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Abstract. This paper establishes an extreme Ck reducibility theorem of quasi-periodic
SL(2, R) cocycles in the local perturbative region, revealing both the essence of
Eliasson [Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation.
Comm. Math. Phys. 146 (1992), 447–482], and Hou and You [Almost reducibility and
non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190 (2012),
209–260] in respectively the non-resonant and resonant cases. By paralleling further the
reducibility process with the almost reducibility, we are able to acquire the least initial
regularity as well as the least loss of regularity for the whole Kolmogorov–Arnold–Moser
(KAM) iterations. This, in return, makes various spectral applications of quasi-periodic
Schrödinger operators wide open.
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1. Introduction
Assume that (M , B, μ) is a probability space and f : M → M is an invertible map which
preserves the measure μ and is ergodic with respect to μ. Let A : M → SL(2, R) be a
measurable function. The linear cocycle defined by A over the base dynamics f is the
transformation:

(f , A) : M × R
2 → M × R

2; (θ , v) �→ (f (θ), A(θ) · v).
Note that the iterates of (f , A) have the form (f , A)n = (f n, An), where An(θ) =
A(f n−1(θ)) · · · A(f (θ))A(θ), n ∈ N and A−n(θ) = An(f

−n(θ))−1. In particular, a Ck

quasi-periodic linear cocycle (α, A) consists of a rationally independent α ∈ T
d , which

determines an ergodic torus translation on the base and A ∈ Ck(Td , SL(2, R)) which is a
k times differentiable matrix-valued function with continuous kth derivatives.
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2 A. Cai et al

In this paper, we present a purified quantitative reducibility theorem for finitely
differentiable quasi-periodic cocycles. In particular, it applies to the Ck quasi-periodic
Schrödinger cocycles (α, A), where

A(θ) = SVE (θ) =
(
E − V (θ) −1

1 0

)
.

This effectively extends the spectral applications in the one-dimensional discrete
quasi-periodic Schrödinger operator with a Ck potential:

(HV ,α,θ x)n = xn+1 + xn−1 + V (θ + nα)xn, n ∈ Z, (1)

as any formal solution (not necessarily in �2) of HV ,α,θ x = Ex satisfies

A(θ + nα)

(
xn

xn−1

)
=

(
xn+1

xn

)
.

In equation (1), V ∈ Ck(Td , R) is called the potential, α ∈ R
d is called the frequency sat-

isfying 〈n, α〉 /∈ Z for any n ∈ Z
d\{0} and θ ∈ T

d = R
d/Zd (or Rd/(2πZ)d if preferable)

is called the initial phase, k, d ∈ N
+. The spectrum of HV ,α,θ is denoted as �V ,α,θ ,

which is independent of the phase due to the minimality of dynamics and strong operator
convergence [17]. Since V is bounded by compactness, HV ,α,θ is a bounded self-adjoint
operator on �2(Z) and �V ,α,θ ⊂ R is a compact perfect set. See the nice survey of
Damanik [16] for more details of the Schrödinger operator unity. Moreover, readers are
invited to consult the excellent book of Damanik and Fillman [17] which is significant and
timely for the community.

1.1. Quantitative reducibility. The reducibility of quasi-periodic cocycles aims to con-
jugate the original quasi-periodic cocycles to constant ones via transformations that are
essentially coordinate changes. However, due to topological obstructions, reducibility
may fail and the concept of almost reducibility naturally arises, which settles for almost
conjugating to constant cocycles but has proven to be very powerful in studying the spectral
theory of quasi-periodic Schrödinger operators [38]. Readers are referred to §2 for precise
definitions of (almost) reducibility.

In the previous literature, almost reducibility is regarded as a prerequisite for reducibil-
ity, especially in the analytic region, due to the great flexibility of shrinking the analytic
radius arbitrarily. Nevertheless, in the Ck topology, the least loss of regularity is a fixed
number. To establish a Ck reducibility theorem with least initial regularity and most
remainder, we perform a process parallel to the process of almost reducibility. In other
words, reducibility is built not after almost reducibility, but at the same time with extra
assumptions of the fibered rotation number ρ(α, A), see its definition in §2.2.

Recall that α ∈ R
d is called Diophantine if there exist κ > 0 and τ > d such that

α ∈ DCd(κ , τ), where

DCd(κ , τ) :=
{
α ∈ R

d : inf
j∈Z |〈m, α〉 − j | > κ

|m|τ for all m ∈ Z
d\{0}

}
. (2)

https://doi.org/10.1017/etds.2024.88 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.88


Quantitative reducibility of Ck quasi-periodic cocycles 3

Here, we denote

|m| = |m1| + |m2| + · · · + |md |
and

〈m, α〉 = m1α1 +m2α2 + · · · +mdαd .

Denote DCd = ⋃
κ ,τ DCd(κ , τ), which is of full Lebesgue measure.

Here, φ ∈ R is called Diophantine with respect to α if it satisfies the condition
φ ∈ DCαd (γ , τ), where γ > 0, τ > d, and

DCαd (γ , τ) :=
{
φ ∈ R : inf

j∈Z |2φ − 〈m, α〉 − j | > γ

(|m| + 1)τ
for all m ∈ Z

d

}
. (3)

Additionally, φ ∈ R is called rational with respect to α if 2φ = 〈m0, α〉 mod Z for some
m0 ∈ Z

d .
Our main theorem is as follows.

THEOREM 1.1. Let A ∈ SL(2, R), α ∈ DCd(κ , τ) and f ∈ Ck(Td , sl(2, R)) with
k > 14τ + 2. There exists ε = ε(κ , τ , d , k, ‖A‖) such that if ‖f (θ)‖k � ε and ρ(α, Aef)
is Diophantine or rational with respect to α, then (α, Aef (θ)) is Ck,k0 reducible with
k0 < k − 10τ − 3.

Remark 1.2. The quantitative version of Theorem 1.1 can be found in §3, specifically in
Theorem 3.8. Our theorem is a significant improvement over the results presented in [12].
Notably, the loss of regularity 10τ + 3 does not depend on the parameter k.

As there are few reducibility results in the Ck topology, we only briefly review
the development of analytic reducibility. Let us first discuss it for local cocycles of
the form (α, Aef (θ)). An achievement was initiated by Dinaburg and Sinai [22], who
applied the classical Kolmogorov–Arnold–Moser (KAM) scheme. They established the
positive measure reducibility in terms of the rotation number for continuous quasi-periodic
Schrödinger equations featuring small analytic potentials in the perturbative regime. Moser
and Pöschel [32] later expanded on this achievement by using a resonance-cancellation
technique, which extended the positive measure reducibility to a class of rotation numbers
that are rational with respect to α. Moreover, the breakthrough came from Eliasson [23],
who established weak almost reducibility for all energies E and full measure reducibility
for Diophantine frequencies and small analytic potentials. For further insights into strong
almost reducibility results, readers can refer to the works of Chavaudret [14] and Leguil
et al [31]. In the non-perturbative regime, Puig [33] employed the localization method
to derive a non-perturbative version of Eliasson’s reducibility theorem. As for continuous
linear systems, Hou and You [26] proved weak almost reducibility results for all rotation
numbers and frequencies ω = (1, α) ∈ T

2 under small analytic perturbations.
In the case of global cocycle (α, A(θ)) with A ∈ Cω(T, SL(2, R)) and α ∈ T, Avila

and Krikorian [5] applied the renormalization scheme to show that, for α satisfying certain
recurrent Diophantine conditions and almost every (a.e.) E, the quasi-periodic Schrödinger
cocycle is either reducible or non-uniform hyperbolic. Additionally, Avila, Fayad, and
Krikorian [3] proved that for irrational α and a.e. E, the quasi-periodic Schrödinger cocycle
is either rotations reducible or non-uniformly hyperbolic.
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4 A. Cai et al

In the realm of finitely differentiable topology, reducibility results are scarce and the
existing ones are rough in the sense of very large initial regularity and very high loss.
We note that our philosophy is that nicer reducibility implies nicer spectral applications.
In this direction, Theorem 1.1, which was established via keeping all the parameters, allows
us to obtain the most general applications according to the technique.

1.2. Spectral type and structure. Over the past forty years, advances have been made
in studying the spectral theory of the Schrödinger operator, focusing on understanding
the spectral type and the structure of the spectrum. In the 21st century, people found
that quantitative dynamical estimates lead to quantitative spectral applications [4]. In
particular, quantitative (almost) reducibility is one of the most powerful techniques, with
abundant fruitful spectral results [2, 10–13, 18, 27, 28, 33, 37]. One is invited to consult
You’s 2018 ICM survey [38]. Generally, spectral type results refer to absolutely continuous
spectrum, singular continuous spectrum, pure point spectrum, ballistic transport, Anderson
localization, etc. while regarding spectral structure, common results often involve the
Cantor spectrum and homogeneous spectrum. For the sake of concision, we only list one
spectral type application and one spectral structure application, though our Theorem 1.1
along with its quantitative version is promisingly applicable to many other spectral results
in relation.

THEOREM 1.3. (Spectral type application) Assume α ∈ DCd(κ , τ), V ∈ Ck(Td , R) with
k > 14τ + 2. If there exists ε′ = ε′(κ , τ , k, d) such that ‖V ‖k � ε′ and ρ(α, SVE ) is
Diophantine or rational with respect to α for E ∈ �V ,α , then HV ,α,θ has strong ballistic
transport for all θ ∈ T

d .

Remark 1.4. The definition of (global) strong ballistic transport is too lengthy, so we
prefer to put it in §4 rather than here. This theorem compensates for the work of Ge
and Kachkovskiy [25] by providing the precise requirement of k for a Ck quasi-periodic
Schrödinger family to be reducible.

Indeed, there is a qualitative connection between spectral type and transport properties,
which can be understood through the RAGE theorem [16]. However, quantitative results
also illustrate the connection between them. For example, except for purely absolutely
continuous spectra, we generally do not expect to observe ballistic transport phenomena.
In particular, it has been proven in [34] that point spectra cannot support any ballistic
motion. However, when the operator is restricted to a subspace that supports purely
absolutely continuous spectrum, we can still expect to observe ballistic transport
phenomena. Additionally, the works of Guarneri, Combes, and Last [15, 30] have also
made contributions to the connection. In particular, the Guarneri–Combes–Last theorem
[30] quantitatively provides insights into transport phenomena in one-dimensional systems
with absolutely continuous spectrum. In subsequent studies, Asch and Knauf [1], as well
as Damanik [20], demonstrated the occurrence of strong ballistic transport in periodic
continuous Schrödinger operators, which are widely known to have absolutely continuous
spectra. Later, Zhang and Zhao [42] explicitly established a connection between the
values of transport exponents and absolutely continuous spectra in the setting of discrete
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single-frequency quasi-periodic operators. More recently, based on the results and
techniques in the discrete setting of Fillman [24], Young’s research [39] discovered strong
ballistic transport in a class of continuum limit-periodic operators known to possess
absolutely continuous spectra.

Let us now state our spectral structure result. First, recall the following definition.

Definition 1.5. [13] Let ν > 0. A closed set B ⊂ R is called ν-homogeneous if

|B ∩ (E − ε, E + ε)| > νε for all E ∈ B, for all 0 < ε < diamB.

As another corollary of Theorem 1.1, we have the following.

THEOREM 1.6. (Spectral structure application) Assume α ∈ DCd(κ , τ), V ∈ Ck(Td , R)
with k > 17τ + 2. If there exists ε′′ = ε′′(κ , τ , k, d) such that ‖V ‖k � ε′′, then �V ,α is
ν-homogeneous for some ν ∈ (0, 1).

Remark 1.7. We know that the homogeneity of the spectrum is related to polynomial decay
of gap length and Hölder continuity of the integrated density of states. Therefore, we
need to change the assumption to k > 17τ + 2 so that we can further ensure the 1

2 -Hölder
continuity of IDS (see [10, Theorems 3.3 and 3.4]). This theorem greatly reduces the initial
regularity assumption in the Ck case.

The spectrum’s homogeneity plays a crucial role in the inverse spectral theory, as
demonstrated in the seminal works of Sodin and Yuditskii [35, 36]. Under the assumption
of a finite total gap length and a reflectionless condition on the spectrum, it has been proved
that the homogeneity of the spectrum implies the almost periodicity of the associated
potentials [35]. Note that the assumption of having a finite total gap length is trivial
in the discrete case since the gap length is always bounded by the diameter of the
spectrum. In particular, the homogeneity of the spectrum is closely linked to Deift’s
conjecture, which investigates whether the solutions of the Korteweg–De Vries (KdV)
equation exhibit quasi-periodicity when the initial data are quasi-periodic [9, 19]. In the
continuous setting, Binder et al [9] demonstrated that when considering small analytic
quasi-periodic initial data with Diophantine frequency, the solution of the KdV equation
exhibits almost periodicity in the temporal variable. In the discrete setting, Leguil et al [31]
demonstrated that for the subcritical potential V ∈ Cω(T, R), the Toda flow is almost
periodic in the time variable when considering initial data that are also almost periodic
with β(α) = 0. Recently, Avila et al [6] also constructed an intriguing counter-example
that even for the AMO, its spectrum is not homogeneous if e−2/3β(α) < λ < e2/3β(α).
In the Ck case, Cai and Wang [13] have recently proved the homogeneity of the spectrum.
They achieved this through a not so refined quantitative Ck reducibility theorem for
quasi-periodic SL(2, R) cocycles, as well as by employing the Moser–Pöschel argument
for the associated Schrödinger cocycles.

2. Preliminaries
2.1. Conjugation and reducibility. For a bounded analytic (possibly matrix valued)
function F(θ) defined on Sh := {θ = (θ1, . . . , θd) ∈ C

d | |�θi | < h for all 1 � i � d},
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6 A. Cai et al

let |F |h = supθ∈Sh ‖F(θ)‖ and denote byCωh (T
d , ∗) the set of all these ∗-valued functions

(∗ will usually denote R, sl(2, R), SL(2, R)). Let Cω(Td , ∗) = ⋃
h>0 C

ω
h (T

d , ∗) and
Ck(Td , ∗) be the space of k times differentiable with continuous kth derivatives functions.
Define the norm as

‖F‖k = sup
|k′ |�k,θ∈Td

‖∂k′F(θ)‖.

For two cocycles (α, A1), (α, A2) ∈ T
d × C∗(Td , SL(2, R)), ‘∗’ represents ‘ω’ or ‘k’,

we can say that they are C∗ conjugated if there exists Z ∈ C∗(2Td , SL(2, R)), such that

Z(θ + α)A1(θ)Z
−1(θ) = A2(θ).

Notably, we want to define Z on the 2Td = R
d/(2Z)d for the purpose of making it still

real-valued.
An analytic cocycle (α, A) ∈ T

d × Cωh (T
d , SL(2, R)) is called almost reducible if

there exist a sequence of constant matrices Aj ∈ SL(2, R), a sequence of conjugations
Zj ∈ Cωhj (2Td , SL(2, R)), and a sequence of small perturbation fj ∈ Cωhj (Td , sl(2, R))
such that

Zj (θ + α)A(θ)Z−1
j (θ) = Aje

fj (θ)

with

|fj (θ)|hj → 0, j → ∞.

Furthermore, it is said to be weak (Cω) almost reducible if hj → 0 and it is said
to be strong (Cω

hj ,h′) almost reducible if hj → h′ > 0. We also claim (α, A) is

Cω
h,h′ reducible if there exist a constant matrix Ã ∈ SL(2, R) and a conjugation map
Z̃ ∈ Cω

h′(2Td , SL(2, R)) such that

Z̃(θ + α)A(θ)Z̃−1(θ) = Ã(θ).

To avoid repetition, we have provided an equivalent definition of Ck (almost) reducibil-
ity as follows.

One can say that a finitely differentiable cocycle (α, A) is Ck,k1 almost reducible if
A ∈ Ck(Td , SL(2, R)) and the Ck1 -closure of its Ck1 conjugacies contains a constant.
In addition, we say (α, A) is Ck,k1 reducible if A ∈ Ck(Td , SL(2, R)) and its Ck1

conjugacies contain a constant.

2.2. Rotation number and degree. Suppose A ∈ C0(Td , SL(2, R)) is homotopic to
identity. Then we show the projective skew-product FA : Td × S

1 → T
d × S

1 with

FA(x, ω) :=
(
x + α,

A(x) · ω
|A(x) · ω|

)
,

which is homotopic to identity as well. Thus, we will lift FA to a map F̃A : Td ×
R → T

d × R with F̃A(x, y) = (x + α, y + ψ(x, y)), where for every x ∈ T
d , ψ(x, y) is

Z-periodic in y. The map ψ : Td × R → R is said to be a lift of A. Assume μ, which is
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invariant by F̃A, is any probability measure on T
d × R. Its projection on the first coordinate

is provided by the Lebesgue measure. The number

ρ(α,A) :=
∫
Td×R

ψ(x, y) dμ(x, y) mod Z (4)

has nothing to do with the choices of the lift ψ or the measure μ. One calls it the fibered
rotation number of cocycle (α, A) (readers can refer to [28] for more details).

Assume

Rφ :=
(

cos 2πφ − sin 2πφ
sin 2πφ cos 2πφ

)

if A ∈ C0(Td , SL(2, R)) is homotopic to θ → R〈n,θ〉 for some n ∈ Z
d , then we call n the

degree of A and denote it by degA. Furthermore,

deg(AB) = deg A+ deg B. (5)

Please note that the fibered rotation number remains invariant under real conjugacies
that are homotopic to the identity map. Generally speaking, when the cocycle (α, A1) is
conjugated to (α, A2) by B ∈ C0(2Td , SL(2, R)), that is, B(· + α)A1(·)B−1(·) = A2(·),
we have

ρ(α,A2) = ρ(α,A1) − 〈deg B, α〉
2

. (6)

2.3. Hyperbolicity and integrated density of states. We call the cocycle (α, A) uniformly
hyperbolic if for every θ ∈ T

d , there exists a continuous decomposition C
2 = Es(θ)⊕

Eu(θ) such that for some constants C > 0, c > 0, and every n � 0,

|An(θ)v| � Ce−cn|v|, v ∈ Es(θ),

|A−n(θ)v| � Ce−cn|v|, v ∈ Eu(θ).
This decomposition is invariant by the dynamics, which means that for any θ ∈ T

d ,
A(θ)E∗(θ) = E∗(θ + α) for ∗ = s, u. In the C0 topology, the set of uniformly hyperbolic
cocycles is an open set. Specifically, in the case of quasi-periodic Schrödinger operators,
the cocycle (α, SVE ) is uniformly hyperbolic if and only if E /∈ �V ,α , or in other words, if
the energy lies within a spectral gap [29].

Let us consider the Schrödinger operators HV ,α,θ , where an important concept is the
integrated density of states (IDS). The IDS is a function NV ,α : R → [0, 1] that can be
defined by

NV ,α(E) =
∫
Td

μV ,α,θ (−∞, E] dθ ,

where μV ,α,θ = μ
e−1
V ,α,θ + μ

e0
V ,α,θ is the universal spectral measure of HV ,α,θ and {ei}i∈Z is

the canonical basis of �2(Z). We say {e−1, e0} is the pair of cyclic vectors of HV ,α,θ here.
There exist alternative approaches to defining the IDS by counting eigenvalues of the

truncated Schrödinger operator. For further details, readers may consult [7]. Furthermore,
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8 A. Cai et al

there is a connection between ρ(α, SVE ) and the IDS, which can be expressed as
follows:

NV ,α(E) = 1 − 2ρ(α, SVE ) mod Z. (7)

To gain a better understanding of the various types of spectral measures, I recommend
referring to the book [16].

2.4. Analytic approximation. Let f ∈ Ck(Td , sl(2, R)). By Zehnder [40], there is a
sequence {fj }j�1, fj ∈ Cω1/j (Td , sl(2, R)) and a universal constant C′, such that

‖fj − f ‖k → 0, j → +∞,

|fj |1/j � C′‖f ‖k , (8)

|fj+1 − fj |1/(j+1) � C′
(

1
j

)k
‖f ‖k .

Furthermore, if k � k̃ and f ∈ Ck̃ , the properties in equation (8) still hold with k̃ instead
of k. This implies that the sequence can be constructed from f irrespective of its regularity
(since fj is achieved by convolving f with a map that does not depend on k).

3. Dynamical estimates: full measure reducibility
In this section, the main emphasis is on investigating the reducibility property of the
following Ck quasi-periodic SL(2, R) cocycle:

(α, Aef (θ)) : Td × R
2 → T

d × R
2; (θ , v) �→ (θ + α, Aef (θ) · v),

where α ∈ DCd(κ , τ), A ∈ SL(2, R), f ∈ Ck(Td , sl(2, R)), and d ∈ N
+. Our approach

involves initially analyzing the approximating analytic cocycles {(α, Aefj (θ))}j�1 and
subsequently transferring the obtained estimates to the targeted Ck cocycle (α, Aef (θ))
through analytic approximation techniques.

3.1. Preparations. In the following subsections, we will consider fixed parameters
ρ, ε, N , σ ; we refer to the situation in which there exists m∗ satisfying 0 < |m∗| � N

such that

inf
j∈Z|2ρ − 〈m∗, α〉 − j | < εσ ,

as the ‘resonant case’ (for simplicity, we will use the notation ‘|2ρ − 〈m∗, α〉|’ to represent
the left side and similarly, ‘|〈m∗, α〉|’ to represent the right side). The integer vector m∗
will be referred to as a ‘resonant site’. This type of small divisor problem commonly arises
when attempting to solve the cohomological equation at each step of the KAM procedure.
Resonances are connected to a useful decomposition of the space Br := Cωr (T

d , su(1, 1)).
For further details and the precise definition of su(1, 1) and SU(1, 1), please refer to the
proof of Proposition 3.3.
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Given α ∈ R
d , A ∈ SU(1, 1), and η > 0, there exists a decomposition Br =

Bnrer (η)
⊕

Brer (η) satisfying that for any Y ∈ Bnrer (η),

A−1Y (θ + α)A ∈ Bnrer (η), |A−1Y (θ + α)A− Y (θ)|r � η|Y (θ)|r . (9)

Additionally, denote Pnre, Pre as the standard projections from Br onto Bnrer (η) and
Brer (η), respectively.

Next, we have a crucial lemma that plays a key role in eliminating all the non-resonant
terms. This lemma will be used in the proof of the resonant conditions.

LEMMA 3.1. [11, 26] Assume that A ∈ SU(1, 1), ε � (4‖A‖)−4, and η � 13‖A‖2ε1/2.
For any g ∈ Br with |g|r � ε, there exist Y ∈ Br and gre ∈ Brer (η) such that

eY(θ+α)(Aeg(θ))e−Y(θ) = Aeg
re(θ),

with estimates

|Y |r � ε1/2, |gre|r � 2ε.

Remark 3.2. For the inequality ‘η � 13‖A‖2ε1/2’, ‘ 1
2 ’ is sharp because of the quantitative

implicit function theorem [8, 21]. The proof relies solely on the fact that Br is a Banach
space. Therefore, it is applicable not only to the Cω topology but also to the Ck and C0

topologies. For more detailed information, please refer to [11, appendix].

3.2. Analytic KAM theorem. Following our plan, our first objective is to establish
the KAM theorem for the analytic quasi-periodic SL(2, R) cocycle (α, Aef (θ)), where
A possesses eigenvalues eiρ , e−iρ with ρ ∈ 2πR ∪ 2πiR. We present our quantitative
analytic KAM theorem in the following.

PROPOSITION 3.3. [10, 11] Let α ∈ DCd(κ , τ), κ , r > 0, τ > d, σ < 1
6 . Suppose that

A ∈ SL(2, R) satisfying ‖A‖ bounded, f ∈ Cωr (Td , sl(2, R)). Then for any 0 < r ′ < r ,
there exist constants c = c(κ , τ , d), D > 2/σ and D̃ = D̃(σ ) such that if

|f |r � ε � c

‖A‖D̃ (r − r ′)Dτ , (10)

then there exist B ∈ Cω
r ′(2T

d , SL(2, R)), A+ ∈ SL(2, R) and f+ ∈ Cω
r ′(T

d , sl(2, R))
such that

B(θ + α)(Aef (θ))B−1(θ) = A+ef+(θ).

More precisely, let N = (2/(r − r ′))|ln ε|, then we can distinguish two cases:
• (Non-resonant case) if for any m ∈ Z

d with 0 < |m| � N , we have

|2ρ − 〈m, α〉| � εσ ,

then

|B(θ)− Id|r ′ � ε1−8/D , |f+|r ′ � ε2−8/D
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10 A. Cai et al

and

‖A+ − A‖ � 2‖A‖ε;

• (Resonant case) if there exists m∗ ∈ Z
d with 0 < |m∗| � N such that

|2ρ − 〈m∗, α〉| < εσ ,

then

|B|r ′ � 8
(‖A‖
κ

)1/2( 2
r − r ′

|ln ε|
)τ/2

× ε−r ′/(r−r ′),

‖B‖0 � 8
(‖A‖
κ

)1/2( 2
r − r ′

|ln ε|
)τ/2

,

|f+|r ′ � 25+τ‖A‖|ln ε|τ
κ(r − r ′)τ

εe−N ′(r−r ′)(N ′)deNr ′ � ε100, N ′ > 2N2.

Moreover, A+ = eA
′′

with ‖A′′‖ � 2εσ , A′′ ∈ sl(2, R). More accurately, we have

MA′′M−1 =
(
it v

v̄ −it
)

with |t | � εσ and

|v| � 24+τ‖A‖|ln ε|τ
κ(r − r ′)τ

εe−|m∗|r .

Proof. We will only prove estimates for the non-resonant case because it is more delicate
and the proof of the resonant case is the same compared with those in [10].

Let us recall that sl(2, R) is isomorphic to su(1, 1), which is a Lie algebra consisting of
matrices of the form (

it v

v̄ −it
)

with t ∈ R, v ∈ C. The isomorphism between them is given by the map A → MAM−1,
where

M = 1
1 + i

(
1 −i
1 i

)

and a straightforward calculation yields

M

(
x y + z

y − z −x
)

, M−1 =
(

iz x − iy

x + iy −iz
)

where x, y, z ∈ R. Here, SU(1, 1) is the corresponding Lie group of su(1, 1). We will
prove this theorem within SU(1, 1), which is isomorphic to SL(2, R).

We consider the non-resonant case as follows.
For 0 < |m| � N = (2/(r − r ′))|ln ε|, we have

|2ρ − 〈m, α〉| � εσ , (11)
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Quantitative reducibility of Ck quasi-periodic cocycles 11

by equation (10) and D > 2/σ , we get

|〈m, α〉| � κ

|m|τ � κ

|N |τ � εσ/2. (12)

Indeed, it is well known that the conditions in equations (11) and (12) play a role in
addressing the small denominator problem in KAM theory.

We now define g ∈ Cωr (Td , su(1, 1)) such that

g(θ) =
∑

n∈Zd ,0<|n|�N
f̂ (n)e2πi〈n,θ〉.

From Schur’s theorem, we might as well assume A = ( e
iρ p

0 e−iρ
) ∈ SU(1, 1).The

condition ‖A‖ satisfying bounded gives a bound for p and that is the only reason for this
condition.

Now we want to solve the cohomological equation

Y (θ + α)A− AY(θ) = −Ag(θ). (13)

Let

Y =
(
y1 y2

y3 y4

)
, g =

(
g1 g2

g3 g4

)
,

then we can obtain the equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eiρy3(θ + α)− e−iρy3(θ) = −e−iρg3(θ),

eiρy1(θ + α)− eiρy1(θ)− py3(θ) = −eiρg1(θ)− pg3(θ),

py3(θ + α)+ e−iρy4(θ + α)− e−iρy4(θ) = −e−iρg4(θ),

py1(θ + α)+ e−iρy2(θ + α)− eiρy2(θ)− py4(θ) = −eiρg2(θ)− pg4(θ).

These equations can be solved by Fourier transform. Compare the corresponding Fourier
coefficients of the two sides, and this shows the existence of Y. Apply equation (11) twice
to solve the off-diagonal and apply equation (12) once to solve the diagonal, we can get

|Y |r ′ � cε−3σ |g|r , 0 < r ′ < r , (14)

where the constant only depends on κ , τ .
By the cohomological equation (13), we obtain

Y (θ + α) = AY(θ)A−1 − Ag(θ)A−1.

Then, we can get

eY(θ+α)(Aef (θ))e−Y(θ)

= eAY(θ)A
−1−Ag(θ)A−1

(Aef (θ))e−Y(θ)

= Aef̂ (0)−(TNf )(θ)+Y(θ)ef (θ)e−Y(θ)

= A[ef̂ (0) + O(f (θ)− (TNf )(θ)+ f (θ)Y (θ))]

= Aef̂ (0)[Id + e−f̂ (0)O((RNf )(θ)+ f (θ)Y (θ))]

= A+ef+(θ).
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12 A. Cai et al

Here, TN is the truncation operator such that

(TNf )(θ) =
∑

n∈Zd ,|n|�N
f̂ (n)e2πi〈n,θ〉

and

(RNf )(θ) =
∑

n∈Zd ,|n|>N
f̂ (n)e2πi〈n,θ〉.

Therefore, we define ⎧⎪⎪⎨
⎪⎪⎩
B(θ) = eY(θ),

A+ = Aef̂ (0),

f+ = O((RNf )(θ)+ f (θ)Y (θ)).

Note that although we write D > 2/σ , that is, σ > 2/D, we consider D to be very close
to 2/σ in the actual process, such as 7/D > 3σ > 6/D. Now we have estimates

|g|r �
∑

n∈Zd ,0<|n|�N
|f̂ (n)e2πi〈n,θ〉| � cεNd−1 < εNτ−1 < ε1−1/D ,

|Y |r ′ � cε−3σ |g|r < ε−7/D · ε1−1/D < ε1−8/D ,

|B − Id|r ′ � |Y |r ′ < ε1−8/D .

|(RNf )(θ)|r ′ �
∑

n∈Zd ,|n|>N
|f̂ (n)e2πi〈n,θ〉|r ′

� c|f |re−N(r−r ′)
(
N + 1

r − r ′

)d
� cεe−2 log(1/ε)(N)d

< ε · ε2 · ε−1/D

< ε3−1/D .

|f+|r ′ � |f Y |r ′ + |(RNf )|r ′ � cε · ε1−8/D + ε3−1/D < ε2−8/D .

‖A+ − A‖ � ‖A‖‖Id − ef̂ (0)‖ � 2‖A‖ε.

This finishes the proof of Proposition 3.3.

Remark 3.4. This version of analytic KAM theorem is a perfect combination of
Eliasson [23] and Hou and You [26]. While the resonant case which absorbs the essence
of Hou and You stays the same, the refined non-resonant case avoids eliminating irrelevant
non-resonant terms via Eliasson’s way compared with Cai [10]. This essentially reduces
the norm of conjugation maps, which is later vital for us to ensure that the final loss of
regularity is independent of the initial k for our Ck reducibility theorem. Note that this
is not at all considered by Cai [10] as almost reducibility does not really care about the
convergence of the conjugation maps, but reducibility does.
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3.3. Ck reducibility. As planned, we will present the quantitative Ck reducibility via
analytic approximation [40].

The crucial improvement here compared with [10] lies at the point where we are able
to obtain reducibility results in a KAM step. In fact, when the resonant steps are well
separated from each other, it allows for improved control over the conjugation maps during
the inductive argument. Then, after we apply certain conditions to the rotation number of
cocycle (α, Aef (θ)), we can find that there are only finite resonant steps in the whole KAM
iteration process. This, in return, will give us the best possible initial regularity k through
the technique.

Before we prove the main theorem, we will first cite [10, Proposition 3.1] to simplify
the main proof. We first recall some notation given in [10].

Let {fj }j�1, fj ∈ Cω1/j (Td , sl(2, R)) be the analytic sequence approximating
f ∈ Ck(Td , sl(2, R)) which satisfies equation (8).

For 0 < r ′ < r , denote

ε′0(r , r ′) = c

(2‖A‖)D̃ (r − r ′)Dτ (15)

and

εm = c

(2‖A‖)D̃mDτ+1/2
, m ∈ Z

+, (16)

where c depends on κ , τ , d , and D, D̃ ∈ Z depend on σ .
Then for any 0 < s � 1/(6Dτ + 3) fixed, there exists m0 such that for any m � m0,

we can get

c

(2‖A‖)D̃mDτ+1/2
� ε′0

(
1
m

,
1

m1+s

)
. (17)

We will begin withM > max{(2‖A‖)D̃/c, m0},M ∈ N
+. Let lj = M(1+s)j−1

, j ∈ N
+.

Because lj is not an integer, we pick [lj ] + 1 instead of lj .
Now, let � = {n1, n2, n3, . . .} denote the sequence of all resonant steps. In other

words, the (nj )th step is obtained by the resonant case. By the analytic approximation
in equation (8) and Proposition 3.3 in each iteration step, we can establish the following
almost reducibility result concerning each (α, Aeflj (θ)) by applying induction.

PROPOSITION 3.5. [10, 12] Let α ∈ DCd(κ , τ), σ < 1
6 . Assume that A ∈ SL(2, R)

satisfying A bounded, f ∈ Ck(Td , sl(2, R)) with k > (D + 2)τ + 2 and {fj }j�1 be as
in §2.4. There exists ε̄ = ε̄(κ , τ , d , k, ‖A‖, σ) such that if

‖f ‖k � ε̄ � ε′0
(

1
l1

,
1
l2

)
, (18)

then there exist Blj ∈ Cω1/lj+1
(2Td , SL(2, R)), Alj ∈ SL(2, R), and f

′
lj

∈ Cω1/lj+1
(Td ,

sl(2, R)) such that

Blj (θ + α)(Ae
flj (θ))B−1

lj
(θ) = Alj e

f
′
lj
(θ)

, (19)
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14 A. Cai et al

with estimates

|Blj (θ)|1/lj+1 � 64
(‖A‖
κ

)(
2

(1/lj )− (1/lj+1)
ln

1
εlj

)τ
× εlj

−(2/lj+1)/((1/lj )−(1/lj+1)) � ε
−σ/2−s
lj

, (20)

‖Blj (θ)‖0 � 64
(‖A‖
κ

)(
2

(1/lj )− (1/lj+1)
ln

1
εlj

)τ
� ε

−σ/2
lj

, (21)

|deg Blj | � 4lj ln
1
εlj

, (22)

|f ′
lj
(θ)|1/lj+1 � ε

2−8/D
lj

, ‖Alj ‖ � 2‖A‖. (23)

Moreover, there exists f lj ∈ Ck0(Td , sl(2, R)) with k0 ∈ N, k0 � (k − 10τ − 3)/(1 + s)

such that

Blj (θ + α)(Aef (θ))B−1
lj
(θ) = Alj e

f lj
(θ), (24)

with estimate

‖f lj (θ)‖k0 � ε
3/D
lj

. (25)

Remark 3.6. By the new analytic KAM scheme and the original proof method in [10, 12],
we can also get the results of the proposition. The fact that the existing estimates in
equations (23) and (25) are more delicate than the original is also due to the use of the
new Cω KAM theorem.

Remark 3.7. The estimates of equation (22) can be done better in the non-resonant case
because the non-resonant step does not change the degree, thus the estimates of the degree
in the non-resonant case can be considered as the estimates of the resonant step closest to
this step.

With Proposition 3.5 in hand, we are going to transfer all the estimates from
(α, Aeflj (θ)) to (α, Aef (θ)) through analytic approximation. We establish the following
quantitative Ck reducibility theorem.

THEOREM 3.8. Let α ∈ DCd(κ , τ), σ < 1
6 , A ∈ SL(2, R), and f ∈ Ck(Td , sl(2, R))

with k > (D + 2)τ + 2. Then there exists ε0 = ε0(κ , τ , d , k, ‖A‖, σ) such that if

‖f ‖k � ε0 � ε′0
(

1
l1

,
1
l2

)
(26)

and:
• if ρ(α, Aef) is Diophantine with respect to α: ρ(α, Aef) ∈ DCαd (γ , τ), then there

exists two constants C1 = C1(γ , κ , τ , d , k, ‖A‖, σ), C2 = C2(γ , κ , τ , d , k, ‖A‖, σ)
and B1 ∈ Ck0(2Td , SL(2, R)) with k0 ∈ N, k0 � (k − 10τ − 3)/(1 + s) such that

B1(θ + α)(Aef (θ))B−1
1 (θ) = Rφ ∈ SL(2, R), φ /∈ Z, (27)

with estimates

‖B1‖k0 � C1, |deg B1| � C2; (28)
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• if ρ(α, Aef) is rational with respect to α: 2ρ(α, Aef) = 〈m0, α〉 mod Z for
some m0 ∈ Z

d , then there exists B2 ∈ Ck0(2Td , SL(2, R)) with k0 ∈ N, k0 �
(k − 10τ − 3)/(1 + s) such that

B2(θ + α)(Aef (θ))B−1
2 (θ) = Ã2 ∈ SL(2, R), (29)

with

ρ(α, Ã2) = 0. (30)

Remark 3.9. In the inequality k0 � (k − 10τ − 3)/(1 + s), due to the precise choice of
k, τ , s, we can also pick k0 = [k − 10τ − 3]. Here, ‘[x]’ stands for the integer part of x.

Proof. (Diophantine case) By equation (26) and Proposition 3.5, take ε0 = ε̄ as
in Proposition 3.5 and apply it to cocycle (α, Aef (θ)). Then there exists Blj ∈
Cω1/lj+1

(2Td , SL(2, R)), Alj ∈ SL(2, R), and f lj ∈ Ck0(Td , sl(2, R)) with k0 ∈ N,
k0 � (k − 10τ − 3)/(1 + s) such that

Blj (θ + α)(Aef (θ))B−1
lj
(θ) = Alj e

f lj
(θ), (31)

with estimates

|Blj (θ)|1/lj+1 � ε
−σ/2−s
lj

, ‖Blj (θ)‖0 � ε
−σ/2
lj

, |deg Blj | � 4lj ln
1
εlj

, (32)

‖Alj ‖ � 2‖A‖, ‖f lj (θ)‖k0 � ε
3/D
lj

. (33)

In the last part of the analytic approximation in equation (8), taking a telescoping sum
from j to +∞, we get

‖f (θ)− flj (θ)‖0 � c

(2‖A‖)D̃lDτ+1/2
1 lk−1

j

, (34)

‖f (θ)‖0 + ‖flj (θ)‖0 � c

(2‖A‖)D̃MDτ+1/2
+ c̃

(2‖A‖)D̃MDτ+1/2
. (35)

Thus, by equations (31)–(35), we have

‖f lj (θ)‖0 � ‖f ′
lj
(θ)‖0 + ‖A−1

lj
‖‖Blj (θ + α)(Aef (θ) − Ae

flj (θ))B−1
lj
(θ)‖0

� ε
2−8/D
lj

+ 2‖A‖ × ε−σ
lj

× c

(2‖A‖)D̃lDτ+1/2
1 lk−1

j

(36)

� ε1+s
lj

.

Since ρ(α, Aef) ∈ DCαd (γ , τ), for any m ∈ Z
d , we have

‖2ρ(α, Alj e
f lj

(θ)
)− 〈m, α〉‖R/Z

= ‖2ρ(α, Aef (θ))− 〈deg Blj , α〉 − 〈m, α〉‖R/Z
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16 A. Cai et al

� γ

(|m+ deg Blj | + 1)τ

�
γ (1 + |deg Blj |)−τ

(|m| + 1)τ
,

which implies ρ(α, Alj e
f lj

(θ)
) ∈ DCαd (γ (1 + |deg Blj |)−τ , τ).

By equation (32), we can obtain

ε
((1+s)σ )/2
lj

(1 + |deg Blj |)τ �
[

c

(2‖A‖)D̃ljDτ+1/2

]((1+s)σ )/2(
1 + 4lj ln

1
εlj

)τ
.

Obviously, let j → ∞ and then the right-hand side of the inequality goes to zero.
Therefore, for any given γ > 0, there exists j ′ = j ′(γ ) ∈ N such that

ε
((1+s)σ )/2
lj ′ (1 + |deg Blj ′ |)τ � γ

and then

γ (1 + |deg Blj ′ |)−τ � ε
((1+s)σ )/2
lj ′ = ε

σ/2
lj ′+1

. (37)

However, for 0 < |m| � Nlj ′+1
= (2/(1/lj ′+1 − 1/lj ′+2))|ln εlj ′+1

|, we have

1
(|m| + 1)τ

� 1
((2/(1/lj ′+1 − 1/lj ′+2)) ln(1/εlj ′+1

)+ 1)τ
� 2εσ/2lj ′+1

. (38)

Then by equations (37) and (38), we can get

‖2ρ(α, Alj ′ )− 〈m, α〉‖R/Z
� ‖2ρ(α, Alj ′ e

f l
j ′ (θ))− 〈m, α〉‖R/Z − |2ρ(α, Alj ′ e

f l
j ′ (θ))− 2ρ(α, Alj ′ )|

�
γ (1 + |deg Blj ′ |)−τ

(|m| + 1)τ
− 2ε(1+s)/2

lj ′

� ε
σ/2
lj ′+1

· 2εσ/2lj ′+1
− 2ε1/2

lj ′+1

� εσlj ′+1
,

which means the (j ′ + 1)th step is non-resonant with

Blj ′+1
= B̃lj ′ ◦ Blj ′ , |B̃lj ′ (θ)− Id|1/lj ′+2

� ε
1−8/D
lj ′+1

, deg Blj ′+1
= deg Blj ′ .

Assume that for ln, j ′ + 1 � n � j0, we have

Bln(θ + α)(Aefln (θ))B−1
ln
(θ) = Alne

f ′
ln
(θ),

which is equivalent to

Bln(θ + α)(Aef (θ))B−1
ln
(θ) = Alne

f ′
ln
(θ) + Bln(θ + α)(Aef (θ) − Aefln(θ) )B−1

ln
(θ),

rewrite that

Bln(θ + α)(Aef (θ))B−1
ln
(θ) = Alne

f ln (θ), (39)
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with estimates

Bln = B̃ln−1 ◦ Bln−1 , |B̃ln−1(θ)− Id|1/ln+1 � ε
1−8/D
ln

, deg Bln−1 = deg Blj ′ . (40)

Therefore, by equation (40) and the Diophantine condition on ρ(α, Aef), for 0 < |m| �
(2/(1/ln+1 − 1/ln+2))|ln εln+1|, we obtain

‖2ρ(α, Aln)− 〈m, α〉‖R/Z
� ‖2ρ(α, Alne

f ln (θ))− 〈m, α〉‖R/Z − |2ρ(α, Alne
f ln (θ))− 2ρ(α, Aln)|

�
γ (1 + |deg Blj ′ |)−τ

(|m| + 1)τ
− 2ε(1+s)/2

ln

� ε
σ/2
lj ′+1

· 2εσ/2ln+1
− 2ε1/2

ln+1

� εσln+1
for all j ′ + 1 � n � j0.

This means the (j0 + 1)th step is still non-resonant with estimates

Blj0+1 = B̃lj0
◦ Blj0 , |B̃lj0 (θ)− Id|1/lj0+2 � ε

1−8/D
lj0+1

, deg Blj0 = deg Blj ′ .

In conclusion, we know that there are at most finitely many resonant steps in the iteration
process. Assume that nq is the last resonant step, then for all j > nq , we have

Blj (θ + α)(Ae
flj (θ))B−1

lj
(θ) = Alj e

f
′
lj
(θ)

,

with estimates

Blj = B̃lj−1 ◦ Blj−1 , |B̃lj−1(θ)− Id|1/lj+1 � ε
1−8/D
lj

, deg Blj−1 = deg Blnq . (41)

Denote B1 = limj→∞ Blj , Ã1 = limj→∞ Alj ∈ SL(2, R). Notice that ρ(α, Ã1) �= 0,
otherwise it will contradict ρ(α, Aef) ∈ DCαd (γ , τ). Thus, Ã1 can only be standard
rotation in SL(2, R), which is the case of equation (27).

By equation (41) and Cauchy estimates, for all j > nq , we can calculate

‖B̃lj − Id‖k0 � sup
|l|�k0,θ∈Td

‖(∂l1θ1
· · · ∂ldθd )(B̃lj − Id)‖

� (k0)! (lj+2)
k0 |B̃lj − Id|1/lj+2

� (k0)! (lj+1)
(1+s)k0ε

1−8/D
lj+1

� C

l
(1−8/D)(Dτ+1/2)−(1+s)k0
j+1

,

where C does not depend on j.
Note that while we write the assumption as k > (D + 2)τ + 2, in the actual operational

process, we simply choose k = [(D + 2)τ + 2] + 1. Therefore, the value of k is entirely
determined by the parameter D.
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Thus, if we pick k0 = [k − 10τ − 3], we have

‖B̃lj ‖k0 � 1 + C

l
1/6
j+1

.

Since we pick l1 = M sufficiently large, then

‖B1‖k0 � ‖
∞∏

j=nq+1

B̃lj ‖k0‖Blnq ‖k0

�
( ∞∏
j=nq+1

(
1 + C

l
1/6
j+1

))
sup

|l|�k0,θ∈Td
‖(∂l1θ1

· · · ∂ldθd )(Blnq (θ))‖

� 2(k0)! (lnq+1)
k0 |Blnq |1/lnq+1

� lnq
(σ/2+s)(Dτ+1/2)+(1+s)k0 .

The estimate of deg B1 is clearly valid, which gives equation (28).
(Rational case) By equation (26) and Proposition 3.5, take ε0 = ε̄ as in Proposition 3.5

and apply it to cocycle (α, Aef (θ)). Then there exists Blj ∈ Cω1/lj+1
(2Td , SL(2, R)),

Alj ∈ SL(2, R), and f lj ∈ Ck0(Td , sl(2, R)) with k0 ∈ N, k0 � (k − 10τ − 3)/(1 + s)

such that

Blj (θ + α)(Aef (θ))B−1
lj
(θ) = Alj e

f lj
(θ), (42)

with estimates

|Blj (θ)|1/lj+1 � ε
−σ/2−s
lj

, ‖Blj (θ)‖0 � ε
−σ/2
lj

, |deg Blj | � 4lj ln
1
εlj

, (43)

‖Alj ‖ � 2‖A‖, ‖f lj (θ)‖k0 � ε
3/D
lj

. (44)

Since ρ(α, Aef) = 〈m0, α〉/2 mod Z/2, m0 ∈ Z
d , we have

ρ(α, Alj e
f lj

(θ)
) = ρ(α, Aef (θ))− 〈deg Blj , α〉

2
mod

Z

2

= 〈m0 − deg Blj , α〉
2

mod
Z

2
.

From now on, we omit ‘mod (Z/2)’ for simplicity. By equation (6) and the proof of
Proposition 3.5, we know the rotation number is invariant in the non-resonant case.

Let mlni ∈ Z
d , i = 1, 2, 3, . . . represent resonant sites of the (ni)th step with 0 <

|mlni | � Nlni = 2/(1/lni )− (1/lni+1)|ln εlni|. By in [10, Claim 1], we have Nlni+1
�

4Nlni , i = 1, 2, 3, . . .. So there must exist j ∈ Z sufficiently large, provided that there are
q − 1 resonant steps before the jth step, such that

m0 − (mln1
+mln2

+ · · · +mlnq−1
) = m′,

where m′ ∈ Z
d with 0 < |m′| � Nlj = (2/(1/lj − 1/lj+1))|ln εlj| and Nlj � 2Nlnq−1

�
mln1

+mln2
+ · · · +mlnq−1

. Then,
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ρ(α, Alj e
f lj

(θ)
) = 〈m0 − deg Blj , α〉

2

=
〈m0 − (mln1

+mln2
+ · · · +mlnq−1

+m′), α〉
2

(45)

= 0.

Since all the steps between the (nq−1)th step and jth step are non-resonant and by
equations (6), (36), and (45), we have

‖2ρ(α, Alj−1)− 〈m′, α〉‖R/Z
� ‖2ρ(α, Alj−1e

f lj−1
(θ)
)− 〈m′, α〉‖R/Z + |2ρ(α, Alj−1e

f lj−1
(θ)
)− 2ρ(α, Alj−1)|

� |2ρ(α, Alj e
f lj

(θ)
)| + 2ε(1+s)/2

lj−1

= 0 + 2ε1/2
lj

< εσlj .

Thus, the jth step is the (nq)th resonant step and m′ is the unique resonant site mlnq with
0 < |mlnq | � Nlnq = (2/(1/lnq − 1/lnq+1))|ln εlnq|.

Now we apply Proposition 3.5 to cocycle (α, Alnq e
f̃lnq (θ)), then we can get

B̃lnq (θ + α)(Alnq e
f̃lnq (θ))B̃−1

lnq
(θ) = Alnq+1e

f
′
lnq+1

(θ)
,

which gives

Blnq+1(θ + α)(Ae
flnq+1 (θ))B−1

lnq+1
(θ) = Alnq+1e

f
′
lnq+1

(θ)
,

where Blnq+1 = B̃lnq ◦ Blnq ∈ Cω1/lnq+2
(2Td , SL(2, R)).

Since ρ(α, Alnq e
f lnq

(θ)
) = ρ(α, Aef lnq (θ)) = 0, for m ∈ Z

d with 0 < |m| � Nlnq+1 =
(2/(1/lnq+1 − 1/lnq+2))|ln εlnq+1 |, we have

‖2ρ(α, Alnq )− 〈m, α〉‖R/Z
� ‖2ρ(α, Alnq e

f lnq
(θ)
)− 〈m, α〉‖R/Z − |2ρ(α, Alnq e

f lnq
(θ)
)− 2ρ(α, Alnq )|

� κ

|m|τ − 2ε(1+s)/2
lnq

� κ

((2/(1/lnq+1 − 1/lnq+2)) ln(1/εlnq+1))
τ

− 2ε1/2
lnq+1

� 2εσ/2lnq+1
− 2ε1/2

lnq+1

� εσlnq+1
,

which means the (nq + 1)th step is non-resonant with

deg Blnq+1 = deg B̃lnq + deg Blnq = m0.
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Assume that for lj , nq + 1 � j � j0, we already have

Blj (θ + α)(Ae
flj (θ))B−1

lj
(θ) = Alj e

f
′
lj
(θ)

,

which is equivalent to

Blj (θ + α)(Aef (θ))B−1
lj
(θ) = Alj e

f
′
lj
(θ) + Blj (θ + α)(Aef (θ) − Ae

flj )B−1
lj
(θ),

rewrite that

Blj (θ + α)(Aef (θ))B−1
lj
(θ) = Alj e

f lj
(θ), (46)

with estimates

Blj = B̃lj−1 ◦ Blj−1 , |B̃lj−1(θ)− Id|1/lj+1 � ε
1−8/D
lj

, deg Blj−1 = m0. (47)

Note that equation (46) gives∣∣∣∣ρ(α, Aef (θ))− 〈deg Blj , α〉
2

− ρ(α, Alj )
∣∣∣∣

= |ρ(α, Alj e
f lj

(θ)
)− ρ(α, Alj )|

� ε
1/2
lj+1

and equation (47) implies

deg Blj = deg Blnq = m0.

Therefore, we have

|ρ(α, Alnq e
f lnq

(θ)
)− ρ(α, Alj )| � ε

1/2
lj+1

. (48)

By equation (48) and ρ(α, Alnq e
f lnq

(θ)
) = 0, for m ∈ Z

d with 0 < |m| � Nlj+1 =
(2/(1/lj+1 − 1/lj+2))|ln εlj+1 |, we have

‖2ρ(α, Alj )− 〈m, α〉‖R/Z
� ‖2ρ(α, Alnq e

f lnq
(θ)
)− 〈m, α〉‖R/Z − |2ρ(α, Alnq e

f lnq
(θ)
)− 2ρ(α, Alj )|

� ‖〈m, α〉‖R/Z − 2ε(1+s)/2
lj

� κ

|m|τ − 2ε1/2
lj+1

� κ

((2/(1/lj+1 − 1/lj+2)) ln(1/εlj+1))
τ

− 2ε1/2
lj+1

� 2εσ/2lj+1
− 2ε1/2

lj+1

> εσlj+1
for all nq + 1 � j � j0.

This means the (j0 + 1)th step is also non-resonant with estimates

Blj0+1 = B̃lj0
◦ Blj0 , |B̃lj0 (θ)− Id|1/lj0+2 � ε

1−8/D
lj0+1

, deg Blj0 = m0.
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To conclude, for all j > nq , we have

Blj (θ + α)(Ae
flj (θ))B−1

lj
(θ) = Alj e

f
′
lj
(θ)

,

with estimates

Blj = B̃lj−1 ◦ Blj−1 , |B̃lj−1(θ)− Id|1/lj+1 � ε
1−8/D
lj

, deg Blj−1 = m0. (49)

Denote B2 = limj→∞ Blj , Ã2 = limj→∞ Alj ∈ SL(2, R). The rest of the process is
similar to the above Diophantine case and then equations (29) and (30) hold.

This finishes our proof.

Remark 3.10. Compared with Cai and Ge [12], the reducibility results in this paper
are certainly optimal. We have conducted a process parallel to the almost reducibility
procedure. In contrast to the previous work, the conclusions in this paper are sharper in
terms of regularity loss and the loss of regularity is independent of the parameter k.

4. Spectral application
With the above reducibility theorem in hand, we can prove our spectral applications of
Theorems 1.3 and 1.6 as stated in the introduction from this. Let us first introduce several
definitions and cite some results shown by [13, 25].

For spatial transport properties of a quantum particle on the lattice Z, we are interested
in studying the observable quantity associated with the position of the particle, which is
represented by the unbounded self-adjoint operator

(Xx)n := (nx)n, n ∈ Z,

with its natural domain of definition

DomX =
{
xn ∈ �2(Z) :

∑
n∈Z

|n|2|xn|2 < +∞
}

.

Our focus is on the phenomenon of ballistic motion, which informally states that
the particle’s position grows linearly with time (X(T ) ≈ T ). More precisely, we aim to
investigate the following limit:

lim
T→+∞

1
T
X(T )x, (50)

where the initial state at time x ∈ DomX. The limit in equation (50) can be regarded as
the ‘asymptotic velocity’ of the state x as time approaches infinity, provided that the limit
exists. Then we can define the asymptotic velocity operator as

Q = lim
T→+∞

1
T
X(T ) = lim

T→+∞
1
T

∫ T

0
eitH Se−itH dt , (51)

where S is bounded and satisfies

Sxn = i(xn+1 − xn−1). (52)
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The Schrödinger operator H is said to demonstrate strong ballistic transport if the strong
limit on the right-hand side of equation (51) exists, is defined on the entire �2(Z), and
ker Q = {0}.

Definition 4.1. [25] Let K ⊂ R be a Borel subset. We say H has strong ballistic transport
on K if there exists a self-adjoint operator Q such that

lim
T→+∞

1
T

∫ T

0
eitH1K(H)S1K(H)e−itH dt = 1KQ1K (53)

and ker Q = Ran(1K)⊥, where 1K(·) denotes the indicator function of K.

Definition 4.2. [25] Cocycle (α, SVE ) is said to be Ck-reducible in expectation on K if it is
Ck-reducible for each E ∈ K and there exists a choice of L2(Td)-normalized conjugations
B(E; ·) such that ∫

K
‖B(E; ·)‖4

Ck(Td )
dρ(E) < +∞.

LEMMA 4.3. [25] Let a (Borel) subset K ⊂ R, {HV ,α,θ }θ∈Td be a quasiperiodic operator
family whose cocycles are Ck-reducible in expectation on K for some k > 5d/2. Then the
family {HV ,α,θ }θ∈Td has strong ballistic transport on K.

As a direct application of our conclusion, now we can prove Theorem 1.3 in the
following.

Proof. We will not consider E in the spectral gap, because cocycle (α, SVE ) is uniformly
hyperbolic in the quasi-periodic Schrödinger case. Therefore, it is always reducible under
our conditions and the conclusion is naturally valid.

For E ∈ �V ,α , Theorem 3.8 shows that cocyle (α, SVE ) is reducible. As k > 14τ + 2
and picking k0 = [k − 10τ − 3], we can get k0 > [4τ − 1] and τ > d, then condition
k0 > 5d/2 is obviously true. Here E, which satisfies neither the Diophantine nor ratio-
nal condition in the spectrum set, is a set of measure zero. Note that, in Ge and
Kachkovskiy [25], under the setting of Zhao [41], we have strong ballistic transport on
the whole spectrum. In the case of Ck in this paper, the conclusion still holds. Therefore,
by Lemma 4.3, the Schrödinger operator HV ,α,θ has strong ballistic transport for a.e.
E ∈ �V ,α .

Readers can also refer to the detailed proof of Ge and Kachkovskiy [25].
This finishes the proof of Theorem 1.3.

Now, for the application of the reducibility theorem to spectral structures in
Theorem 1.6, we give the proof as follows.

Proof. Referring to Cai and Wang [13], we know the homogeneity of the spectrum is
connected with polynomial decay of gap length and Hölder continuity of IDS. Then we
need the following lemmas.
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LEMMA 4.4. [13] Let Gm(V ) = (E−
m , E+

m) denote the gap with label m and
α ∈ DCd(κ , τ), V ∈ Ck(Td , R) with k � D0τ , where D0 is a numerical constant. There
exists ε̃ = ε̃(κ , τ , k, d) > 0 such that if ‖V ‖k � ε̃, then |Gm(V )|k � ε̃1/4|m|−k/9.

LEMMA 4.5. [10] Let α ∈ DCd(κ , τ), V ∈ Ck(Td , R)with k > 17τ + 2. Then there exists
λ0 depending on V , d , κ , τ , k such that if λ < λ0, then NλV ,α is 1

2 -Hölder continuous:

N(E + ε̂)−N(E − ε̂) � C0ε̂
1/2 for all ε̂ > 0, for all E ∈ R,

where C0 depends only on d , κ , τ , k.

Through the quantitative almost reducibility theory and reducibility theory, we can
show both of the above lemmas. Under the preconditions of Theorem 3.8 together with
Lemmas 4.4 and 4.5, for any E ∈ �V ,α with 2ρ(α, SVE ) = 〈m0, α〉 mod Z for some
m0 ∈ Z

d , we will divide E into three cases when considering ν-homogeneous. In each
case, by calculating directly, Definition 1.5 is satisfied for every E ∈ �V ,α . Please refer to
the detailed proof of Cai and Wang [13].

This finishes the proof of Theorem 1.6.
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