cyber insurers and policyholders can be summarized as follows.
First, the proposed workflow aims to design cyber insurance in a collaborative environment, which
aligns with the market practice that many cyber insurance providers also offer services that improve the
policyholder’s security posture and, at the same time, reduce the insurer’s exposure. With the consensus
on the assessment of the risk, the workflow lowers the insurance buyer’s risk and the aggregate risk of
both the buyer and the seller, and compensates the insurer with a sufficiently high premium rate. Second,
the workflow provides the insurance buyer with a pragmatic way to determine incident-specific coverage,
thus simplifying the decision-making process. It also makes the existing incident-specific design of cyber
insurance actuarially justified. Lastly, this work addresses the computational challenges that may arise
in the implementation of the proposed methods, allowing insurers to provide quick quotes and coverage.

Despite the time efficiency of using an approximated target function, one limitation is that the opti-
mum is not always attained by the fitted solutions generated by the target function. Therefore, the benefits
and risks of using this approach should be weighed in practice. Another limitation of this study is that,
because of the scarcity of data on cyber incident losses, it is not feasible to model company-specific loss
distributions for individual incident types, and therefore we only considered how incident type realiza-
tions are related to company characteristics, regardless of the relationship between those characteristics
and the potential cyber losses. This issue could possibly be resolved in future studies if a better quality
cyber loss dataset is available. Lastly, this study assumes that indemnity functions are specific only to
cyber incident types, or equivalently perils. In practice, deductibles and limits could also be placed on
more granular levels like covered assets, such as hardware, data, or business income; see, for exam-
ple, Chong et al. (2022). Depending on the use case, the proposed workflow can easily be adopted for
policies that offer coverages at a more granular level.
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Appendix
Appendix A. Explanatory Variables and Their Descriptions

Table A1. All explanatory variables and their descriptions.

Explanatory variable Description
EMP Number of employees
NCASE Number of Federal Docket cases linked to company
REV Total revenue (in millions of USD)
MON Month in which the incident occurs
STATE State in which the victim company is based
CTYPE Company type

∗ PRV (Private)
∗ PUB (Public)

IND Industy by SIC divisions
YEAR Whether the incident occurred before 2012 or after 2012

Appendix B. Classification Models
Decision tree A decision tree (DT) splits the dataset based on the values of explanatory variables and
attempts to partition the dataset into homogeneous subsets. Each split of a parent node is performed
with the goal of reducing the Gini impurity of data in child nodes. Decision tree is known to have a
tendency to overfit, which means that it can fit the training data well by growing a complex tree with
granular partitions, but its performance can suffer when making predictions on new data. To mitigate
this issue, three hyperparameters, including the maximum depth of the tree, the minimum number of
samples required in each leaf, and the complexity parameter of the tree pruning process, are tuned by
grid search with fivefold cross validations to improve the out-of-sample prediction performance of the
built tree. The hyperparameter tuning process of all other classification methods mentioned in this paper
is performed in the same way.

Random forest Random forest (RF) is an ensemble model that employs multiple classification trees,
of which each is built based on a bootstrapped sample of the training set and a randomly selected subset
of all explanatory variables. In the end, the probabilistic predictions made by all trees are averaged to
give a final prediction. The randomness introduced by bootstrapping and randomly selected explanatory
variables help reduce the variance of the model, thus mitigating the overfitting issue of a single classi-
fication tree, as discussed previously. Hyperparameters including the number of trees to build and the
size of the subset of explanatory variables are tuned for performance improvement in this study.

Gradient boosted trees Gradient boosted trees is another type of ensemble model based on deci-
sion trees. Instead of growing trees independently and then aggregating the results, the boosted method
iteratively improves the performance of the previous tree-based classifier by updating it with a new tree
that fits the residual. The updating process is a linear combination of the old classifier and the newly
built tree, in which the coefficients minimize a certain loss function of the true values and the predicted
values. Hyperparameters, including the learning rate, which governs how much each new tree contribute
to the final classifier, and the total number of trees to build are tuned.

Linear discriminant analysis Linear discriminant analysis (LDA) solves an optimization problem,
for which a transformation matrix is solved such that after the transformation, the ratio between the
total between-class variance of data points measured in an Euclidean space and the total within-class
variance is maximized. That is, data points in the same class are made as close to each other as possible,
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whereas data points belonging to different classes are separated to the greatest extent. The advantage
of this method over the three tree-based models introduced earlier is that there is an analytical solution
to the transformation matrix, and thus the training time is minimal. The drawback, however, is that it
imposes relatively strict assumptions on the data, such as multivariate normality, independence, and
non-collinearity, which can rarely be fully satisfied by empirical data, and in that case, the performance
can suffer. Given that our sample contains many dummy variables, the assumptions are largely violated.
Nevertheless, this method is tested and compared with other models.

Multinomial logistic regression For multi-class problems, multinomial logistic regression (MLR)
is a generalization of its binary counterpart. Let K denote the number of classes and for each class
k = 1, 2, . . . , K, the probability pk of an observation with features vector x belonging to that class is
modeled as follows:

ln pk = βk · x − ln
K∑

k=1

eβk ·x,

where βk is the coefficient learned from the training set to minimize the cross-entropy loss function, and
the term ln

∑K
k=1 eβk ·x is a normalizing factor that ensures

∑K
k=1 pk = 1. Equivalently,

pk = eβk ·x∑K
k=1 eβk ·x

, for k = 1, 2, . . . , K

which is the softmax function of βk · x.
Multilayer perceptron Multinomial logistic regression can be viewed as a single-layer perceptron

without hidden layers, of which the activation function in the output layer is softmax, as introduced ear-
lier. Thus, it would be interesting to compare multinomial logistic regression to multilayer perceptron
(MLP) models with additional hidden layers. Hidden layers enable the model to learn nonlinear rela-
tionships, and thus might provide a better fitting. For experiment purposes, an MLP classifier with two
hidden layers and ten neurons in each hidden layer is trained.

Stacking classifier Lastly, stacking classifiers are built based on the results output by the different
algorithms mentioned above. The motivation is that classifiers of different kinds are likely to produce
errors in different ways, and thus combining their results with proper weights may result in reduced
errors, as suggested in Merz (1999). To stack the base classifiers as introduced previously, their prob-
abilistic predictions are collected and used as new features for building meta-classifiers on top of all
individual models. The choice of the meta-classifier in this study is random forest. To see how different
sets of base classifiers can affect the performance of the meta-classifier, three stacking classifiers are
compared. The first uses only tree-based base classifiers, including decision trees, random forests, and
gradient-boosted trees. The second stacking classifier excludes the two linear methods, which are lin-
ear discriminant analysis and multinomial logistic regression. The third stacking classifier includes all
models mentioned previously as base classifiers.
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Appendix C. Optimization Parameters

Table C1. Seller’s and buyer’s risk levels and CEM specifications.

Model inputs Value
Seller’s risk level α 0.95
Buyer’s risk level β 0.9

CEM specifications Value

Initial distribution of d Truncated multivariate normal with
the mean and standard deviation of
each marginal distribution to be 0
and 100,000, respectively

Initial distribution of θ Multivariate Bernoulli with the
success probability of each marginal
distribution to be 0.5

Variance threshold of d 0.1
Variance threshold of θ 0.01
Sample size N 10
Elite sample proportion  0.2
No-improve iterations before stop l 10
Maximum number of iterations 401

Appendix D. Severity Distribution Fitting Results
D.1. Comparison of AICs of fitted distributions

Table D1. AICs of distributions fitted to incident-specific losses. For each incident type,
the log-normal distribution has the lowest value among all fitted distributions.

Privacy violation Data breach Extortion/Fraud IT error
log-normal 32.82 2154.44 −2135.91 294.72
exponential 9422.81 5014.21 4259.55 1714.78
gamma 939.88 2484.55 −1167.95 454.25
weibull 269.59 2228.09 −1896.31 352.69
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