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ALGEBRAS OF CANCELLATIVE SEMIGROUPS

JAN OKNINSKI

The Jacobson radical J(K[S]) of the semigroup ring K[S] of a cancellative semi-
group S over a field K is studied. We show that, if J(K([S]) # 0, then either
S is a reversive semigroup or K[S] has many nilpotents and J(K[P]) # 0 for a
reversive subsemigroup P of S. This is used to prove that J(K[S]) = 0 for every
unique product semigroup S.

Let K[S] be the semigroup ring of a cancellative semigroup § over a field K. Our
aim is to show that the semiprimitivity problem for K[S] can often be reduced to the
case where S has a group of fractions. This allows to prove that J(K[S]) = 0 whenever
S is a unique product semigroup, which answers the question asked in {4, Problem 23].
Here, J(K[S]) denotes the Jacobson radical of K[S]. We refer to [1, 3, 4] for the basic
facts on semigroups, semigroup rings and graded rings used in this note.

If S is not a monoid, then let $' be the monoid obtained by adjoining a unity
element to §. Otherwise, let S* = §. Recall that S is left reversive if it satisfies the
right Ore condition: 8§ NtS # @ for every s,t € S. This is equivalent to the fact that
S has a group of classical right fractions, see [1]. The left reversive congruence ps on
S! is defined for s,t € S by the rule (s, t) € p if 5z2SNtzS # 0 for every z € 5, [5].
The restriction of ps to S will also be denoted by ps, or by p if unambiguous. It is
known that p is left cancellative. A subset Z of § is said to be left group-like (or left
unitary) if s € Z whenever 2€ Z,8€ S and 2zs € Z.

Our approach is based on the following observation, which allows us to cover §
with a collection of its nice subsemigroups.

LEMMA 1. Foreveryt € S* theset S; = {s € S| (t"s, t*) € p for some r,n > 1}
is a left group-like subsemigroup of S.

PROOF: Let s,u € St. Then (t"u, t*) € p and (t"a, tj) € p for some r,n,i,7 > 1.
The latter implies that (t**7su, t/+7u) € p. But (t/+7u, t#*") € p. Hence (t"*"su, t/+7)
€ p, and so su € S¢. Thus, S; is a subsemigroup of S.

Assume also that sz € S; for some z € S. Then there exist k,m > 1 such that
(tksz, t™) € p. Now (t**sz, t**™) € p and also (t*+*sz, ti**z) € p. This implies
that (t7*+*z, t*+™) € p. Hence z € S, as desired. 0
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Denote by ¢ the natural homomorphism § — S/p. Let U ={s € S| (sz,1) €p
for some z € §}. Assume that U # 0. If (sz, 1) € p, then (szs, s) € p, so that the
left cancellativity of p implies that (zs, 1) € p. Therefore U = ¢~ 1(H), the inverse
image in S of the group H of units of §/p. In particular, U is a filter of §. Since
(sz, 1) € p implies that sz2S NzS # @ for every z € 5, it follows that § = U if and
only if S is left reversive.

The advantage of dealing with the rings K[S:], in place of K[S], is that each
K|[S;] admits a very simple gradation. This will not be used explicitly, but it recovers
the general flavour of our approach.

PROPOSITION. Let t € S. Then the image G; of S; under the natural ho-
momorphism ¢: S — S/p is a cyclic group, a cyclic semigroup or a cyclic monoid
generated by ¢(t). Consequently, the ring R = K[S;] has a natural G-gradation given
by R, = ¢~'(Kg) for g € G;. Moreover,if t ¢ U, then theset Iy = {s € S| (s, t") € p
for some n > 1} is an ideal of Sy, ¢(I;) is an infinite cyclic semigroup and K[I;] has
an induced ¢(I;)-gradation.

PRrOOF: If ¢(s) € G¢, then there exist r,n > 1 such that (s, t*) € p. Therefore,
either (s,t") € p for some k > 0 or (t"s, 1) € p for some k > 1. If for some s € § the
latter holds, ¢(t) lies in the group H of units of S/p, so that Gy = ¢(S:) is the cyclic
subgroup of H generated by ¢(t). Otherwise, G is the cyclic semigroup (or the cyclic
monoid, if S; # 0) generated by ¢(t). Clearly, this gives the desired G:-gradation on
the ring R = K[S;]. The remaining assertions follow easily. 0

We refer to [3, Chapter 4], for a variety of results on rings graded by groups. In
particular, for those concerning the homogenity of the Jacobson radical and the prime

radical.
Every non-zero ¢ € K[S] can be uniquely written in the form ¢ = ¢; + ... + ¢g,
where each supp (¢;) lies in a different p-class of S. The elements ¢y, ..., ¢, are called

the p-components of c. We say that c is p-separated if supp(c;)S Nsupp (¢;)S =0 for
i # j. For convenience, the zero of K[S] will also be called p-separated.

LEMMA 2. Let V be the set of p-separated elements of K[S] and let W =
VNJ(K[S\U]). Then
(1) V is a subsemigroup of the multiplicative semigroup of K{S], in particular
VS, SVCV;
(2) if b € W, then the p-components of b generate a finite nilpotent semi-
group, in particular W is a nil semigroup;
(3) for every a € K[S] there exists s € S such that as € V.
PRrROOF: Fora,beV,a,b#0,let a=a;+...+a,, b=b+...+b, be the decom-
positions of a, b into p-components. Choose t;, s; € S such that (i, supp(a;)) € p
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and (sj, supp(bd;)) € p. Suppose that ;8¢ = txsmd for some ¢,d € S and some
i, j, k, m. Since a € V, it follows that £ = k because otherwise ¢;SN¢.S = #. Hence
sjc = s;md. Similarly, j = m because b € V, so that (1) follows.

Assume further that b € W. Let ¢ € K[S\U] be a right quasi inverse of b, that is,
b+c=bc. Let 1, ..., ¢y be the p-components of ¢. By induction on k we show that
each non-zero e = b, b;, ...b;, , i; € {1, ..., n}, lies in the set C = {—¢1, ..., —cm}.
By (1) we know that each non-zero b;c; lies in a different p-class of S. If b; ¢ C,
then (supp(b;), supp(bpcy)) € p for some p, g. Then i = p since b € V. Therefore
(supp(eq), 1) € p, which contradicts the fact that ¢; € K[S\U]. Hence b; € C. Assume
now that k > 1. Since, by the induction hypothesis, —b;, ...b;, is a p-component of
¢, —e must be a p-component of bc. As before, from the left cancellativity of p it
follows that (supp(e), supp(b)) ¢ p because supp(b)NU =@ and b € V. Hence, the
equality b+ ¢ = bc implies that e € C, as claimed. Now, the semigroup B generated
by b;, ..., b, is finite. Moreover, each e € B is nilpotent because e? = e? # 0 for
p > g would again contradict the fact that supp(e) N U = 0. Therefore B is nilpotent,
so that b is a nilpotent element. This proves that (2) holds.

(3) was established in [5]. . 0

LEMMA 3. Let t € S\ U. Assume that a + b = ab for some a,b € K[S].
Then b € K{A] for the subsemigroup A generated in S by supp(a). Consequently,
J(K[P]))N K[T) C J(K[T]) for any subsemigroups T', P of S;.

PROOF: Assume that a # 0. Substituting b = ab — a we come to

b=ab—a=da’b—a’-a=...=a"h—a"—a"" ' ~...—a

for every n > 1. Suppose that there exists s € supp(b) \ A. Then s € supp(a™h)
for every n > 1, hence there exist t, € supp(d) and s,.;; € supp(e), j =1,...,n,
such that 8 = 8,4, ... 8n4,tn. Therefore, there are infinitely many equal elements of
the form 8p 4, ...8ni,tn. Since t ¢ U and p is left cancellative, there exists N > 1
such that each 8n,i; is p-related to some t™, 1 < » < N. It follows that (t", tQ) €Ep
for some p < ¢. This contradicts the fact that ¢ ¢ U. Therefore supp(b) C A. The
assertion follows. 0

We show that, if J(K[S]) # 0 for a non-left reversive semigroup S, then the
semigroup ring K[T] of a left reversive subsemigroup T of S is not semiprimitive and
contains many nilpotents.

THEOREM. Let S be a cancellative semigroup that is not left reversive. Assume
that 0 # ¢ € J(K[S]). Then there exists s € S such that

(1) SlesS'C W\ {0}.
(i) If ¢, is a p-component of cs and t € supp(c18), then ¢; € J(K[S:]) and
S'¢; 8! consists of nilpotents.
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(iii) There exists a left reversive subsemigroup T of S and an element u € S
such that the natural K-linear projection f of csu onto K|[T) is a non-
zero element of J(K[T]) for which T' fT! consists of nilpotents.

PROOF: Since S is not left reversive, § # U. By Lemma 2 there exists z € §
such that cz € V. Then czq € W for any g € S\ U. Hence, (i) follows with s = zq.

Let ¢, ..., ¢m be the p-componentsof cs. Note that for w € S; we have wSNtS #
0. Hence

* yz ¢ S for every z € S* and every y € supp(cj), j#1

Let 7: K[S] —» K|[S:] be the natural K-linear projection. Let a € K[Si. Since
csa € J(K[S]), there exists d € K|[S] such that csa + d = csad. Then (*) shows
that w(csa) = w(c1a) = c;a and w(csad) = w(ciad). Since S; is a left group-like
subsemigroup of S, from {4, Lemma 4.14], it follows that 7(c,ad) = cian(d). This
shows that cja is quasi invertible in K[S,], so that ¢; € J(K[S;]). For every z,y € S,
ze,y is a p-component of zcsy. Hence, the remaining assertion of (ii) follows from
Lemma 2.

Let n 2> 1 be the minimal integer satisfying the following condition:

There exists a subsemigroup @ of S; and an element u € S such that

csu = f + fo, where f € J(K[Q]), fo € K[S], supp(fo)Q Nsupp(f)Q =0,
[supp(f)| = n and Q' fQ' consists of nilpotents.

In view of (i}, n is well-defined. Let T C Q be the semigroup generated by
supp (f). Lemma 3 implies that f € J(K[T]). Suppose that T is not left reversive.
From (5, Lemma 2], it follows that supp(f) does not lie in a single pr-class of T.
Proceeding as at the beginning of the proof, we can find an element w € T such that fw
is pr-separated, so that fw = fi+...+f., z 2> 2, with supp (f;)TNsupp (f;)T = 0 for
i # j and each supp(f;) lying in a different pr-class of T. Moveover, f; € J(K|[Ty))
for v € supp(fi1) and T'f;T! consists of nilpotents. The choice of f implies that
|supp (f1)| = |supp(f)|, so that z = 1, a contradiction. Hence T is a left reversive

semigroup. This completes the proof of the theorem. a

An induction, as that in the proof of (iii) above, can also be carried out with respect
to the congruence p', that is right-left dual to p, see [5]. Applying both procedures
alternately a number of times, one derives the following consequence.

CoROLLARY 1. If J(K|S]) # O for a cancellative semigroup S, then there exists
a (left and right) reversive subsemigroup P of S such that J(K[P])#0.

If K is not algebraic over its prime subfield Ky and J(K[S]) # 0, then K,[S]
has a non-zero nil ideal, see [6, Chapter 7]. Our techniques allow us to find a reversive
subsemigroup P of § such that K,[P] has a non-zero nil ideal.
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The above theorem often reduces the semiprimitivity problem for algebras K|[S] to
the case where S is reversive, so S has a group of fractions G. When studying K[S],
one can then apply a variety of group ring techniques and results. For example, it is
known that K[G] is a domain for a wide class of groups G, and it is conjectured that
this is always the case if G is a torsion-free group, see [7, Chapter 9).

Recall that a semigroup S is a u.p. (unique product) semigroup if for any nonempty
finite subsets 4, B of S with [4] + |B| > 2, there exists an element s € AB with a
unique presentation in the form s = ab, where a € A, b € B, see [4, Chapter 10]. In
this case K[S] is a domain and in particular S is cancellative. Similarly, S is called a
t.u.p. (two unique product) semigroup if there are at least two elements with unique
presentation in each AB. Then K[S'] has no nontrivial units, so that J(K[S]) = 0.
Note that there exist u.p. semigroups that do not have the t.u.p. property, [4, Chapter
10].

COROLLARY 2. Let S be a u.p. semigroup. Then J(K[S]) =0.

PROOF: The theorem allows us to assume that S is left reversive. It is known
that every u.p. semigroup that is left reversive must be a t.u.p. semigroup, [8], see [4,
Theorem 10.6]). As noted above, this implies that J(K[S]) = 0.

Let A be a domain that is nontrivially graded (that is, A # 4;) by a cancellative
semigroup S. Assume that J(A) # 0. If S is not left reversive, then, as in the proof
of assertion (ii) of the theorem, one shows that J(R) # 0 for a subring R of A thatis
graded by an infinite cyclic semigroup. It is known that R contains nontrivial nilpotents,
[2], see [3, Theorem 32.5], a contradiction. Hence § is left reversive. Therefore, if § is
a u.p. semigroup, then it is a t.u.p. semigroup. This again contradicts [2]. Hence, the
assertion of Corollary 2 can be extended to any domain A that is nontrivially graded
by a u.p. semigroup S.
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