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Abstract. Let k be a real quadratic field and o, E the ring of integers and
the group of units in k. Denoting by E(p) the subgroup represented by E of
(0x/p)* for a prime ideal p, we show that prime ideals p for which the order
of E(p) is theoretically maximal have a positive density under the Generalized
Riemann Hypothesis.

§1. Statement of the result

Let k£ be a real quadratic number field with discriminant Dy and fun-
damental unit € (> 1), and let 05 and E be the ring of integers in k£ and the
set of units in k, respectively. For a prime ideal p of k we denote by E(p) the
subgroup of the unit group (o /p)* of the residue class group modulo p con-
sisting of classes represented by elements of E and set I, := [(05/p)* : E(p)],
where p is the rational prime lying below p. It is obvious that I}, is inde-
pendent of the choice of prime ideals lying above p. Set

1, if p is decomposable or ramified in k,
=< p—1, if p remains prime in k and Ny q(€) = 1,
(p —1)/2, if p remains prime in k and Ny q(€) = —1,

where Ny /q stands for the norm from k to the rational number field Q.
In [IK] we have shown that ¢, divides I, and we observed that in each case
the set of prime numbers satisfying I, = ¢, has a natural density. K. Masima
found that the values in tables there, are connected with the Artin constant
A=1], (1- zﬁ) = 0.3739558 - and showed in [M] that the set of
decomposable prime numbers satisfying I, = £, has a density under the

Received October 7, 1999.
1991 Mathematics Subject Classification: 11R45
'Research partially supported by National Science Council, Rep. of China.

167

https://doi.org/10.1017/50027763000007364 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007364

168 Y.-M. J. CHEN, Y. KITAOKA AND J. YU

Generalized Riemann Hypothesis (GRH) following [H]. In this paper, we
treat the case where prime numbers remain prime in & following [H], [M].
However, instead of counting prime ideals which are completely decompos-
able, we use the Chebotarev Density Theorem by [LO], [S] under the GRH.
Our main result is the following.

THEOREM. Let P(x) be the set of odd prime numbers p < xz which
remain prime in k and let N(x) be the subset of p € P(x) satisfying I, = £,,.
Then we have

N (z) = coLi(z) + O(z loglog z/ (log )?)
for a positive constant ¢y under the GRH.

Here fields where the GRH is involved are k((2n,+/€) for square-free
natural numbers n and ¢t = n or 2n, where (,, stands for a primitive m-th
root of unity. The function Li(z) stands for [, dt/logt as usual.

§2. Algebraic preparation
Throughout this paper, we keep the notation in Section 1. The main

results in this section are Theorems 1 and 2.

LEMMA 1. Let n be a square-free integer (> 1) and suppose that k ¢
Q(C2n) and suppose X/e € R. Set

Ko {k(Qn, R/e), if Nyjqle) =1,
k(Can,/€), if Nijqle) = —1,
and let N := [K : k(C2n)] be the extension degree of fields. Then we have
N =K : Q]/2¢(2n)
n, either if Ny q(€) =1 and \/e € k((an),
= or if Ny q(e) = —1 and 2t n,
2n, if Nyq(e) =1 and \/e ¢ k(Can),

where ¢(m) is the Euler function.
Proof. Let us recall that

for an integer m, and an element a in a field F' (ch(F) # 2)
which is not contained in FP for every prime divisor p of m, a
polynomial 2" — a is irreducible either if 4 { m, or if 4|m and
—4a ¢ F*.
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Let ¢ be an odd prime or 4 and suppose ¢|2n. We show e ¢ k((2,,) first.
Suppose /e € k(Can); then Q(¥e) = Q((%/€)?/9) C R is a subfield of
an abelian field k((2,). Hence any conjugate element of /e should be real.
This is a contradiction. Hence /e is not in k(o).

Let us show that 22" — € is irreducible over k((a,) if /€ & k(Can). We
have only to consider the case of 2|n. Suppose that 2|n, v/—4e € k((an)
and /e ¢ k(Capn); then /—4e € k(C2n) and =1,/ € k(C2,) hold. This
contradicts that /e ¢ k((a,) since v—1 € k((,) holds by 2|n. Thus the
above criterion yields that a polynomial 22" — € is irreducible over k((2,)
if \/e ¢ k(C2n). Then we have N = [k((on, X/e) : k(Con)] = 2n. If, next
Ve € k(Can), then a polynomial 2™ — /e is irreducible over k((a,,) and then
we have N = [k(Can, (v/€)™) : k(Can)] = n. Similarly, 2" — € is irreducible
over k(Can) if Ni q(€) = —1 and 2{n. 0

Remark. In Lemma 1, a rational prime p is unramified in K if p 1 2nDy.

ProrosiTION 1. Let n, K, N be those in Lemma 1. Let n €
Gal(k(C2n)/Q) be an automorphism such that 1(Can) = b and n induces
the non-trivial automorphism of Gal(k/Q).

(I) The case of Ny q(€) = 1. There exists an automorphism p of order 2
in Gal(K/Q) such that p = n on k((2n) if and only if (i) N =2n, (ii) N =n
is odd, or (iii) N = n is even and n(y/€)\/e = 1. When p exists, it is in the
center of Gal(K/Q) and satisfies p(%/e) = +2/e ' and both signs + are
possible if and only if N is even.

(IT) The case of Ny q(e) = —1. If n is odd, then there exists a unique
automorphism p of order 2 in Gal(K/Q) such that p = n on k((an). It is
in the center of Gal(K/Q) and p({/e) = — /e . If n is even, then there

is no such automorphism.

Proof. Set t = 2n or n according to Ny q(€) = 1 or —1, respectively.
If p € Gal(K/Q) is an extension of i and p? = id., then setting p(y/€) =
5{/@71 for some § € K, we have 62 = 1 and hence § is a 2n-th root
of unity and hence p(6) = n(8) = 6% and /e = p2(V/e) = p(6y/c ') =
516w 1)~ = 672/c. Thus we have § = +1.

Proof of the case (I).

Suppose Nj/q(€) = 1. Assume that either N = 2n, or N = n is odd,
first. We define &, = +1 by

€, = 1, if N =2n,
e n(Ve)ve i N=n,
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where if N = n, /e € k((2,) holds by virtue of Lemma 1, and n can act
on +/e.

Let ' € Gal(K/Q) be an extension of n € Gal(k((2,)/Q); then we
have

(' (We)¥e&n)™ =nle)e =1

and hence n'(%/e) = (Wén 2%_1 for some integer r and a primitive N-th
root ( of unity. Since K = k({2,,)(%/€) and N = [K : k((2,)], there exists
an automorphism o € Gal(K/k((2,)) such that a(%/e) = ¢} %/e. Thus an
automorphism p := an’ is an extension of 1 and satisfies p(X/e) = &, 2/t
and the order of p is equal to 2.

Secondly, we consider the case where N = n is even. By Lemma 1,
we have /e € k((2,). Take any extension 7' in Gal(K/Q) of 7. Since

(1 (%/€)%/€)* = n(e)e = 1, we have 1/'((v/€)/™) = ¢, (v/€)~ Y™ for some

integer ¢, and
-1
n(Ve) = Gnve

If, hence n(y/€)y/e = 1, then t is even and since [K : k((2,)] = n and
Ve € k(Can), we can take a € Gal(K/k(C2n)) so that a(%/e) = b, %/e,
and therefore p := an’ is what we want. If n(y/e)y/e = —1, then t is odd
and the order of 7/ is not equal 2, since n/>(%X/e) = ¢t %/e # %/e. Thus
we have completed the proof of the first assertion. Next, we show that if
p+ € Gal(K/Q) is an extension of 7 such that pi(%/e) = + %/c ', then
p+ is in the center of Gal(K/Q). Take an element u € Gal(K/Q); then
u(®/e) = ¢4, ®/e or (5, 20/ " for some integer . If u(%/e) = (5, /e, then
pru(/e) = £G /e ! and ups(X/e) = u(£X/e ') = (37 %/e " and
hence pru = upy. The case of u(%/e) = (4, 2%_1 is similar and then p4
is in the center of Gal(K/Q). Lastly, suppose that N is even; then there
is an automorphism r € Gal(K/k((2,)) such that k(%/e) = — X/e and
hence both signs + are possible. Conversely, if there exist automorphisms
p+ € Gal(K/Q) such that ps =7 on k((ap) and pi(%/e) = + %/ ', then
p—p+ is the identity on k((2,) and p_p4 (%/€) = — %/e and hence the order
of p_p4+ € Gal(K/k(C2n)) is two and it yields that N = [K : k((2,)] is even.
Thus we have completed the proof of the case (I).

Proof of the case (II).

Suppose N, /q(€) = —1. First we consider the case where n is odd; Since
n(e) = —e L, taking an extension 1’ € Gal(K/Q) of n € Gal(k((2,)/Q), we
have 1/ ({/¢) = —(T ¢/ " for some integer r. There exists an automorphism
a € Gal(K/k(Can)) such that a(3/e) = ¢ /e since [K : k((2n)] = n is odd.

https://doi.org/10.1017/50027763000007364 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007364

DISTRIBUTION OF UNITS OF NUMBER FIELDS 171

We have only to set p := an'. p is in the center of Gal(K/Q) as above. If
there are two automorphisms py of order 2 such that pi is n on k((ap),
then pi({/e) = + /e should hold as at the beginning of the proof. As in
the proof of the case (I), it implies the extension degree [K : k(C2,)] = n
is even, which is a contradiction. Lastly suppose that n is even and there
is an automorphism p of order 2 in Gal(K/Q) such that p =7 on k({2 );
then p(e) = —e~ ! implies p(¥e) = ¢4, ¢/e ! for an odd integer r. Then
Ve = pP(/e) = G (¢ /e )L = (52 /e implies (7 = (2 = 1, which
is a contradiction, since 2|n and 2 1 r. This completes the proof of the
proposition. 0

LEMMA 2. Suppose Nyq(e) = 1 and let p be an odd prime which
remains in k. Then for a square-free natural number n, n(p — 1)|I, holds if
and only if p+ 1 = 0 mod 2n and each prime ideal of k((ay) lying above p
is completely decomposable at K = k((ap,)(%/e€).

Proof. First note that p — 1 divides I, as in the introduction. Let us
show the “only if” part. Suppose that n(p — 1)|I, and set t = I,/n(p — 1)
(€ Z). Since p? — 1 = £(0/(p))* = I - tB((p)), we have (p+1)/n =
(0> —1)/n(p—1) = I, tE((p)/n(p—1) = tE((p)) = Omod?2 since
$E((p)) = 0mod 2 by +1 € E((p)). Hence we have p + 1 = 0 mod 2n.
Next we show the following

CLAIM. The relative degree of p at k((2,)/Q is 2.

Let p be a prime ideal of k((2,,) lying above p. In the local field k(C2y,)p,
the closure of k£ is an unramified extension of Q, of degree 2 and p =
—1 mod 2n implies the closure of Q({2,) has the same property, and the
uniqueness of the unramified extension of degree 2 over Q, implies that
k(Can)p is the unramified extension of degree 2 over Q,. This completes the
proof of the claim.

Let « € o, be a generator of (0 /(p))* and r the order of € in (0 /(p))*,
and define an integer u with (u,7) = 1 by € = o“®*~1/" mod (p). Since
p*—1=1I,-4E((p)) = 0 mod n(p—1)-r = 0 mod 2nr, we have p*—1 = 2nrw
for some integer w. Then € = (a“%)?" mod (p) implies that the equation
22" = € has a solution in the local field k(p) by successive approximation by
Newton. Let p be a prime ideal of k((2,,) lying above p; then k((2n)p = k)
follows from the Claim and hence the equation 22" = € has a solution in

k(Can)p, hence p is completely decomposable in k(Cap,, X/€).
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Next let us show the “if” part. Let P, p (= P Nk((2n)) be prime ideals
of k(Con, &/€), k((2n) lying above p, respectively. By the assumption, the
relative degree of B/p is one. Hence the equation 22" — ¢ = 0 is soluble in
the local field k(C2y,)p. Since p+1 = 0 mod 2n, p is unramified in Q(¢2,) and
the closure of Q((2p) in k((2n)p is Qp or its unramified quadratic extension.
Thus k(C2,)p is the unramified quadratic extension of Q, and hence 72" = ¢
is soluble in k(,) = k((2n)p. Hence there exist a primitive root a € o) and

an integer u € Z such that
(a*)?™ = € mod (p).

(i) The case where E((p)) = (£1,e mod (p)) but E((p)) # (¢ mod (p)).

We note that the assumption yields €/ Z —1 mod (p) for any integer
t. Let r be the order of e mod (p) in (o0x/(p))*. If r is even, (¢'/?)? =
1 mod (p) and hence €'/ = £1 mod (p). Since r is the order of € mod (p), we
have €/2 = —1 mod (p). It contradicts the assumption. Hence 7 is odd and
4E((p)) = 2r implies p>—1 = I,-2r. Now we have 1 = ¢ = (a*)?"" mod (p)
and then we have 2nru = 0 mod p? — 1 and 2ntu #Z 0 mod p? — 1 for any
proper divisor ¢ of r, since r is the order of (¢ mod (p)). Set 2nru = w(p*—1)

for an integer w. Then we have

p+l

-1 —w(p—1
(r,w) and ru=w(p )2n

Let us show (r,p — 1) = 1. If a prime number ¢ divides (r,p — 1), then ¢ is
odd, since 7 is odd. On the other hand, Z > I,,/(p — 1) = (p+ 1)/2r and
gq|r imply ¢|(p + 1). Therefore ¢ divides p =1 and hence g = 2, which is the
contradiction and hence (r,p — 1) = 1. Thus r divides (p+ 1)/2n and hence
L/n(p—1) = 2rL,/2rm(p—1) = (p* —1)/2rn(p—1) = (p+1)/2rn € Z
which yields that n(p — 1) divides I,,.

(ii) The case where E((p)) = (¢ mod (p)).

Since 1 # —1 mod (p), the order r of € mod (p) in (0 /(p))* is even. As
in the case (i), we have 2nur = 0 mod p? — 1 and for any proper divisor t,
we have 2nut # 0 mod p? —1. Set 2nur = w(p?—1) (w € Z); then (r,w) = 1
follows and if a prime number ¢ divides (r,p — 1), then g|r and

p+1 I

€7z
r p—1

https://doi.org/10.1017/50027763000007364 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007364

DISTRIBUTION OF UNITS OF NUMBER FIELDS 173

imply ¢|(p + 1) and hence ¢ = 2. Set r = 2¢ -7/ (r' : odd); then we have

shown (r/,p — 1) = 1 and 2’y = w(p — 1)&L implies

p+1

on

by (r,w) = 1 and (r/,p — 1) = 1. Let us show nr|(p + 1). If n is odd,
then (p+ 1)/r € Z implies 2'|(p + 1) and hence (p + 1)/2nr" € Z implies
r = 2tr’|&nl. If n is even, then p + 1 = 0 mod 2n = 0 mod 4, and hence
(p—1)/2 is odd. Since 2'r'u = w25 and (r,w23t) = 1, we have |2
Thus we have I, = (p?> —1)/r = %} -(p—1)n =0mod (p — 1)n and hence
we have completed the proof. []

|

THEOREM 1. Suppose that Ny q(€) =1 and p is an odd prime number
which remains prime in k. Let n be a square-free integer (> 1). Then n(p —
1)|I, holds if and only if k ¢ Q(C2n) and for a prime ideal P of K =
k(Con, 2/€) lying above p, the Frobenius automorphism py = (%) s equal
to an automorphism p given in Proposition 1.

Proof. Suppose n(p — 1)|I,; then p + 1 = 0mod 2n follows from
Lemma 2 and hence pg is the complex conjugation on Q({2,) and then
po fixes each element in k if & C Q((2p,). On the other hand, p remains
prime in k£ by the assumption and hence pg is a non-trivial automorphism
of k, which is a contradiction. Thus we have k ¢ Q((2,,). By Lemma 2, the
relative degree of 3 is two and so p3 = id. and hence we have py = p given
in Proposition 1.

Conversely suppose that k ¢ Q({2,) and py is an automorphism of
order 2 and it is equal to 1 in Proposition 1 on k((2,). Then pg is the
complex conjugation on Q((2y,) and then p+ 1 = 0 mod 2n. Since the order
of pg is two, we have [Kyp : Qp] = 2 and [k, : Qp] = 2, which yields
that the relative degree of P at K/k and hence at K/k((2,) is one. Now
Lemma 2 implies n(p — 1)|I,,. U

LEMMA 3. Suppose Ny q(€) = —1 and let p be an odd prime which
remains prime in k. Then for a square-free natural number n, np%al holds
if and only if p+1 = 0 mod 2n and each prime ideal of k((ay) lying above
p is completely decomposable at K = k((a,,) (Ve ).

Proof. We note that p;21|lp as in the introduction ([IK]). Set r :=

tE((p)). We claim r = 0 mod 4. Because of ™! = —1mod (p) ([IK]),
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E((p)) is generated by € mod (p). £1 € E((p)) implies » = 0 mod 2. Suppose
that r = 2t for some odd integer t; then we have ¢+ = —1 mod (p) and
on the other hand (p+ 1)t = 0 mod 2t implies Dt = 1 mod (p), which is
a contradiction. Therefore r = 0 mod 4 and note p?> — 1 = Iy-r.

First suppose np—gl\fp and set I, = np%l -t for an integer t. Then we
have (p+1)/n= (p? —1)/n(p — 1) = Lyr/n(p — 1) = tr/2 € 2Z and then

p+1=0mod 2n.

Since the order of € in (0;/(p))* is r, we can take a generator a € oy of
(01/(p))* so that € = o*®*~D/" mod (p) for an integer u with (u,r) = 1.
Then we have € = (a“®*~D/7m)n mod (p), where (p? — 1)/nr = I,/n is an
integer. Hence 2™ = € mod (p) is soluble in 0j and ™ = € has a solution in
the local field k(). Let P be a prime ideal of K = k((an,{/€) lying above p
and set p = P N k((2,); then p+ 1 = 0 mod 2n implies that the closure of
Q(C2n) in k(C2n)p is an unramified extension of degree 2, at most over Q,,
and therefore k((2n)p = k(). Hence the solubility of the equation 2™ = € in
k@) = k(Can)p yields that p is completely decomposable at K/k(Cap)-
Conversely, we suppose p + 1 = 0 mod 2n and each prime ideal of
k((2n) lying above p is completely decomposable at K. Let 8 be a prime
ideal of K lying above p, and set p = P N k(C2p). Since p = —1 mod 2n,
the closure of Q((2,) in Kg is an unramified extension of degree 2 over
Q, and so is the closure of k. Hence by the assumption, Kqg = k(C2n)p
holds where p = P N k((2n), and the equation 2™ = € is completely soluble
over k(Can)p = k(p)- Take a generator a € oy, of (0x/(p))*™
u such that (a*)” = emod (p). 1 = ¢ = ™" mod (p) implies run =
0 mod p? — 1 and for any proper divisor ¢ of r, tun #Z 0 mod p> — 1 holds

from the definition of 7. Set run = w(p? —1) (w € Z); then (r,w) = 1 holds.
(r+1) _ Iy

r (r-1)/2
q|2(p + 1) by ¢|r and hence g = 2 because of ¢|(p — 1). Set r = 2 -/ (+/ :

odd); then we have shown (r/,p—1) = 1 and then ru = 2¢-r'u = w(p—1)22

and an integer

If a prime number ¢ divides (r,p — 1), then 2 € Z implies

n
and (r,w) =1= (',p—1) imply (+',w(p—1)) =1 and 2'u = w(p — 1)%}
and
nr'|(p 4 1).
To show np%l|[p, ie., n(pi”l)/Q = 2(]:;1) € Z, we have only to show

ordy 22 > 0 where a := orda(b) is defined by 2%||b. At the begining of

nr

the proof, we showed 4|r and then ¢ > 2. (r,w) = 1 implies that w is odd.
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If 7 is odd, then 225 = Lo € 7 yields ordy 22E) = ordy 225 >

(p—
If n is even, then p + 1 = 0 mod 4 implies 0 < ordeu = ords u =

nr

ords % + orda(p — 1) = ordy p+1 +1 = ordy % Thus we have shown

ordsy % > 0 and then n(pi”l) 5= (1:;1) is an integer and hence we have

completed the proof of Lemma 3. b

THEOREM 2. Suppose that Ny q(€) = —1 and p is an odd prime num-
ber which remains prime in k. Let n be a square-free natural number. Then

np%l|lp holds if and only if k ¢ Q(Can), n is odd and for each prime ideal P
of K = k((on, /€) lying above p, the Frobenius automorphism pg = (%)

1s equal to p given in Proposition 1.

Proof. Suppose np%l|fp; then by Lemma 3, pg induces the complex
conjugation on Q((2,) and the order of pg is two, since K is a quadratic
unramified extension of Q,. If & C Q((2p), then py induces the trivial
automorphism on k, which is a contradiction. Hence k ¢ Q((2,) holds and
then Proposition 1 implies that n is odd and the uniqueness implies pg = p.

Now let us show the converse. Since pg = p and p induces the complex
conjugation on Q(C2,), p+ 1 = 0 mod 2n holds. Since the order of pg = 2,
and the closure of k in Ky is a quadratic unramified extension of Q,, the
relative degree of P at K/k and hence K/k((2,) is one and then Lemma 3
implies n&= |I U

63. Analytic part of the proof of the theorem

Hereafter ¢ denotes a prime number and p denotes an odd prime number
which remains prime in the real quadratic field k. We set Zp := I, /lp, which
is an integer ([IK]). As in the Section 1, we denote by P(x) the set of odd
prime numbers p < x which remains prime in k. Set for x > 3,

N(z):=t{p € P(x) | {, =1},

N(z,n) = t{p € P(x) | q1 L, for Vg < n},
M(z,m1,7m2) == t{p € P(x) | q|f, for m < 3q < na},
P(z,n) == t{p € P(z) | nl{,},

& :=6""logz, & = a(logz)?, &= Vrlogu.

Then it is easy to see N(ﬂj,51)—M(ﬂj7§1,52)—M([L‘,52,53)—M(337§3,_’E—1) <
N(z) = N(z,z — 1) < N(z,&).
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LEMMA 1. M(x,&,&3) = O((xlog(logx))/(log x)?).

Proof. Since Ep = I,/¢, divides 21,/(p — 1) and I, divides PQ -1, Zp
divides 2(p + 1). For a prime number ¢ with {& < ¢ < &3, ¢|¢, implies
q|2(p + 1) and then p = —1 mod ¢q. Thus we have

M(z,6,8) < > t{peP(z)|p=—1modg}

§2<q<¢&s3
= O((zlog(log z))/(log z)?),

as is shown in [H]. 0
LEMMA 2. M(x,&5,2 — 1) = O(z(log x)72).

Proof. For a prime number p € P(x), suppose that a prime number ¢
with {3 < ¢ < = — 1 satisfies g|f,. Set

2, if Nk/Q(e) =—1.

B 2p+1) 2D, 20+D)60, 20
Then 6/, = p—1 and qﬂEp((p)) = qﬁg((p));p = p( Tt = o is an integer.

Hence $E((p)) divides 2(p + 1)/q, where we note that 2(p + 1)/q is an
even integer. Thus €2?*1/4 = 1 mod (p) holds and then Nk/Q(62(p+1)/q -
1) = 0mod p?. Here 2(p + 1)/q < 2(z + 1)/y/zlogx < +/x/logz. Thus
p? divides Hm<<\/5/ log z, meeven V&/Q(€™ — 1). Denote by € the conjugate
of € then [e;| < 1 and for an even integer m, we have |Ny q(e™ — 1)| =
€™ — 1||e* — 1] < €™ —1 < €™, and then we have

2ME&as—D) <T[p* < [ ™

p m<K/z/logx

where p runs over the set which defines M (z, &3,z — 1). Therefore we have
M(%f&x—l)<<Zm<ﬁ/logxm<<x/(logx)2. 0

LEMMA 3. M(z,£1,82) < 3¢, cy<e, P(2,9).

Proof. It is obvious. 0

LemMA 4. Set Q(&1) = [],<¢, a5 then we have N(z,&) = 32,10.)
w(n)P(xz,n), where u(n) is the Mobius function.
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Proof. N(x,&) is equal to
H{p e P(x) | (Q&), ) =1} = > p(n)

=Y ) 1= 3 w@Pn). O
n|Q(&1) pEP(x), |, n|Q(&1)

Thus we have

M@ = ¥ w0 ¥ P 0l logloza) /o)),

n|Q(&1) §1<q<&2

Now let n be a square-free natural number, and set

K, = {k(CQn, 2{1/2)7 if Nk/Q(G) — 17
Then from Lemma 1 in the Section 2 follows that under the condition

k¢ Q(Can)

dnp(2n), if Nyjqle) =1 and Ve & k(Can),
(K Q] = { 2n(2n), if Nyjq(e) = 1 and & € k(Can),
2np(n), if Nyq(e) = —1and 24 n.
Let C be a union of conjugacy classes consisting of automorphisms p in
Gal(K,,/Q) in Proposition 1 of the Section 2; then we have under the con-
dition k ¢ Q(Can)

2, if Nk/Q(E) = 1, and

either 2|n, /e € k((2n) and n(y/e)v/e =1, or /e & k(Can),
8(C) = q 1, either if Ny q(e) =1, 2{n, and /e € k((2n),
or if Ny q(€) = —1 and 2 {n,
0, otherwise,

where 7 is an automorphism such that it is the complex conjugation on
Q(¢2n) and is the non-trivial automorphism on k, and note that the equality
(K, @ k(Con)] = n implies /e € k((2n) by Lemma 1 in the Section 2 when
Ny jq(€) = 1. Moreover Theorems 1 and 2 imply that

H{peP@) k7 Q). (542) €€} if Nyglo =1,

P(z,n) =S 4fp e P(2) | k ¢ Q(Can), n:0dd, (K"T{‘Q) e C},

=
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where P8 is any prime ideal of K, lying above a prime ideal p. We apply the
Chebotarev density theorem under the GRH ([LO], Théoréme 4 in [S]):

CHEBOTAREV DENSITY THEOREM. Suppose that the GRH holds for
K,,. Let C be the union of conjugacy classes of Gal(K,,/Q) defined above.
Denote by no(x, Ky,) the number of unramified prime number p such that

(K%Q) € C and p < x, where P is a prime ideal of K, lying above p.
Then we have

C . C ,
me (@, Kn) — %Ll(w)‘ < C(%ﬁlog(dmxmq))
where ¢ is an absolute constant and dK,, stands for the absolute discriminant
of K.

Hereafter we apply this theorem assuming the GRH. Now set d(n) :=
1(C)[K,, : Q7Y then we have

(2ne(n))~t,  if Nyq(e) = —1,nis odd and k ¢ Q(n),
(ne(2n))~t, if Ny q(e) = 1,n is even, e € k(Can),
(Ve =1 and k ¢ Q(Can),
d(n) = ¢ (2np(n))~t, if Nyq(e) = 1,n is odd, \/€ € k(C2n) and
k ¢ Q(CQTL)’
2np(n)", i Nyjgle) = 1, Ve & k(Gan) and & ¢ Q(Gan),

otherwise.

LY,
Note that d(n) = 0 if k£ C Q({2,). By the theory of algebraic number fields,
it is easy to see
dKn| (2n)8n<p(2n) ngp(Zn)’
where Dy is the discriminant of k as in the introduction. Theorems 1 and 2
in the Section 2 imply m¢(z, K,,) = P(x,n) under the following condition
c(n):
{k Z Q(Can), if Nijq(e) =1,
n:odd and k ¢ Q(C2n), if Ny qle) = —1.
Note that if the condition ¢(n) is not satisfied, then d(n) = 0 holds. Hence
we have

N(x) = Z p(n)me(x, Ky,) + O( Z ﬂ'c(x,Kq))
n|Q(&1) §1<q<&2
c(n) c(q)

+0(xlog(log )/ (log )?).
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LEMMA 5. 3¢ _o<e, o(q TO(2, Kq) = O(zlog(logz)/(log )?).
Proof. 1t is easy to see that

Z wo(x, Ky)

§1<q<&2
c(q)

> datite) +0( X dla)log(ar,a ") ).

§1<q<é2 §1<q<é2

Now we have

Z d(q) < Z < 1/logz,

§1<g<&2 ¢>6"1logx
and
log 1
Z d(q)logdK, < Z (logq+1) < vVz(logz)™ < Vz ((ii (;g)x
£1<q<&r £1<q<&s &
and lastly
Z d(q)[K, : Q]logz < m(&)logz < vz (logz) 2
§1<q<&2
< vz loglog z/(log x)%.
From these follows the assertion. []
LEMMA 6.
S ol Kn) (Zu ) 2) + O(zloglog z/(log 2)?).
n|Q(&1)

c(n)
Proof. By using the Chebotarev density theorem under the GRH, we
have

the left-hand side

= Y um){d(n)Li(z) + O(d(n)v/z log(dK, 2K ))}
n|Q(&1)

_< > M(n)d(n))Li(x)Jr\/Elogxo( > d(n)[Kn:Q]>

n|Q(é1) n|Q(&1)
—I-\/:EO( Z d(n)log dKn>.
n|Q(&1)

https://doi.org/10.1017/50027763000007364 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007364

180 Y.-M. J. CHEN, Y. KITAOKA AND J. YU

The first term is equal to
S ntmdtn) + 0 3 ) ),
n>1 n

where )" means that the sum on n which has a prime divisor larger than
& =6"'logx, and it is easy to see

S et < 3 S

~ =2, 2 en)
<Y n?y 1/d= Zl/d Z (md)~
n>§&1 d|n m>&1/d

< Zl/d3 7 /d <1/ < 1/log .

We note that logQ(&1)/(67 logz) = Zq§6_110gxlogq/(6*110gx) < 1.1
and then Q(¢;) < z!V/6 if z is large. The second term is

3 1) _ Jrlogz 0(Q(&))

Vrlogx O(
n|Q(&1)

= O(zxloglog z/(log x)?)
where 0 is an arbitrary small positive number. The third term is

\/:Eo( 3 (ZiEZ;logn—l—l))—\/EO( 3 (logn+1)>

n|Q(&1) n<QEr)
= 0(VZ Q(&1)log Q(&1)) = Vz O(a"/C log 2'1/%)
= O(zloglog x/(log x)?). 0

Thus we have
<ZM ) Li(e) + Ofaloglog )/ oz

and we have only to show that the infinite series ) 7, p(n)d(n) is a pos-
itive constant to complete the proof of the main theorem. The absolute
convergence follows from ¢(n) > n/loglogn and then |y 07 | u(n)d(n)| <

Y n(loglog n)/n? < co. Set ¢y := Yoy p(n)d(n).
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(I) The case of N, q(€) = —1.

In this case, we have co = 372 | 44, pom #(n)d(n), where Dy is the
discriminant of k.

(I.1) The case of Dy = 0 mod 2.

We have

co = ) _H(l—ﬁ>_14>0,

= 2n¢(n)
n:odd

where ¢ runs over the set of all prime numbers.

(I.2) The case of Dy =1 mod 2.
In this case, we have

o0 oo o0

w= Y p(n) 3 p(n) 3 259(0727)1)

QTLQO(TL) n=1,n:odd QTLQO(TL) n=1,n:odd

n=1,n:odd
Dofn D()‘?’L
- (Do) p(m)
— A — T —————
m:l,zm:odd 2D0mg0(D0m)
(m,Dp)=1
(Do) - p(m)
- A "7
SDup(D0) 2= mgm)
(m,Dp)=1
1(Do) ( 1 )
— A 7Y H 1 ——
2Dop(Do) o q(q—1)
- {1 sh g I #4525
0p(Do) 1o7 a* —d
1
¢ —q—1
q|Do

(IT) The case of Ny q(e) = 1.
We note some facts.

e Suppose that m is odd square-free. £ C Q(C2mm) = Q((n) if and only
if Do|m. k C Q(Carm) if and only if Dg|dm.

¢ Z;O:Lm:odd p(m)/mep(m) = 2A.
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¢ Zm:odd7 square-free 1/m¢(m) = HQJ(p (1 + p(p—lfl)) =1.2957---.

Now we have

co = Z p(n)d(n)
n=1

_ 3 )N . ORI ()

n:even>1 n¢(2n) n:odd>1 2n§0(n) n>1 2n¢(2n)
VeEk(Can), n(Ve)Ve=1 Veek(Can) Vedk(Can)
kZQ(¢2n) kZQ(¢2n) kZQ(C2n)
1 p(m) 1 p(m)
> oy
4 m:odd>1 mgp(m) 2 m:odd>1 msp(m)
Veek(Cam), n(Ve)Ve=1 Veek(Cam)
kZQ(Cam) kZQ(¢2m)
1 p(m) 1 p(m)
Y9 2 g 8 2 mp(m)
m:odd>1 m:odd>1
\/Egk(@m) \/Egk(le)
_ 1 3 p(m) 1 3 p(m)
2 mep(m) 4 me(m)
m:odd>1 m:odd>1
kZQ(¢m) Veek(Cam), n(Ve)Ve=1
1 3 p(m)
8 m:odd>1 'mgo(m)
Vegk(Cam)

The absolute value of the sum of the second and third terms is less than
1 1 1 1
Ly Al oy
4 m:odd, square-free mso(m) 8 m:odd, square-free mso(m)

Ve€k(Cam) Vegk(Cam)
1 1 1 1
Ly sl ow
8 m:odd, square-free m(p(m) 8 m:odd, square-free m(p(m)
\/E’Ek(@m)

SER I i
m:odd, square-free m(p(m)
—0.1989- - -,

where the last inequality follows from /e & k((4).
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If 4] Dy, then the first term is equal to

M) 4 g.3739.
mp(m)

m: odd

and hence cy > 0 holds.

If Dg is odd, then the first term is

_p(m) pw(m) p(m )
D> (o) D> (o) DI o)
modd modd modd
Dofm D0|m

(Do) p(n)
2Dyp(Do) ngd ne(n)

(n,Do)=1
4 K(Do) 1
=4 2Dy (Do) qg)o (1 q(q - 1))
_ (Do) q(g—1)
a A(l 2Dop(Do) qlz_go P —q- 1)
1
= A( 1 —p(Do) -
( 0 qgo 2 —q- 1)

> A(1—1/19) = 0.3542- - -,

where the inequality follows from the fact that Dy is divisible by a prime
> 5 and hence we have ¢y > 0. Thus we have completed the proof of the
main theorem.
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