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THE EXPLICIT SOLUTION OF THE 9-NEUMANN PROBLEM IN A
NON-1SOTROPIC SIEGEL DOMAIN

JINGZHI TIE

ABSTRACT.  In this paper, we solve the 9-Neumann problem on (0, g) forms, 0 <
g < n, in the strictly pseudoconvex non-isotropic Siegel domain:

z=(z,..., z) € C,
un = { (2,Zm1) : IM(zaea) > 1L 372 }

Z1 €G;

whereg; > Oforj=1,2,...,n. The metric we useis invariant under the action of the
Heisenberg group on the domain. The fundamental solution of the related differential
equation is derived via the Laguerre calculus. We obtain an explicit formula for the
kernel of the Neumann operator. We also construct the solution of the corresponding
heat equation and the fundamental solution of the L aplacian operator on the Heisenberg
group.

1. Introduction. Thedomain
n
un= {(z. Zn+1) 2 € C" zpe1 € C; IMZyeg > Za,-|4|2}.
=1

whereg; > 0forj = 1.2,....n, isthe non-isotropic Siegel domain. We give this name
to the above domain because we obtain the classical Siegel domain if & = 1 for all
j = 1.2,....n, which is a well-known model for geometry and analysis on strongly
pseudo-convex manifolds with boundary. We can identify the boundary bU" with the
Heisenberg group Hy, and H, acts on U" as a group of holomorphic isometries with
respect to an appropriate Hermitian metric. In this paper, we construct the solution for
the 9 -Laplacian on (0. g) forms on U" satisfying d -Neumann boundary conditions.

We beginwith afew historical remarks. The d-Neumann problemwasfirst formul ated
by Garabedian and Spencer [7] for complex exterior differential forms on a compact
complex-analytic manifold with strongly pseudo-convex boundary. In the caseof strictly
pseudo-convex domains, it wassolved by Kohn[14] [15], who obtained C* results, using
L2 methods; the interested reader can see, for instance, the exposition in Folland and
Kohn [5] and Krantz [16].But it was Morrey [17] who first discovered and established
the basic estimate of the problem for the special casesof (0, 0) and (0, 1) formson certain
tubular manifolds. Unfortunately there was error in [17] which was corrected in [18]
by using the results of Kohn [14] [15]. The analysis relying on the Heisenberg group
and leading to formulas for the solutions, together with sharp estimates, came later, see
Folland and Stein [6], Rothschild and Stein [20] and Greiner and Stein [10].
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Anintegral formula, in terms of the explicit kernels, was given for the solution of the
a-Neumann problem in the Siegel domain by N. K. Stanton [23]. Phong [19] announced
an explicit construction of a parametrix on (0. 1) forms in the Siegel domain in C™?,
n > 1, and one can see the exposition in M. Beals, C. Fefferman, and R. Grossman [1]
for Phong’s construction. Harvey and Polking [11] constructed the Neumann kernel
for the 9-Neumann problem on (p. )-forms on the unit ball in C™!, and Kimura [13]
found the integral formula for the same problem but in C? by a different method.
N. K. Stanton [21] [22] has constructed the heat kernel associated with the 4 -Neumann
problem in the Siegel domain. The heat kernel of O, was constructed independently
by B. Gaveau [8] and A. Hulanicki [12] for the Siegel domain and by R. Beals and
P. C. Greiner [4] for U".

In this paper, first we find the explicit formula of the fundamental solutions of the
d-Neumann problem and the corresponding heat equation for the non-isotropic Siegel
domain by the method of Laguerre calculus. Then we construct the kernels of the o-
Neumann problem and the corresponding heat equation from the fundamental solutions.
The method to construct the kernel of the correction term (5.17) is new. As a fur-
ther application of the Laguerre calculus, we derive the fundamental solution of the
Laplacian operator on the Heisenberg group. Our formulas are close to those of Stan-
ton [21] [22] [23] for the Siegel domain, i.e., g = 1forj =1,2,....n, but sheused a
different method. Furthermore, we write the solutions of the 9-Neumann problem and
the corresponding heat equation in terms of the complex distance and volume element
on the Heisenberg group. Our formula can be extended to the domainswhose boundaries
have the structure of the Heisenberg manifolds. Hence we can get the explicit solution
of the 9-Neumann problem for a large class of domains. We emphasize the explicit
expressions of the formulas in this paper and postpone the regularity property of these
formulas to a future publication.

In pursuing these objectives we shall proceed in the following order. First, we for-
mulate the 9 -Neumann problem, and identify the differential equationswe haveto solve
in order to find the solution to the problem. To derive the fundamental solution, first
we introduce the Laguerre calculusto H, x RY, then apply it to derive the fundamental
solutions of the related operators. We can now solve the d-Neumann problem. Next,
we solve the associated heat equation. Last, we derive the fundamental solution of the
L aplacian operator of the Heisenberg group by applying the Laguerre calculus.

2. 9 Operatorsand  Laplacian on U". The non-isotropic Siegel domain U" is
n
un= {(z, Zw1) € C™1: 2 € C", zy41 € CIM(Zora) > Za,—|z;|2}
=1
with g > 0forj =1,2.....n. The boundary of U" isthe set

bU" = {(z. Zw1) € C™ & IM(zwa) = > &7}
=1
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Besidesthe ambient coordinates (z, z,+1), it isuseful to deal with the Heisenberg coordi-
nates [, t,r] given by

n
(=z, t=Rezwi. r=Imzw)—Y alz/%
=1

then the domain U™ and its boundary bU™ have the following simpler expressions:
U"={[¢.t.r]:r >0} bU"={[¢.t.r]:r=0}.

We now come to the Heisenberg group, which gives the trandlation of the domain
U". Abstractly, the Heisenberg group consists of the underlying manifold

C"xR={[¢t]:¢eC.teR}

with the multiplication law
2.1) [g,t].[n.s]:[g+n.t+s+2|m_§;a,»gjq7j].
J:

It is easy to check that the multiplication (2.1) doesindeed make C" x R into agroup
whose identity is the origin [0, 0] and where the inverseis given by [¢, ]~ = [—¢, —t].
The space C" x R with the multiplication structure (2.1) is the Heisenberg group and
will be denoted by Hi,.

To each element [(,t] of H,, we associate the following holomorphic affine self-
mapping of U":

(22 (G4 (2. 2) = (24 G2 41 ia,—(K,— 2+25)).
=

Infact, since |z +¢j|2 — |z]2 = Im{i(2z ¢; + |¢;|?)}, the mapping preserves the defining
function

[(Z, Zw1) = 1Mzoe1 — > &)z ]%
=t

Hence the transformation (2.2) maps U" = {(z, z+1) : r(z) > 0} to itself and preserves
theboundary bU" = {(z, z,+1) : r(2) = 0}. Observenext that the mapping (2.2) definesan
action of thegroup H,, on thedomain U": if we compose the mapping (2.2) corresponding
to elements[(, t] and 7, §] of Hy, theresulting transformation correspondsto the element
[¢.1] - [1, 9. Thisfollows easily from the identity

265 + |G 17 + gl = 1G5 + my P + 20 im(G ).

Thus(2.2) givesusarealization of H,, asagroup of affine holomorphic bijectionsof U".

The mappings (2.2) are simply transitive on the boundary bU™: for every two points
inbU", thereis exactly one element of H, mapping the first to the second. In particular,
we have that

(G 0.0) = (c.t+i3 ).
=1
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so we can identify the Heisenberg group with bU™ via its action on the origin:
. n 2
Hn > [C.1] — (g.t+|za,-|gj| ) e bU",
=1

If we reconsider the Heisenberg coordinates[¢, t, r] on U™, r represents the height of
the point (z, z,+1) € U" and [¢, t] representsits projection onto bU", identified with H,.
Note, however, that the correspondence (z, zq:+1) — [(, t, r] isnot holomorphic.

When considering forms on U" it is natural to choose a basis w1. wy, . . . . whe1 Of
(1, 0) forms so that

wj=dz, j=L12,....n (the“tangential” forms); and

n .
wher = V201 = =23 gjzdz — Ldzn+1 (the “normal” form).
=1 V2
The vector fields dual to these forms are then
J
0Zos1

P i
z;za_z,-+2'aiziﬁ* j=12....n Zmi=iv2

Note that in the Heisenberg coordinates this gives:
d .= ad . 1 (9 .0
Zi=—+ia¢j—,j=12..., NZuw=—|—+i—|;
R G ) =12 Mz \/E(ar 'at)

dsow; =d¢,j=1.2,..., N, W1 = V/20T. The proof isvery simple, for one only needs

to note that 5

_—__.gi and 9 —}(i_ii)

oz a¢ Ny 9z 2\0t  ar)’
Zi,j=12..., n, are tangent to the level surface of r and hence are left-invariant

vector fields on the group Hn. Ontheonehand, Z;. Z5, ... ., Z, form abasis of the space

of the tangential Cauchy-Riemann vector fields on bU".

i — 9
T= Z—ai[zj. zj)= o

is the vector field tangent to bU" that generates the “missing” direction. On the other
hand, Z1.Z,, ..., Z,, T form abasis of the Lie algebra §),, of the Heisenberg group Hy,
where 1), is the vector space of left-invariant vector fields on H, equipped with the
bracket [V1,V32] =V1Vo — V,Vi.

We give C™?! the invariant Hermitian metric for which {w; = d¢j, j = 1,2....,n;
Wt = /20 r } forms an orthonormal basis for the cotangent space T(*l_o)(U"), and
23) {w=w A NG 3= (s j:1<ji<ja<---<jg<n+1}

is an orthonormal basis for A%4(U"). This metric is not Kahler. The volume element
with respect to this metric is 2" times the standard Euclidean volume element.
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In terms of the basis (2.3) and the metric, the o operator on (0. g) form f = 5 fy0; is
defined by

_ n+l — _
of = ZZZ] fJLUj N\ wjy,
=173
and the d-Laplacian0 = 00 * +9*9 and a-Neumann boundary conditions act diagonally
on (0, g) forms. Interested readers can see [21] for details. Let S%9(U,,) denote the space

of (0,q) formsf = ¥ f;w; on U" such that each f; is the restriction to Uy, of arapidly
decreasing function on C™*. Thenf € S®4(U") N DomO if and only if

24) Tolour = 0if N+ 1 € J; Znwa Foloun = — ( o ii) floun = 0if n+1 ¢ J.

J2\ar ot
For suchf,
(25) of = Z DTfJ(E\]'F Z DI/fJLUJ
n+1¢ J nt+leJ

where

1/82 92 1/82 92
2.6 O=8voqgq—=|—+—|. =820 — = —+—
(26) a2 o ar2> A T2 \ae T ar
with

i 1.0 - >y
Lo = -5 > (ZjZj +ZiZj) +iaT.
=1

For the detail derivation of (2.5), see [21]. If one takes into account the boundary
conditions (2.4) for O, then the 9 -Neumann problem can be split into apair of problems

(2.7) oU=f inU"withZ, U|pu» =0 and
(2.8) OU=f  inU"with U|pun = 0.

The problem (2.8), involving the normal component, is essentially the Dirichlet
problem for the Laplacian, so it can be treated by the more standard methods used in
elliptic boundary value problems. Our first goal is to derive the fundamental solution
k*(x, r) of the operator O, by the Laguerre calculuson H, x R, where

10 - - . 1[92 02
Oy =—=>(ZiZi+ZiZ) +iaT—= | —+— | .
2 LG+ Tz Hie 2\a8 " ar2
Sinced” = Op_pq and O = Oy—2(g—1), We can construct the solution for the a-Neumann
problem from the distribution k*.

3. TheLaguerre Calculuson H, x RY. Laguerre calculus is the symbolic tensor
calculus on the Heisenberg group Hy,. It was first introduced on Hy by Greiner [9] and
extended to H, and H, x RY by Beals, Gaveau, Greiner and Vauthier [3]. To make this
paper self-contained, weincludethe basic definitions and results of the Laguerre calculus
on H, x RY here. We will only present the basic definitions and refer [3] for details.
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Our notation is
Hox R = {[¢.t.X"] : ¢ € C.t e R.X" € RY}.
The group law is defined by

n
X" [n.sY"] = [C+77,t+s+2|m¥aj<J’ﬁj.X”+y”:|.
J:

We can also define the the | eft-invariant convolution on H, x RY by

frgr)= [ f(y)gly™ - x)dydsdy”

JH,xRd
where x = [¢,t,X"], ¥y = [n,s¥"], d(ds is the Haar measure on H, and dy” is the
Euclidean measure on RY. We set
fGren = [ae™ G L diax”
to be the Euclidean Fourier transform with respect to t and x”. Then asimple calculation
yields

1 irt+ic” X" e ~
{5000 = Gn fpun €1 T2 007, € 00

wheref , § isthe twisted convolution and is given by:
fx 8(z¢" 1= /cn fiz—w. 7. &)g(w. 7. £")e W) dw

with (z,w) = 2Im 7L, &z wj. Thuswe can treat £ as a parameter and apply the results
of the Laguerrecalculuson H,, to the present situation. In particular, we havethe Laguerre
series expansion:

1

B r¢") = % F{Pr-(r, g")ﬂlqﬁg’;;“i)l(\/agjj).
K= j=

aty ke
where pj A kj = minp;, kj and Q(kp)(c.r) for ¢ = |¢|€%; k,+p=0,1,2,..., are given by
the Laguerre functions ¢,

2|7|

™

2]

EPc.n) = =P @l [cP)e and &P (67 = S0 (-DPAP @l [oP)e ™.

TheLaguerrefunctions (P’ areinduced by the generalized L aguerre polynomialsL{":

rk+1)

7 e 2 (P 2
Fk+p+1) xP/2LP(x)e™/? wherex > 0andp.k=0,1,2,....

0P (x) = {

Finally the generalized L aguerre ponnomiaIsL(kp) (x) aredefined by their usual generating
function formula:

1
(1 _ W)p+1

B> Lk = exp {—ﬂ} . forp=0.1.2....:x>0, |w < 1.
=t 1—w

From the Laguerre series expansion, we define the Laguerre tensor £ (F):
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DerINITION 3.1. Let F induce a left-invariant convolution operator on H,, x RY. For
dl7 € R\ 0and¢” € RY, we define the Laguerre tensor ¢(F) by

(F{PP)(r. €7 forr >0,

8T,E”(I’i) = {

We recall the notion of the tensor contraction:

tensors. Their product, U - V, isdefined to be

o0
W=U-V = (W), where WiRip) = 5 UV,
' ' Kpooonkn=l
The tensor W is the contraction of the tensorsU and V.
We need the following two results of the Laguerre calculus:

THEOREM 3.1 (THE LAGUERRE CALCULUSON Hp, x RY). Let F and G induce left-
invariant convolution operatorson H, x RY. Then

e(Fr G) =L en(F)- Le(G) forreR\O and ¢” R,
where the product on the right hand side denotes the tensor contraction.

THEOREM 3.2 (THE LAGUERRE TENSOR OF THE IDENTITY). Let |y denotetheidentity
operator on C3°(Hn x RY), then I isinduced by the identity Laguerre tensor

Calin) = @7 ).

We now apply the results of this section to find the fundamental solution k*(x. r) of
O, in the next section.

4. The Fundamental Solution of O,. OnthespaceH, x R={(x,r) : x =[(.1] €
Hn, r € R}. Welet k*(x. r) be the distribution determined by

o 9 1_}/8_2 ﬁ o -
ook 80— 5 (5 * 572 ) [0 =60

with k* vanishing at infinity; here 6o denotes the Dirac delta function at the origin. We
shall first find B(Iﬁ;l), then obtain k*(x, r) viatheinverse Fourier transform with respect
torand¢.

First we take the Fourier transform with respect to t and r for O, to obtain

- 10 =L - 1
D(x:_é > (ZiZ; + Z; j)—on'+§(7'2+§2)_
where

- > s -0 .5
—a—zj—ajz,r and Z; aZ+a,z,r.
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We start with
A & 10 s = 1, & 0, —
4.0 Oy = Z 5 Z(iji +ZJ'ZJ') —oaTr+ E(T +&9) Ha,ﬁk‘ (\/61417') *; .
=1 j=1
Now we apply
lss 5550 - G
4.2 — E(Z;Zj +2iZ))¢, (/a ¢ 7) = (2K + 1)a,-|T|Lk‘_ (V& s 7)
to Eq. (4.1) and obtain

(4.3) Oy = Z

k=0

3@k + Daylr| — ar + 2 (T +52>} Ha,x“’)(m 7).

j=1

We refer to [3] for the proof of Eg. (4.2). Consequently, the Laguerre tensor of the
convolution operator induced by O, is

(4.9 L(Da) = |7| ({ (2k — Daj — arsgn(r) + (|T| + 3 | | } 5(91) 58‘3”)) ,
i

anditisinvertible aslong as

Under this condition, the inverse Laguerre tensor of (4.4) is

n -1
(45) 2@;1>=|T|1<{Z<zkj—1>a1—asgn<f>+-<|r|+—2>} 5‘kf“~~5(kf”))‘
=1

We next write Eq. (4.5) in terms of the Laguerre expansion:;

(4.6)
A1 10X 1/ “tn - (0)
O, == > Z(ij +1)g — arsgn(r) + 5 { 7] s _Hajhlg a7
Il k=0 L= 2\"" el | =

Now we sum up this series. We first assume that
def 1/ .
A(7,€) —Z(2N+1)aj—asgn(7)+—\|f|+ >0 fork e N",
=1

then we can write At in the integral form:

4.7)

1 o —[i(zwa—asgnwﬁ%(mﬁ)}s
= / e = ds.

S+ 3 s 3 (I + )
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Next we substitute (4.7) into (4.6), and this yields:

~—1_
(o4

/ & [ S@Daosn) (57 ) | dsHaiL (/3 ¢7)

|T| |k]=0

n

/ Othn(T)+ ITHM)]SH i e (2ki+1)aisaj-§(k’o)(\/acj'.7') ds
|T| j=1k=0 '
_

e oo ()

M Jo

e i & 230 2a/r] G ds).
j=1

We apply the generating function formula (3.1) for the Laguerre polynomials to the last
equation and obtain that:

n—-1
o, = |an ./030 e n0-3(+57)

n .
g Il S0, &G coth(ys)
1= e i=1 316 ds.
j=1 Sinh(as)

Thefundamental solution k*(x, r) should betheinverse Fourier transform of ﬁ;l(r. €)
with respect to r and ¢. We shall take the inverse Fourier transform first with respect to
&, since it can be reduced to the Gaussian integral:

1 jul | I
g2+irg T e mr?
(48) 2 / N ae = \} 27s°

Hence, after taking the inverse Fourier transform with respect to &, we have

ITI

I

49 O r =) 5 ‘T‘H 8 ghhsogs

/ «/_s 18 nh(aj S)

withv(s.¢) = fj 3 |¢j|? coth(a;s). Next wetake theinverse Fourier transform with respect
=1
to 7 and obtain the fundamental solution:

1 n .
k*(x, )= Fn+3) /OOH kel

2373 Jo i sinh(gs)

eaS e oS d
X 12 L ¥ L 12 AL S
(5 +5 +7(s.0) —its] (S +5 +5Y(s.Q) +its]
Replacing s by —sin the second part of the above integral we obtain:

eO(S

(4.20)  k¥*(x,r) = ds.

227rn+3 / =1 Smh(ajS) [ + 2 +S’Y(S.<) - ItS] +
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We canwrite Eq. (4.10) in terms of the volume element and complex distanceintroduced
by Beals, Gaveau and Greiner [2]. First we substitute s by 2sin (4.10):

r n+l 00 2a; eZozSd
(4.11) k(x. r):%/ | g‘nh?jzs-s)} : S
227™2 oo [ &9 [292+ 5 +25(s.0) — 2ist]" 2

We let the complex distance and volume element to be:

(4.12) g(s;x) = JZ; & |CJ |2 coth(2a,-s) —it, v(9) = ]:1_{ smh(Zaj S)

Then we write k*(x. r) in closed form:

Min+ 1 00 s,
(413) ka(X, I') = (l n+§) /_ e22 an(S) ds n+:
2272 o0 {252_,_ 2 +259(s X)] 2
Now we compare our formula with the results by N. Stanton [23] for the special case

of g =1foralj=1,2....n. Firstthecondition
2
(4.14) |of < Z(Zh +Da +5 ITI e

holdsfor all k = (kq, ..., k) €N, a=n—2ganda=n—2(q— ) with0 < g<nif
g = 1fordlj=1,2,...,n, sincethe minimum value of the right hand side of (4.14) is
n+|¢| inthis case. And setting g = 1in (4.10) yields

K*(x. ds.

_ / Ssinh(g)] e
233 +|¢[2scoth(s) — |ts}n+%

g+C+
This formula coincides with Stanton’s results, see Lemma 2.4 of [23]. She obtained this
formula by integration of the heat kernels, which she derived in [21] [22], with respect
to time. We will also derive the heat kernel later.

We summarizethecal culation of thefundamental solutionk® inthefollowing theorem:

THEOREM 4.1. Theoperator K*(f) = f % k* given by the convolutionin H,, x R with

the kernel:
. r(n+3) = esu(gds
k*(x,r) = o [m 2 n+l/2
T 252 + 55 + 259(s; X) |
is the fundamental solution of the operator:
Oy = —li(z-z_- +Z,Zj) +iaT — 1(o®, o°
o~ 2j=1 Ik 1<) 2\ 2 3,«2
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5. 9-Neumann Problem. We reduced the -Neumann problem to a pair of prob-

lems:
(5.1) DU =f inU" withZuiUlpu» =0 and
(5.2 oU=f inU" withU|,u» =0, where
, 102 a2 , 1/32 92
O =8noq—= |5+~ ] ad 0'=8oq1—=|—5+-—
a2 e ar2 A T2 e T ar2

. 120 = =\
with &, = 3 Z;(ijj' +Z;Z;) +iaT.
]:

We have found the fundamental solution k*(x, r) of the operator O, where 0" = Op_oq
andd” = On—2q+2-
The problem (5.2), involving the normal component, is essentially the Dirichlet
problem. From the fundamental solution of O, we can easily construct Green’soperator.
Note that

I'(n+

1
25

(5.3) KN=20*2(x 1) =

NIw | N

) /oo 2204258 (5) ds

1
00 ]n+§

22+ 5 + 2s9(s; X)
is the fundamental solution of 0" andisevenin r. We set
G, (X, Y.r. p) = K29 2(y=L x r — p) — K20 2(y= . x 1 + p).

Then the operator G, defined by
(54) G NN = [, . Gxy.r.p)f(y.p)dydp
is Green’s operator for O0”; that is
(5.5) 0'G,(f) =finU", and G, (f)|pun = G,(f)|r=0 = 0.
The proof of (5.5) is quite simple. Indeed, we let

fa(x.1) = {f(x. ry ifr>0,

0 otherwise
Then we can write (5.4) in the following form:

f(x.—r) ifr<o

and f(x.r) = {0 otherwise

G, f(x.r) = f1 x K"292(x, r) — f, % K"242(x_ ).

KN=2a+2(x, r) = k"24*2(x, —r) implies G, (f)|r=0 = 0. And since k"™24*2(x, r) is the fun-
damental solution of 00", thisyields

0'G,(f) =f, —f, =f. forr > 0.

Hence U = G,(f)(x. r) solves the problem (5.2), and we summarize its solution in the
following theorem:
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THEOREM 5.1. k"24*2(x, ) is given by (5.3). Then

U= [ K22y xr— ) — K22yl r+ ) f(y. p) dy dp

solvesthe problemd’U = f in U™ with U|,yn = 0.

The problem (5.1), involving the tangential part, has the -Neumann boundary con-
dition. First we will also construct the related Green’s operator G, as above but with
Neumann boundary condition. The fundamental solution for the operator O" is

(5.6) K 2(x. 1) = r(j‘*%) /30 2-2dsg"() ds

2igm+E Jooo 252 + 2 +2sg(s; x)]m% '
Similarly, we set
(5.7) Gr(X.y,r.p) =Ky Lo x.r —p) + KAy L. x. 1 +p).
Then the operator G, defined by

G NN = [, Glxy.r.p)(y. ) dydp

is Green’s operator for O" with the Neumann boundary condition; that is
. o @ 3
(5.8) O'G(f) =fin U™ =G (Dlsur = 7-G:(f)lr=0 =0

The proof of (5.8) is similar to that of (5.5).
Next we write the solution of (5.1) as

(5.9 U = G(f) + P(f).

where P(f) isthe correction term so that Z +1U| = = 0 and 0®U = f. By looking at this
problem this may, with agiven f, P, more precisely its kernel, is to be determined.
If we apply the equation and the boundary condition in (5.1) to (5.9) we find that

(5.10) OP(f)=0 and  ZnaP(f)lpun = —Znw1 Gr(F)]oun-
We assumethat P is the convolution operator with kernel p(x.r), i.e.,

P(H)(x.r) = Py - x. 1+ p)(y. p)dy dp.

HnaxR*

where p(x. r) decaysvery fast asr — oo.
The boundary conditionsin (5.8) and (5.10) yield that

]

(5.10) (5 - 1%) P(Dl0 = 1 2-G.(1 o
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It, in turn, implies that

d
o (55 15 P %oty
r=
= /|_|n><R+ |m{kn—zq(y—l — p) +kn—2q(y_l .X_r+p)]f(y_ p)dydp

r=0
Sincewewant to find p(x, r) suchthat (5.9) solvesthe equation (5.1) for all f taking from
some class of functions (e.g., C3°(Hn x R")), we obtain, from the above equation, that

(5.12) (% — |i) p(x.r) = 2| kn A(x.r), foralxeHy. r>0.

We will find p(x.r) from (5.12) under the condition lim,_., P((,7.r)€" = 0O for any
7 € R. Taking the Fourier transform with respect to t in (5.12), we obtain

Next we integrate both sides from r to oo, and the condition rllTo P, 7. r)e" =0for any
T € Ryields:

(5.13) pC. 7.1 =21 /0 VKA, 7,1+ V) v

We now take the inverse Fourier transform with respect to + and find that

(5.14) p(x.1) = = /O > / @ WHOR24( 7 1 +v) dr dv.
T —00

We substitute k"2 = £ %, where (see Eq. (4.9) of section 4):
|n 2 “ g Il

/ 3n—20) son()—Hls— % r=(sOlr| ds.

27rS] 1 Sinh(g;s)

(5.15) O lpg(C7.r) =
with(s.¢) = 3} L, ¢ |? coth(as), into (5.14) and obtain
p(Xx,r)

_ 1 ‘ -1 3

= o b b s U sr@s

x./0:07|7|”%exp{f(v+it)+s(n—2q)sgn(7)— E+( 5 v)? | +7(s.0)

|T|} dr dsdv.

/_O; Tl exp {T(V +it) + s(n — 2q) sgnt — 5 s |r|} dr
L g (e g) e

3
e —it—v+ 3+ QL™ [y +it+v+ s+ GE

We calculate the integral with respect to 7 first and obtain:

+v)2
s,(r+v)

+7(s.0)
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Thisyieldsthat
T(n+d) jo o g
P = W/O -/0 S 2J-zl_{smh(a,s)
[ e(n—2q)s e_(n_2 s ]
8 IR R dsdv.
[W(SC)_it_V“L%'*%\s/L} ’ [7(&C)+it+v+§+£%‘8’)_} 2
Simplify the above equation by replacing s by —s for the second part of s-integration,
we obtain
e(anq)ssn+1 dsdv
(5 16}3()( r) - 2 n+3 / / -1 gnh(ajs) @ M n+% .
i (Vs —it—v)s+ 5+ 5

We can also write (5.16) in terms of the complex distance g(s, X) and volume element
v(s) which have been defined in (4.12):

3 o oo (n—20)san+
G17)  p.r) = w [ SV geay,
22 (g(&x) )S+52+M]

Some simple calculation will yield that O"p(x. r) = Ofor all x € Hn,r > 0.
The following theorem summarizes our solution to the problem (5.1).

THEOREM 5.2.

U= [ K2yt xr+ )+ K2y — p) +p(y ™t .+ p)f(y. p)dy o

will solve the problem O"U = f in U" with Z1U|pun = O, where k™24(x, r) is given
by (5.6) and p(x, r) is given by (5.17).

6. The Associated Heat Equation. In this section, we consider the heat equation
for the 9-Neumann problem. This problem is analogue of some classical problemsin
differential geometry. _ _

We fix g, 0 < q < n, and work on the (0, g) forms on Un. Let A®?(Un) denote the
C™ (0. g) forms on U" which can be extended to compactly supported (0, g) forms on
c™1, AL9 the C (0, ) forms with compact support in U™, and LO9(Un) the square
mtegrable (0, q) formson U".

Let F(-,s) € L(zo‘q)(U") for al s € R* and suppose that the coefficients of F are
differentiablein's. F(z.1.r. s) solvesthe heat equation for the d-Neumann problem if for
fixeds,

ad
(6.1 (a_s +EI) F=0 and F(z.t.r,s) € DomQO.

Theinitial value problemfor the heat equation (6.1) isto find asolution F(-. s) of (6.1)
with specified initial valuef € AS9(Un), i.e,

(6.2) limF(.9=f in LD Un).
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A fundamental solution of the heat equation is a one-parameter family of bounded
operator Hs, s € R*, on LY9(U") such that for f € ASD(UM):

(i + I:I) Hs(f) = 0,Hs(f) € DomO  with lim Hs(f) = f in L8D(Un).
Js s—0*

Stanton [21] proved the existence and uniqueness of the fundamental solution for the
Siegel domain. Her proof can be extended to our domain. Furthermore, she proved that
Hs is the semi-group generated by —O and can be written as the convolution operator on
Hn X R. For each s € R*, Hs is self-adjoint and positive.

Similarly to the corresponding d-Neumann problem, since the d -Neumann boundary
conditionsand O act diagonally on (0, g) forms, the heat equation can be split into a pair
of problems:

(6.3) (ais +u’/) F/'=0 withF'|==0 and limF'(.g=fin LLDUn)

(6.4) (i +EIT) F =0 WithZmiF'0=0 and limF(-.8) =finLOPUn).
Js s—0*

6.1. Theinterior problem. Following the classical method of reduction to the boundary,
we break the problem into two parts. First, we will use the Laguerre calculusto find the
kernel k&(x,r) = exp{—s0,} such that

(KeHeen = [ Ky ™-x.r=p)f(y.p)dydp
solvesthe initial value problem:
J a ; af — ool Ir
(6.5) (a_s +Do,) (KEf)(x,r) =0, SILQ; Kef =f for f € CP(UM).

We call (6.5) the interior problem. From kg (X, r), we can construct the solutions of (6.3)
and (6.4). A
We shall first compute k2(¢. 7. ¢) = exp{—s,}. Eq.(4.3)

fm ) = 3 |32k + Dalrl — ar + 202 + 63| 1880 (/& ¢.)
k=0 |i=1 2 j=1

and Theorem 3.2 imply that

S _ & _S[é‘z'“%'T‘_“T+%‘Tz+£z)] GO
k(m¢=>e 1_{31'% (/3G
2

k=0

7S 3(r+¢?) i ﬁ meﬂﬂs@'ﬁﬂ)aﬁaﬂﬂ |Cj\2L(k‘0)(Zaj. 71 161D
kj=0j=1 T

S (r24£2) 1 _alrls—alrl 2 S _olrlska
p- oS3 (rH¢ )1-[12an alrls—gIl[¢;] k;)e 2lr|sksay L(k‘O)(2a5|T| [15)
1= §=

i
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We now sum up this series via the generating function for the Laguerre polynomials

and obtain:
kg‘(z ) = |7r| eS80 Jﬂlﬁm} Xp{_|7'| jzzlai|Cj|ZCOth(ai |T|5)}
= |7TT—|n Hlﬁajms) exp {OCTS— ;(72 +¢&%) — |T|“/(|T|SO} .
=

We then take the inverse Fourier transform with respect to & by applying the Gaussian

integral
1 2 1 2
e #Hrt ge = e =,
27T/ ¢ = \/27s '
and thisyields
[yed - |T|ne 25 g _1‘ 2 _
68 K=t — ,Hlsnh(a, . [ms Sor |T|w(|f|s<)} .

Next we take the inverse Fourier transform with respect to 7 and find the heat operator:
: o &l 1
oy 1) = 7" il o (L 1L NP _ig2_
k&(x,r) = g ./—oogsinh(aj-|7|s) exp{|t7+ozrs 55T |T|7(|T|&O} dr
Substitute 7 by /s in the above equation, we have
2
. e o al it 2 _ I
kS(x.r) = g / Jqsmh(a,M) exp{ THaT— o SW(|T|,§) dr.
Since

a7l n o |
Hsmh(a]|ﬂr|) JHlsmh(ai) and |r| coth(g|r|) = 7 coth(gT),

we can simplify the above equation and obtain the heat kernel:

2

o 5 oo N ar it
6.7) k(x,r)= 3 ( 9 ~/—00]':1—£Sinh(aj'7') exp{g7'+o(7'

We can also write (6.7) in terms of the volume v(r) and complex distance g(r, x) (see
Eq. (4.12)) by replacing 7 by 27 in Eq. (6.7):

72

2s

- g“/(T. <) } dr

r2

68 K r)—ﬁ( - I ry(f)exp{zm—%_ﬁ( x)}

Now we compare our formula with Stanton’s results. If we set & = 1 for al j =
1,2,....nandsubstitute r by —7 in (6.7), then we obtain

_% 00 n 2
KI(X,T) = —o / _ exp{—i?f—m—;—S—£|§|Zcoth(f)}dT

23 (n)™2 o0 Sinh"(7)

Thisis N. K. Stanton’s formula (1.8) of [23].
We summarize the solution to the interior problem (6.5) in the following theorem:
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THEOREM 6.1. The convolution operator K&f = f x k¥ on Hy x R with k& given
by (6.8) solvesthe initial problem:

J o . . oF _ corl T
(a_s+D“) (KEf)(x.r) =0 with SIlﬁrg+ Kf=f forf e C3(Un).

As an application of the heat kernel, we consider the operator

(6.9) HS(x.r) = D;% exp{—sl]%,}&o(x, r)y s>0.

This operator will give the solution of the corresponding wave equation by analytical
continuation s > 0 to is with s € R. Here we just consider HZ(x.r) for s > 0 and
will consider its analytical continuation in afuture publication. Using the subordination
identity:

(6.10) AleA =z /o 6752/4‘%7%67“’/*2 du

with A = Dé, we get

(6.11) HI(x.r) = /OOO e/~ exp{—pD, } du.

We substitute Eq. (6.8) into Eq. (6.11),

(6.12HJ(x. 1)

2 2
_ 1 0o @ 4 21 oo 2,,.
- V/2rm2 ./o 2 /7 () exp {ZO‘T - 7 - EQ(T X)} drdu.
We change the order of the integrations:
o = T, + +27'2+27(7— X) dl,l/
613 HIn= / i) [ )2 b ar

Next substituting 1 by 1/ in (6.13) yields:

1 T TO(T. ’
HEGer) = <o [ @) [ e (50T g
_n /00 € r"y(r) q
= IT.
V2rm2 J=oo [+ 5 +2r2+ 2rg(r. x)]n+1

In conclusion, we find

(1)

n! o0
(6.14) Hy(x.r) = . "
NS /—oo [% + % + 272 + 27g(r, X)]

We now integrate HZ(x, r) with respect to time s, formally, this should give us the
fundamental solution k*(x, r) of the operator O, (see Eq. (4.13)). We will seethat thisis
indeed true. We carry out the calculations formally:

| 00 eZD(T n drd
(615) k*(xr)= [“HI(x.1)ds= # rr 7"v(r) dr ds

[3742 + % + 272 + 27g(T. X)}n+1
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Exchangethe order of the integrationsin Eqg. (6.15):
ds

€+ 242024 2rgr. )|

(6.16) K*(x.r) = n+2/ eZCtTTnI/('T)/

Let A(r, x,r) = 272 +12 /2 + 2rg(r. X), and then apply the integral formula

00 ds _(2n—1)11 ™
/ (2 +a2)ml - n)!! " 9g2n+l
to Eq. (6.16), we get
ka(X, r) = 2 ) / ezaTTnV(T)/ T dr
4™1nl
— eZO(T n
2 N / T V(T)/ 32+4/\]n+1

_4mipy / Zorn ()(2n—1)!! 7r

B \/é n+2 @2 ' 2(2/\%)2n+1
AT @D w e @)
- 22 ’ n)!! " ooz _/,OO A3
_ _(n+3) I )
V2rHr (3) S A™2
Then the definitionsof Aand ™ (3) = /7 lead to
wipy o L (173) (1)
(6.17) K*(x. 1) = o / _dr.

— [2r2+ 5 + 2rg(r.x)]"

This coincideswith (4.13). Of course, the above calculations are purely formal. To carry
out the integration rigorously, we need estimates on the HZ(x,r) for large time s. N.
Stanton proved the estimates for the caseof & = 1forall j = 1,2.....n. | will carry out
the estimates for our problem in future publication.

6.2. The solution of the heat equation. We will solve the heat equation for the o-
Neumann problem. In the beginning of this section, we reduced this problem to apair of
problems:
(6.18) ( +D”) F'=0inU" withF’|,u» =0 and Iiry F'(,9) =f
Sl \+

d . I .
(6.19) (— + EIT) F=0inU" withZn F'|oun=0 and limF(.,s) =g,

Jas s—0*

whete 07 = € — 3 (& + ) and O = Loagy — 3 (& + ) with ¢, =

a2 ar? a2 ar?

) ZJ:l(Z]Z] + ZJZ]) + |0[T
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Recall that 0" = Oy_pq and 0" = Op_og+2.

The problem (6.18), involving the normal component, is essentially the Dirichlet
problem. From the solution of theinterior problem (6.5), we can easily construct Green's
operator. For (6.18), we set o = n — 2q+ 2 in the interior problem.

r2

(6.20) K202 1) = [ Ny ()22 B - E )

fz( Va(rsd -

iseveninr. We set

(621)  GYX.Y.r,p) =K 2Ry Thox,r = p) — KAy x 1+ ).

Then the operator G, defined by
(622) ©hH D= [ Gxy.r.o)f(y.p)dydp

is Green’s operator for (j—s +0"); that is

(6.23)
a 4 14 a— 1 4 a— 4 p— H 14 —
(a—S+D’)Gs(f)—0|n U™, GL()|pun = G4(f)|r=0 =0 and SIlﬂr([)le(f)—f.

The proof of (6.23) is quite smple. Indeed, we let
_(f(x,r) ifr>0 _ [f(x,—=r) ifr<0
Rl n) = { otherwise and f(x.1) { 0 otherwise.
Then we can write (6.22) in the following form:

L. 1) = fu # K220k, 1) — fp 5 KT 292(x, 1),

KD=202(x, r) = KD=29*2(x, —r) implies G;(f)|r=o0 = 0. And since ki—29*2(x, r) is the corre-
sponding kernel of the solution of the interior problem, it yields

8 14 4 - H 4 — —
(a—S+D)GS(f)—0 forr>0 and limGy(f)=f—f,=f.

HenceF(x, r.s) = G;(f)(x, r) solvesthe problem (6.18).

The problem (6.19), involving the tangential part, has the d-Neumann boundary
condition. First we will also construct the related Green's operator Gf as above but with
Neumann boundary condition. We set « = n — 2q in the interior problem. The kernel of
the solution for the interior problem is

2

_L

6.24) K~29(x,
(6.24) kg™ =(x. 1) = N

[ vt exp {2(n— 20— 22~ 2y x)}
Similarly, we set

(6.25) GL(X. Y, I, p) =Kyt x,r — p) + K29y~ x, 1 + ).
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Then the operator G, defined by
(6.26) ©HN = [ GLxY.1.p)f(y.p)dydp

is the Green’s operator for (£ + O07) with the Neumann boundary condition; that is
a T T -_— 1 a T —_— H T -_—
(6.27) (a—s+D)Gs(f)—0|n U”-EGs(f)lco—O and S!LrQGS(f)—f.

The proof of (6.27) is similar to that of (6.23).
Next we write the solution of (6.19) as
(6.28) FT(x,r,s) = G[(f) + Ps(f),

where Pg(f) isthe correction term so that

d - .
(— + EIT) FF=0 withZnF'(x.r,9)==0 and |imF =f.
Js s—0*

Inthisway of looking at the problem, f isgiven and Ps, more precisely itskernel ps(x. r),
is to be determined.
If we apply the equation and the boundary condition in (6.19) to (6.28) we find that

(6.29)
(i + EI(T)) Ps(f) = 0; Zns1Ps(F)pun = —Zns1GL(F)lpun  and  lim Py(f) = 0.
Js s—0*

We assumethat Ps is the convolution operator with kernel ps(x, r), i.e.,
PO = [ Pyt .1 +p)f(y. p)dydp

and ps(x, r) decaysvery fast asr — oo.
The boundary conditionsin (6.27) and (6.29) yield that

(6.30) (i - ii) Ps(f)lr=0 = i%Gé(f)lco-

This, in turn, implies that

o .0 i
[ (512 oy xr + Ty v

r=0
.0 e _ — _
= [ 132 X = p) KBy xr )]y, p) dy O
r=l
Since we want to find ps(x, r) such that (6.28) solves the problem (6.19) for all f taking

from some class of functions (e.g., C3°(Hn x R")), we obtain, from the above equation,
that

i_i = i n72q
(6.31) (ar |at)p5(x.r) 2Iatk5 (x,r), foradlxeH, r>0 s>0.
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Wewill find ps(X, r) from (6.31) under the condition lim,_,., ps(x, r)¢" = Oforanyr € R.
Taking the Fourier transform with respect to t in Eq. (6.31), we obtain

(% +T) k(g rr) = —2rkg (G ) = %[e”lbs] = — 27"k,

Next we integrate both sidesfrom r to oo, thisimplies that
(6.32) BC.7.1) = 27 /0 VK2 7 r V) d.
We now take the inverse Fourier transform with respect to + and find that
1 oo foo e
— 7(v+it) [ .n—2q
(6.33) pa(x.1) = = /O . L @RI r 4 V) dr v
We substitute k~2(¢, 7. r) (see equation (6.6)):

2
e = 8

- ex
ny/2rsj=1 Sinh(g|7]s)

KH(ern =

p{(n— 26— 357 = (s

into (6.33) to obtain:
— 1 [ 41 d aJ
Ps(X, 1) = N /0 /_ T U@
S [TV

(6.34) X exp {T(V +it)+(n—2q)rs— =7

5 s Y(rs, Q)T} dr dv.

where we set (s, ¢) = znj 3 ¢j|? coth(ays). Next we substitute 7 by 7/sin (6.34):
=

_ 1 20 %0 i g
P = oestg b L W st
(v +it) 2 (r+v)? 7T
(6.35) X exp{ S +(n—2g)r — 2 os 57(7. Q)} drdv.

Calculating the integral with respect to v first we obtain:

v (r+v)? _ i [ 2
(6.36) /:Oexp{g———T} dv=+2%7s /rie du.

2s J
(6.34) and (6.36) yield that
- 7 g
pS(X" r) 7.[.n+%sn+2 /—oo T i=1 Slnh(aﬂ')
irt T r / 0 2
(6.37) X exp [? +(n—2q)7 — EW(T, Q) — g’]’} \/f; e du> dr.
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Replacing T by 27 in (6.37), we can also write (6.37) in terms of the complex distance
g(r, x) and volume element v/(7):

(6.38) ps(x.r) = / 7 ()l (-2ar— - &7 ( / e du) dr.
T o0

3
+3 ot
n+s g2 . T

where g(7, x) and v(r) are givenin (4.12).
In conclusion, we summarize the solutions to (6.18) and (6.19) in the following
theorem:

THEOREM 6.2. kZ(X, r) isgiven by (6.8) and ps(X, r) is given by (6.38). Then
Fr= [ o 20 xr ) =Ky xr = p)f(y. p) dy dp
solvesthe problem
(aism") =0 inU" with 'y =0 and Jim P =,

F7 = e [KE2(y 1 X, 1+ p) + K2y~ X, 1 — p) +ps(y 1 x, 1+ p)] Ty, p) dy dp
solvesthe problem

d . i .
(— +E|T) FF=0 inU" withZnF'|pun =0 and limF =f.
Js s—0*

7. TheLaplacian Operator inthe Heisenberg Group. Another operator whichis
closely related to the &, isthe Laplacian operator

n _ —
P, ¥ ¢, +AT2= —% 2212, +2,Z) +iaT + ATZ with A > 0,
J:
which is closely related to the operators 0. and O_ introduced in [10]. We can find its
fundamental solution easily by the Laguerre calculus. Since the calculation is similar to

those in Section 4, we omit details here and only list the main steps.
Asin Section 4, we start with the Fourier transform with respect to t and obtain

n o . -
—lzzz +Z;Z)) — ot — M.

24

Then, the Laguerre tensor of the convolution operator induced by P, is
(7.0) ¢P,) = |T|([Z(2k, — Day — asgn(r) + Al 5{50).
anditisinvertible aslong as

o] # 30k + gy + M| fork = (k... . ky) € N
i=1
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Under this condition, the inverse Laguerretensor of (7.1) is
~ n -1
2 P =i [k — D —ason) + Al o o).
i=1

We write (7.2) in terms of the Laguerre expansion as follows:

1 X 0
@3 Prt=r > (3@ + D)3 — arsonir) + A|T|] H (A ).
k|=0%j=1
Similar to the previous calculation, one applies the generating function formula for
the Laguerre polynomials and obtains

p-1 |T|n ! /we [—asgn(r)+A|r]s

o

4 | glh6sogs
j=1 Sinh(g s)}

The fundamental solution of P, is the inverse Fourier transform of P S Q) with
respect to 7. We can also write the fundamental solution in terms of the volume element
and complex distance introduced by Beals, Gaveau and Greiner [2].

r(n) o €Sy(s)ds
N+l o [2)\S+ g(s; X)]n

(7.4) F(x) =

with

g(s;x) = Zai|CJ|200th(2313)_'t and (9= Hgnh(zqs)

The fundamental solutlon (7.4) also coincides with Stanton’s results if wesetg = 1
forallj=1,2,....nand \ = % See[23], Theorem 2.12 for the details.

We make someadditional remarks about theassumptiong > Oforj =1,2,...,n.We
have expressed all the formulas in terms of the complex distance g(s, x) and the volume
element v(s) (see Eq. (4.12)). But g(s. x) and v(s) depend on || only. Thisimplies that
our formulas still hold no matter whether &, j = 1,2, ..., n, are positive or negative. As
to the assumption about «, we derived the fundamental solution k*(x, r) of O, under the
condition:

n
laf < Q(ij +1)g + <|T| + 2 > fork € N",7 #0.
J:
We can extend k* by analytic continuation to the case:
|a #Z(Zk, +1)a + 5 /lrl - |> fork € N",7 #0.

This is the necessary and sufficient condition for the Laguerre tensor ¢(d,) to be
invertible.
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