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We give a simple sufficient condition for Quinn’s ‘bordism-type’ spectra to be weakly
equivalent to commutative symmetric ring spectra. We also show that the symmetric
signature is (up to weak equivalence) a monoidal transformation between symmetric
monoidal functors, which implies that the Sullivan—Ranicki orientation of topological
bundles is represented by a ring map between commutative symmetric ring spectra.
In the course of proving these statements, we give a new description of symmetric L
theory which may be of independent interest.
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1. Introduction

In [19], Frank Quinn gave a general machine for constructing spectra from ‘bordism-
type theories’. In our article [11], we gave axioms for a structure we call an ad theory
and showed that when these axioms are satisfied (as they are for all of the standard
examples) the Quinn machine can be improved to give a symmetric spectrum M.
We also showed that when the ad theory is multiplicative (that is, when its ‘target
category’ is graded monoidal) the symmetric spectrum M is a symmetric ring
spectrum. Finally, we showed that there are monoidal functors to the category
of symmetric spectra which represent Poincaré bordism over Br (considered as a
functor of 7) and symmetric L-theory (considered as a functor of a ring R with
involution).

In this article, we consider commutativity properties. It relies on the conventions
and results of the article [11]; the relevant sections are 3, 6, 7, 9, 10, 17, 18, and 19.

A ‘commutative ad theory’ is (essentially) an ad theory whose target category is
graded symmetric monoidal (the precise definition is given in §3). Our first main
result is
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Commutativity properties of Quinn spectra 1849

THEOREM 1.1 Let M be the symmetric ring spectrum associated with a commuta-
tive ad theory. There is a commutative symmetric ring spectrum M™™ which is
weakly equivalent in the category of symmetric ring spectra to M and depends on
it in a natural way.

More precisely, we construct a symmetric spectrum M together with an action of
a specific F-operad which naturally depends on the underlying ad theory. Then
we use the bar construction to obtain a zig-zag of weak equivalences to the com-
mutative symmetric ring spectrum M™™ . We only claim the naturality for strict
morphisms. A refined statement of naturally and what happens with 2-morphisms
under these functors is worth being further investigated but it is not part of the
article.

As a consequence, theorem 1.1 shows that the L-theory spectrum of a commu-
tative ring can be realized as a commutative symmetric ring spectrum.!-

For the ad theory adgrep of oriented topological bordism [11, §6], we showed
in [11, §17 and appendix B] that the underlying spectrum of Mg, is weakly
equivalent to the usual Thom spectrum M STop. It is well-known that M STop is a
commutative symmetric ring spectrum, and we have

THEOREM 1.2 (Mgrop)®™™ and MSTop are weakly equivalent in the category of
commutative symmetric ring spectra.

The proof gives a specific chain of weak equivalences between them.

We also prove a multiplicative property of the symmetric signature. The symmet-
ric signature is a basic tool in surgery theory. In its simplest form, it assigns to an
oriented Poincaré complex X an element of the symmetric L-theory of 71 (X); this
element determines the surgery obstruction up to 8-torsion. Ranicki proved that
the symmetric signature of a Cartesian product is the product of the symmetric
signatures [21, proposition 8.1(i)]. The symmetric signature gives a map of spectra
from Poincaré bordism to L-theory [10, proposition 7.10], and we showed in [11]
that it gives a map of symmetric spectra. In order to investigate the multiplica-
tivity of this map, we give a new (but equivalent) description of the L-spectrum,
using ‘relaxed’ algebraic Poincaré complexes (the relation between these and the
usual algebraic Poincaré complexes is similar to the relation between I'-spaces and
E spaces). For a ring with involution R, there is an ad theory adﬁl, and the
associated spectrum M| is equivalent to the usual L-spectrum. The symmetric
signature gives a map sig,, from the Poincaré bordism spectrum (which we denote
by M, .. 1; see [11, §7]) to M. We prove that this map is weakly equivalent to a

rel*
ring map between commutative symmetric ring spectra:

THEOREM 1.3 There are symmetric ring spectra A and B, commutative symmetric
ring spectra C and D, and a commutative diagram

I Lurie [13] has explained another way to prove that the L-theory spectrum of a commutative
ring can be realized as a commutative symmetric ring spectrum. The method used in [13] does not
include other examples we consider such as Poincaré bordism and (in [3]) Witt and IP bordism.
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M&,*,l < A e C

S

MZ

rel B D

in which the horizontal arrows and the right vertical arrow are ring maps and
the horizontal arrows are weak equivalences.

In fact, C is (Me,.1)°™™, and D is weakly equivalent to (MZ )™ in the
category of commutative symmetric ring spectra (see remark 18.3).

As far as we are aware, there is no previous result in the literature showing
multiplicativity of the symmetric signature at the spectrum level.

In §19, we prove a stronger statement, that up to weak equivalence the symmetric
signature is a monoidal transformation between symmetric monoidal functors. In
[3], we proved the analogous statement about the symmetric signature for Witt and
IP bordism, using the methods of the present article.

REMARK 1.4. The Sullivan—Ranicki orientation for topological bundles ([25], [15],
[22, remark 16.3], [10, §13.5]) is the following composite in the homotopy category
of spectra

MSTop ~ Qgrop -5 L%,

where Qgrop denotes the Quinn spectrum of oriented topological bordism (which
was shown to be equivalent to MSTop in [11, appendix B]). Combining theorems
1.3 and 1.2 shows that the Sullivan—Ranicki orientation is represented by a ring
map of commutative symmetric ring spectra. In [11, §8], a zig-zag between the
ad theories adgrop and ade 1 is constructed where all maps are multiplicative. It
follows from the results below that the map from topological to Poincaré bordism
can be refined to an E.,-map.

The results of the present work were already used amongst others in [2] in
connection with singularities of Baas—Sullivan type.

Here is an outline of the article. In §2 and 3, we give the definition of commutative
ad theory. The proof of theorem 1.1 occupies §4-10. We begin in §4 and 5 by giving
a multisemisimplicial analogue Sp,,ss of the category of symmetric spectra. We
observe that an ad theory gives rise to an object R of Sp;,ss whose realization is
the symmetric spectrum M mentioned above. Section 6 explains the key idea of the
proof, which is to interpolate between the various permutations of the multiplication
map by allowing a different order of multiplication for each cell. In §7 and 8, we
use this idea to create a monad in the category Sp,,ss which acts on R, and in §10
(after a brief technical interlude in §9) we use a standard rectification argument (as
in [17]) to convert R with this action to a strictly commutative object of Spy,ss;
passage to geometric realization gives M“°™™. Next we turn to the proof of theorem
1.3. In §12-14, we introduce the relaxed symmetric Poincaré ad theory and the
corresponding version of the symmetric signature. In §15-17, we create a monad
in the category Spmss X SPmss Which acts on the pair (Re .1, RrZel), and in §18 we
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adapt the argument of §10 to prove theorem 1.3. Section 19 gives the statement
of the stronger version of theorem 1.3 mentioned above, and §20 gives the proof.
Section 11 gives the proof of theorem 1.2. There is a property of the smash product
in symmetric spectra which is needed to prove the main results of the article. It is
taken care of in Appendix A. Appendix C investigates the functorial properties of
the ad theories of relaxed quasi-symmetric complexes.

1.1. Notations

We adopt the notations of the articles ([11], [3], [2]): the ambient categories, ad
theories, symmetric spectra, and Quinn spectra are called A, ad,, M, and Q,
respectively, with z some parameter depending on the objects we work with. Note
that the ambient category does not determine the ad theory. The latter does deter-
mine the associated spectra in a functorial way but we write M, instead of M(ad,)
to keep the notation simpler.

2. Some redefinitions

One of the ingredients in the definition of ad theory in [11] is the target ‘Z-graded
category’ A (see [11, definitions 3.3 and 3.10]). For the purposes of that article,
there was no reason to allow morphisms in A between objects of the same dimension
(except for identity maps). For the present article, we do need such morphisms (see
definition 3.1 and the proof of theorem 1.1). We therefore begin by giving modified
versions of some of the definitions of [11].

DEFINITION 2.1. (cf. definition 3.3 of [11]) Let Z be the poset of integers regarded
as a category with one morphism for each relation. By an involution, we mean
an endofunctor i which strictly satisfies i* = id. Give Z the trivial involution. A
Z-graded category is a small category A with involution, together with involution-
preserving functors d : A — Z (called the dimension function) and O : Z — A
such that d0 is equal to the identity functor. We will use the notation |a| instead
of da. Note that if |a| > |b| then there are no morphisms from a to b.

The definition of a strict monoidal structure on a Z-graded category [11, defini-
tion 18.1] needs no change, provided that one uses the new definition of Z-graded
category.

Next we explain how to modify the specific examples of target categories in [11]
by adding morphisms which preserve dimension.

For the category Astop [11, example 3.5], the morphisms between objects of the
same dimension are the orientation-preserving homeomorphisms.

For the category Ar z. [11, definition 7.3], the morphisms between objects
(X, f,€) and (X', f',&’) of the same dimension are the maps g : X — X’ such
that f'og= f and g.(§) = ¢'.

We do not need the analogous modification for the category AF [11, definition
9.5] because we will be using the version in §12.

The definition of an ad theory [11, definition 3.10] stays the same. In §14, however,
we will restrict our attention to ad theories which are only defined on strict ball
complexes. A ball complex is called strict if each component of the intersection of
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two cells is a single cell. This assumption does not affect the constructions or results
of [11].

3. Commutative ad theories

DEFINITION 3.1. Let A be a Z-graded category. A permutative structure on A
is a strict monoidal structure (X, e) [11, definition 18.1] together with a natural
isomorphism

Yoy s xRy = iloVly R

such that
(a) i’Ya:,y = Yiz,y = Yx,iy,
(b) each of the maps vy, Va0 is the identity map of 0,
(c) the composite

Yz,y m i‘mHyl('Yy,m)
Ry — iy Ry ———— 2Ry

18 the identity.
(d) vz is the identity, and
(e) the diagram

rXyX 2z

y X
X1

vzl

izl ) 2Ry {11 0al 41D, ) ¢ )y

commutes. A strict map of Z-graded categories with permutative structures is a
map f: A— B of Z-graded categories for which f(x Ry) = f(x) K f(y) holds for
objects and morphisms. Moreover, such a functor takes € to € and the diagram

f()
flaRy) ——— f(illlvly K a)

F(@) B f(y) — il fo) R f ()

commutes.

REMARK 3.2. The analogue of the coherence theorem for symmetric monoidal
categories [14] holds in this context with essentially the same proof.

DEFINITION 3.3. A commutative ad theory is a multiplicative ad theory [11, defini-
tions 3.10 and 18.4], with the extra property that every pre K-ad which is isomorphic
to a K-ad is a K-ad, together with a permutative structure on the target category A.
A strict map of commutative ad theories is a strict map of the ambient categories
which takes ads to ads.
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Examples are adc when C is a commutative DGA (see [11, example 3.12]),
adsTop (see [11, §6]), ade .1 (see [11, §7]), adsroprun (see [11, end of §8]), adle
when R is commutative (see §12), adrp [3, §4], and adiprun [3, §6.1].

REMARK 3.4. The extra property in definition 3.3 is used in the proof of lemma
6.3.

For later use, we record some notation for iterated products.

DEFINITION 3.5. (i) For a permutation n € ¥;, let e(n) denote 0 if n is even and
1if n is odd.

(it) Let A be a Z-graded category with a permutative structure. Let n € ¥;. Define
a functor

Nk : ij — A
(where A*J is the j-fold Cartesian product) by
77*(3}1, ey Z‘J) = is(ﬁ)(l‘nfl(l) X---X xnfl(j))

where 7 is the block permutation that takes blocks b1, ..., b; of size |x1], ..., |z;]
into the order bn—l(l)’ e bn_l(j)'

REMARK 3.6. Note that, by remark 3.2, ng(21,...,2;) is canonically isomorphic
toxy M- Nax;.

4. Multisemisimplicial symmetric spectra

In this section, we define a category Spmss (the ss stands for ‘semisimplicial’)
which is a multisemisimplicial version of the category Sp of symmetric spectra.
The motivation for the definition is that the sequence Ry in [11, definition 17.2]
should give an object of Spy,ss-

Recall that we write Ajyj for the category whose objects are the sets {0,...,n}
and whose morphisms are the monotonically increasing injections.

A based k-fold multisemisimplicial set is a contravariant functor from the
Cartesian product (Ajy;) %k t0 the category S, of based sets. In particular, a based
0-fold multisemisimplicial set is just a based set.

Next note that given a category C with a left action of a group G one can define
a category G x C whose objects are those of C and whose morphisms are pairs (o, f)
with @ € G and f a morphism of C; the domain of («, f) is the domain of f and
the target is a~' applied to the target of f Composition is defined by

(e, f) o (B.g) = (aB, B7(f) 0 g).
REMARK 4.1. (i) C is imbedded in G x C by taking the morphism f of C to the

morphism (e, f) of G x C, where e is the identity element of G.
(ii) The morphism («, f) is the composite («,id) o (e, f).
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DEFINITION 4.2. Let ¥ act on (AL)** by permuting the factors (when k=0,

inj

>0 is the trivial group). For each subgroup H of Xy, let HssSy, be the category of
functors from H x (AL)** to S,.

inj

By remark 4.1, an object of HssS; can be thought of as a based k-fold
multisemisimplicial set with a left ‘action’ of H in which H also acts on the
multidegrees.

DEFINITION 4.3. (i) A multisemisimplicial symmetric sequence X is a sequence
Xk, k>0, such that Xy, is an object of Xj55Sk.

(ii) A morphism of multisemisimplicial symmetric sequences from X to Y is a
sequence of morphisms fi : X — Yy in XpssSk.

The category of multisemisimplicial symmetric sequences will be denoted by
3ssS.
For our next definition, recall [11, definitions 17.2 and 17.3].

DEFINITION 4.4. (i) For each k > 0 extend the object Ry, = ad*(A®) of s5Sy to an
object of XssSk by letting

(a,id).(F) =i o F o ay

(where o € ¥ and F € ad®(A™)).
(ii) Let R denote the object of ¥ssS whose k-th term is Ry,.

Next we assemble the ingredients needed to define a symmetric monoidal
structure on XssS.

DEFINITION 4.5. Given A € Y ssSy and B € %588, define the object AN B €
(Ek X El)SSSk+l by

(AAB)mn = Am A Bn
(where m is a k-fold multi-index and n is an I-fold multi-index).
DEFINITION 4.6. Given H C G C Xy, define a functor
Iﬁ : HssS, — GssSy,
by letting IG A be the left Kan extension of A along H x (Aﬁf})Xk — G x (Ai{’rﬁ)Xk.

REMARK 4.7. For later use, we give an explicit description of IEA. For each multi-
index n, we have

(IG5 = (V Aumi(w)/H

aceG

where the action of H is defined as follows: if # € H and z is an element in the
a-summand then 3 takes z to the element (3,id).(x) in the a3~ !-summand.
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NoTATION 4.8. We denote the equivalence class of an element z in the a-summand
of I§A by [a, x]; note that [, 2] = («,id).[e, 7].

DEFINITION 4.9. Given X,Y € ¥ssS, define X QY € XssS by

%
XY=\ IF.s (X, AY),)
j1+iz=k

The proof that ® is a symmetric monoidal product is essentially the same as the
corresponding proof in [9, §2.1]. The symmetry map

T:X®Y —>Y®X
is given (as in [9]) by
T([oyz Ay)) = [apri, y A x] (4.1)

where € (Xi)m, ¥ € (Y)n, and p is the permutation of {1,...,k + [} which
moves the first [ elements to the end and the last k£ elements to the front.

Next we will give the definition of the category Sp,,ss and its symmetric monoidal
product. First we need a sphere object.

DEFINITION 4.10. (i) Let S* be the based semisimplicial set that consists of the

base point together with a 1-simplex s.
(ii) Let S* be the object of Y558k obtained from (SY)"* by letting

(o, id)s(sA---ANS)=8A -+ As
(iii) Let S be the object of YssS whose k-th term is S¥.
It is easy to check that S is a commutative monoid in ¥ssS.
DEFINITION 4.11. Spmss is the category of modules over S.

REMARK 4.12. One can give a more explicit version of this definition: an object
of Spmss consists of an object X of 3ssS together with suspension maps

UJZSI/\Xk—>X]€+1

for each k, such that the iterates of the w’s satisfy appropriate equivariance
conditions.

ExXAMPLE 4.13. The object R of definition 4.4 can be given suspension maps as
follows: with the notation of [11, definition 17.4(i)], define

w:Sl/\Rk—>Rk+1
by
w(sAF)=X(F)

(where s is the 1-simplex of §* and F € ad®(A™)). The resulting object of Spyss
will also be denoted R.
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DEFINITION 4.14. (cf. [9, definition 2.2.5])
For X, Y € Spmss, define the smash product X AN'Y to be the coequalizer of the
diagram

XeSY=2X®Y
where the right action of S on X is the composite
X®S—-S®X = X.

The proof that A is a symmetric monoidal product is essentially the same as the
corresponding proof in [9, §2.2].

5. Geometric realization

Let G be a subgroup of 3. By remark 4.1(i), an object of GssSy has an underlying
k-fold multisemisimplicial set.

DEFINITION 5.1. The geometric realization |A| of an object A € GssSy is
the geometric realization of its underlying k-fold multisemisimplicial set where,
additionally, the realization of the base points is collapsed to a single point.

DEFINITION 5.2. (i) A map in GssSy is a weak equivalence if it induces a weak
equivalence of realizations.

(ii) A map X — Y in XssS or in Spmss 15 a weak equivalence if each map
X — Yy is a weak equivalence.

PROPOSITION 5.3. For A € 3558, the following formula gives a natural left Xy,
action on |Al:

ofur, . uks a]) = [Ug—1(1y, -5 Up—11y, (@, id) < (a)];
here (uy,...,ur) € A™, a € A, and [uy,...,ug,a] denotes the class of
(uy,...,ug,a) in |A|.

PROPOSITION 5.4. For H C¢ G C Xy and A € HssSy, there is a natural
isomorphism of based G-spaces

ISA| =Gy Ay |A|
Proof. The proof is easy, using remark 4.7. g
COROLLARY 5.5. Geometric realization induces a symmetric monoidal functor

from Spmss to the category of symmetric spectra Sp; in particular, the realization
of a (commutative) monoid in Spmss 18 a (commutative) monoid in Sp.
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6. A family of multiplication maps

In this section, we begin the proof of theorem 1.1. We shall construct a monad P
together with maps

A = Assoc = P — Comm =P

such that (a) the functor R factors over P-algebras, (b) the transformation P — P’
is a weak equivalence in a suitable sense so R is weakly equivalent as a functor to
P-algebras to another functor that factors over P’-algebras.

From now until the end of §10, we fix a Z-graded permutative category A and a
commutative ad theory with values in A. Let R be the object of Sp,,ss constructed
from this ad theory as in example 4.13.

Let M be the symmetric ring spectrum associated with the ad theory [11, propo-
sition 17.5 and theorem 18.5]. By definition, M}, = |R|. The multiplication of M
is induced by the collection of maps

t: (Be)m A (R)n = (Rk+1)mn
defined by
/L(F A G)(O’l X 09,01 X 02) = ildimglF(Ul,Ol) X G(UQ,OQ) (61)

(this is well-defined because, by [11, definition 18.1(b)], reversing the orientations
01 and oy does not change the right-hand side). These maps give R the structure
of a monoid in Sp,,ss (the proof is essentially the same as for [11, theorem 18.5]).

In general, even though the ad theory is commutative, R is not a commutative
monoid (this would require the product in the target category A to be strictly
graded commutative). Instead we have the following. Recall definition 3.5 and
notation 4.8.

LEMMA 6.1. Letm : RAR — R be the product and let n € 3;. Then the composite
m, :RM L RM R
is determined by the formula

mn([e,Fl /\"'/\Fj])(O’l X X 05,01 X+ X Oj)
= iOne(Fi(o1,01), .., Fj(0,05)),

where e is the identity element of the relevant symmetric group and C is the block
permutation that takes blocks by, ..., bj, ci, ..., ¢; of size degF, ..., degF},
dimoy, ..., dimo; into the order by, c1, ..., b;, c;.

Proof. Tt suffices to prove this when 7 is a transposition, and in this case the proof
is an easy calculation using Eqs. (4.1) and (6.1) and [11, definition 17.3]. O

The key idea in the proof of theorem 1.1 is that there is a family of operations
which can be used to interpolate between the various m,,. To construct this family,
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we allow a different permutation of the factors for each cell of A%l x --. x A", as
explained in our next definition. We begin by defining the operations for pre-ads
(see [11, definitions 3.8(i) and 3.10(ii)]).

DEFINITION 6.2. (i) Given a ball complex K, let U(K) denote the set of all cells of
K.

(i) Let k1, ..., k; be non-negative integers and let n; be a k;-fold multi-index for
1 <1< 4. For any map

a:UA™ x - x A%) = %,

define a map on preads (i.e., functors F from the oriented cells (o,0) to the ambient
category)

ay : preF1(AP1) x - x prefi (A™) — pref1 TR (AML-m)))

by
a*(Fl,...7Fj)(01 X+ X 05,01 X+ X OJ))
=i“a(oy x -+ x 0;)) % (Fi(01,01),. .., Fj(05,05)),
where ¢ is the block permutation that takes blocks by, ..., b;, c1, ..., c; of size k;,
..., kj, dimoq, ..., dimo; into the order by, ¢y, ..., bj, c;.

LEMMA 6.3. If F; € ad®i(A™) for 1 < i < j then a.(Fy,...,Fj) €
adk1+"-+kj(A(n1 ..... nj)).

Proof. This is immediate from the extra property in definition 3.3, remark 3.6, and
[11, definition 18.4(Db)]. O

Recalling that (Ry)n = ad®(A™) with basepoint at the trivial ad (see [11,
definitions 3.8(ii), 3.10(b) and 18.1(c)]), we have now constructed an operation

@u (Riy Jng A-o- A(Bij)n; = (Bky 4otk )ng g

for each
a:UA™ x - x A%M) — 3.

For later use, we give the relation between a, and the suspension map w : S' A
Ry — Rk+1.

DEFINITION 6.4. For a ball complex K, let
II:U(A' x K) = U(K)

be the map which takes o x T to T, where o is a simplex of A and T is a simplex
of K.
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LEMMA 6.5. Let s be the 1-simplex of S*, let F; € (Ri;)n; for 1 < i < j, and let
a:U(A™ x ---x A") — ¥;. Then

w(sANa (Fy A---ANFj)) = (aoIl)y(w(s A Fi)A--- N F}).

Proof. This follows from lemma 6.1 (because the permuted multiplication com-
mutes with suspension). It can also be proved by a straightforward calculation
using definitions 3.5 and 4.13 and [11, definitions 17.4 and 3.7(ii)]. O

In the remainder of this section, we show that the action of the operations a.
can be described in a way that begins to resemble the action of an operad; this
resemblance will be developed further in the next two sections.

DEFINITION 6.6. (i) For j,k > 0 define an object O(j)x of LxssSk by
(O@)k)n = Map(U(A"), ;) +

(where the + denotes a disjoint basepoint); the morphisms in (Aﬁﬁ)Xk act in the
evident way, and the morphisms of the form («,id) with o € 3y, act by permuting
the factors in A™.

(ii) For j > 0 define O(j) to be the object of ¥.ssS with k-th term O(j).

DEFINITION 6.7. (i) For A, B € Y558y, define the degreewise smash product

AN B € X558k

(AXB)n = An A B,

with the diagonal action of ¥j.
(ii) For X, Y € XssS, define X AY € XssS by

(XAY), = Xp A Y.

REMARK 6.8. The difference between the degreewise smash product AA B and the
previously defined smash product A A B is that the former is only defined when A
and B are k-fold multisemisimplicial sets for the same k, and the result is again a
k-fold multisemisimplicial set, whereas A A B is defined when A is k-fold and B is
I-fold, and the result is (k + 1)-fold.

Our next definition assembles the operations a, for a given j into a single map.

DEFINITION 6.9. Let j > 0. Define a map
¢; : O(H) AR® - R
in %ssS by the formulas

¢j(a/\[e,F1/\~-~/\Fj]):a*(Fl/\---/\Fj)
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(where e denotes the identity element of the relevant symmetric group) and
pilaN o, Fy A AFj]) = (a,id)egj (et id)wa A e, Fy A - A F)).
LeEMMA 6.10. The map ¢; induces a map
¥; : O(j))ARN - R
in XssS.

Proof. This is a straightforward calculation using example 4.13, definition 4.14, and
[11, definition 17.3 and lemma 18.7]. O

7. A monad in YssS

In the next section, we will show that there is a monad P in Sp,,ss with the
property that the maps 1); constructed in lemma 6.10 give an action of P on R.
As preparation, in this section, we prove the analogous result in ¥ssS; that is, we
show that there is a monad O in ¥ssS for which the maps ¢; of definition 6.9 give
an action of @ on R.

First we observe that the collection of objects O(j) has a composition map anal-
ogous to that of an operad. Recall that May defines an operad M in the category
of sets with M(j) = X, [17, definition 3.1(i)]. Let ya¢ denote the composition
operation in M. Also recall definition 4.9 and notation 4.8.

DEFINITION 7.1. Given j1,...,J; > 0 define a map
v:O0@) A (O@G) ®@---®@0(j:) = O+ -+ ji)
in 3ssS by the formulas

'y(a A\ [e,b1 VANREIIAN bz])(dl X oo X Ui) = ’)/M((I(O'l X oo X O'Z‘),bl(O'l), . ,bi(Ui))
(where e is the identity element of the relevant symmetric group) and

Y(aAfa,by A ... Ab]) = (ayid)y((@™tid)wa Afe, by A ... Abg]).

In order to formulate the associativity property of =, we note that for
X1, X5, Y, ..., Y,; € ¥ssS there is a natural map

given by

(o, wr Ayr A= ANag Ays]) = [a, o0 Ao Azl Aogyr A== Ayl
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LEMMA 7.2. The operation ~y has the following associativity property: the composite

O@i) N ((0(11) A ((9([11) K@ O(l1j1))) Q-
(0GR (Oln) @ -+ @ O(li)) )

PO, O RO + -+ + 1) @+ @ Ol + -+ + 1)

5O+ +1y,)

is the same as the composite

O A (0GR (O @+ @ Olyy))) @
® (0GR (Oln) @+ ® Olli))))
X% 06) A (O3) @ -+ @ 03G) A (O(ln) @ - ® O(li5,))
L O3y + -+ §) A (Ohn) ® - © O(l, 1))
5 Oy + -+ Lij,)-

To formulate the unital property of 7, we first need to consider the unit object
for the operation A.

DEFINITION 7.3. Let Sy be the object of X155Sy which has a copy of S’ in each
multidegree (with each morphism of Xy x (AL)*F acting as the identity of S°), and

inj

let S be the object of L.ssS with k-th term Sy.

REMARK 7.4. (i) SAX =X for any X € ¥ssS.
(ii) O(0) and O(1) are both equal to S.

(iii) S is a commutative monoid in ¥ssS with multiplication
m:S®S — S
given by
m([a, s1 A s2]) =1,

where s; and s, are any nontrivial simplices and ¢ is the non-trivial simplex in the
relevant multidegree.

LEMMA 7.5. The operation v has the following unital property: the diagrams

Y= o roMm

I
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and

commute.

To complete the analogy between v and the composition map of an operad, we
need an equivariance property.

DEFINITION 7.6. Define a right action of ¥; on O(j) by

(ax)(0) = a(o) - o
where a € Map(U(A"), %)+, o0 € U(A™), and - is multiplication in ;.

LEMMA 7.7. (i) The following diagram commutes for all a € 3;.

O(i) A (O(1) ® - ® O(ji)) —= O A (O(ja-1(1)) ® @ O(ja-1(»))

AR (BL&- ;) OG1 + -+ +ji)

OG) A (O(h) ® -+ ® O(1)) . O+ + i)

Now we use the data defined so far to construct a monad in the category ¥ssS.

DEFINITION 7.8. (i) For X € ¥ssS8, give O(j) AX®J the diagonal right ¥; action.
(ii) Define a functor O : $ssS — ¥ssS by

0(X) = \/ (0() A X*) /%;.

Jj=0
(iii) Define a natural transformation

t: X = 0X

to be the composite

(iv) Define
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to be the natural transformation induced by the maps

O@) A ((0(]1) KX®j1) R ® (O(]Z) Kx®ji))

5 (00 R (OG) @+ @ 0()) ) AXEU 50
ﬂ Oy + -+ +4i) A XEU1+-+5i)
PROPOSITION 7.9. The transformations p and ¢ define a monad structure on Q.
Proof. This is immediate from lemmas 7.2 and 7.5. O
We conclude this section by giving the action of @ on R. Observe that the map
¢; : O()) AR® = R
of definition 6.9 induces a map
(O(j) "R®7)/S; = R. (7.1)
DEFINITION 7.10. Define
v:0OR—R
to be the map whose restriction to (O(j) N X®9)/¥; is the map (7.1).
PROPOSITION 7.11. v is an action of O on R.

Proof. We need to show that the diagrams

R — - OR

ENE

R

and

OOR — > OR

OR R
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commute. The first is obvious and for the second it suffices to check that the
composite

O6) A ((O(jl) AR @ ® (O(ji)KR@i))
10X, O@) A (O(1) @+ ® O(j;)) A R®U1+ i)
AL, O@j1+ -+ ji) ARBULF+5) 2R

is the same as the composite

Oi) A ((0G1) AR®M) @ -+ @ (0(j) AR®H) ) 22222 0() AR % R.

O

8. A monad in Sppss
We begin by giving O(j) A XV the structure of a multisemisimplicial symmetric
spectrum when X € Spp,ss- The definition is motivated by lemma 6.5. Recall
definition 6.4.
DEFINITION 8.1. Let j,k > 0. Let s be the 1-simplex of S*. Define

w: ST A(OG) AXM ) = (0(G) A XM g4
as follows: for a € (O(j)k)n and x € ((X™)g)n, let

w(sA(anz))=(aoll) Aw(s A x).

The identification given in definition 4.1/ was omitted in this notation.

DEFINITION 8.2. (i) For X € Spyss, give O(j)AX" the diagonal right ¥; action.
(ii) Define a functor P : Sppmss — SDmss by

P(X) = \/ (0() AXN) /5.

>0
To give P a monad structure we need
LEMMA 8.3. The composite in definition 7.8(iv) induces a map
O A ((O(jl)KXAjl) A (OG)) wa‘i))
=001+ +5)A XAG1++7;)

in Spmss .
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DEFINITION 8.4. (i) Define a natural transformation
1 X = PX

to be the composite

SAX =0(1)AX = P(X).

1w

X
(i) Define
u: PPX — PX
to be the natural transformation induced by the maps constructed in lemma 8.3.
PROPOSITION 8.5. The transformations u and ¢ define a monad structure on P.
Proof. This follows from proposition 7.9 by passage to quotients. O
Next we give the action of P on R. By definition 8.1 and lemma 6.5, the map
Y O)ARNY - R
of lemma 6.10 is a map in Sp,,ss. It induces a map
(OG)ARM)/Z; = R (8.1)
in Spmss-
DEFINITION 8.6. Define
v:PR—-R
to be the map whose restriction to (O(j) N X")/S; is the map (8.1).
PROPOSITION 8.7. v is an action of P on R.
Proof. This follows from proposition 7.11 by passage to quotients. O
For use in §10, we record a lemma.

LEMMA 8.8. (i) There is a functor Y from P algebras to monoids in Sppmss (with
respect to A) which is the identity on objects.

(i1) The geometric realization of T(R) is the symmetric ring spectrum M of [11,
theorem 18.5].

Proof. Part (i). Let A be the monad
AX) =\/ XM
720

Then a monoid in Sp,,ss is the same thing as an A-algebra, so it suffices to give a
map of monads from A to PP.
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For each j,k > 0 and each k-fold multi-index n, define an element

€jkn € (O()k)n

to be the constant function U(A™) — X, whose value is the identity element of X;.
Next define a map

S — O3)

by taking the non-trivial simplex of (Sg)n to €; k.n-
Now the composite

=\/ XY= \/SAXY = \/(0() A XN)/5; = P(X)
Jj=20 Jj=>0 j>0

is a map of monads.
Part (ii) is an easy consequence of the definitions. O

It is worth mentioning that the map from A to P does not factor over the
commutative monad because e; 1. ,, is not a fixed point for the ¥,-action.

9. Degreewise smash product and geometric realization

For the proof of theorem 1.1, we need to know the relation between A and geometric
realization.
There is a natural map

k:|ARB| — |A|A|B|

defined by

Flw,  Ayl) = [u, 2] Afu, yl.

The analogous map for multisimplicial sets is a homeomorphism, but the situation
for multisemisimplicial sets is more delicate.

DEFINITION 9.1. A multisemisimplicial set has compatible degeneracies if it is in
the image of the forgetful functor from multisimplicial sets to multisemisimplicial
sets.

EXAMPLE 9.2. (i) One can define compatible degeneracies on O(j); for each
4,k > 0 by using the codegeneracy maps between the A™.

(ii) If X € Sppss and X has compatible degeneracies for all k then each ((9( JN
XAj) . has compatible degeneracies.

PropoOSITION 9.3. If the underlying multisemisimplicial sets of A and B have
compatible degeneracies then K is a weak equivalence.

Proof. Let A and B be multisimplicial sets whose underlying multisemisimplicial
sets are A and B. Then the underlying multisemisimplicial set of the degreewise
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smash product A A B is A A B. Consider the following commutative diagram,
where | | in the bottom row denotes realization of multisimplicial sets, % is defined
analogously to x, and the vertical maps collapse the degeneracies:

K

|[AA B] —— |A| N |B|

|AR B —— |A| A|B
The map & is a homeomorphism, and the vertical arrows are weak equivalences
by the multisimplicial analogue of [24, lemma A.5], so x is a weak equivalence. [

Next we give a sufficient condition for a multisemisimplicial set to have com-
patible degeneracies. Let D™ denote the semisimplicial set consisting of the
nondegenerate simplices of the standard simplicial n-simplex. For a multi-index
n, let D™ denote the k-fold multisemisimplicial set

D™ x ... x D"

DEFINITION 9.4. (i) A horn in D™ is a subcomplex E which contains all elements
of D™ except for the top-dimensional element and one of its faces.

(i) A k-fold multisemisimplicial set A satisfies the multi-Kan condition if every
map from a horn in D™ to A extends to a map D™ — A.

The following result is proved in [16].

PROPOSITION 9.5. If A satisfies the multi-Kan condition then it has compatible
degeneracies.

Our next result is proved in the same way as [11, lemma 15.12] and does not
require the ad theory to be commutative.

PROPOSITION 9.6. For each k, Ry satisfies the multi-Kan condition.

10. Rectification

In this section, we complete the proof of theorem 1.1.
First we consider a monad in Sp,,ss which is simpler than P.

DEFINITION 10.1. (i) Define P'(X) to be \/ ;o X /%;.
(11) For each j >0, let -

& :0() =S

be the map which takes each non-trivial simplex of O(j)k to the non-trivial simplex
of Sy in the same multidegree. Define a natural transformation

E:P—> P
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to be the wedge of the composites

(O() AXN) /%, SN (SAXN) /5, 5 XN 3.

PROPOSITION 10.2. (i) An algebra over P’ is the same thing as a commutative
monoid i SPmss-

(ii) = is a map of monads.

(iii) Suppose that each Xj has compatible degeneracies (see definition 9.1). Let
P? denote the g-th iterate of P. Then each map

E:PYX) - PP H(X)
is a weak equivalence.

Parts (i) and (ii) are immediate from the definitions. Part (iii) will be proved at
the end of this section.

Proof of theorem 1.1. We apply the monadic bar construction [17, construction 9.6]
to obtain simplicial objects Bo(P,P,R) and Be(P',P,R) in Spy,ss. We write R,
for the constant simplicial object which is R in each simplicial degree. There are
maps of simplicial P-algebras

R, < B.(P,P,R) =% B,(P,P,R), (10.1)

where ¢ is induced by the action of P on R (see [17, lemma 9.2(ii)]). The map ¢ is a
homotopy equivalence of simplicial objects [17, Proposition 9.8] and the map =, is
a weak equivalence in each simplicial degree by propositions 9.5, 9.6, and 10.2(iii).
B, (P, P, R) is a simplicial algebra over I, which by proposition 10.2(i) is the same
thing as a simplicial commutative monoid in Sp,,ss. Moreover, by lemma 8.8(i),
R, and B,(P,P,R) are simplicial monoids, and ¢ and =, are maps of simplicial
monoids.

The objects of the diagram (10.1) are simplicial objects in Sp,ss. We obtain a
diagram

R.| <L |B.(p, P, R)| Z2 |B,(P, P, R))| (10.2)

of simplicial objects in Sp (the category of symmetric spectra) by applying the
geometric realization functor Spy,ss — Sp to the diagram (10.1) in each simplicial
degree. The map |e| is a homotopy equivalence of simplicial objects and the map |Z,|
is a weak equivalence in each simplicial degree. The object | B (P, P, R)| is a simpli-
cial commutative symmetric ring spectrum, the objects |Re| and |Be(P,P, R)| are
simplicial symmetric ring spectra, and the maps |¢| and |Z,| are maps of simplicial
symmetric ring spectra.
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Finally, we apply geometric realization to the diagram (10.2). We define Me™™
to be ||Be(P’, P, R)||. Now we have a diagram

M = [R| L B, (e, B, R)|| 22 ||B. (P, P, R)|| = Mcomm (10.3)

in Sp. The map ||¢|| is a homotopy equivalence (cf. [17, corollary 11.9]) and the map
[|Ze]| is a weak equivalence by [12, theorem E]. M®°™™ ig a commutative symmetric
ring spectrum, M is the symmetric ring spectrum of [11, theorem 18.5] (by lemma
8.8(ii)), ||Be(P,P,R)|| is a symmetric ring spectrum, and ||¢|| and ||Z.|| are maps
of symmetric ring spectra. O

We conclude this section with the proof of part (iii) of proposition 10.2. First we
need a lemma (which for later use we state in more generality than we immediately
need). Recall that a preorder is a set with a reflexive and transitive relation <.
Examples are ¥;, with every element < every other, and U(K) (see definition
6.2(i)), with < induced by inclusions of cells.

LEMMA 10.3. Let P be a preorder with an element which is > all other elements,
and let k > 0. Define a k-fold multisemisimplicial set A by

An = Mappreorder(U(An)v P)

Then
(i) A has compatible degeneracies, and
(ii) A is weakly equivalent to a point.

Proof. For (i), we can give A compatible degeneracies by using the codegeneracy
maps between the A™.

Part (ii). Let A be a multisimplicial set whose underlying multisemisimplicial
set is A. Let dA be its diagonal. The multisimplicial analogue of [24, Lemma A.5]
implies that |A| is weakly equivalent to |A|, and it is well-known that the latter is
homeomorphic to |df~1\ It therefore suffices to show that the simplicial set dA is
weakly equivalent to a point.

Let Agmp denote the standard simplicial n simplex and let 6A;§mp denote its
boundary. Then it suffices by [7, theorem 1.11.2] to show that every map from
OAL,, to dA extends to Almp-

Let D™ (resp., dD™) be the semisimplicial set consisting of the nondegenerate
simplices of A%, (resp., OAL, ). Since AL (resp., DAL ) is the free simplicial
set generated by D" (resp., 0D™), it suffices to show that every semisimplicial map
from OD™ to dA extends to D", and this is obvious from the definition of A. O

Note that if P is 3; with the preorder described above then A is O(j)y.

Proof of 10.2(iii). We begin with the case ¢ =1, so we want to show that the map

E:P(X) —» P/(X) is a weak equivalence. It suffices to show that the map
(OG) AXM) /85 = XM /3

is a weak equivalence for each j. Proposition A.2 and remark A.3 show that the
Y; actions are free away from the basepoint. We will now employ the following
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fact: if X is a cellular G-spectrum with a free action away from the base point
then the canonical map from EG; Ag X to X/G is a weak equivalence. Moreover,
(EG)4+ Ag X sits in a fibration with base BG and fibre X. Hence, it suffices to show
that each map

O(j) A XN — XN
is a weak equivalence. Now the object (O(j) A XN ) ., comes from

I >

O ISk
k1 +"'+k)j =k

e, (Xay A X

and we have

N — X
Ok A Izlflx"'xzkj (Xkl A /\ij)

= Iglflx...xgkj (O(j)k A (Kgy Ao A ij)>,

so it suffices by proposition 5.4 to show that each map
(’)(j)kK(Xkl A---Aij) —)Xkl /\---/\ij

is a weak equivalence, and this follows from example 9.2, proposition 9.3, and lemma
10.3.
The general case follows from the case ¢ =1 and example 9.2(ii). O

11. Proof of theorem 1.2

It is well-known that Thom spectra are commutative symmetric ring spectra (see
for example [23]; we recall this below). In this section, we show that the Thom
spectrum M STop obtained from the bar construction is weakly equivalent, in the
category of commutative symmetric ring spectra, to the commutative symmetric
ring spectrum (Mgt )°°™™ given by theorem 1.1.

Our first task is to construct the following chain of weak equivalences in the
category of symmetric spectra

Mstop <5 Y 22, X 73 MSTop. (11.1)

First recall that MSTop has as kth space the Thom space T(STop(k)). The X,
action on T(STop(k)) is induced by the conjugation action on STop(k).

For the construction of X, we need some facts about multisimplicial sets. Given a
space Z and k > 1, let S¥™u!%(7) be the k-fold multisimplicial set whose simplices
in multidegree n are the maps A™ — Z. There is a natural map

Shm(Z)] = 7

(where | | denotes realization of the underlying multisimplicial set) which is a weak
equivalence by [1] and the multisimplicial analogue of [24, lemma A.5]. If Z is a
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based space, there are natural maps

A: SISETIIN(Z)] ST A S5 (7))
and

K2 SLA ShmmultiZy S£k+1)—multi(zz)

defined as follows. Given ¢ € [0,1], u € A™, and g : A™ — Z, let ¢ denote the image
of t under the oriented affine homeomorphism [0, 1] — Al and define

At A u, g]) = [(t,u), s A gl,
where s is the non-trivial simplex of S'. Define
k(s A g)(tu) =t Ag(u).

Then the diagram

. A .
E‘Sf‘—multl(zﬂ ‘Sl A Sf—rnulh(z)l

N

A |S£k+1)7multi(zz)‘

commutes.

Now let X}, = |Sk—multi(T(STop(k)))|. We define the X, action on Xj, as follows.
For a € ¥; and g : A™ — T(STop(k))), let a(n) = (n,-1¢),---,M4—1()) and let
a(g) be the composite

~1
A 2 A 2 T(STop(k)) = T(STop(k)).

This makes S¥~™(T(STop(k))) an object of ¥js5Sy, and now proposition 5.3
gives the X; action on Xj. Next define the structure map

Xk — Xk

to be the composite

S|SEm (T (STop(k)))| = ST A SE=m(T(STop(k)))|
|| SSkJrl)fmulti ST(STop(k N S£k+1)7multi T(STop(k + 1
— | (XT'(STop(k)))| — | (T(STop(k + 1)))|,

where the last map is induced by the structure map of MSTop. Let X be the
symmetric spectrum consisting of the spaces Xj with these structure maps. Define
f3 : X' = MSTop to be the sequence of weak equivalences

ST (T (STop(k)))| — T(STop(k)).

The commutativity of diagram (11.2) shows that f5 is a map of symmetric spectra.
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Next let SE~™"(P(STop(k))) be the sub-multisemisimplicial set of
Sk—multi(T(STop(k))) consisting of maps whose restrictions to each face of A®
are transverse to the zero section (see [5] for topological transversality). Let Y be

the subspectrum of X with kth space | S8 ™" (T(STop(k)))|, and let f5 : ¥ — X
be the inclusion.

LEMMA 11.1. fs is a weak equivalence.

Proof. Since S&~™MN (P (STop(k))) and Sk—multi(T(STop(k))) satisfy the multi-
Kan condition, they have compatible degeneracies by proposition 9.5. It therefore
suffices to show that the inclusion S ™™ (T(STop(k))) c Sk—multi(T(STop(k)))
induces a weak equivalence on the diagonal semisimplicial sets, and this follows
from [5, §9.6] and the definition of homotopy groups [18, definition 3.6]. O

It remains to construct f1. Let S C T(STop(k)) be the zero section. First we
observe that, if g : A™ — T(STop(k)) is a map whose restriction to each face
is transverse to S, we obtain an element F' € adgrop(A™) by letting F'(o,0) be
g~ (S) N o with the orientation determined by o. This construction gives a map

S¢ ™I (T(STop(k))) — (Rstop )i,

in ¥jssSk, and applying geometric realization gives a Yj equivariant map Y, —
(Msop)k; we let f1 be the sequence of these maps.

LEMMA 11.2. f; 4s a weak equivalence.

Proof. For a k-fold multisemisimplicial set A, let A’ be the semisimplicial set whose
nth set is Ay, o.n. There is an evident map

¢ A" — A

If Ais SE=multi(Z) then A" is So(Z), and if A is Ry, then A’ is the semisimplicial
set Py of [11, definition 15.4(i)], with realization (Qgtop)r [11, definitions 15.4(ii)
and 15.8]. Now we have a commutative diagram

f1 f2 f3
(MSTop)k Yvk: Xk T(STOp(k))

- -

g1

(Qsmop)k ~—— |SE(T(STop(k)))| ——> |Sa(T(STop(k)))| ——> T(STop(k))

Here g3 is the usual weak equivalence, and go is a weak equivalence by [5,
§9.6] and the definition of homotopy groups [18, definition 3.6], so ¢2 is a weak
equivalence. g; was shown to be a weak equivalence in [11, Appendix B], and ¢;
was shown to be a weak equivalence in [11, §15], so f; is a weak equivalence as
required. ]

This completes the construction of diagram (11.1).
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Next we recall that MSTop is a commutative symmetric ring spectrum with
product

T(STop(k)) AT (STop(l)) — T(STop(k +1)).
X is also a commutative symmetric ring spectrum, with the product

| S (T (STop(k)))| A [S4™™"(T(STop(1)))]
— | ST (P g Ton (k) A T(STop(1)))] — [SSTD ™M (7 (STop(k + 1)),

and Y is a commutative symmetric ring spectrum with the product it inherits from
X. The maps fo and f3 are maps of symmetric ring spectra, so to complete the
proof of theorem 1.2, it suffices to show

LEMMA 11.3. (Mstop)®©™™ and Y are isomorphic in the homotopy category of
commutative symmetric ring spectra.

The proof of lemma 11.3 is outsourced to Appendix B. The results of Appendix
B use material from §17 and 18.

12. Relaxed symmetric Poincaré complexes

For a commutative ring R with the trivial involution, we would like to apply theorem
1.1 to obtain a commutative model for the symmetric L-spectrum of R. However,
the ad theory ad defined in §9 of [11], with the product defined in [11, definition
9.12], is not commutative. The difficulty is that this product is defined using a
noncommutative coproduct

A:W-SWeW

for the standard resolution W of Z by Z[Z/2]-modules. In this section and the next,
we give an equivalent ad theory which is commutative.

Fix a ring R with involution. For a complex C of left R-modules, let C* be the
complex of right R-modules obtained from C' by applying the involution of R. As
usual, give C* ® g C' the Z/2-action which switches the factors. Write Chy, s for the
category of homotopy finite chain complexes as in [11, definition 9.2(v)].

DEFINITION 12.1. A relaxed quasi-symmetric complex of dimension n is a quadru-
ple (C, D, B,¢), where C is an object of Chyyr, D is an object of Chyy with a Z/2
action, 8 is a quasi-isomorphism C' @g C — D which is also a Z/2 equivariant
map, and @ is an element of D%/Q.
EXAMPLE 12.2. (i) If (C, ) is a quasi-symmetric complex as defined in [11, defi-
nition 9.3], then the quadruple (C, (C* @z C)W, B, p) is a relaxed quasi-symmetric
complex, where 3 : C'®@rC — (C*®@gC)"W is induced by the augmentation W — Z.
(ii) Relaxed quasi-symmetric complexes arise naturally from the construction of
the symmetric signature of a Witt space given in [6]; see [3].
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DEFINITION 12.3. We define a category AL, (the rel stands for relaved) as fol-

rel

lows. The objects of Af‘el are the relaxed quasi-symmetric complexes. A morphism

(C,D,B,9) = (C",D",5,¢) is a pair (f : C = C',g: D — D'), where f and g are
R-linear chain maps, g is Z/2 equivariant, g8 = 8'(f® f), and (if dim¢ = dim ¢')
g+(p) = ¢

DEFINITION 12.4. A morphism (f,g) : (C,D,B,¢) — (C',D',0',¢") between
objects of the same dimension is a quasi-isomorphism if f (and hence also g) is
a quasi-isomorphism.

AR is a Z-graded category, where d was defined above, i takes (C, D, 3, ¢) to
(C,D,B,—¢) and 0, is the n-dimensional object for which C and D are zero in
all degrees. Since the set of morphisms between objects of different dimensions is
independent of the chains ¢ the category A%, is a balanced in the obvious way
[11, definition 5.1].

REMARK 12.5. The construction of example 12.2(i) gives a morphism
Al AR
of Z-graded categories.

Next we must say what the K-ads with values in .Af;l are. We need some pre-
liminary definitions and a lemma. For a balanced pre K-ad F we will use the
notation

F(U’ 0) = (Cav D,, Bs, 900,0)-
Recall [11, definition 9.7].

DEFINITION 12.6. A balanced pre K-ad F is well-behaved if C and D are well-
behaved.

Next recall [11, definition 12.2].

LEMMA 12.7. Let F be a well-behaved pre K-ad. Then
(i) Ct @p C is well-behaved, and
(ii) the map

(Bo’)* : H*((Ct XR C)a/(ct ®R C)(’?o’) — H*(DJ/DBU)
is an isomorphism for each o.

Proof. For part (i), first recall (by [11, definitions 9.7(b) and 9.6(ii)]) that C takes
morphism to cofibrations, that is, split monomorphisms in each degree. Moreover,
the canonical map from Cy, to C, is a cofibration for each o. Let us fix a cell o
of K for the rest of the proof. For each degree n, we will construct a set S; and a
basis (bs)ses, of Cr by induction for all 7 C ¢ in a functorial way. We will omit
the degree from the notation for this part. For points 7, we simply choose a basis.
These add up to a basis of Cy, for 1-cells p. Given a cell 7 of dimension k, we may
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suppose that we have already constructed a basis of Cy,. Since Cy, — C; is split
injective and all modules, including the quotient module, are free we may extend
this basis to a basis of C;. This way, we constructed a basis of Cy, for all p of
dimension k + 1 as well: the set of all b, with s € UTC S; gives a basis because the
free functor commutes with colimits. We have to show that the map

(Ct ®r Cos = colingaCﬁ QRrCr — C’é ® C,

is a cofibration. A basis of the target in degree m is indexed by the union
Uptg=n Sop X So,q Where we now have to take care of the different degrees in
the notation. A basis for the source is the subset given by the union of all pairs
coming from S;, x S; 4 for 7 C 0. Since the map is induced by the free functor it
is split injective.

For part (ii), first observe that the fact that C* @ g C' and D are well-behaved
implies that they are Reedy cofibrant [8, definition 15.3.3(2)]. The colim that defines
(C*'®pr C)se is a hocolim by [8, theorem 19.9.1(1) and proposition 15.10.2(2)], and
similarly for Dy, so the map

(ﬁa)* : H*((Ct QR 0)80) — H*(Dao)
is an isomorphism by [8, theorem 19.4.2(1)], and this implies the lemma. g
Recall [11, example 3.12 |.

DEFINITION 12.8. A balanced pre K-ad F'is closed if, for each o, the map from the
cellular chains cl(o) to Dy which takes (T,0) to ¢:, is a chain map.

Note that if F' is closed then ¢, , represents an element (¢, o] € H.(Dy/Das).

NOTATION 12.9. For a balanced pre K-ad F and a cell o of K, let

Jo : (C' @R C)s/(C* @R C)ag = (Co/Cao)' @r Co
be the map that takes [c ® ¢] to [¢c] ® ¢'.

The next definition is a little more complicated than the corresponding definition
in [11, §9] in order to satisfy the extra condition in definition 3.3.

DEFINITION 12.10. (i) A balanced K-ad is a pre K-ad F with the following
properties:

(a) it is balanced, well-behaved, and closed, and

(b) for each o the slant product with (j,)«(Bs)s  ([Po.0]) is an isomorphism

H*(Hompg(Cy, R)) = Hdim o—deg F—+(Cs/Cas).

(i1)A K-ad is a pre K-ad which is naturally quasi-isomorphic to a balanced K-ad.
We mention that, by the definition of an ad theory, a (K, L)-ad is just a (K, L)-
pread which is a K-ad.

Write adf; for the set of K ads with values in A%

rel®
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REMARK 12.11. The morphism of remark 12.5 takes ads to ads.

THEOREM 12.12 adZ, is an ad theory. Moreover, when R is commutative with the
trivial involution, ad’l, is a commutative ad theory.

For the proof of theorem 12.12, we need a product operation.

DEFINITION 12.13. (i) For i = 1,2, let R; be a ring with involution and let
(C%, D, B4, o) be an object of AR,. Define

(C', D', 8", ") @ (C?,D? B, ¢%)

R1®Rg |

rel

to be the following object of A
(C'®@C? D' © D*v,0' ® p?),
where vy is the composite
(C' @ C*) @rjar, (C'®C?) = ((CY) @R, C") & ((C?) @R, C?)
1,452
PS5 ple D2

(ii) Fori = 1,2, suppose given a ball compler K; and a pre K;-ad F; of degree k;

with values in A L. Define a pre (K1 x Ks)-ad Fy ® Fy with values in AZ%QQRQ by

i
rel”
(F1 ® Fo)(0 X 1,01 X 03) = ik2 dim"Fl(U, 01) ® Fs(T,09).

LEMMA 12.14. For i = 1,2, suppose given a ball complex K; and a K;-ad F; with
% Then Fy ® Fy is a (K1 x K3)-ad.

values in A}

Proof of 12.12. We only need to verify parts (d), (f), and (g) of [11, definition 3.10].

For part (d), we have to show that a pre K-ad is a K-ad if it restricts to a o-ad
for each closed cell o of K. It suffices to consider the case of a K-pread F with
K = L Uy, 0 whose restriction to L is naturally quasi-isomorphic to a balanced
L-ad G and to a balanced o-ad H on 0. We have to give a quasi-isomorphism of F
to a balanced K-ad I. In the following, we will concentrate on the first complex in
the datum of a pread and we will use the same letter for this complex. The second
complex and all other entries will be clear then. Define the restriction of I to L be
G. It remains to define I,, a map to F, and the maps from its lower dimensional
cells. For each 7 C Jo, we are given a quasi-isomorphism ¢, from G, to F, and
an h, from H; to F,. Since G, and H, are cofibrant we find a map f, : G, — H,
such that h, f. is homotopic to g.. This only uses the fact that isomorphisms in the
homotopy category between cofibrant objects can be represented by chain maps up
to homotopy. Similarly, using the fact that the restriction of G to do is balanced
we find a map fy, : Gog, — Hy, whose restriction to 7 C do is homotopic to
H.cssf-- We also find a system of compatible homotopies, that is, a homotopy
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between hys foo and gy . Let I, be the mapping cylinder of
HSUCUf(’?U : GOJ — Hc7~

Then the constructed homotopy and the map h, complete the required quasi-
isomorphism I, — F,. The other maps are obvious.
For part (f), let F' be a K -ad. We may assume it is balanced. Let

F(07 O) = (CovDaaﬂm@a,o)-

We need to define a K-ad E which agrees with F' on each residual subcomplex of
K. As in the proof of [11, theorem 6.5], we may assume by induction that K is a
ball complex structure for the n disk with one n cell 7, and that K " is a subdivision
of K which agrees with K on the boundary. We only need to define E on the top
cell 7 of K. We define E(7,0) to be (Cr, D+, B, ¢r.0), where

Cr = colim, ¢ g Cy,

D, = colim, ¢ g1 Do,

B = colim, ¢ i/ 8-, and

Pro = D ¥qo> Where (0,0") runs through the n-dimensional cells of K '
with orientations induced by o.

The fact that E satisfies part (a) of definition 12.10 is a consequence of [11,
proposition A.1(ii)]. We will deduce the isomorphism in part (b) of definition 12.10
from [11, proposition 12.4], and for this we need some facts from [11, §12].

First recall that for a well-behaved functor

B : Cell’(K') — Chuy,
we write
Nat(cl, B)

for the chain complex of natural transformations of graded abelian groups; the
differential is given by

o) =0dov—(-1)"voa.

Recall [11, definition 12.3] and also the map @ defined just before the statement
of [11, lemma 12.6]. Consider the diagram

[
H, (Nat(cl, D)) H,in(Dy, Dyr)

d d

D
H,(Nat(cl,C* @ C)) — H, 1 n((C*@r C),, (Ct @R C)or).

The horizontal maps are isomorphisms by [11, lemma 12.6], and the right-hand
vertical map is an isomorphism by the proof of lemma 12.7(ii). Hence the left-hand
vertical map is an isomorphism.
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The collection {¢,,} gives a cycle v in Nat(cl, D). Let u € Nat(cl, C* @ C) be
a representative for 371 ([v]). Now fix an orientation o for 7. Let ¢ € CL @ C, be
ST u((0,0')), where (0,0') runs through the n-dimensional cells of K with orien-
tations induced by o. Then 1 is a representative of (jo)«B87([¢r.0]), so it suffices
to show that the cap product with 4 is an isomorphism H*(Hompg(C,, R)) —
H,_deg F—+(C7/Ca.), and this follows from [11, proposition 12.4].

It remains to verify part (g) of [11, definition 3.10]. Let 0, 1,¢ denote the three
cells of the unit interval I, with their standard orientations. As in the proof of [11,
theorem 9.11], it suffices to construct a relaxed symmetric Poincaré I-ad H over
Z which takes both 0 and 1 to the object (Z,Z,~,1), where v is the isomorphism
ZQ®Z — 7. The proof of [11, theorem 9.11] gives a symmetric Poincaré I-ad G with
G(0) = G(1) = (Z,¢€), where € : W — Z ® Z is the composite of the augmentation
with 41, Let us denote the object G(:) by (C,¢). Applying remark 12.11 to G
gives a relaxed symmetric Poincaré I-ad G with /(1) = (C, (C®C)WV, B, ¢), where
B is induced by the augmentation. Let eg (resp., e1) be the inclusion 0 < ¢ (resp.,
1<) and for i = 0,1 let g; = G(e;) : Z — C. Then

Op = (g1 ©g1) 0 €— (g0 @go) e
because G is closed. We can therefore construct the required I-ad H from G by
replacing G'(0) and G'(1) by (Z,Z,~,1). O
13. Equivalence of the spectra associated with ad” and adfel
By remark 12.11, the morphism

AR 5 AR

rel

of remark 12.5 induces a map of spectra

Q" — Qﬁl
(see [11, §15]) and a map of symmetric spectra

ME — MF,
(see [11, §17]).
THEOREM 13.1 The maps

Q" — Qf
and

M* — M/

rel

are weak equivalences.

REMARK 13.2. The method that will be used to prove theorem 1.3 can be used to

show that M — Mil is weakly equivalent to a map of symmetric ring spectra.
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Recall [11, definitions 4.1 and 4.2]. By [11, theorem 16.1, remark 14.2(i), and
corollary 17.9(iii)], theorem 13.1 follows from

PRrROPOSITION 13.3. The map of bordism groups

QF — (7).
is an isomorphism.
The proof of proposition 13.3 will occupy the rest of this section. The following
lemma proves surjectivity. As usual, for a chain complex A with a Z/2 action, we
write A"2/2 for (AW)%/2. The augmentation induces a map A%/2 — AM/2,

LEMMA 13.4. Let
(C7 D7 ﬁ? (p>
be a relared symmetric Poincaré x-ad and let
w c (Ct ®r C)hZ/Q

represent the image of ¢ under the map

H*(DZ/Q) - H*(DhZ/2) & H*((Ct QR C«)hZ/Z)

(where the isomorphism is induced by ). Then (C,v) is a symmetric Poincaré
x-ad, and (C, D, B, ) is bordant to

(C,(C*®@r O)Y,7,9),
where v is induced by the augmentation.
For the proof, we need another lemma.
LEMMA 13.5. Let (C, D, 8, ¢) be a relazed symmetric Poincaré x-ad.

(i) If ¢ € D%/? is any representative for the homology class [¢] € H,(D%/?) then
(C, D, B,1) is bordant to (C, D, B3, ).

(ii) If
(f’g) : (C7D’5?SO) _> (C/7D/7ﬂ/7(p/)

is a map of *-ads of the same dimension for which f (and hence also g) is a quasi-
isomorphism then (C, D, 3,¢) and (C', D', 3, ¢') are bordant.

The proof of lemma 13.5 is deferred to the end of the section.

Proof of lemma 13.4. The fact that (C,) satisfies [11, definition 9.9] (only part
(b) is relevant) is immediate from definition 12.10(b).
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To see that (C, D, 3,¢) and (C, (C* @ C)W,~v,1) are bordant, let § denote the
composite

CtorC 2 D DY,

let w € D"/2 be the image of ¢, and let w’ € D"”/2 be the image of ¢ under
the map (C ® C)"/2 — D"/2 induced by B. Part (ii) of lemma 13.5 shows that
(C, D, B,¢) and (C, DV, 6, w) are bordant, and also that (C, (C* @z C)W,~v,1) and
(C, DV, 6,w') are bordant. But [w] = [w] in H,(D"*/?), so the result follows from
part (i) of lemma 13.5. O

Next we show that the map in proposition 13.3 is 1-1. So let (Cy, ¢o) and (C1, ¢1)
be symmetric Poincaré x-ads and let F' be a relaxed symmetric Poincaré bordism
between them. Let 0,1,: denote the three cells of the unit interval I, with their
standard orientations. Denote the object F(¢) by (C, D, 8, ). It suffices to show
that there is a symmetric Poincaré I-ad G with

G(O) = (00,500)7 G(l) = (017301)’ G(L) = (C» X) (131>

for an element y which we will now construct.
 represents an element

[p] € Ho(D"? (Ch @R Co)"/? @ (C} @k C1)"/?).
The map D — D" induced by the augmentation gives a map

H.(D"2,(Cf @r Co)"*/? @ (Cf ®r C1)"™?)
— H.(D"/2 ((Ch @r Co)")'/2 & ((Cf @ C1)W)ME2);

let z be the image of ¢ under this map. The map 3 : C* ®r C — D gives an
isomorphism

(B"72). : HL((C" @R O, (Cf @R Co)"™? @ (C ©r C1)"7?)
— H. (D" ((Ch @R Co)V )"/ & ((C] @p C1)W)"/2);

let y = (B"%/2) .} (2).
LEMMA 13.6. The image of y under the boundary map

H.((Ct®@p C)"/2 (CE @p Co)"P/? @ (Ct @ C1)"2/?)
9, H,_1((C ®@r Co)"%/? & (Ct @ C1)M%/?)

is —[po] + [p1]-

Before proving this we conclude the proof of proposition 13.3. The lemma implies
that there is a representative y of y with
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Ox = —po + 1. (13.2)

It suffices to show that, with this choice of x, the symmetric Poincaré pre I-ad G
given by Eq. (13.1) is an ad. Equation (13.2) says that G is closed, and part (b) of
[11, definition 9.9] follows from definition 12.10(b) and the fact that the image of
[x] under the map

H.((C* ®r C)"*/?,(Cf @k Co)"*/* & (Cf @R C1)"/?)
= H.((C'®r C)V,(Cior Co)" @ (Cf ®r C1)™Y)
E H.(C'@r C,(CoRr Co) @ (Ctar C1))
is the same as the image of [¢] under the map
H.(D%?, (CE @p Co)"/% @ (CF @x C1)"/?)
— H.(D,(C{®r Co)" @ (Cf ®r C1)")
% H.(C"®R C,(Ch ®r Co) & (C} @r C1)).
Proof of lemma 13.6. We know that the image of [¢] under the boundary map
HL(D2,(Ch @ Co)™ & (Cf 0 C1)"/?)
% Ho 1 ((Ch @k Co)"/? @ (CL @g C1)M/?)
is —[wo] + [¢1], so it suffices to show that for ¢ = 0,1 the maps
(C@p Ci)"E? — ((Ct g C;)WY)ME?

induced by D — D" and by 3 give the same map in homology. If we think of these
as maps

ai,b; : ((C @p Ci)V)P2 = ((Cf @p C;)WEW)2/2
(with diagonal Z/2 action on W ® W) then a; and b; are induced by the maps
er,e0 : WRW — W
given by the augmentations on the two factors. Now the Z/2 equivariant map
A:W-WeW

of [20, p. 175] has the property that e; o A and ez o A are both the identity map,
so if

d: ((Clor C))VEW)E2 - ((Clor C)V )52

is the map induced by A then do a; and d o b; are both the identity map. But A is
a Z/2 chain homotopy equivalence, so d is a homology isomorphism and it follows
that a; and b; induce the same map in homology as required. O

https://doi.org/10.1017/prm.2024.119 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.119

1882 G. Laures and J.E. McClure

It remains to prove lemma 13.5. Let F' be the cylinder of (C, D, 3, ¢) (which was
constructed in the last paragraph of the proof of theorem 12.12). Then F(0) and
F(1) are both (C, D, 3, ). Write

F(”) = (CLaDuﬂLa(PL)
and let
(ha k) : (C7D,57§0) — (CMDL,/BMSOL)
be the map F(1) — F(v).

For part (i), the hypothesis gives an element p € DZ%/? with dp = 1 — . Let

p e DLZ/2 be the image of p under k: D — D,. Define an I-ad G by

G(0)=(C,D,B,¢), G(1)=(C,D,B,¢), G()=(C0, Dy, B0+ p)

Then G is the desired bordism.
For part (ii), we first show that (C, D, 3, ) is bordant to (C,D’, 81, ¢’), where
(1 is the composite

Ctorc D% D

The idea is to construct a suitable mapping cylinder. Let Dy be the pushout of the
diagram

k
D —— D,
g
D/

Let 1 be the image of ¢, in D; and let S5 be the composite
C'®rC, — D, — Dj.
Define an I-ad H by
H(0)=(C,D,B,¢), H(1)=(C,D",p1,¢'), H()=(C.,Di, P2, 1)
Then H is the desired bordism.

To conclude the proof we show that (C, D', 81, ¢’) is bordant to (C’, D", 5, ¢").
Let C; be the pushout of the diagram
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Let (C!, D;, B/, ¢!) be the cylinder of (C’, D', 8, ¢"). Let 83 be the map

C{ ®rCy — DZ
Define an I-ad H; by

Hl(O) = (Oa D,,617g0/), Hl(l) = (C/aD/aﬂla(p/)v Hl([’) = (Cl7DZa/B37g0//,)'

Then H; is the desired bordism.

14. The symmetric signature revisited

Fix a group m, a simply connected free m-space Z, and a homomorphism w : 7 —
{%1}, and recall the symmetric spectrum M z ., [11, §7 and 17] which represents
w-twisted Poincaré bordism over Z/7.
Let R denote the group ring Z[n] with the w-twisted involution [21, p. 196].
We now restrict our attention to strict ball complexes. Recall from §2 that a ball
complex is strict if each component of the intersection of two cells is a single cell.
In [11, §10], we gave a functor

sig: Ar 7.0 — A"
which induces a natural transformation
sig - ady 7.0 (K) — ad®(K)
for strict ball complexes K.

REMARK 14.1. (i) The restriction to strict ball complexes was not mentioned in
[11] but is necessary, because if K has a cell 7 whose boundary is not strict and if
Fis a K-ad (X,, fs,&s,0) then the map

colimycorS«(Xo) = Su(Xor) (14.1)

is not a monomorphism (because simplices with support in ¢ N ¢’ but not in a cell
of o0 N ¢’ will have two representatives in the colimit), and hence sig o F' is not
well-behaved.

(ii) If K is strict then the map (14.1) has a left inverse for all 7 (because its
image is the subcomplex of S.(X;) generated by the simplices that land in some
X, with 0 C 97, and the left inverse takes each such simplex to a representative for
it in the colimit system; all such representatives are identified because K is strict).
Hence the map (14.1) is the inclusion of a direct summand, as required for sig o F'
to be well-behaved.

(iii) The restriction to strict ball complexes does not affect the results about the
symmetric signature in [11] because the only ball complexes that occur in [11, §15,
17-19] are products of simplices, and these are strict.
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In this section, we give a functor
o . R
S1Zye] - 'Aﬂ',Z,w — 'Arel
which induces a natural transformation

8ig,e1 : adr,z,w(K) — ad®? (K)

rel

for strict ball complexes K.

Let (X, f,&) be an object of Ay 7z, [11, definition 7.3].

In the special case where 7 is the trivial group and Z is a point, the definition is
easy:

Sigrel(X’ fag) = (S*X7 S*(X X X)aﬂa@)a

where [ is the cross product S, X ® S, X X S«(X x X) and ¢ is the image of £
under the diagonal map. B

The definition in the general case is similar. Recall that we write X for the
pullback of Z along f and Z" for Z with the right R action determined by w. Also
recall [11, definition 7.1].

DEFINITION 14.2. (i) Give S.(X) the left R module structure determined by the
action of m on X and give S.(X x X) and S.(X) ® S.(X) the left R module
structures determined by the diagonal actions of .

(ii) Define
sigra (X, £,€) = (8.(X), 2" @R Su(X x X), B,0),

where 3 is the composite

S (X) @R S (X) 27" @5 (S:(X) ® 5,.(X)) 2225 2% @k S, (X x X)
and ¢ is the image of & under the map
S (X, 2 = 7" @R S.(X) = Z¥ @ S:(X x X)
(where the unmarked arrow is induced by the diagonal map).

REMARK 14.3. (i) For set-theoretic reasons one should modify this definition as in
[11, §10]; we leave this to the reader.

(ii) For strict ball complexes, sig.. takes ads to ads, because the composite of
the cross product with the Alexander—Whitney map is naturally chain homotopic
to the map induced by the diagonal.

Next we compare sig to sig,q.

Let us denote by § both the map AF — AL of remark 12.5 and the map
ME Mf;l which it induces.
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PROPOSITION 14.4. The diagram
M‘n’,Z,w

sig ﬁq
5

MR MR

rel

commutes in the homotopy category of symmetric spectra.
We will derive this from a more general result. Recall definition 12.4.

PROPOSITION 14.5. Let © be an ad theory, let R be a ring with involution, and let
S; and S be morphisms of ad theories © — adf;. Suppose that there is a natural
quasi-isomorphism v : S — Sy. Then the maps Mg — Mfﬂ induced by S; and S»
are homotopic.

Proof of proposition 14.4. The extended FEilenberg—Zilber map
WS (Y xZ)— S (Y)®S.(Z)
[6, proof of proposition 5.8] gives a map
8.V % Z) = ((S.(¥) © Su(Z)",
and this gives a natural quasi-isomorphism

v :sig. — d osig.
O

The rest of this section is devoted to the proof of proposition 14.5. The basic
idea is similar to the proof of theorem 1.1.

DEFINITION 14.6. Let P be the poset whose two elements are the functors S; and
SQ, with Sl S SQ.

Recall definition 6.2(i) and note that U(K) has a poset structure given by
inclusions of cells. Our next definition is analogous to definition 6.2(ii).

DEFINITION 14.7. Let k >0, let n be a k-fold multi-index, and let F € pref, (A™).
Let

b:U(A") —» P
be a map of posets.

(i) For an object (0,0) of Cell(A™) define the object b.(F)(c,0) of AR, to be
b(o)(F(0,0)).
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(i1) For a morphism f : (0,0) — (0',0") of Cell(A™) define the morphism
bo(F)(f) : bo(F)(0,0) = ba(F)(0",0)
to be
S1(f) if b(o’,0") = 51,

Sa2(f) if (o, 0) = Sa,

voSi(f) otherwise.
LEMMA 14.8. b, takes ads to ads.
Proof. Suppose F is a K-ad in ©. Then v provides a quasi-isomorphism x from
S1(F) to b (F): let 1(IF")(4,0) be the identity if b(c,0) = Si and let it coincide with
V(F)(0,0) else. Since Sy (F) is quasi-isomorphic to a balanced K-ad the same is true

for b, (F'). This implies that b,(F) is a K-ad. O

Recall that we write R for the object of Sp,,ss associated with an ad theory
(example 4.13). Then b, gives a map

(Ro)i)n = (Ri)w)n-
DEFINITION 14.9. (i) For k > 0 define an object Py of YyssSk by
(Pk)ﬂ = Mapposets(U(An)’ P)+
(where the + denotes a disjoint basepoint); the morphisms in (Aiorg)Xk act in the
evident way, and the morphisms of the form («,id) with o € X act by permuting
the factors in A™.
(ii) Define P to be the object of ¥ssS with k-th term Py,.

Next we give P A Rg the structure of a multisemisimplicial symmetric spectrum
(cf. definition 8.1). Recall definition 6.4 and let s be the 1-simplex of S!. Define

w:S'A(PARe)r — (PARe)
as follows: for b € (Pr)n and = € ((Re)k)n, let
w(sA(DAT))=(bolIl) Aw(s A x).
It follows from the definitions that we obtain a map
B:PARe — RE
in Sppss by

BbAF) = b,(F).
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For each k and n, define elements ¢ n, dgn € (Pk)n to be the constant functions
U(A™) — P whose values are respectively S; and S3. Then define maps

c,d:S—P

in ¥ssS by taking the non-trivial simplex of (Sg)n to ckn, resp., din. Finally,
define maps

C,d:Rg—)’PKR@

in Spmss by letting ¢ be the composite

Ro =ZSARe L% PARe

and similarly for d.
Now (o c is the map S; and § od is the map S5, so to complete the proof of
proposition 14.5 it suffices to show:
LEMMA 14.10. ¢ and d are homotopic in Sppss-
Proof of lemma 14.10. For each k > 0 and each n let expn : (Pi)n — 5% be the

map which takes every simplex except the basepoint to the non-trivial element of
SO and let

e:P—S
be the map given by the ey . Let
e : PKR@ — R@

be the composite

PARo L5 SARo = Ro.

Then eoc and e od are both equal to the identity. But e is a weak equivalence by
proposition 9.3 and lemma 10.3, and the result follows. O

15. Background for the proof of theorem 1.3

NoTATION 15.1. In order to distinguish the product in A, . 1 from the Cartesian
product of categories, we will denote the former by X from now on.

We now turn to the proof of theorem 1.3, which will follow the general outline
of the proof of theorem 1.1. The key ingredient in that proof was the action of the
monad PP on R. That action was constructed from the family of operations given in
definition 6.2(ii), and this family in turn was constructed from the family of functors
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N given in definition 3.5(ii). For our present purpose, we need the functors ny and
also a family of functors

d.:.A1><~-~><.Aj—>.ArZe1,

where each A; is equal to A. .1 or AZ}; these will be built from the symmetric
monoidal structures of A, .1 and Ail and the functor

. . 7
S1€rel * Aea*vl - Arel'

It is convenient to represent this situation by a function r from {1,...,j} to a two
element set {u,v}, with A; = A, .1 if 7(i) = v and A; = AL if (i) = v.

EXAMPLE 15.2. A typical example is the functor
ArZel X (Ae7*71)><5 X ArZel - Arzel
which takes (z1,...,27) to
19818, (x4 K 23) ® 7 ® sig, o (v¢ M zo K a5) ® 21,

where ¢ is the sign that arises from permuting (xi,...,27) into the order
(x4, 23, 27,26, T2, 5, 21). In definition 15.4(iv), we will represent such a functor by
a surjection h which keeps track of which inputs go to which output factors and a
permutation ) which keeps track of the order in which the inputs to each sig,.; factor
are multiplied. In the present example, A is the surjection {1,...,7} — {1,2, 3,4}
with

RH1) = {3,4}, 1 (2) =7, A1 (3) = {2,5,6},h 1 (4) =1
and 7 is the permutation (256)(34).
In order to get the signs right we need a preliminary definition.

DEFINITION 15.3. (i) For totally ordered sets Sy, ..., Sy, define

to be the disjoint union with the order relation given as follows: s < t if either s € S;
and t € S; with i<j, or s,t € S; with s <t in the order of S;.
(ii) For a surjection

h:{l,...,5} = {1,...,m}
define O(h) to be the permutation
{laaj} = hil(l)HHhil(m) = {177.7}7

here the first map restricts to the identity on each h='(i) and the second is the
unique ordered bijection.
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In example 15.2; 8(h) takes 1,...,7 respectively to 7,4,1,2,5,6, 3.

DEFINITION 15.4. Let j > 0 and let v : {1,...,5} — {u,v}. Let A; denote A .1
if r(i) = u and AZ, if r(i) = v.

rel

(i) Let 1 <m < j. A surjection

h:{1,...,5} = {1,...,m}

is adapted to r if r is constant on each set h=1(i) and h is monic on r~1(v).
(i) Given a surjection

h:{1,...,5} = {1,...,m}
which is adapted to r, define

he t Ay x oo x Ay — (AL

by

he(z1,...,25) = (Y1, .., Ym),
where i€ is the sign that arises from putting the objects x1,...,x; into the order
Tom=1(1) - Tan—1() el

Sigrel(&leh_l(i) ZL’[) Z.f hil(z) - Tﬁl(“’)?
Tp-1(;) if h=1(i) € r=1(v).

Yi =

(iii) A datum of type T is a pair

(h,m),

where h is a surjection which is adapted to r and 1 is an element of ¥; with the
property that hon = h.
(iv) Given a datum

d = (h,n),
of type r, define
dm: A; x -+ XAj%.A%el

to be the composite

h
AlX"'XAjl>v47771(1)X"'XAnfl(j):AlX"'XAJ'—‘>(AZ )XWL&AZ

rel rels

where n permutes the factors with the usual sign.
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We also need natural transformations between the functors dm. First observe
that sig,.; is lax monoidal: there is a natural transformation from the functor

sig x1
(Aeyen)* =2y (AZ )X B AL

rel

to the functor
X sig
(A1)t = Ac g —h AL
given by the maps

S*(Xl) ® ®S*(Xl) 4 S*(Xl X oo X Xl)

and

lx

S*(X1XX1)®---®S*(X1XXZ) S(X1><X1><---XXL><X1)

S*Z(Xlxn'XXl)X(XlX"'XX[)).

I

Z

Combining this with the symmetric monoidal structures of A. .1 and AL,

obtain a natural transformation dg — dg whenever d < d’, as defined in:

we

DEFINITION 15.5. For data of type r, define
(hym) < (W,n")
if each set h=1(i) is contained in some set K~ (1).

Our next definition is analogous to definition 6.6 (the presence of the letter v in
the symbols P,., and O(r;v) will be explained in a moment).

DEFINITION 15.6. Letr:{1...,5} — {u,v}.

(i) Let P, be the preorder whose elements are the data of type r, with the order
relation given by definition 15.5.

(ii) Define an object O(r;v) of LrssSk by

(O(’I’; v)k)ﬂ = Ma‘ppreorder(U(An)7 PT;U)+

(where the + denotes a disjoint basepoint); the morphisms in (Aiorfi)x’“ act in the
evident way, and the morphisms of the form («,id) with o € X act by permuting
the factors in A™.

(ii) Define O(r;v) to be the object of £ssS with k-th term O(r;v)y.

REMARK 15.7. (i) Given r: {1...,5} — {u,v}, let m = |[r=1(v)| + 1, let
h:{1,...,5} = {1,...,m}

be any surjection which is adapted to 7, and let e be the identity element of 3;.
Then the datum (h, €) is > every element in P,.,.
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(ii) Lemma 10.3 shows that each of the objects O(r;v); has compatible
degeneracies and is weakly equivalent to a point.

We also need a preorder corresponding to the family of functors
Mt (Aepe1) = Acun -

NOTATION 15.8. Let 7,(j) (resp., 7,(j)) denote the constant function {1,...,j} —
{u,v} with value u (resp., v).

DEFINITION 15.9. Letr:{1...,5} — {u,v}.

(1) If 1 = 14(j), let Py, be the set 3; with the preorder in which every element
is < every other, and let O(r;u)y be the object O(j)i of definition 6.6.

(i1) Otherwise let P,.,, be the empty set and let O(r; u)y, be the multisemisimplicial
set with a point in every multidegree.

(i) In either case, let O(r;u) be the object of ¥.ssS with k-th term O(r;u).

In the next section, we will use the objects O(r;v) and O(r;u) to construct
a monad. In preparation for that, we show that the collection of preorders P,
and P,., has suitable composition maps. Specifically, we show that it is a coloured
operad (also called a multicategory) in the category of preorders.

We refer the reader to [4, §2] for the definition of multicategory; we will mostly
follow the notation and terminology given there. In our case, there are two objects
u and v, and we think of a function r : {1,...,5} — {u,v} as a sequence of u’s and
v’s.

REMARK 15.10. Let v : {1,...,j} — {u,v} and let A; denote A, .1 if 7(i) = u
and ArZel if 7(z) = v. Let us write A, for the category A; x --- x A; and A,
(resp., A,.,) for the category of functors A, — A .1 (resp., A, — AZ)). Define
a multicategory with objects u and v as follows. The multimorphisms from r to u
are given by A,.,, and from r to v are given by A,.,. The actions of the symmetric
groups are the obvious ones and the composition is provided by the composition of

functors. Moreover, definitions 3.5(ii) and 15.4(iv) give inclusion functors
(Dr;u : Pr;u — -Ar;u
and

(I)r;v . Pr;v — Ar;v-
We like to promote these to a functor between multicategories. The source also
has two objects, u, v say and the functor is the identity on objects. The set of
multimorphisms with target w are empty unless the source only involves u’s in
which case it is P, with » = r,(j). The set of multimorphisms with target v
and source r is the P..,. The following definitions are chosen so that the inclusion
functors preserve the X; actions and the composition operations.
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We define the right ¥; action on a multimorphism with j sources as follows. Let
acXjandr:{l,...,5} = {u,v}. Define r* to be the composite

1,5y 5 {1,..., 5} 5 {u,v}.
If r = ry(j) then r* = r and the map
Qo Pr;u — Pr‘l;u

is the right action of ¥; on itself. If (h,n) € P,, define (h,n)a € Pray, to be
(hoa,a tonoa), where a € ¥, is the permutation whose restriction to each
a~th=1(i) is the order-preserving bijection to h=1(7).

We define the composition operation as follows. If the composition involves only
u’s then it is the composition in the operad M of [17, definition 3.1(i)]. Otherwise
let i, 51,...,7; > 0,let r: {1,...,i} = {u,v},and for 1 <1 <iletr;: {1,...,5} —
{u, v}; assume that if r(I) = u then 7 is r,(j;). Let (h,n) € P, and for 1 <[ <7
let 2, € Prpry- If r(l) = v then z; has the form (h;,n;), otherwise z; is an element
m € Xj and we write hy for the map {1,...,5} — {1}. Define the composition
operation I' by

T((h,n), 21, ...,21) = (H,9), (15.1)

where 6 is the composite Yo (1,71, ... ,7;) in the operad M of [17, definition 3.1(i)]
and H is the following multivariable composite h o (hq,...,h;): we are going to
make the composite H explicit with h as in example 15.2, the general formula
should be clear then. The source of the morphism (h,n) is r = (v, u, u, u, u, u,v)
and the target is v. It is convenient to write h in the form

h=(h~ {1}, A2}, h {3}, h ™1 {4}) = ({3,4}, {7}, {2,5,6},{1}).
Then the multivariable composite H for arbitrary hy, hs, ..., hy takes the form
(hg {1} Uhy {1} he, hy {1} U g {1} U hg {1}, ).

In this notation, the jo elements in the source of hy have to be shifted by ji, the
ones of h3z should be shifted by j; + j2 and so on. Moreover, the round parentheses
of h7 and h; should be ignored. The formula may look strange but notice that hy
is the constant map to {1} for all 2 < k < 6 because for these we have (k) = u.

ProposITION 15.11. With these definitions, the collection of preorders P,., and
P,.,, are the multimorphisms in a multicategory from r to u and from r to v respec-
tively. The functors ®,., and @, define a multifunctor between multicategories.

Proof. This is immediate from remark 15.10. g

16. A monad in YssS x YssS

In this section, we construct a monad in 3ssS x ¥ssS which acts on the pair

(Re,.,1,RZ)). The arguments in this and in the next sections are along the same
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lines with Assoc and Comm replaced by monads encoding (commutative) monoid
maps or (symmetric) monoidal transformations.

DEFINITION 16.1. Let j > 0 and let X, Y € ¥ssS.
(i) Fora € ¥ and r: {1,...,j} = {u,v}, define

a:0(r;v) = O(r*;v)

by

where a € Map,,;corqer (U(A"), Pry)y and o € U(AR).
(ii) Define
X, V)" =Z,®---QZ

7

where Z; denotes X if r(i) =w and Y if r(i) = v.
(i1i) For a € ¥; define

a: \/ O(r;v) A (X, Y)®" — \/ O(r;v) A (X, Y)®"

to be the map which takes the r-summand to the ™ -summand by means of the map
O(r;v) N (X, Y)®" SN O(r*;v) AM(X, Y)®Ta.

Note that the maps @ give \/, O(r;v) A (X, Y)®" a right X, action.
Recall notation 15.8.

DEFINITION 16.2. (i) Define a functor O : ¥.ssS x 3ssS — 3ssS x ¥ssS by
0(X,Y) = (0:(X),02(X,Y)),

where

01(X) = \/ (O(ru(j); u) AX) /3,

J=0

and

0:(X,Y) = \/ \/ (O(T;U)K(X,Y)W)/zj.

207 {1 w0}
(ii) Define a natural transformation
t:(X,Y) = 0(X,Y)
to be (11,t2), where vy is the composite

X S5 SAX = 0(ry(1);u) A X — O(X)
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and tg s the composite

Y SSAY =0(r,(1);0) AY < O(Y).
For the structure map p : OO0 — O, we need a composition operation for the
collection of objects O(r;u) and O(r;v). Recall definition 15.3(i) and the map I'
defined in Eq. (15.1).

DEFINITION 16.3. Let 4, j1,...,7; >0, letr: {1,...,i} = {u,v}, and for 1 <1 <1
let v {1,....5} = {u,v}; assume that if r(l) = u then r; is ry,(j;). Let

Rif1,....3 g} = {u,v}

be the composite

Sy = [T = {0,
=1

where the first map is the unique order-preserving bijection and the second restricts
on each {1,..., 5} to 7. Define a map

v:0(r;0) A (O(r1;7(1) @ - -- @ O(ri;7(i))) = O(R;v)
in XssS by the formulas
y@aAn[e,by Ao oAb (o1 X - x0y) =T (aloy X -+ x 03),b1(01), ..., bi(0;))
(where e is the identity element of the relevant symmetric group) and
Y(aAfa,by A .. Ab]) = (ayid)y((@™id)wa A le, by A .. ADg)).

This operation satisfies the analogues of lemmas 7.2, 7.5, and 7.7.
Now we can define

w00 — O

to be (w1, p2), where p; is given by definition 7.8(iv) and ug is defined in a similar
way using definition 16.3.

PROPOSITION 16.4. The transformations p and ¢ define a monad structure on Q.

We conclude this section by giving the action of O on the pair (Re.1,RZ)).
Recall remark 15.10.

DEFINITION 16.5. Let ki,...,k; be non-negative integers and let n; be a k;-fold
multi-index for 1 < i < j. Let r : {1,...,5} = {u,v}, and for 1 < i < j let pre;

https://doi.org/10.1017/prm.2024.119 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.119

Commutativity properties of Quinn spectra 1895

denote pre, , 1 if 7(i) = u and preZ, if r(i) = v. For any map of preorders

a:U(A™ x .. x A") — P,

define
Pre1 LA™M) x - x pre (A ") — (pre%el)kl+"'+kj (A(nl,..47nj))
by
ax(Fi,... 7FJ)(alx X 04,01 X - X 0j)
=iV, (alor x - x 05))(Fi(o1,01), -, Fj(0,0;)),

where ®,..,, was defined in remark 15.10 and ¢ is the block permutation that takes
blocks by, ..., bj, c1, ..., c; of size kg, ..., kj, dimoy, ..., dimo; into the order
bl, Ci, ..., bj, Cj.

LEMMA 16.6. If F; € ad '(AR) for 1 < i < j then

ax(Fu,..., Fj) € (ad%y)frt -tk J(A@Lng)y

Proof. This is a straightforward consequence of the fact that the natural transfor-
mation from the functor

(Aot 2™ gz i, g

rel

to the functor

("467*,1)Xl — -Ae #,1 Slg—rel> Arel
given by the cross product is a quasi-isomorphism. O
DEFINITION 16.7. Let j >0 and let r: {1,...,5} = {u,v}. Define a map
(br : 0(7“, U) A (Re,*,h R%el)(gw - Rrel
in XssS by the formulas
(br(a/\ [6,F1/\"'/\Fj]) :a*(Fl /\"'/\Fj)
where e denotes the identity element of the relevant symmetric group) an
h d he identity el he rel ; d

br(an o Fy A AB]) = (avid)ugy (0 id)sa A fe, Fy A+ A F)).

Next observe that the maps ¢, induce a map
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(V (005 0) R (Re 1, RED®T) /55 > REy (16.1)

r

for each j > 0. We define
v G(Re,*,l,R%el) - (Re,*,lvR?el)

to be the pair (v1,15), where vy is given by definition 7.10 and vs is given by the
maps (16.1).

PROPOSITION 16.8. v is an action of O on (Re.1,RE)).

Proof. This is a straightforward consequence of remark 15.10. O

17. A monad in Sp,,ss X SPmss

First we give O(r;v) A (X, Y)"" the structure of a multisemisimplicial symmetric
spectrum when X, Y € Spy,ss- The definition is analogous to definition 8.1. Recall
definition 6.4.

DEFINITION 17.1. Let j,k > 0. Let s be the 1-simplex of S'. Define
w:STA(O@r;v) A (X, YY) M) = (O(r;0) A (X, )M )k
as follows: for a € (O(r;v)k)n and z € (X, Y) )k )n, let
w(sA(anz))=(aoll) Aw(s A x).
DEFINITION 17.2. Define a functor P: ¥ssS X ¥ssS — XssS X XssS by
P(X,Y) = (P1(X), P2(X, Y)),

where

and

Py(X,Y) = \/ (\/(O(T;U) A (x,Y)M)/zj.
j>0 7
The proof that P inherits a monad structure and an action on (R, .1, R%)) is
the same as the corresponding proof in §8.

For use in the next section we record a lemma. Let C be the category whose
objects are triples (X,Y, f), where X and Y are monoids in Sp,,ss and f is a map
X — Y in Spyss which is not required to be a monoid map; the morphisms are
commutative diagrams
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X — X

1)

Y — Y,

where the horizontal arrows are monoid maps.

LEMMA 17.3. (i) There is a functor T from P algebras to C which takes (X,Y) to
a map X — Y ; in particular, X and Y have natural monoid structures.
(i) T (Re,« 1, RE,) is the map

Z
rely

Sigrel : Rex,1 @ R

where Re .1 and RZ have the monoid structures given by lemma 8.8(3).

Proof. Recall notation 15.8, and let e denote the identity element of X;.
Part (i). The map f: X — Y is the composite

X2SAX =0(r,(1);v) AX = Py(X,Y) = Y.

The monoid structure on X is given by lemma 8.8; it remains to give the monoid
structure on Y. It suffices to give an action on Y of the monad A defined in
the proof of lemma 8.8, and for this in turn it suffices to give a suitable natural
transformation A — Ps.

For each j > 0 let hg be the identity map of {1,...,j}. Then h¢ is adapted to
74(j), so we obtain an element (ho,e) € P, (j)0-

For each j,k > 0 and each k-fold multi-index n, define an element

bjkn € (O(ry(5); V)k)n

to be the constant function U(A™) — P, (;),, whose value is (ho,e). Next define a
map

S = O(ry(5);v)

by taking the non-trivial simplex of (S)n to bjkn-
Now the composite

AY)=\/YY2\/SAYN
j=0 j=0

=\ (\/((’)(r;v) A (X,Y)M> /%, = Py(X,Y)

i>0 "7

is the desired map.
Part (ii) is an easy consequence of the definitions. O
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18. Rectification

In this section, we prove theorem 1.3. The argument is analogous to that in §10.
First we consider a monad in Spy,ss X SPmss Which is simpler than P.

DEFINITION 18.1. (i) Define P'(X,Y) to be

(\V xMrg, V (VX YY)/,

7>0 j>0 7

(i) For each j > 0 and each r: {1,...,j} — {u,v}, let

& O(ru(); )_>S

and

¢ O(r;v) = S

be the maps which take each non-trivial simplex of the k-th object to the non-trivial
simplex of Sy in the same multidegree. Define a natural transformation

E:P—P

to be the pair (21,2s), where Z; is the wedge of the composites

(O(ru(j);u) A XN /%5 RN (s AXMY/x; 5 XN 3,

and g is the wedge of the composites

(\/O rv) A (X Y)M)/E Vernt, (\/§K(X,Y)M)/2j

r

=, (\/(X,Y)M>/2j.

PROPOSITION 18.2. (i) An algebra over P’ is the same thing as a pair of
commutative monoids (X,Y) in Spmss together with a monoid map X — Y.

(i) Z is a map of monads.

(#ii) Suppose that each Xy, and each Yy has compatible degeneracies (see definition
9.1). Let P? denote the g-th iterate of P. Then each map

Z:PYX,Y) = PPTHX,Y)
is a weak equivalence.

Proof. Part (i). Let (X,Y) be an algebra over P'. The fact that X and Y are
commutative monoids is immediate from the definitions. The map f : X — Y is
constructed as in the proof of lemma 17.3(i).
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To show that f is a monoid map, we first observe that there are two inclusions
of X into P4P'(X,Y). Let 41 be the composite

XN s P(X) — PLP/(X,Y),

where the second arrow is the inclusion of the summand indexed by j = 1,7 = r,(1).
Let 45 be the composite

XN s PL(X, Y)Y — PLP/(X,Y),

where the first arrow is the j-fold smash of the inclusion of the r,(1) summand,
and the second arrow is the inclusion of the 7,(j) summand.
Consider the commutative diagram

XN XN

S |

P4P(X,Y) — > P5(X.Y)

n»/zul i

1%

X —= PyX,Y) ——> Y.

Let H denote the composite of the right-hand vertical arrows. Then the diagram
shows that the composite

XN x4y (18.1)

is H.
Next consider the commutative diagram

XN XN
N l
o PyP/(X,Y) —— Py(X,Y)
]P’/zu i \L v
YV — = PyX,Y) ——= Y.

This diagram shows that the composite

A f/\j A
XN =YV Y (18.2)

is also H. Therefore the composites (18.1) and (18.2) are equal as required.
Part (ii) is immediate from the definitions, and the proof of part (iii) is the same
as for proposition 10.2(iii) (but using remark 15.7(ii)). O
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Proof of theorem 1.3. The proof follows the outline of the proof of theorem 1.1
(given in §10); we refer the reader to that proof for some of the details. We have a
diagram of simplicial P-algebras

(Re,*,l)Rrel) & B, (]P)’ P, (Re,*,l’Rrel)) —> B, (Plvﬂbv (Re7*717RrZel))'
By lemma 17.3, this gives a diagram

(El)o
(Res1)e <— Bo(P1,P, (Re.1,RE)) —> Bo(P},P, (R..1,R%))

. L

13 (52)0
(RrZel)' -~ BO(PQ’P’ (RG,*ylerZel)) - B'(PIQ’Pa (Rey*ylﬂRrZel))’

(18.3)

in which all objects are simplicial monoids and all horizontal arrows are monoid
maps. By Proposition 18.2(i), the right column is a simplicial monoid map between
simplicial commutative monoids. Moreover, each map ¢ is a homotopy equivalence
of simplicial objects, and (using proposition 18.2(iii)) (Z1)e and (E2)e are weak
equivalences in each simplicial degree.

The objects of the diagram (18.3) are simplicial objects in Spy,ss. We obtain a
diagram

le| [(E1)el
|(R€,*,1)0| D ‘BO(PlvP’ (Re,*717Rrel))| - ‘B (]P)/l,]P’, (Re-,*JvR%el)”

] | |

le] [(Z2)]
|(ch1) | -~ ‘B (]P27P’ (R€7*717R1c1))| - ‘B (]P/Z?P’ (Rea*717Rchl))|

(18.4)

of simplicial objects in Sp (the category of symmetric spectra) by applying the
geometric realization functor Spy,ss — Sp to the diagram (18.3) in each simplicial
degree. All objects are simplicial monoids and all horizontal arrows are monoid
maps, and the right column is a simplicial monoid map between simplicial commu-
tative monoids. The maps |e| are homotopy equivalences of simplicial objects and
the maps |(Z1) o | and |(Z;) e | are weak equivalences in each simplicial degree.
Finally, we apply geometric realization to the diagram (18.4). We define A
to be [|Ba(By, P, (R, RE)||, B 0 be ||Ba(Bo, P (R, RE))], C to be
||Be (P}, P, (Re .1, RZ)))||, and D to be ||Be(Ph, P, (Re .1, RZ)))||. This gives the
diagram of theorem 1.3. 0

REMARK 18.3. The symmetric ring spectrum C is the same as the symmetric ring

spectrum Mgo"™ given by theorem 1.1. There is a ring map

(M,

rel

)comm — D

https://doi.org/10.1017/prm.2024.119 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.119

Commutativity properties of Quinn spectra 1901

which is a weak equivalence (because there is a commutative diagram whose first
row is diagram (10.3) and whose second row is the second row of the diagram in
theorem 1.3).

19. Improved versions of geometric and symmetric Poincaré bordism

In order to state our next theorem, we need some background.

Let Sp denote the category of symmetric spectra.

Recall (from [11, definition 13.2(i) and the second paragraph of §19]) the strict
monoidal category T whose objects are the triples (7, Z, w), where 7 is a group, Z
is a simply connected free m-space, and w is a homomorphism 7 — {41}. There is
a monoidal functor

Mgeom : T — Sp

which takes (7, Z,w) to Mr 7z, [11, definition 19.1 and theorem 19.2].
Let R be the category of rings with involution. We like to say that there is a
functor

Mgym : R — Sp

which takes R to Mrlzl. As explained in Appendix C, the ad theory adil does not
depend on R in a functorial way. However, there is functorial refinement which is
constructed in Appendix C and which we may use instead: there is an ad theory
adﬁcl’sch which depends on R in a natural way. The same proof as in [11, theorem
19.2, theorem 18.5] then shows that its geometric realization Mgy, is monoidal.
There is a functor p : T — R which takes (m, Z,w) to Z[r] with the w-twisted

involution [11, definition 13.2(ii)]. In §14, we constructed a natural transformation
Sigrel : Mgeom — Msym o p.

More precisely, in the notation of appendix C for objects in adgel,sch, we have

Sigrel(X7 faqu)) = (S*(X), (S*(X)t ® S*(X))W,77¢)

where ~ is the obvious map and ¢ € (Z¢ @ (S.(X)' ® S.(X))")%/? is induced by
the Alexander—Whitney map. The lifting function ® gives an isomorphism between
S, (X) and the free R-module on the set of all singular simplexes in X (see [11, §10]).
This means that sig,, (X, f,£, @) refines to a schematic Relaxed quasi-symmetric
complex in a functorial way (for the action of morphisms in 7 on the lifting struc-
ture see [11, §13]). The new map sig,.; coincides with the map sig,, of §14 under
the natural transformation from A%, ., to AL .

However, sig,, is not a monoidal tfansformation, and Mgeom and Mgy, are not
symmetric monoidal functors (we recall the definitions of monoidal transformation
and symmetric monoidal functor below). Our next result shows that there is a
monoidal transformation between symmetric monoidal functors which is weakly

equivalent to sig,.
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THEOREM 19.1 There are symmetric monotidal functors P : T — Sp, Lgym : R —
Sp, and a monoidal natural transformation sig : P — Lgy, o p such that

(1) P is weakly equivalent as a monoidal functor to Mgeom; specifically, there is
a monoidal functor A : T — Sp and monoidal weak equivalences

Mgeom <+ A — P.

(1) Lgym is weakly equivalent as a monoidal functor to Mgyw; specifically, there
is @ monoidal functor B : R — Sp and monoidal weak equivalences

Mgym < B = Lgym.

(i1i) The natural transformations sig : P — Lgym 0 p and sig,, : Mgeom —
Mgym 0 p are weakly equivalent in Sp; specifically, there is a natural transformation
A — B o p which makes the following diagram strictly commute

Mgeom A P
Sigel \L \L \L sig
Mgym 0 p Bop Lgym 0 p.

REMARK 19.2. (i) Theorem 19.1 implies that Leym (R) is a strictly commutative
symmetric ring spectrum when R is commutative. Also, P(e, %, 1) is a strictly com-
mutative symmetric ring spectrum and sig : P(e,*,1) — Lgym(Z) is a map of
symmetric ring spectra. This is compatible with theorem 1.3: there is a commutative
diagram

C —— P(e,x,1)

-

D —— Lyu(2)

in which the horizontal arrows are ring maps, and they are weak equivalences by
the argument given in remark 18.3.

(ii) The fact that sig is a monoidal functor is a spectrum-level version of Ranicki’s
multiplicativity formula for the symmetric signature [21, proposition 8.1(i)]. It
seems likely that his multiplicativity formula for the surgery obstruction [21,
proposition 8.1(ii)] can also be given a spectrum-level interpretation.

We recall the definitions of symmetric monoidal functor and monoidal transfor-
mation. The theorem says that Ley, (and similarly P) is a monoidal functor with
the additional property that the diagram
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Lsym(R) A Lgym (S) —— Lgym(R® 5)

l l

Lsym (S) A Lgym(R) —— Lgym(S ® R)
strictly commutes. Moreover, sig has the property that the diagrams

N

P(e,x,1) e Leym(Z)

and

sigAsig ,

P(r, Z,w) NP(n', Z' /w'") —— Lgym(Z[r]") A Leym (Z[7']"")

o

Loym (Z[x]" © Z[']"")

sig

Pirxn',ZxZ' w-w) ———— Lgm(Z[r x 7’

e’y
strictly commute.

20. Proof of theorem 19.1

The proof is a modification of the proof of theorem 1.3; the main difference is that
we need more elaborate notation.

NotaTion 20.1. (i) For an object z of T or R, write A, (meaning AR ., for
x € R) for the corresponding Z-graded category and R, for the associated object
of Spmss~

(ii) Given a j-tuple (z1,...,x;), where each z; is an object of 7 or R, write

[561,...,{13]']

for y1 ® --- ® y;, where y; is z; if z; is an object of R and p(x;) if z; is an object of

T.
(iii) Given a j-tuple (f1,..., f;), where each f; is a morphism in 7 or R, write
[flv ceey f]]
for g1 ® - - ® gj, where g; is f; if f; is a morphism in R and p(f;) if f; is a morphism
inT.
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The reader should see proposition 20.11(i) for motivation for the following
definitions.

DEFINITION 20.2. (i) Let y be an object of T. An entity of type (r.(j),y) is a
J+ 1-tuple (x1,...,xj, f), where fis a morphism in T from 1 X ---Rx; to y.

(ii) Let &, (jy,y denote the set of entities of type (4 (j),y).

(iii) Let z be an object of R and let v : {1,...,5} — {u,v} be a function. An
entity of type (r,z) is a j+ 1-tuple (z1,...,x;, f), where each x; is an object of T
or R and fis a morphism in R from [z1,...,z;] to 2.

(iv) Let &, , denote the set of entities of type (r, z).

NoTATION 20.3. (i) Let & denote the union of the set of objects of T and the set
of objects of R.
(ii) Let IISpy,ss be the infinite product of copies of Spy,ss, indexed over &.

We will define a monad in IISp,,ss-
First we need to define the relevant right 3; actions. Recall definition 16.1(i).

DEFINITION 20.4. Let {X;}zes be an object of USpmss and let j > 0.
(i) Given an object y of T and o € X;, define a map & from

\/ O(ru(j);u) A (Xay A+ A Xy)
(wl""’wj’f)egru(j),y

to itself to be the map which takes the summand indexed by (x1,...,x;, f) to the
summand indexed by (Ta), ..., Ta1), f o a) by means of the map

Oru()sw) A (Xoy A-e+ A Xy ) 2% Oy (s u) K (X ) A

(i1) Given an object z of R and o € ¥, define a map & from

VooV 0K A Ay

r ("E17"'aw.j7f)eg(r7z)

to itself to be the map which takes the summand indexed by (x1,...,2;, f) € Er.z)
to the summand indexed by (To(1y - - - Ta(1), f 0 @) € Ea ) by means of the map

O(r;0) A (Xay A+ A Xy ) 2% O 0) R (X, ) Ao AX

1 (1) xa(j))'

Note that this definition gives right ¥; actions on the objects mentioned.
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DEFINITION 20.5. Let {X,}zes be an object of USPmss-
(i) Given an object y of T, define

Py({XI}IGG)

to be

\/( V O(ru();u) A (Xay A---/\XIJ.))/EJ..

20 (@125 P)EER (j),y

(ii) Given an object z of R, define
PZ({Xm}zEG)

to be

VIV V0o X A n X))/,

320 (zy,enxgi fEE )

(iii) Define P : IISppss — IISpmss to be the functor whose projection on the y
factor (where y is an object of T ) is P, and whose projection on the z factor (where
z is an object of R) is P,.

DEFINITION 20.6. Let {X,}rca be an object of IISpss-
(i) For an object y of T, define

by Xy = Py({Xatees)
to be the composite
Xy 2SAX, = 0(ru(1);u) A Xy = Py({Xs}acs),
where the last map is the inclusion of the summand corresponding to the entity
(y,id).
(ii) For an object z of R, define
Ly X, =2 P.({Xstees)
to be the composite
X.~®SAX, = O(ry(1);v) KXy = P, ({X:}ees),
where the last map is the inclusion of the summand corresponding to the entity
(z,1d).
(iii) Define
ti{Xstees = P({ Xz }zes)

to be the map whose projection on the y factor (where y is an object of T ) is ¢, and
whose projection on the z factor (where z is an object of R) is t,.
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In order to define the structure map p : PP — P we need a composition operation
on entities. For part (ii), we use notation 20.1(iii) and the notation of definition
16.3.

DEFINITION 20.7. Leti > 0, and for each | with 1 <1 <1 let j; > 0.
(i) Let y be an object of T and let

e = ('rla .. '?‘ri7f) S S”“u(i)’y'

For each l with 1 <1 <74 let

1 1
e = (xg), . ,x;l)7f(l)) € Ery i)y
Define
eo (el, . ,ei) S gru(j1+-~+ji),y
to be

(xgl)a s a‘rg'i)7g)’

where g is the composite

N or(D...xp(®)
EZ)%M@“'@%’LZ}

xgl) X..-XNzx
(i) Let z be an object of R, let r: {1,...,i} — {u,v}, and let
€= (xlw--vxiaf) € 57',2-

For each lwith 1 <1 <iletr :{1,...,51} = {u,v}; assume that if r(I) = u then
ry s ru(Ji). Let

e = (xgl), .. .,:E;i),f(l)) € &y

Define
eo(er,...,e;) €ER;
to be
(xﬁl), e ,zg?,g),
where g is the composite
2, ..,z L N A

Now we can define p : PP — P. We begin with the projection on the y-factor,

fy PP — Py,
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where y is an object of 7. A collection of entities e, ey, ..., e; as in definition 20.7(i)
determines a summand

O(ru(i); ) & ((Orulin)i ) A (X 1y A+ AX 1)) A=+ )

1 J1

in P,P({X;}sece). We define the restriction of y, to this summand to be the map
to the summand of P, ({X, };ce) indexed by eo(eq,. .., e;) which is induced (after
passage to quotients) by the composite

O(ru(i);u) & ((O(ruln);w) & (X, A AX ) A )

= (0@ W) R (Ou(iw) @) ) A (X 1) @@ X ()
1 -72
T O+ -+ i A (X ) @0 X ()

The projection of y on the z factor (where z is an object of R) is defined similarly
(using definition 16.3).

Next we give the action of P on the object {R, }.cs. Let y be an object of T and
let (21,...,z;, f) be an entity of type (r,(j),y). A slight modification of definition
6.9 gives a map

O(Tu(j)vu) A (Rzl JARERNAN Rz]) - leg-ulzazjv

and composing with the map induced by f gives a map

O(ru(j);u) A (Ray A+~ ARy) = Ry (20.1)
We define
Vy - Py({Rr}IGG) - Ry
to be the map whose restriction to the summand indexed by (z1,...,z;, f) is the

map (20.1). We define

v, :P,({Ry}zes) = R,

similarly when z is an object of R (using a slight modification of definition 16.7),
and we define

v P({Rw}JZEG) — {Rm}a:EG
to be the map with projections v, and v,.

LEMMA 20.8. v is an action of P on {R;}rcs-
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Now we need the analogue of lemma 17.3. Let C be the category whose objects are
triples (F, G, t), where F is a monoidal functor T — Spyss, G is a monoidal functor
R — Spmss, and t is a natural transformation F — G o p which is not required to
be a monoidal transformation; the morphisms are commutative diagrams
F—s F
t \L \L t’
Gop ——= G'op,
where the horizontal arrows are monoidal transformations.
Let us write Rgeom (resp., Reym) for the functor 7 — Spp,ss (resp., R — Spmss)
which takes = to R.
LEMMA 20.9. (i) There is a functor T from P algebras to C which takes {X;}rcs
to a triple (F, G,t) with F(y) =X, and G(z) = X,.
(ii) Y({Ry}res) is the triple
(Rgeom7 Rsyma Sigrel) .
Proof. Part (i). Let X = {X;},ce be a P algebra. Define a functor
F:T = Spmss

on objects by F(y) = X, and on morphisms by letting F(f : y — y’) be the
composite

v/
X, = O(ry(1);u) AXy = Py ({Xotoes) — X,

where the unlabelled arrow is the inclusion of the summand indexed by the entity
(y,f). The functoriality of F follows from the commutativity of the diagram

PPX > PX
T
PX — > X
and the definition of p in definition 20.7. We define
G R — Spmss
similarly. The proof that F and G are monoidal functors is similar to the argument,

in the proof in lemma 17.3(i), that X and Y are monoids. The functoriality is as
above.
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It remains to give the natural transformation
t:F— Gop.

For an object y of T, let t, be the composite

~ ~ Yo(y)
Xy = O(Tu(l); ’U) A Xy — ]P’p(y)({xw}meg) —_— Xp(y),
where the unlabelled arrow is the inclusion of the summand indexed by the entity

(y,id) € &.,(1),p(y)- To show that t is a natural transformation, let f :y — ¢’ be a
morphism in 7, and let z = p(y), 2/ = p(y’). Let i1 be the composite

Xy 2 O0(ru(1);u) A Xy = Py({Xstees) = O(ru(1);v) AP ({ Xy zes)
= P/P{X,}res),
where the first arrow is the inclusion of the summand indexed by the entity (v, f)

and the second is the inclusion of the summand indexed by (3/,id). Let j; be the
composite

Xy/ >~ O(ry(1);v) KXy/ — le({xx}xee),
where the inclusion is indexed by (y’,id), and let jo be the composite
Xy 2 O0(ru(1);0) AXy = Por({Xstaes),

where the inclusion is indexed by (y, p(f)).
Consider the commutative diagram

X, X,
i1
\ \LJZ
o

F(f) ]PZ’P({Xm}J;EGS) —_— Pz’({Xa:}mEG)

P.iv i \L v

J1 v
Xy — Py ({Xy}pes) — X,

Let H denote the composite of the right-hand vertical arrows. Then the diagram
shows that the composite

F(f)

X, —5 X,

;= X (20.2)

Y z

is H.

https://doi.org/10.1017/prm.2024.119 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.119

1910 G. Laures and J.E. McClure
Let i5 be the composite
Xy = O(ru(1);v) AXy <= P.({Xz}res) = O(ry(1);0) AP.({Xy }res)
5 PaP({X, }oca).

where the first inclusion is indexed by (y,id) and the second is indexed by (z, p(f)).
Let jo be as above and let j3 be the composite

X, = 0(ro(1);v) AN X, = P.({Xz}aes),

where the inclusion is indexed by (z, p(f)).
Consider the commutative diagram

Xy X,
J2
"
t }P’Z/IP’({XI}EGG) —_— Pz/({xm}IEG)
lel/ J/ l v
X, —— Pu({X,}oes) ——— Xon.

This diagram shows that the composite

x, 5 x, S x (20.3)

is also H, so the composites (20.2) and (20.3) are equal as required.
Part (ii) is an easy consequence of the definitions. O

Finally, we have the analogues of definition 18.1 and proposition 18.2.

DEFINITION 20.10. Let {X,}zce be an object of ISpmss.
(i) Given an object y of T, define

P;({Xm}mEG)

to be

\/( \/ Xxl/\---/\Xxj>/2j.

j=0 ((rlam,zj,f)efm(j),y
(ii) Given an object z of R, define

P,/z ({Xac}xEG)

to be

\/(\/ \/ XII/\M/\XIJ_)/ZJ».
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(iii) Define P : TISpmss — USpmss to be the functor whose projection on the y
factor (where y is an object of T ) is IP’; and whose projection on the z factor (where
z is an object of R) is IP’,.

A routine modification of definition 18.1(ii) gives a natural transformation
E:P->P.

PROPOSITION 20.11. (i) An algebra over P’ is the same thing as a pair of
symmetric monoidal functors F and G with a monoidal transformation F — G o p.
(i) Z is a map of monads.
(iii) Suppose that each (X)), has compatible degeneracies (see definition 9.1).
Let P4 denote the g-th iterate of P. Then each map

E: ]P)q({Xm}mGG) — Pqu_l({Xm}IGG)
is a weak equivalence.

Proof. Part (i). Let {X,}.ces be an algebra over . The fact that F and G are
symmetric monoidal functors is an easy consequence of the definitions. The natural
transformation t : F — G o p is constructed as in the proof of lemma 20.9(i). The
proof that t is monoidal is similar to the proofs of proposition 18.2(i) and lemma
20.9(i), using the maps

1 : Xyl JARERNAN ij — P;ﬂ&-nlgyj({xac}xEG) — P;(yllzwﬁyj)lpl({xw}xeg)7

(where the first inclusion is indexed by (y1,...,y;,id) and the second by (y1 K- --K
yj,id)), and

igt Xy A A ij — P;(yl)({xz}zee) Ao A ]P);)(yj)({xz}zeG)
- P;(yl®-~~|ij)P/<{Xw}zeG),

(where the first map is the smash product of the inclusions indexed by (y;,id) and
the second is indexed by (p(y1),---,p(y;), p(y1) ® -+~ @ p(y;) = plyr W - -~ Ky;))).

Part (ii) is immediate from the definitions, and the proof of part (iii) is the same
as for proposition 10.2(iii) (but using remark 15.7(ii)). O

Now the proof of theorem 19.1 is the same as the proof of theorem 1.3 given in
§18, with only the notation changed.
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Appendix A. A property of the smash product of symmetric spectra.
For an object X of Spy,ss let

w: X —)X]H_l

be the map which takes z to w(sAx) (where s is the 1-simplex of ). More precisely,
@ is the k-fold multisemisimplicial map which takes (X)n, ..n, to (Xi)1n,
obtained from the suspension map of the spectrum X.

DEFINITION A.1. An object X of Spmss s monomorphic if © is a monomorphism
for every k. It is strongly monomorphic if it is monomorphic and has the following
property: if x € Xy and a € Y41 with a(l) # 1, and if awx is in the image of @,
then there is a B € ¥y such that ~1(1) = a=1(1) — 1 and Bz is in the image of ©.

The purpose of this appendix is to prove the following fact, which is used in §10:

PROPOSITION A.2. Let X be strongly monomorphic and suppose that the only ele-
ment of Xy is the basepoint. Then the X; action on XN which permutes the factors
is free away from the basepoints.

REMARK A.3. (i) The main object R given in example 4.13 is strongly monomor-
phic: for an ad F' € Ry, the suspension map was defined by w(sAF) = A*(F') where
A is the incidence-compatible isomorphism from Cell(A! x K, A x K) to Cell(K).
Suppose we are given a multisimplex of the form awF which is in the image of @
as above. Then it necessarily defines a functor with source

Cell(A' x Ky x A' x Ky, (OA" x K1 x A x Ko) U (A' x K; x 0A' x K3))

for some products of simplices K1,K5. Thus a permutation S which exchanges the
factors K1 and A! has the property that SF is in the image of @.

(ii) The analogue of proposition A.2 for simplicial or topological symmetric
spectra is also true, with essentially the same proof.

The proof of proposition A.2 will be given after the proof of our next result,
which is the main ingredient in the proof of proposition A.2.

ProrositioN A.4. If Xy,...,X; are strongly monomorphic then X1 A---AX; is
monomorphic.

We will give an example at the end of this appendix to show that propositions
A.2 and A.4 both fail if ‘strongly monomorphic’ is replaced by ‘monomorphic’.

Before we can give the proof of proposition A.4, we will need quite a bit of
background, culminating with lemma A.15.

If A is a multisemisimplicial set and a € A, for some n, we will say a is a point
of A. If X is an object of Sp,,ss and z is a point of X}, for some k we will say z is
a point of X and write |z| = k.
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We will use the fact that (by remark 4.7) points in the k-fold smash product
X1 A---AX; are equivalence classes of symbols of the form

0/\131/\"'/\£Ej

where z; is a point of X; for each 7 and 0 € Z|x1|+,,,+|xj|. Our first task is to

describe the equivalence relation ~ explicitly, and for this we need the operations
in definition A.7.

NOTATION A.5. (i) Let o € ¥y, let L > 1, and let k > L +1— 1. We will write al!
for the element of ¥ which permutes L, L+ 1,...,L + 1 — 1 in the same way that
« permutes 1,...,1.

(ii) Let X be an object of Sppss. Let

Pv:XAS =X

be the right action (that is, ¥ = w o 7, where 7 is defined in Eq. (4.1)), and let
UV X = Xpya

be the map that takes = to ¥)(x A s), where s is the 1-simplex of S*. Note that

Yx = p1 W, (A.1)
where pq 1 is defined after Eq. (4.1).

REMARK A.6. (i) If 2 is a point of X and a € ¥, then waz = ollwr and
Yoz = allyz.

(i) ¥ commutes with .

(iii) Suppose that X is strongly monomorphic Spy,ss. Using Eq. A.1, we see that
if 7 is a point of X and + is an element of X, ;; for which (1) # |z| + 1 and ywx
is in the image of 1, then there is a 6 € X for which 6~ (|z[) = '(Jz| +1) — 1
and dz is in the image of .

DEFINITION A.7. Let Xy,...,X; be monomorphic objects of Spmss. Let x; be a
point of X; for 1 < i< j, and let 6 € E‘w1|+...+|zj|.
(i) For 1 <m < j and a an element of ¥y,,,| other than the identity define

Apa@NTL A Axy) = (0o (@M HZicm =il =1y Ay A Ay,

L

where o was defined in notation A.5 and

Yi =
ATy, ifi =m.

(ii) Suppose that m < j and that x,, = 1z for some z (in which case z is uniquely
determined since X,, is monomorphic) define

Bn(OANzy AN---ANxj) =0 Ayr A=+ ANyj,
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where

x; ifiEm,m+1
Yi =z ifi=m

GTme1 ifi=m+ 1.
(iti) If m<j and xpmy1 = 0z for some z define
Con(@NTi N Nzj) =0 Ayt A+ ANyj,
where
x; ifi Fm,m+1

Yi = V2, ifi=m
z ifi=m+1.
Now we can give an explicit description of the equivalence relation ~, as follows:

ONTy N~ Nzj ~ KAy A--- Ay; if and only if there is a composable sequence
Dy, ..., D, of operations of the types given in definition A.7 with

KAYL A Ayj=Dp---Di(OATL A+ Aj).
We will only indicate why these operation generate: the operations A, o take care
of the equivalences described in remark 4.7, the operations B,, and C,, generate
the equivalences which come from the coequalizer diagram in definition 4.14.

In the situation of an equivalence, we will say that the n-tuple P = (D1,...,D,)
is a path from O Az A--- ANxjto Kk Ay A--- Ay; and we will write

PONziA---ANxj)=KAy1 A--- ANyj.

The length of P is the number of A-operations in P plus twice the number of
B-operations and twice the number of C-operations.

NotaTION A.8. If « is the identity element then A,, , will be interpreted as the
empty path.

We record some useful calculations in our next two lemmas. We define the stan-

dard path of length 3p starting at 6 A wx1 A xa A --- A x; with p<j to be the
path

Al’p17\$1| s BI,AQ’plaWQ‘ s BQ, ceey Ap,p1,|$p| s Bp.

Note that the B-operations in this sequence are always possible because of Eq.
(A.1) and that A; 2] is interpreted as the empty path when |z;| = 0.
HE)
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LEMMA A.9. Let P be the standard path of length 3p starting at O ALz Az A - -Ax;.
Then

P(H/\Qxl/\~-~/\xj)=9(p[]

1 -1 _
17‘$1|+m+|xp|) ANZL A ANDTpgpq A+

Proof. This follows by induction on p from Eq. A.1 and the equation p[lsjl] P[11]s =

1 .
p[l,]s+t in the group Xg4¢41. O

REMARK A.10. The operations in definition A.7 often commute with each other.
Specifically, A, o commutes with A, g for m#n and with B, and C,, for m #
n,n — 1; moreover, B,, commutes with every B, and every C, and C,, commutes
with every C,.

LEMMA A.11. Let P be as in lemma A.9, and let @ be any path starting at 0 A
wx1 Ax2 A--- ANz of the form

Al,(x17Blv AQ,Q27B27 e 7Ap,ap7 Bp

where a;(1) = |z;| + 1 for each i. For each i let B; be the element of ¥, with

B[Z] = p1_|1a:4\0‘i (which exists because P1_|1I,‘0¢i takes 1 to 1). Then
3| Tq 1 Lg

i =

(i) the path

A o, Asgyse s Apg,, P

175?],
has the same effect on 0 ANwxi Axa A---ANxj as Q, and
(ii) the path
P, A1 gy, A2 gy Ap
also has the same effect on 0 Awxi Aza A--- Az as Q.

Proof. The proof in each case is by induction on p.
For part (i), the case p =1 is immediate. For p > 1, we observe that

Al 552] ) A2,627 s 7Ap—1,ﬁp_1,P, Ap7ap, Bp

has the same effect as

ALB?] 5 A2,ﬁ27 e 7Ap—1,ﬁp_1 ) P7 Ap’ﬁz[?] ) AILPL‘I])‘ ) Bp

and by lemma A.9 this has the same effect as

A, e Az Any P Ay 0By

as required.
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For part (ii), we use the equation Pl,\:cp|5z[72] = E]PLI%I' This shows that

P7 Al,ﬁl 5 A2,ﬁ27 e 7Ap—1,ﬁp,15Ap,O¢p7 B[)

has the same effect as

P,Alyﬁl,Agyﬁz, .. "Al’*lﬁpfl’APvPL\zp\’Ap BI[}],BP
which has the same effect as
P, Ay g, A2y, - vApfl,Bp_pAP’PL\J;p\’Bl”Al’ﬁp

and by remark A.10 this has the same effect as
P, Ap,p1,|xp| s Bp, Av), A28y -5 Apgy

as required. O

NotATION A.12. Given a symbol x = 6 A x; A --- A z; as above, meaning a
representative of the equivalence relation, we write wx for 021 A @z A - A zj.

DEFINITION A.13. Given symbols x and y, and a path P from wx to @y, we will
say that x and y are P-related.

With this terminology, proposition A.4 is true if the following statement is true
for all P:

if x and y are P-related then x ~y. *)
Before proving proposition A.4, we need two more lemmas.

LEMMA A.14. Letx =0 Az A--- Nx; and let P be a path starting at x. Suppose
that P consists of a single operation D and that

(1) if D = Ay o then a(1) =1, and
(i) if D = By then |z1| # 0.
Then there is a unique y with P(wx) = @y, and x ~y. In particular, Statement
(*) is true for P.
Proof. If D = A, , with a(1) = 1 then there is a 3 with a = £2/, and
P(@x) = PO Aoy A - Axy) =03 (BEY L A@Bz A - A,
so we can let

yz@ﬁ_l/\ﬂxl/\~-~/\xj

which is the unique choice since X; is monomorphic. We have y = A; gx,sox ~ y.
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Next suppose D = B; and that |x1J # 0. Since B; can be applied to x and we
have (by definition of B;) that 21 = ¢z, and so

Oxy = Oz = Pz (A.2)
for some z, and then
Pax)=0P Az Aoy --- .

Combining Eq. (A.2) and (A.1), we have p; |, @z = Wr1, so since Xy is strongly
monomorphic there is a 8 € ¥|,,| with 37!(1) = 1 and

Bz = ow
for some w. There is a (3 € lzy|—1 with g = B2 and we have
z= (B tow = o w. (A.3)
Now let
y=0AB wADzy .
We have wy = P(wx) by Eq. (A.3). We claim that
T = z/;[;_lw.

Assuming this for the moment, we have y = B1x, so x ~ y as required. Since X;
is monomorphic the claim follows from the equations

wxr] = 1;2' = @@57111) = anﬂ,éflw,
where we have used Eqgs. (A.2) and (A.3) and remark A.6(ii).

The remaining cases are easy. O

LEMMA A.15. Let Q) be a path which can be written as a composite Q1,Q2, where
Statement (*) is true for Qg and every operation in @Q; satisfies the hypothesis of
lemma A.14. Then Statement (*) is true for Q.

Proof. By an iterated application of lemma A.14, @, (wx) has the form wz for some
z and x ~ z. But also z ~ y since the symbols z and y are ()s-related. O

Proof of proposition A.J. We will prove that Statement (*) holds for all P. So
suppose that P is a path of length r from wx to wy.

If r=0 then x =y since X; is monomorphic.

Suppose that r >0 and that the result holds for all paths of length < 7.
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Let
x=0ANx  A---Nxj
and let
Y=KAy N Nyj.
Let p be the largest number for which P begins with a path of the form
Atlay, B, A2,09, B2,y Apap, By

where a;(1) = |x;| + 1 for each i. Denote this path by P; (p is allowed to be 0 in
which case P; is the empty path).

Lemmas A.11(1) and A.9 imply that P # Pp: if |ay] = 0

this is because x; cannot equal @y;, and otherwise it’s because
_ 2425 <p |l _

RPN 1 (g, 1(/)[117121_9‘9%') ! does not take 1 to 1 and so

cannot be equal to k[, Let D be the next operation in P and let Py be the part
of P after D. There are three cases.

Case 1. Suppose that D = A,, , for some vy, with m # p + 1.
If m > p+ 1 then D commutes with all the earlier operations in P (if any), so P
has the same effect as

D, Py, P,.

Since the length of P, P is r — 1 we are done by lemma A.15 (taking Q1 = D in
that lemma).
If m < p, lemma A.11(ii) shows that P;, D has the same effect as

By,..., A . B,)

Py

Q= (A0, B1 A

2,0/2 )
where

Q5 1fz7ém,

Pl VP o i =

Then P has the same effect as @, P>, which has length r — 1.

Case 2. Suppose that D is B,, or C,, for some m.

If m>p then D commutes with all earlier operations in P (if any), so we are
done by lemma A.15 (taking @1 = D; note that if p=0 and |z1] = 0 then we
cannot have D = By because of the way p was chosen).
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Let Pj be the standard path of length 3p starting at wx and let @ be the path
P{,D, P,. Lemma A.11(i) says that P; has the same effect as

A Az g,y Ap gy P

LIB?] 3
By lemma A.14, there is a symbol z such that the path

A17ﬁ£2],1427ﬂ2, o Ap gy
takes wx to wz and x ~ z. Then z is Q-related to y, and to complete Case 2 it
suffices to show that z ~ y.

If D is B,, or Cy,, with m < p, lemma A.9 shows that P;, D has the same effect as
D, P|. Hence @ has the same effect as D, P, P,, and we are done by lemma A.15
since Pj, P, has length < r (note that if D = By in this situation then |z1| cannot
be 0 since it would not be possible to apply By to Pj(z)).

If D = C), then P{, D has the same effect as

R=(Avpy |, | Bi Ao, |, Bayoo Ay, |, )

since C, and B, are inverses of each other. Then @ has the same effect as R, P,
which has length r — 2.

If D = B,, lemma A.9 shows that P;, D has the same effect as D, P{, Ap11 4,
where 7 is the transposition (12). Hence () has the same effect as D, P{, A,11 ~, P,
and we are done by lemma A.15 since P[, Ap 1., P> has length r —1 (this is why
operations of type B count for 2 in the definition of length); note that we cannot
have D = B; and |z1| = 0 in this situation since p would be 1 and then P; would
be B, and it would not be possible to apply the sequence P, D to x.

Case 3. Suppose that D = A, 5 for some 7.

First suppose v(1) = 1, which implies v = ! for some 7. If p =0 we’re done by
lemma A.14. If p >0 lemmas A.11(i) and A.9 show that P, D has the same effect
as A, s, P1, 80 P has the same effect as A, ./, P1, P» and we're done by lemma
A.15.

For the rest of Case 3 we suppose that

A1) # 1. (A4)

Lemmas A.11(i) and A.9 show that P cannot equal Pj, D: if |z1| = 0 this is
because z; cannot equal wy;, and otherwise it’s because the permutation

_ 243 <p |25l — _ T —
9[2]<5£2]) Lo (g, isp il 1<p[117]2:i<p|93i|) 1(7[1+Ez§p| zl]) 1

does not take 1 to 1 and so cannot be equal to 2. Let E be the next operation in
P and let Pj be the part of P after F; then we have

P=(P,D,E,P)). (A.5)
There are three cases to consider.

Case 3.1. £ = A,,, 5 for some §.
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If m = p+1 we can combine D and E into a single operation, which gives a path
of length r —1 from x to y.
Otherwise we can commute F past D, which reduces to Case 1.

Case 3.2. £ = B,, for some m.

If m # p,p+ 1 we can commute E past D, which reduces to Case 2.

If m=p then D, F has the same effect as B,,, Ap+1 J12)s which reduces to Case
2. ’

So suppose m = p + 1. Then

(1) # [wps1| + 1, (A.6)

because of the way p was chosen. Denote Pj(x) by z, and let
Z=ANz1 NNz (A7)

Then

Zpt1 = WTpy1 (A.8)

by lemmas A.11 and A.9.
Because the operation B,y can be applied to A,41,(z), we have that

Vzpy1 = hw (A.9)
for some w, and then
ED(z) = AylAlFlepl =L A g Az pg - (A.10)

Equations (A.6), (A.8), and (A.9) allow us to apply remark A.6(iii) to get a
0 € ¥, 1| with the properties that S H|wpsal) = v H(|lzpsa| +1) — 1 and

§xpr1 = Yv (A.11)
for some v. Let
e =y (6L, (A.12)

Then ¢ takes |z,41] + 1 to itself, so there is an & € Vlay | With e = gl

p+1,6[2] (Z) and that
APH’(S[Q],Berl,Apr has the same effect on z as D,E. Let us assume this
for the moment. If p=0 then (by Eq. (A.5)) P has the same effect as
Al,ém , B1, A1, Py; since the length of Ay ¢, Pj is r — 2 we're done by lemma A.15
(note that |z1] # 0 because of Eq. A.4). If p#0 then P has the same effect as
P, Ap+1,5[2] , Bpt+1, Api1.s, Py, which (by lemmas A.11 and A.9) has the same effect
as Apt1,5, P1, Bpi1, Apt1,s, Py. Case 2 applies to part of this path after the first
operation, so we're done by lemma A.15.

We claim that the operation B,;; can be applied to A
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It remains to verify the claim. By Eqs. (A.8) and (A.11) and remark A.6(ii), we
have

82,41 = @Oy = @Pv = Pv,

so (using Eq. (A.7)) Bpy1 can be applied to Ap+175[2] (z) and we have

Ap+1,5Bp+1Ap+1)5[2] (z)

= /\((5[2])*1(5[1])*1)[\21|+---+\Zp\+1] A v A @2pya -

By Eq. (A.10), it suffices to show &l16[2] = » (which follows from Eq. (A.12)) and
w = Wv. Because X1 1 is monomorphic, for the latter equation, it suffices to show
Yw = M@, and this in turn follows from

YW = y2pp1 = YOTpy1 = 0 FDT, 00

= eWdTpy1 = cwopv = eppiov = P,

where we have used (in this order) Egs. (A.9), (A.8), (A.12), remark A.6(i), Eq.
A.11, and remark A.6(ii).

Case 3.3. £ = (C,, for some m.

If m # p,p+ 1 we can commute E past D, which reduces to Case 2.

If m = p+1 then D, E has the same effect as Cp,, A which reduces to
Case 2.

So suppose m=p (which implies p#0). Let Py be
Aty B1,A2,09, B2, .oy Ap-1,0p, Bp—1 if p>1 and the empty path if p=1;
note that

p+1401D

P = (Py, Ap.ap, By, D, E, Py). (A.13)

We denote A, o, Po(x) by z and let

p,ap
Z=ANZ1 ANz (A.14)
Because the operation B, can be applied to z, we have

2y = Yw (A.15)

for some w. Because C}, can be applied to A, 5,2z, we have
VD Zpp1 = WU (A.16)

for some v, and

EDB,(z) = My Dl Fzpl Uy A A v (A.17)

Since X, 41 is strongly monomorphic, Egs. (A.4) and (A.16) imply that there is
a0 € Xy, | with the properties that §71(1) =471(1) — 1 and

0zpt1 = Wu (A.18)
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for some u.
Let & be the transposition (12). Let

0=~ (A.19)

Then 7 takes 1 to 1, so there is an 77 € E|xp+1| with n = 72, We claim that the
sequence of operations

Ap+1,6,Cps A [1zpl41]5 Bps Ap+1,7

,E

can be applied to z and that it has the same effect as B, D, E. Assuming this for
the moment, we see (using Eq. (A.13)) that P has the same effect as

Pos Ap.aps Apt1,6,Cpy A 1214115 Bps A1, P2
which (by commuting A, s past the earlier operations) has the same effect as
Ap+1,57 P07 Ap,ozpv va Ap,a[\zZ)H-l] ) Bpa Ap-‘rl,f]a PZ/

which (moving Cj, past A, .,) has the same effect as

Ap+1,§7PO7CpaApa[1]aA lzpl+1]> Bps Apt1,75 Pa
P

p.e
which (since C, commutes with the operations in Py) has the same effect as
Ap+1,57 Cpa P07 A[),az[,l] ) Ap,6[|zp|+1] ) B;D? Ap+1,ﬁ7 PQ/
The part of this path after the first two operations has length r — 1, so we’re done
by lemma A.15.
It remains to verify the claim. Equations (A.14), (A.15), and (A.18) give
Api1.s5(z) = A8~z Hlep A A - - (A.20)

so C, can be applied to 4,11 5(z). Now ell?2IT1 (ppw) = ipw, so Eq. (A.20) gives

A zpl+1CpApi1,5(2) (A.21)
= A8~y lznlt Atz A b A

Then B, can be applied to this and we have

Apr13BpA (1zp1+11CpApi1,5(2)
- )\((5[2])*1(6[1])*1(,f][2})71)[\z1|+---+|2p|+1] A BwAf@u- - .

Comparing this to Eq. (A.17), we see that it suffices to show v = 7121512 (which
follows from Eq. (A.19)) and fjou = v. Since X,41 is monomorphic, the latter
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equation follows from the equations
Oiou = Ny = Yod " tou = VOZpt1 = WU

where we have used remark A.6(i) and Eqgs. A.19, A.18, and A.16.
This completes the proof of proposition A.4 O

Proof of proposition A.2. First we need some notation to distinguish the action of
¥, on XM from the action of Xy on the kth object of X": given v € ¥;, n € X,
and a point ¢ of X with [r| = k, we write ¢ (resp., nx) for the point obtained by
applying v (resp., n) to r.

Now suppose there is a point r in X"/ which is not a basepoint and a non-trivial
v € 3; such that ¥ = r. Let ¢ be represented by

Xx=0ANT1 A ANzj
and note that |z;| > 0 for all ¢ by our hypothesis on X(. Then t” is represented by

y - 977_1 /\ xufl(l) /\ e /\ Z‘D71(j),
where n permutes blocks of size |z1],...,|z;| in the same way that v permutes
1,...,7. There must be a path from x to y, and it cannot consist entirely of oper-
ations of type A, since 7 is not in X, | X -+ X Z|xj|. Thus we may assume without
loss of generality that some z; is in the image of @, and this implies (using opera-
tions of type A and C) that there is a point v of X"V and a ¢ € Xy with x = (ww.
Now v commutes with both ¢ and @, so the fact that r¥ = r implies that

(w(w"”) = (oto.

Using proposition A.4, we see that w” = to, and thus to is a non-trivial fixed
point of the ¥, action with || < |¢|. Continuing in this way would give a non-
trivial fixed point in the 0-th object of X"V, which is impossible by our hypothesis
on Xg. O

We conclude with an example which shows that propositions A.2 and A.4 fail if
‘strongly monomorphic’ is replaced by ‘monomorphic’.

Recall definition 4.10. Let X be the subobject of S with Xy = % and X, = S*
for k> 0.

We will denote the point of X AX represented by a symbol § Az Ay by [0 Az Ay].
Let z be the non-trivial simplex in X;. Note that X is not strongly monomorphic
because the transposition (12) takes wx to itself, so [(12)wz] is in the image of @,
but z is not in the image of .

Let 7 be the operation which switches the two factors of X A X. Now we claim
that

([wz A 2))T = [0z A x],
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which gives a counterexample for proposition A.2. We have
([wx Ax])™ = [p12 Az Awx] = [(23)(12) Az Awz] = [(23)(12) Az A 2]

= [(23) A ¥z A z]because (12)acts trivially on (X2)1.1
=[(23) Ax Awz] = [z Awx] = [ A ] = [0x A ).

Next we observe that [(12) Az Az] # [z Ax], because there is no non-trivial path
beginning at (12) A x A z. But we claim that

o[(12) Az Ax)] = o([x A x]),
which gives a counterexample for proposition A.4. We have
o([(12) Az A z]) = [(23) Awx A x] = [(23) Az A ]

=[(23) Az Awz] = [z Awx] =[x A ]
= [z A z] = o([z A x]).

Appendix B. The proof of lemma 11.3

Let W denote the multisemisimplicial spectrum whose k-th object is
Sh=multh® (P (STop(k))), so that [W| = Y. We begin by showing that the monad P
of definition 17.2 acts on the pair (W, Rgrop)-

Let us define a Z-graded category B as follows. The objects of B are pairs

(9 : A™ = T(STop(k)), o),

where both n and k are allowed to vary and o is an orientation of A™; the grading
is given by d(g,0) = dim(A®) — k. We assume that the preimage g~1S of the zero
section S is a topological manifold and write Inv(g, o) for the resulting oriented
manifold in Agtp. The morphisms are commutative diagrams

An Lo T(STop(k))

s

AY L T(STop(k))

in which ¢ is a composite of coface maps and permutations of the factors and «
is a permutation; we require ¢ to be orientation preserving if the dimensions are
equal. B is a symmetric monoidal Z-graded category with product [, where

(9,0)0(g",0")

is the pair consisting of the composite

A x AY 29 (S Top(k)) x T(STop(k')) — T(STop(k + )

and the orientation o X ¢o’. The symmetry isomorphism - is
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1926
gxg

A x A™ L; T(STop(k)) x T(STop(k')) — T (STop(k + k'))
(F + 1))

|
AY x An 2L P(STop(k')) x T(STop(k)) ——= T(STop

where ¢ and « are the evident permutations.
In the construction of definition 15.4, if we replace A, .1 by B, AZ by Astop,

X by O and sig,. by Inv we obtain a functor
dg: A; x -+ XAjH-ASTopy

for each datum d, where A; denotes B if r(i) = u and Agrop if 7(1) = v
Next we have the analogue of definition 16.5.
DErFINITION B.1. Let ki,...,k; be non-negative integers and let n; be a k;-fold
AL, = {w, v}, and for 1 < i < j let Z,
denote W if (i) = u and Rgrop if 7(i) = v. Then for each map of preorders

multi-index for 1 < i < j. Let r
a:UA™ x -+ x A") = P,

X ((Zj)kj)nj — ((RSTOP)k1+"'+kj)(nl,...,nj)

we define
A : ((Zl)kl)nl X

by
a*(zl,...,zj)(al X+ X 05,01 X+ X Oj)
=i Oa(oy x -+ oj)m(zi(o1,01),...,2i(0j,05)),
where
o if r(i) = u then z(0;,0;)) denotes (2i|s;,0:), and
o ( is the block permutation that takes blocks by, ..., bj, c1, ..., c; of size
., dimo; into the order by, cy, ..., bj, c;.
(B.1)

k’], ceey kj; dimal, ..
As in §17, this definition leads to a map
IED2 (Wa RSTop) — RSTop-
Since W is a commutative multisemisimplicial symmetric ring spectrum, we have
(B.2)

a map
PU(W) =L \/ WS, 5 W,
j=>0

where Z; is given in definition 18.1(ii).
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The maps (B.1) and (B.2) give the required action of P on (W, Rgrop). Now the
proof of theorem 1.3 (given in §18) gives a map of commutative symmetric ring
spectra

| Bo (P}, P, (W, Rsop))| = [Be (P, P, (W, Rrop))|

which is a weak equivalence by lemma 11.1. As in remark 18.3, there is a weak
equivalence of commutative symmetric ring spectra

(MSTop)Comm - |Bo (]PJIQa ]Pa (Wa RSTop))|‘

To complete the proof, we observe that there is a weak equivalence of commutative
symmetric ring spectra

|BO( ,17P’ (WvRSTOp))| = ‘BO(PID]P)MW)l — |B°( /17]P)I17W)| - |W‘ =Y,

where the first arrow is a weak equivalence by proposition 18.2(iii) and the second
by [17, proposition 9.8 and corollary 11.9].

Appendix C. A functorial version of ad?

In [11, §13], we explained why ad” (as defined in [11, §9], which is the definition
we have used in the present article) is not a functor of R, and how to modify
the definition of ad® to make it a functor (unfortunately, in [11] we also denoted
the modified version by ad? ; in this appendix, we will be more careful with the
notation). Our goal in this appendix is to give a functorial version of adﬁl, which
is needed in theorem 19.1.

Unfortunately, it seems that we cannot just adapt the method of [11, §13] to this
situation, because adgl isn’t even ‘approximately’ functorial: given a ring homo-
morphism R — S and an object (C, D, 3, ) of AR, there does not seem to be
a reasonable way to create an object (C',D’, ', ¢') of A2, from this data (we
could let ¢/ = S ®@g C, but the obvious candidate for D" does not come with a
quasi-isomorphism). So in §C.2 (after some preliminary motivation in §C.1), we
give a variant of ad), which we denote by adp,, and in §C.3 we show that adf,
is approximately functorial (i.e., functorial up to isomorphism). In §C.4, we show
that the ad theories ad™ and adf,, are equivalent, that is, there is a morphism of
ad theories from adff, to ad’; which induces an isomorphism of bordism groups.
In §C.5, we give an enhanced version of the material in [11, §13], and in §C.6 we
use this to create a variant of adf,,, which we denote by adﬁcl’sch. In §C.7, we show

(using §C.3) that adgel’sch is a functor of R.

REMARK C.1. We could have used adgd throughout this article instead of adﬁl,
but that would have added extra complexity and functoriality is only an issue at
the end of the article in theorem 19.1.

C.1. Background

As motivation for the definition of adff,, we need
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LEMMA C.2. Let M be a right R module and N a left R module, and let R°® ® R
act on R on the right in the usual way. Then the map

a: R®popgpr (M@N) — M ®r N
given by a(r @ m @ n) = mr @ n is an isomorphism.

Proof. This follows immediately from the isomorphisms

R®popgr (MON)2XMRr Rr N =2 M Qg N.

Now fix a ring R with involution.

DEFINITION C.3. Let P and Q be left R°P ® R modules. A map
b:P—Q
is quasi-linear if b((r @ s)p) = (5 @ 7)b(p).

LEMMA C.4. Letb: P — Q be a quasi-linear map of left R°P ® R modules. Then
the map

b: R®propgr P = R Q@porgr Q

given by b(r @ p) = 7 ® b(p) is well-defined.

C.2. The ad theory adf,
Recall the definition of homotopy finite [11, definition 9.2(iv)].

DEFINITION C.5. A Relazed quasi-symmetric complex of dimension n is a quadru-
ple (C,E,v,¢), where C is a homotopy finite * chain compler over R, E is a
homotopy finite chain complex over R°®? @ R with a Z/2 action for which the gen-
erator acts quasi-linearly, v is a Z/2 equivariant R°P ® R-linear quasi-isomorphism
C'® C — E, and ¢ is an n-dimensional element of (R @ gopgr E)%/? (where the
72 action is given by lemma C.4).

For the following example, note that if A is a left R°? ® R module which is
nonzero in only finitely many dimensions then A" is (additively) a direct sum of
copies of A, and hence the natural map

R ®ROP®R (AW) — (R ®ROP®R A)W
is an isomorphism because tensor product preserves direct sums.

EXAMPLE C.6. If (C, ¢) is a quasi-symmetric complex as defined in [11, definition
9.3], and if C is nonzero in only finitely many dimensions, then the quadruple

2-In [11, §9], we also required C to be free, but that turns out not to be necessary; see remark
C.18.
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(C,(C' @ C)W v, ¢) is a Relaxed quasi-symmetric complex, where v : C* @ C' —
(C* ® C)W is induced by the augmentation W — Z and ¢ is the image of ¢ under
the composite

(C"' &R O)")*? = (R@popar (C* ® C))")*? 2 (R @pover ((C" @ C)Y))2
(where the first isomorphism is lemma C.2).

DEFINITION C.7. We define a category A%, as follows. The objects of AR, are
the Relaxed quasi-symmetric complexes. A morphism (C, E,~,¢) — (C',E',v',¢")
is a pair (f : C — C',g : E — E'), where fis an R-linear chain map and g is
a Z/2 equivariant R°P @ R-linear chain map, such that gy = v'(f @ f), and (if
dim¢ = dim¢') (1 g).(¢) = ¢

AE | is a balanced [11, definition 5.1] Z-graded category, where i takes (C, E,, ¢)
to (C, E,~,—¢) and (), is the n-dimensional object for which C' and E are zero in
all degrees.

REMARK C.8. There is a morphism AE, — AR of Z-graded categories which

takes (C, E,v,¢) to (C, R ®gopgr F, [, $), where § is the composite

C' @r C = R®pover (Ct®C) 225 R@pover B.

REMARK C.9. Let AE be the full subcategory of A consisting of objects (C,¢)
with C finite (not just homotopy finite). Let Af 4, be the full subcategory of Af,
consisting of objects (C, E,~, ¢) with C and F finite. The construction of example
C.6 gives a morphism

'Agn - Agel,ﬁn
of Z-graded categories.

Next we must say what the K-ads with values in Agel are. For a balanced pre
K-ad F, we will use the notation

F(Uv 0) = (007 Es, Yo, Qba,o)-
Recall [11, definition 9.7].

DEerFINITION C.10. A balanced pre K-ad F is well-behaved if C and E are well-
behaved.

DEFINITION C.11. (i) A balanced K-ad is a pre K-ad with the following properties.
(a) It is balanced, closed, and well-behaved, and
(b) the composite of F with the morphism of remark C.8 satisfies part (i)(b) of
definition 12.10.
(ii) A K-ad is a pre K-ad which is naturally isomorphic to a balanced K-ad.

We write adfe (K) for the set of K-ads with values in AR,
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THEOREM C.12 adk,, is an ad theory.

This follows from the proof of theorem 12.12 with minor changes.
REMARK C.13. The morphisms of remarks C.8 and C.9 take ads to ads.
C.3. adgel is approximately functorial
The result in this subsection will be used in §C.7.

DEFINITION C.14. Let h: R — S be a ring homomorphism. Define a functor
hrel : Affer = ARer
as follows. For an object (C, E,~,¢) of AR, let
hrel(C,E,v,¢) = (S®r C,(S? ® S) Qrorer F,7,¢'),

where v is the composite

(S®RC) @ (S®RC) = (5P ®8) @poper (CF @ C) —2 (S © S) ®povgr E
(which is a quasi-isomorphism by the Kinneth spectral sequence [26, theorem 5.6.4],

using the fact that C and E are homotopy finite) and ¢’ is the image of ¢ under
the composite

(R QRoP®R E)Z/2 — (S QROP®R E)Z/2 = (S ®sopg s (SOP ® S) QROPQR E)Z/Q.

The reader can check that if £k : S — T is another ring homomorphism then
(kh)rel(C, E, v, ¢) is isomorphic to but not equal to krelhrel(C, E, 7, ).

PROPOSITION C.15. hgre takes ads to ads.
Proof. Let F € adf. (K). We may assume that F is balanced. Write
F(Uv 0) = (Cav Ea,’yoa ¢a,o)~

Let W be the functor of remark C.8. Let G = V¥ o F'; then G is an element of
ad®? (K). Write

G(U7 0) = (Coa D07 Boa ¢O’,0)'

Let H = W o hgre o F'; we need to show that H is an ad. It’s immediate that H is
balanced, well-behaved and closed, so it only remains to show that it satisfies part
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(ii) of definition 12.10. Write
H(Ua O) = (S QR Caa Dfa ﬂ57 wa,o)
and fix an oriented cell (o, 0) of K. Recall notation 12.9 and let

ko : (S®rC)' @5 (S®RC))o/(S®rC) @5 (S @R C))os
— ((S QR CJ)/(S XRnr Cag)) Rs (S KRR Cg)

be the analogous map. We need to show that the slant product with
(ko )«(B5)5 ([W00,0)) is an isomorphism

H” (HomS(S QR Ca, S)) — Hdim o—deg F—*(S (23 Ca/S QR CBU)-

First we observe that (using the definition of hge) the image of (jo )«(Bs)s *([Po.0])
in Ho(S®r Cy) /(S @R C)as) @ S @r Cy is (ko )+(85) 5 ([¥.0]). Now the desired
isomorphism follows from our next lemma. O

LEMMA C.16. Let h : R — S be a homomorphism of rings with involution. Let A
and B be homotopy finite chain complexes over R. Let 1 be a cycle in A ® g B with
the property that the slant product with x is an isomorphism

H*(Homp(B, R)) = Haimz_+A".
Let y be the image of x under the map
A'®@r B — (S®r A)' ®s (S®r B).
Then the slant product with y is an isomorphism
H*(Homg (S ®g B, S)) = Haimz—+(S @r A)'.

Proof of lemma C.16. By naturality of the slant product, we may assume that A
and B are finite. Because B is additively a direct sum of finitely many copies of R,
the map

Y : Hompg(B,R) ®r S — Homg(S ®@r B, S)

defined by Y(f ® s)(t ® b) = tf(b)s is an isomorphism.
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Consider the diagram

Y

H*(Homg(S ®r B, S)) —— Haimz—+(S @r A)?

TTQ T”

P (HOIHR(B, R) QR S) — Hdim m—*(At QKR S)

where the bottom arrow is induced by the chain map (\z)®1. It’s straightforward
to check that the diagram commutes, and the lower arrow is an isomorphism by

the Kiinneth spectral sequence [26, theorem 5.6.4].

R

C.4. Comparison of adf,, and ad”,

PROPOSITION C.17. The morphism adf, — adl induces an isomorphism of

bordism groups.

Proof. Let Af, g, be the full subcategory of Af, consisting of objects (C, E, v, ¢)

for which C' is finite. Consider the diagram

R

R 5
‘ARel ‘Arel

|

R
‘ARel,ﬁn d
b T
R ¢ R
A A

where a is induced by the inclusion of categories, b is given by remark C.9, ¢ is
induced by the inclusion of categories, and d is given by remark 12.5. This diagram
commutes up to natural isomorphism, so it induces a commutative diagram of

bordism groups:

(Qgel)* - (Qﬁl)*

*

Q) — (@F).

Q¢ is an isomorphism by proposition 13.3, and the proof of that proposition, with

minor modifications, shows that Q% is an isomorphism.
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To see that Q¢ is onto, let (C, E,~, $) represent an element of adfy(*). Since
Cis homotopy finite, there is a chain homotopy equivalence f : C' — C with c’
finite. Let 7/ = v o (f ® f). Then (C",E,v,¢) is an element of adRel’ﬁn(*), and
(f,id) is a morphism from (C’, E,v’, ¢) to (C, E,~, ¢). Let F be the cylinder object
of (C,E,v,¢) [11, definition 3.10(g)]. Let 0,1,: denote the three cells of the unit
interval I, with their standard orientations. Replacing F'(0) with (C', E,~', ¢) gives
an I-ad which is a bordism between (C, E,v, ¢) and (C', E,~', ¢).

To complete the proof it suffices to show that ¢ is an isomorphism, since this
will imply that Q¢ is a monomorphism.

To see that ¢ is onto, let (C, ¢) represent an element of adR(*). There is a chain
homotopy equivalence f : C' — €’ with C” finite. Then (C',(f ® f) o) represents
an element of adf (%), and (f,¢) is a morphism from (C, ) to (C’,(f ® f) o ).
Let F be the cylinder object of (C’, (f ® f) o ¢). Replacing F(0) with (C, ¢) gives
a bordism between (C, ) and (C', (f ® f) o ¢).

To see that Q¢ is a monomorphism, let F € ad™(I) with F(0) and F(1) in AE,
Write

F(0) = (Co,p0), F(1)=(Cr,p1), F()=(Cpp.).

Since C, is homotopy finite, there is a chain homotopy equivalence f : C, — B with

B finite. Let g¢ be the composite Cy — C, i> B and similarly for g; : C; — B.
Let cl(I) be the cellular chain complex of I and let jq (resp., j1) be the composite
Z = cl(0) — cl(I) (resp., Z = cl(1) — cl(I), where the second map is the inclusion.
Let B be the colimit

Jy \ / wd
) @ Co )& C

]0®1d

1

jo®id
The composites Cy 2%, (I)®Cy - B and C; —— cl(I) @ Cy — B’

are strong monomorphisms [11, definition 9.6]. Let n be the degree of F' and let
¥ € Bj_,, be the image of t ® pg + fu(d,) — L @ 1.
Define an I-ad G by

Then G is the desired bordism. O

REMARK C.18. The proof that 2 is an isomorphism also shows that the require-
ment in [11, §9] that C should be free over R is not needed. That is, if we define
ad® as in [11, §9] and (ad™)! by requiring only that C' be homotopy finite then the
forgetful map ad®® — (aLdR)T induces an isomorphism of bordism groups.
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C.5. Enhanced version of [11, §13]

In [11, §13], we gave a model for the category of free R modules which is functorial
in R. In this subsection give a similar model for the category of all R modules. Our
terminology and notation will be different from [11, §13].

We define the category of schematic free R modules as follows. An object is a set
M. This should be thought of as representing the free R module generated by M,
which we denote by R(M). We define a map M — M’ to be a map of R-modules
R(M) — R(M').

We define the category of schematic R modules as follows. An object of this
category is a triple (M,N,T), where M and N are schematic free R modules
and T is a map N — M. Such a triple should be thought of as represent-
ing the quotient of R(M) by the image of T; we write R{((M,N,T)) for this
quotient. A map (M,N,T) — (M/,N',T") is defined to be an R-module map
R({((M,N,T)) —» R(M',N', T")).

LEMMA C.19. The functor from schematic R modules to R modules which takes
(M,N,T) to R{((M,N,T)) is an equivalence of categories.

Proof. The functor is the identity on morphism sets, so it’s only necessary to show
that every R module P is isomorphic to one of the form R{(M,N,T)). Choose an
exact sequence Q1 — Q2 — P — 0 where ;1 and ()5 are free, let M and N be
bases for (1 and ()2, and let T be the map induced by Q1 — Q. d

A schematic chain complex C over R is a sequence of schematic R modules
and maps, and we write R{C) for the corresponding sequence of R modules and
maps. A map C — C’ of schematic chain complexes is a map of R chain complexes
R(C) — R(C').

Let h : Ry — Ry be a homomorphism. For a schematic free R; module M, we
write hgcpnM for M thought of as a schematic free Ro module. There is a canonical
isomorphism

R2<hschM> = RQ ®R1 Rl <M> (Cl)

which takes an element m of M to 1 ® m. For a map T : M — N we write hgen T
for the map hsenM — hgenN defined by the following diagram.

hsen T
R2<hschM> R2<hschN>

:l :i

1T
Ry @r, Ri(M) —— Ro ®g, Ri(N)

For a schematic Ry module (M, N, T), we define hgs, (M, N, T') to be the schematic
Ry module (hsenM, hsenN, hsenT). The isomorphism C.1 induces a canonical
isomorphism

R2 <hsch<M7 Na T)> = R2 ®R1 R1<(M7 N7 T)> (02)
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For a map of R; modules U : (M,N,T) — (M/,N',T"), we define hs,U to be the
map defined by the following diagram.

hschU

R2<hsch(MaN7T)> R2<hsch(M/7N/aT/)>

|

®
Ry AR, R1<(M7Na T)> — Ry QR, R1<(MI>N/7T/)>

This gives a functor hge, from schematic R; modules to schematic R, modules.
If ' : Ry — R3 is a homomorphism we have (h' o h)seh = hly, © hsch, and thus the
category of schematic R bf modules is a functor of R.

C.6. The ad theory adﬁel’sch

First we translate definition C.5 into the language of schematic modules:

DEFINITION C.20. (i) A schematic Relared quasi-symmetric complex of dimen-
sion n is a quadruple (C,E,~,¢), where C is a schematic R chain complez, E
is a schematic (R°® ® R) chain complex, R(C) is homotopy finite, (R°® @ R)(E)
is a homotopy finite chain complex over R°® ® R with a Z/2 action for which
the generator acts quasi-linearly, v is a Z/2 equivariant R°® @ R-linear quasi-
isomorphism (R(C))! ® R(C) — (R°® ® R)(E), and ¢ is an n-dimensional element
of (R ®popgr (R°P ® R)(E))%/? (where the 7.2 action is given by lemma C.4).

(i) We define a category Aﬁel?sch as follows. The objects of Agel’sch are
the schematic Relaxed quasi-symmetric complexzes. A morphism (CE,v,¢) —
(C, ', ") is a pair (f : R(C) — R(C),g : (R @ R)(E) — (R ® R)(E')),
where f is an R-linear chain map and g is a Z/2 equivariant R°P ® R-linear chain
map, such that gy =~'(f ® f), and (if dim¢p =dim¢’) (1 ® g)«(¢) = ¢'.

Agel’seh is a balanced Z-graded category, where i takes (C,E,~,¢) to
((Cv Ev 8g _¢>

There is a morphism
. AR R
A AReLsCh - ARel

of Z-graded categories which takes (C,E,~, ¢) to (R{(C), (R°®? ® R)(E), v, ¢); this is
an equivalence of categories.

DEFINITION C.21. A K-ad with values in Agel’sch is a pre K-ad F for which Ao F
is a K-ad.

We write adfgel’sch(K) for the set of K-ads with values in Aff .,

ProposITION C.22. (i) adgel’sch is an ad theory.
(ii) A induces a morphism of ad theories which is an isomorphism on bordism
groups.

This is an easy consequence of theorem C.12 and the following lemma.
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LEMMA C.23. Let K be a ball complex and L a subcomplex. Given a commutative
diagram

F
Cell(L) — A

|

Cell(K) —> A

in which I is an equivalence of categories, there is a functor H : Cell(K) — A
such that H|ceyry = F and I o H is naturally isomorphic to G.

C.7. adgel)sch is a functor of R.

Let h: R — S be a homomorphism of rings with involution.

DEFINITION C.24. Define a functor
. gR S
hReLsch . ARel,sch — ARel,sch

as follows. For an object (C,E,~,®) of Aﬁel’seh, Let

hRCl(C) Ea v, ¢) = (hschc, (h & h)schJEa 63 1][}),

where hsen and (h ® h)sen are given in §C.5, and (letting C = R(C) and E =
(R°? @ R)(E), and using the notation of definition C.14 and the isomorphism of
Eq. (C.2)), § is defined by the diagram

5
S{hsenC)t @ S(hsenC) —— (S°P @ S)((h @ h)senE)
.o
(SRrRC)Y @ (S®@rC) — (SP®S) Qprorgr F
and 1 is the image of ¢ under the isomorphism
(S ®gopgs (5P @ S) @rovgr B)*/* = (8 @g0pgs (S @ S){(h @ h)senE))*/.
PROPOSITION C.25. hgelsch takes ads to ads.

Proof. Let K be a ball complex and let F' € adgel,sch(K ). By definition C.21, we
only need to show that Aohgelsch 0 F is in adgcl(K). But Aohgelsch o F is naturally

isomorphic to hre o A o F', which is in adgel(K) by definition C.21 and proposition
C.15. O

The reader can check that if £k : S — T is another ring homomorphism then
(kh)Rel,sch is equal to kRrel schPRel,sch, SO adgel)sch is a functor of R as required.
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