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Abstract. Consider an analytic Hamiltonian system near its analytic invariant torus T0

carrying zero frequency. We assume that the Birkhoff normal form of the Hamiltonian at
T0 is convergent and has a particular form: it is an analytic function of its non-degenerate
quadratic part. We prove that in this case there is an analytic canonical transformation—not
just a formal power series—bringing the Hamiltonian into its Birkhoff normal
form.

Key words: nearly integrable Hamiltonian systems, Birkhoff normal form, convergence of
the normalizing transformations
2020 Mathematics Subject Classification: 37J40 (Primary); 70H08 (Secondary)

1. Introduction
The goal of this paper is to study the convergence of the transformations of an analytic
Hamiltonian system in a neighborhood of an invariant torus to the Birkhoff normal form.
Here we assume that the frequency vector at the invariant torus is very resonant and, hence,
already at the formal level, the existence of the Birkhoff normal form has obstructions.
The main result, Theorem 1.1 below, will show that if the obstructions for the formal
equivalence between the system and its Birkhoff normal form vanish and the normal
form is convergent and has a particular form, then the system is analytically equivalent
to its normal form. Hence, this result can be considered as a part of the rigidity program:
identifying obstructions for a weak form of equivalence whose vanishing implies a stronger
form of equivalence.
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Convergence of the Birkhoff normal form 1167

1.1. Classical theory of normal forms: existence and uniqueness. Consider an analytic
function

H(I , θ) = 〈λ0, I 〉 + O2(I ), (1.1)

where θ ∈ Td = Rd/Zd , I ∈ (Rd , 0), 〈·, ·〉 denotes the usual scalar product in Rd ,
and λ0 ∈ Rd is a constant vector called the frequency vector. The Hamiltonian system
associated to it is İ = ∂θH(I , θ), θ̇ = −∂IH(I , θ). Note that we are assuming the
standard symplectic form. In particular, the set T0 := {0} × Td is an invariant torus of this
system. We say that H(I , θ) has a Birkhoff normal form (BNF) N(I) in a neighborhood
of T0 if N(I) is a formal power series and there exists a formal symplectic transformation
�(I , θ), tangent to the identity,

�(I , θ) = (I + O2(I ), θ + O(I )),

such that

H ◦�(I , θ) = N(I)

in the sense of formal power series. Any canonical coordinate change �(I , θ) as above
is called a normalizing transformation. The following fundamental result is called the
Birkhoff normal form [MHO, SM71]. For H(I , θ) as above, assume that λ0 satisfies a
Diophantine condition: there exist constants (C, τ) such that for all k ∈ Zd \ {0}, we have

|〈λ0, k〉| ≥ C|k|−τ . (1.2)

Then H(I , θ) has a (formal) Birkhoff normal form. Moreover, if a normal form exists
and λ0 is rationally independent, then the Birkhoff normal form is unique (up to trivial
changes relabelling the actions). Note that the normalizing transformations are not unique,
since composing �(I , θ) with any transformation that preserves I gives a normalizing
transformation.

The Birkhoff normal form is an important tool in the study of Hamiltonian systems.
The assumption of existence and non-degeneracy of the normal form has strong dynamical
consequences (see, e.g., [EFK15, Theorem C]). The importance of the BNF becomes even
stronger if the normal form is convergent and even more so if there exists an analytic
normalizing transformation.

The standard way of constructing a BNF, which we will review in more detail later,
is to proceed iteratively, devising transformations that normalize H(I , θ) up to the
coefficients of order In. The normalization step involves solving differential equations
with analytic conditions. The Diophantine conditions (1.2) can be somewhat weakened to
subexponential growth (limN→∞(1/N) log sup|k|≤N |〈λ0, k〉|−1 = 0).

If λ0 is resonant, one cannot guarantee the existence of the Birkhoff normal form even at
the level of formal power series, since there may be some terms in the formal power series
of H that cannot be eliminated by a canonical transformation. On the other hand, there are,
of course, systems (e.g. the BNF itself, or changes of variables from it) for which one can
construct a BNF even in the resonant case. Then one speaks of the Birkhoff–Gustavson
normal form [Gu66].
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Analogous definitions and statements hold true for symplectic maps in a neighborhood
of a fixed point. Even if the formal elimination procedures are very similar, the analysis
is very different. Handy references for the classical theory of Birkhoff normal forms are
[EFK13, EFK15, MHO, Mu, SM71].

1.2. Generic divergence both of the Birkhoff normal form and the normalizing transfor-
mation. The BNF and the normalizing transformations are constructed as formal power
series. The following natural questions are of great importance: the first one is whether
the BNF converges for Hamiltonians in a certain class. The second is whether there is a
convergent normalizing transformation.

Concerning the first question, Perez-Marco [PM] proved the following dichotomy: for
any given non-resonant quadratic part, either the BNF is generically divergent or it always
converges. The original proof was done in the setting of Hamiltonian systems having a
non-resonant elliptic fixed point. The extension of this result to the case of the torus, which
is not completely straightforward, has been worked out by Krikorian; see Theorem 1.1 in
[Kri].

Up to very recently it was unclear which of the possibilities is actually realized. Large
progress has been made by Krikorian [Kri], who proved that there exists a real analytic
symplectic diffeomorphism f of a two-dimensional annulus such that f (T × {0}) =
(T × {0}), f (θ , 0) = (θ + ω0, 0) with ω0 Diophantine and having a non-degenerate
divergent Birkhoff normal form. An analogous result in a neighborhood of an elliptic
equilibrium was recently obtained by Fayad [F]. Combined with the aforementioned result
of Perez-Marco, this implies that the Birkhoff normal form of an analytic Hamiltonian is
‘in general’ divergent.

Concerning the normalizing transformations, Poincaré proved that they are divergent
for a generic Hamiltonian. Siegel proved the same statement in a neighborhood of an
elliptic fixed point (in fact, for a larger class of Hamiltonians than just generic [Si54]).
This is implied by showing that the orbit structure of the map in any neighborhood is very
different from that of the Birkhoff normal form (which is integrable). Analogous results
for symplectic maps near an elliptic fixed point appear in [Rü59]. Very different arguments
showing divergence of normalizing transformations for generic systems appear in [Ze73]
and for some concrete polynomial mappings in [Mo60].

1.3. Convergence of the transformations under the Diophantine conditions for some
particularly simple BNF. There are classes of Hamiltonians for which we can guarantee
the convergence of the normalizing transformation. The following influential rigidity result
was proved independently by Bruno [Br71] and Rüssmann [Rü67]. Note that the main
assumption is that the (in principle only formal) BNF is of a particular kind.

Consider an analytic Hamiltonian H(I , θ) whose frequency λ0 satisfies a Diophantine
condition (1.2). Assume moreover that the Birkhoff normal form N(I) of H(I , θ) is a
formal function B of a single variable 	0 := 〈λ, I 〉, that is,

N(I) = B(	0(I )).

Then there exists an analytic normalizing transformation and the BNF is, in fact, analytic.
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We remark that Bruno proved the above result under a weaker condition on λ0 than (1.2).
For analogous statements in the case of invariant tori, see [Br89]. Other modifications
can be found in [Rü02, Rü04]. This result has been recently generalized to a much more
general context by Eliasson, Fayad and Krikorian [EFK13, EFK15]. We stress that in all
these works mentioned above, λ0 is assumed to be non-zero and the crucial assumption is
that λ0 satisfies a Diophantine-type condition and that the BNF is of a very simple form.

1.4. ‘Sometimes’ convergence of the BNF implies convergence of a normalizing transfor-
mation. Our main result is close in spirit to the above works, but it does not rely on a
Diophantine condition. In fact, we consider a special class of diffeomorphisms such that
the frequency λ0 is zero. Thus, the BNF is degenerate in the previous sense. But within this
class of Hamiltonians we just use a standard non-degeneracy assumption on the quadratic
part. Namely, we prove the following.

THEOREM 1.1. Assume the following.
(A1) H(I , θ) has a formal Birkhoff normal form N(I) that starts with quadratic terms

in I, i.e. there exists a formal symplectic change of variables �(I , θ), tangent to
the identity, that is, �(I , θ) = (I + O2(I ), φ + O(I )), such that

H ◦�(I , θ) = N(I) = N0(I )+ O3(I )

in the sense of power series.
(A2) N0(I ) = I tr�I (for some symmetric �) is non-degenerate: det � 
= 0.
(A3) N(I) = B(N0(I )) = N0 + ∑∞

j=2 bj (N0(I ))
j , where B is an analytic function.

Then there exists an invertible analytic symplectic transformation

�(I , θ) = (I + O2(I ), φ + O(I ))

such that

H ◦�(I , θ) = N(I). (1.3)

Note that we start from a resonant torus, so that the existence of a BNF of the form
we assume requires vanishing of (formal) obstructions. Hence, our main result can be
reformulated as saying that the formal assumptions imply convergence of the normalizing
transformation.

Similar rigidity statements have appeared in other contexts. In [Po92, Ch. 5], Poincaré
studied the formal power series of canonical transformations that send a family of
Hamiltonian systems into a family of integrable systems (in the sense of power series).
In [Po92], it was shown that these formal power series do not exist unless there are
some conditions (which are not met in the three-body problem for arbitrary masses).
The non-existence of formal power series a fortiori implies the non-existence of analytic
families of analytic transformations integrating the three-body problem.

The first author [Ll] proved a converse to the result in [Po92]: if the system satisfies
a very specific and generic non-degeneracy condition, then existence of a formal power
series that integrates the family of transformations in the sense of power series implies
existence of a convergent one.
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Assumption A3 is there for technical purposes; see §3.3. Note that it is trivial for d = 1.
This assumption reminds us of that of Rüssmann in [Rü02, Rü04, Rü67].

The assumption that the Birkhoff normal form is a function of N0 has been discussed
in [Ga] under the name of relative integrability. Two Hamiltonian dynamical systems are
relatively integrable when one of them can be obtained from the other by a symplectic
change of coordinates and a reparameterization of the time that only depends on the total
energy. That is, the orbit structures of the two systems in an energy surface are equivalent
up to a change of scale of time. The paper [Ga] includes several arguments for why
the notion of relative integrability is natural when discussing formal equivalence. In the
present paper, however, the focus lies on the notion of equivalence under a symplectic
change of variables. We show that, for a certain class of systems, equivalence in the sense
of formal power series implies equivalence in the sense of analytic canonical changes
of variables. Hence, our main result can be understood as a rigidity result. The class of
systems for which this rigidity result holds can be succinctly described as the set of systems
that are relatively integrable with respect to the main term.

In the context of formal equivalence implying analytically convergent equivalence, it is
natural to formulate the following conjecture.

Conjecture 1.2. Assume that an analytic Hamiltonian H(I , θ) as in (1.1) has a convergent
BNF that satisfies the non-degeneracy assumption that the frequency map is a local
diffeomorphism. Then there is a convergent normalizing transformation.

Note that the problems studied in [Br71, Rü67] do not satisfy the hypothesis of the
conjecture, even though they satisfy the conclusion.

In the other direction, one can construct examples [S] of analytic maps near a hyperbolic
fixed point such that the Birkhoff normal form is quadratic (in the above notation,N = 	0)
with a non-resonant set of eigenvalues, and any normalizing transformation to the normal
form diverges. In these examples, the eigenvalues form carefully chosen Liouville vectors.
That is, the paper [S] shows that, depending on the Diophantine conditions, quadratic
normal forms may be rigid or not. The models in [S] do not satisfy the hypothesis of the
conjecture above.

1.5. Overview of the proof. The standard method of obtaining the Birkhoff normal form
is an iterative procedure in which we construct the transformations order by order: at the
nth step of the procedure one computes the nth-order terms in the Taylor expansions,
assuming that all the terms of lower orders are computed. It would appear natural to follow
this scheme and try to estimate the transformations at each step of the recursive procedure.
Unfortunately, this seems technically unfeasible. One of the main complications in any
possible proof of convergence of the transformations is that even if the BNF is unique,
the formal transformations �N are very far from unique (since the BNF depends only on
the actions, the �N can be composed with any canonical transformation which moves the
angles but preserves the actions). So, an essential ingredient of any proof of convergence
should be a specification of how to choose the normalizing transformations.

In this paper we use a quadratically convergent method in which we double the number
of known coefficients at each step. Roughly—see more details in the next paragraphs—we
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will show that if the formal obstructions vanish we can choose a sequence of canonical
transformations that proceed to converge quadratically: doubling the order of the BNF
at every step of the construction. More importantly, there is a specific choice of the
transformation that satisfies very explicit bounds. The bounds on the new transformation
in terms of the remainder turn out to involve a loss of derivatives. Therefore, we need
to implement a Nash–Moser scheme to estimate the important objects in a sequence of
domains which decrease slowly.

Here is a short overview of the proof; the necessary notation is introduced in the next
section. At the nth step of the iterative procedure we will start with a Hamiltonian of the
form

Hn(I , θ) = Nn(I)+ R̃n(I , θ),

where Nn(I) is a polynomial in I of degree mn = 2n + 1 and the remainder term R̃n is
small in the following sense: for a certain domain-dependent norm, introduced in §2.1.1,
for a certain small δn (we assume that δn → 0 with n → ∞) and κ > 0, the remainder
term satisfies |R̃n|ρn,ρn ≤ δκn .

At this step we construct a symplectic change of coordinates �n such that

Hn ◦�n(I , θ) = Nn+1(I )+ R̃n+1(I , θ),

where Nn+1 has degree mn+1 = 2mn − 1 and |R̃n+1|ρn+1,ρn+1 ≤ δκn+1 = 2−κδκn .
We construct �n as a time-one map of the flow of a Hamiltonian vector field Fn. The

main ingredient consists in constructing and estimating the norm of Fn (and thus �n),
which is found as a solution of a certain homological equation (see (3.1) and in a simplified
form (4.1)). In general, this equation may not have even a formal solution unless some
constraints are met. However, the assumption of Theorem 1.1 implies that this equation
does have a formal solution. The key observation in this paper is the following: if this
homological equation has a formal solution, then it also has an analytic solution with
tame estimates for it (in the sense of Nash–Moser theory). This statement is the content of
Lemma 4.1. We note that the tame estimates use an argument different from the matching
of powers.

The procedure can be repeated, because the main assumption used to show the existence
of solutions of the Newton equation is that there is a formal solution to all orders. This
assumption is clearly preserved if we make any analytic change of variables. Once we
know that the Newton procedure can be repeated infinitely often, the convergence is more
or less standard.

2. Notation and a step of induction
2.1. Notation.

2.1.1. Norms and majorants. Let Td = Rd/Zd be a d-dimensional torus and, for σ >
0, consider its complex extension Tdσ = (Rd + (−σ , σ)

√−1)/Zd . Let Ddρ = {I ∈ Cd :
|I | < ρ} be a complex disk and define the ‘d-dimensional annulus’

Aρ,σ := Ddρ × Tdσ .
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Let O(Aρ,σ ) be the set of functions holomorphic in Aρ,σ that are real symmetric, that
is, such that f (Ī , θ̄ ) = f (I , θ) (where the bar stands for the complex conjugate). We use
supremum norms over Aρ,σ , denoted by ‖f ‖ρ,σ . In the same way, we define the set O(Dρ)
with the corresponding norm ‖f ‖ρ being the sup-norms over the disk Ddρ .

For a function f ∈ O(Aρ,σ ), consider its Taylor–Fourier representation in the powers
of I: f (I , θ) = ∑

j∈Nd
∑
k∈Zd fj ,ke

2πi〈k,θ〉I j . Consider a majorant for f of the form

f̂ (I ) =
∑
j∈Nd

∑
k∈Zd

|fj ,k|I j e2π |k|σ .

We denote by |f |ρ,σ the norm of the corresponding majorant f̂ (I ):

|f |ρ,σ = ‖f̂ ‖ρ,σ .

Clearly, ‖f ‖ρ,σ ≤ |f |ρ,σ . Analogous notation |f |ρ corresponds to the norm ‖f ‖ρ above.
In what follows we will mostly have σ = ρ.

2.1.2. Important constants for the iterative procedure.
• Let ρ0 = min{1, ρ}.
• The order of polynomials involved in the nth step of the iterative procedure is

mn = 2n + 1.

• The norm of the rest term R̃n at the nth step will be estimated as |R̃n|ρn ≤ δκn . Let

κ = d + 6,

b = 2−(κ+3),

δ0 = ρ0b2−3 = ρ02−(κ+6),

δn+1 = 2−1δn.

• Finally, let

qn = (2b)2
−(n+1)

and

ρn+1 = (ρn − 3δn)qn.

2.1.3. Polynomials. In the iterative procedure we will work with polynomials in I whose
coefficients depend on θ .
• Let

N0(I ) = I tr�I , (2.1)

where � is a symmetric non-degenerate matrix: det � 
= 0.
• An expression M = f (θ)I k (where k is a multi-index) is called a monomial.
• We will say that a monomialMk,l = I ke2πi〈l,θ〉 is resonant if it satisfies {N0, M} = 0.
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• R[j ](I , θ) stands for a homogeneous polynomial in I of degree j with coefficients
depending on θ :

R[j ](I , θ) =
∑
|k|=j

rk(θ)I
k .

• We also use the notation R[m,n] to denote the range of degrees in I:

R[m,n](I , θ) =
n∑

j=m
R[j ](I , θ), R[≥m](I , θ) =

∞∑
j=m

R[j ](I , θ).

Let mn be as above. The following functions will be of special importance.
• The normal form N(I) is assumed to have the form

N(I) = B(N0(I )) = N0(I )+
∞∑
j=2

bj (N0(I ))
j . (2.2)

Denote

Nn = N [2,mn] = (B(N0))
[2,mn]; (2.3)

in particular, since m0 = 2, N0 = N
[2,m0]
0 = N

[2]
0 is quadratic.

• The rest term at the nth inductive step is R̃n(I , θ):

R̃n = R̃n
[>mn]. (2.4)

• We will also need polynomials in I with θ -dependent coefficients: Rn(I , θ) and
Fn(I , θ) of the following degrees:

Rn = R
[mn+1,mn+1]
n , Fn = F

[mn,mn+1−1]
n . (2.5)

2.2. Base of induction: an equivalent problem.

LEMMA 2.1. Suppose that

H(I , θ) = N0(I )+ R̃0(I , θ) ∈ O(Aρ,σ ),

where |R̃0|ρ,σ ≤ δ, and there exists a formal (respectively, analytic) symplectic transfor-
mation

�(I , θ) = (φ(I , θ), ψ(I , θ)) = (I + O2(I ), θ + O(I ))

such that

H ◦�(I , θ) = N(I) = N0(I )+
∞∑
j=2

bj (N0(I ))
j .

Then, for any a > 0, there exist a Hamiltonian Ĥ (I , θ) and a formal (respectively,
analytic) symplectic transformation �̂(I , θ) = (I + O2(I ), θ + O(I )) such that

Ĥ ◦ �̂(I , θ) = N0(I )+ R̂0(I , θ) ∈ O(A(1/a)ρ,σ ),

where |R̂0|(1/a)ρ,σ ≤ aδ, and

N(I) = N0(I )+
∞∑
j=2

bja
2(j−1)(N0(I ))

j .
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Proof. Define Ĥ (I , θ) = (1/a2)H(aI , θ) and �̂(I , θ) = ((1/a)φ(aI , θ), ψ(aI , θ)). It
can be verified directly that �̂ is symplectic and tangent to the identity. Moreover,

Ĥ ◦ �̂(I , θ) = 1
a2H(φ(aI , θ), ψ(aI , θ)) = N0(I )+

∞∑
j=2

bja
2(j−1)(N0(I ))

j .

2.3. Induction step. While the base of induction is given by formula (2.12), the step of
the iterative procedure is provided by the following proposition.

PROPOSITION 2.2. For a fixed n > 0, let mn, ρn, and δn be as in §2.1.2 above. Suppose
that Hn(I , θ) is formally conjugated to the BNF of the form (2.2):

N(I) = N0(I )+
∞∑
j=2

bj (N0(I ))
j

and the normal form satisfies

|N [mn+j ]|ρn < δκ+1
n , j = 0, . . . , mn; (2.6)

denoting g2j (I ) = jbj (N0(I ))
j−1, we assume that

|gj |ρn ≤ 1
4j

, j = 1, . . . , mn. (2.7)

Suppose that

Hn(I , θ) = Nn(I)+ R̃n(I , θ),

where Nn(I) = (B(N0(I )))
[2,mn] and R̃n = R̃n

[>mn] satisfies

|R̃n|ρn,ρn ≤ δκn .

Then there exists a symplectic change of coordinates �n : (I ′, θ ′) �→ (I , θ),

�n(I
′, θ ′) = (U(n)(I ′, θ ′), V (n)(I ′, θ ′)),

given by a Hamiltonian Fn = F
[mn,mn+1−1]
n such that

Hn+1(I
′, θ ′) := Hn ◦�n(I ′, θ ′) = Nn+1(I

′)+ R̃n+1(I
′, θ ′), (2.8)

where Nn+1(I
′) = N [2,mn+1](I ′), R̃n+1(I

′, θ ′) = R̃n+1
[>mn+1]

(I ′, θ ′), and

|R̃n+1|ρn+1,ρn+1 ≤ δκn+1. (2.9)

Moreover, �n(I ′, θ ′) = (U(n)(I ′, θ ′), V (n)(I ′, θ ′)) satisfies

d∑
j=1

‖U(n)j (I ′, θ ′)− I ′
j‖ρn−3δn,ρn−3δn

+ ‖V (n)j (I ′, θ ′)− θ ′
j‖ρn−3δn,ρn−3δn < δn (2.10)
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and the inverse map, �−1
n (I , θ) := (U(−n)(I , θ), V (−n)(I , θ)), satisfies

d∑
j=1

‖U(−n)j (I , θ)− Ij‖ρn−3δn,ρn−3δn

+ ‖V (−n)j (I , θ)− θj‖ρn−3δn,ρn−3δn < δn. (2.11)

The proof of this proposition constitutes the main technical tool of this paper. It implies
Theorem 1.1 in a standard way. See, e.g., [Rü67, pp. 61–63]. For convenience, we give a
proof below.

2.4. Proof of Theorem 1.1. Lemma 2.1 permits us to assume without loss of generality
that for the given Hamiltonian H0(I , θ) := H(I , θ) = N0(I )+ R̃0(I , θ),

|R̃0|ρ0,ρ0 ≤ δκ0 . (2.12)

Since the function B is analytic, the same lemma permits us to assume that (2.6) and (2.7)
hold for each n.

The step of induction is provided by Proposition 2.2. Since Hn is formally reducible to
the normal form N, the same can be said about Hn+1.

Repetition of this process leads to a sequence of transformations

Tn = �0 ◦�1 ◦ · · · ◦�n−1.

Let us show that Tn converges to the desired coordinate change � = T∞, analytic in the
polydisk Aρ∞,ρ∞ , where ρ0b < ρ∞ < ρ0. Indeed, with the notation of §2.1.2,

3
∞∑
k=0

δk ≤ 3 · 2δ0 < 3 · 2ρ0b2−3 < ρ0b.

Then, for any n, we have

ρn+1 = qn(ρn − 3δ) ≥ ρ0

n∏
j=0

qj− 3
n∑
j=0

δn ≥ ρ0

∞∏
j=0

qj− 3
∞∑
j=0

δn

≥ ρ02b − 3 · 2δ0 > bρ0.

It is left to prove that Tn converges to an analytic function T∞ satisfying (1.3). Denote the
variables involved in the nth step of the induction by wn−1 = (I , θ) and wn = (I ′, θ ′),
where

wn = �−1
n−1wn−1.

In this notation,

w0 = �0 ◦�1 ◦ · · · ◦�n−1wn = Tnwn.

Now, for wn = (I ′, θ ′), we have

H ◦ Tn(I ′, θ ′) = Nn(I
′)+ R̃n(I

′, θ ′).

https://doi.org/10.1017/etds.2021.71 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.71


1176 R. de la Llave and M. Saprykina

Since (�n(I ′, θ ′)− (I ′, θ ′)) starts with the terms of degree 2n in I ′, for each j the
expansion of (Tn(I ′, θ ′)− Tn+j (I ′, θ ′)) starts with the terms of degree 2n in I ′. This
implies that the sequence of maps Tn formally converges, when n → ∞, to a formal map
T∞ such that (1.3) holds:

H ◦ T∞(I ′, θ ′) = N(I ′).

We still need to show that T∞ is analytic. It is more convenient to prove that the maps

T −1
n := �−1

n−1 ◦ · · · ◦�−1
1 ◦�−1

0

converge to an analytic map T −1∞ .
By Proposition 2.2, the map

wn+1 = �−1
n wn

is analytic in Aρ0b/2,ρ0b/2 and, for all n, we have

|�−1
n wn − wn|ρ0b/2,ρ0b/2 ≤ δn,

since ρn − 3δ ≥ ρn+1 > ρ0b for all n. Therefore, the map T −1
n such that

wn = T −1
n w0

is analytic in Aρ0b/4,ρ0b/4 and, for such w0, we have

|T −1
n w0| ≤

n−1∑
j=0

|T −1
j (wj )− wj | + |w0| ≤

∞∑
j=0

δj + ρ0b/4 ≤ ρ0b/2.

The estimate

|T −1
n+m(w0)− T −1

n (w0)|ρ0b/4,ρ0b/4 ≤
n+m−1∑
j=n

|T −1
j (wj )− wj)|ρ0b/4,ρ0b/4

≤
∞∑
j=n

δj = 21−nδ0

implies the convergence of the sequence of maps T −1
n to an analytic map T −1∞ in

Aρ0b/4,ρ0b/4. Since the formal inverse of T −1∞ is the series T∞, the latter also defines an
analytic function, providing the desired coordinate change. We set� = T∞ in the notation
of Theorem 1.1. �

3. Formal analysis
Here we start the proof of Proposition 2.2 by the formal analysis of the iterative
procedure.

3.1. Iterative procedure. Given Hn as in Proposition 2.2, we will construct �n as the
time-one map of the flow of a Hamiltonian Fn, that is, �n = X1

Fn
, where XtFn is the flow

defined by

İ = Fθ(I , θ), θ̇ = −FI (I , θ).
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In this case, �n is automatically symplectic.
Notice that the normalizing transformation�n, as well as the corresponding generating

function Fn, is not unique (one can compose with rotations in the angles which preserve the
actions, for example). Clearly, the transformation that converges has to be very carefully
chosen.

In the following Lemma 3.1, we show that if a (formal) normalizing transformation
exists, then there exists (another) normalizing transformation of a special kind. Namely,
such that the corresponding generating function is a polynomial (in the sense of §2.1.3),
Fn = F

[mn,mn+1−1]
n , and free from resonant monomials (see notation in §2.1.3).

The idea of the proof is that we can always move the formal normalizing transformation
by composing with some transformations that do not change the normal form. Therefore,
we can ensure that the normalizing transformations belong to a space which is transversal
to the space spanned by resonant monomials. Note that in the proof of Lemma 3.1, we use
crucially the fact that the normal form is a function of N0 so that the resonant terms are
the same at all orders.

There are some analogies between Lemma 3.1 and Proposition 2.6 in [Ll], but that result
is significantly less delicate since there is an extra parameter that controls the smallness.
In our case, the variable I controls both the smallness and the distance to the origin at the
same time.

Let {·, ·} denote the standard Poisson bracket. Recall that for a differentiable function
G, we have

d

dt
G ◦XtF = {G, F } ◦XtF .

LEMMA 3.1. Suppose that for H(I , θ), there exist N2m(I) = N0 + B(N0) with B(X) =∑m
j=2 bjX

j , R(I , θ) = R[>2m](I , θ), and G(I , θ) = O2(I ) such that � := X1
G satisfies

H ◦�(I , θ) = N2m(I)+ R(I , θ).

(1) Then there exists G̃(I , θ), which is free from resonant monomials of order < 2m,
such that �̃ := X1

G̃
normalizes H to the same normal form, that is, for some

R̃(I , θ) = (R̃)[>2m](I , θ), we have

H ◦ �̃(I , θ) = N2m(I)+ R̃(I , θ).

(2) If, an addition to the previous assumption, we have that the original H(I , θ) has the
form

H(I , θ) = Nm(I)+ R[>m](I , θ),

where Nm = N
[2,...,m]
m , then there exists a polynomial F = F [m,2m−2], which is free

from resonant monomials, such that � := X1
F normalizes H to the same normal

form, that is, for some
≈
R(I , θ) = ≈

R
[>2m]

(I , θ), we have

H ◦�(I , θ) = N2m(I)+ ≈
R(I , θ).
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Proof. (1) All the calculations below are made in the sense of formal Taylor–Fourier
expressions. Suppose that K(I , θ) is such that {N0, K} = 0. Notice that in this case
{N2m, K} = B ′(N0){N0, K} = 0. Use K(I , θ) as a Hamiltonian to define k(I , θ) := X1

K .
Then, by the Taylor formula, we have

H ◦� ◦ k = (N2m + R) ◦ k = (N2m + R) ◦XtK |t=1 = N2m + R + {(N2m + R), K}
+ 1

2 {{(N2m + R), K}, K} + · · · = N2m + R1,

where R1(I , θ) = R
[>2m]
1 (I , θ).

It is a classical fact that the composition� ◦ k in the sense of formal power series is the
time-one map of another Hamiltonian given by the Campbell–Baker–Dynkin formula (see
[Dragt, Appendix C] and [LlMM, Appendix]); here we denote it by the CBD formula.
Note that in these references the usual notation for the Hamiltonian vector field defined by
G is LG, and exp(LG) stands for its time-one map. In the present paper the same map is
denoted by X1

G. Now suppose that � = X1
G and k = X1

K . The CBD formula implies that
the composition of these maps satisfies

�̃ := � ◦ k = X1
G̃

where

G̃ = G+K + 1
2
{G, K} + 1

12
{G, {G, K}} − 1

12
{K , {K , G}} + · · · .

The last sum is to be understood in the sense of formal power series in I.
To prove Lemma 3.1, we use the CBD formula and choose K recursively (order by order

in I) so that G̃ has no resonant terms up to order 2m. At each step of the recursion we
choose (−K(I , θ)) to be equal to the lowest order resonant term of G and set G̃ to be
the new G. As we saw above, the map �̃ = � ◦K , used as a normalization map, brings
H to the same normal form as � did. But its generating Hamiltonian G̃ has no lower
order resonant monomials. Iterating this procedure, we get a normalization with the desired
property.

(2) Since we can normalize H = Nm + R[>m] to N2m with the help of the generating
function G = O2(I ), then, by (1), we can also achieve the normalization using the
transformation �̃ generated by a resonance-free Hamiltonian G̃. Note that G̃ = O2(I ).

By the Taylor formula for power series, we have

H ◦ �̃ = (Nm + R[>m]) ◦ �̃ = (Nm + R[>m]) ◦Xt
G̃
|t=1 = Nm + R[>m]

+ {(Nm + R[>m]), G̃} + 1
2 {{(Nm + R[>m]), G̃}, G̃} + · · · = N2m + R1.

Since G̃ is resonance-free, any monomial P in G̃ gives a non-zero impact {N0, P } to the
sum above, whose order in I is strictly larger than the order of P. By comparing the orders
of the coefficients in I, we see that the lowest possible order of a monomial in {N0, G̃} is
the same as that inR[>m] and hence G̃ = G̃[≥m]. Finally, notice that the reduced generating
function F := G̃[m,2m−2] produces the same normal form.

The following lemma introduces the notation used in the proof of the main theorem
(Theorem 1.1). Here we use the results of Lemma 3.1 to relate the conjugating function to
the solutions of the homological equation (3.1) below.
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LEMMA 3.2. Adopt the notation for the degrees of polynomials from §2.1.3 (in particular,
Nn = N [2,mn] as in 2.3, and Rn = R

[mn+1,mn+1]
n ). Let B(X) = ∑∞

j=1 bjX
j . Suppose that

Hn has the form

Hn = Nn + R̃n = Nn + Rn + R̃n
[>mn+1],

where Nn(I) = N0 + B(N0)
[4,mn].

Suppose that there exists G(I , θ) = O2(I ) such that � := X1
G satisfies

H ◦�(I , θ) = Nm+1(I )+ R(I , θ).

Then there exists a polynomial (in I) Fn = F
[mn,mn+1−1]
n with the following properties:

the time-one map �n := X1
Fn

satisfies

Hn+1 := Hn ◦�n = Nn+1 + R̃n+1,

Fn satisfies

{Nn, Fn}[mn+1,mn+1] + Rn +Nn −Nn+1 = 0, (3.1)

and

R̃n+1 := An + Bn + Cn,

where

An := R̃n
[>mn+1] ◦�n, Bn :=

∫ 1

0
{(1 − t){Nn, Fn} + Rn, Fn} ◦XtFndt , (3.2)

Cn = ({Nn, Fn})[>mn+1]. (3.3)

Notice that the expressions for An, Bn, Cn start with terms of order mn+1 + 1 and,

hence, R̃n+1 = R̃n+1
[>mn+1]

, as needed.

Proof. Let m = mn = 2n + 1. Then mn+1 = 2m− 1. With the notation for the degrees
of polynomials from §2.1.3, Lemma 3.1 implies that there exists a polynomial Fn =
F

[mn,mn+1−1]
n such that �n := X1

Fn
satisfies Hn ◦�n = Nn+1 + R̃n+1. By the Taylor

formula, we have

Hn ◦�n = (Nn + Rn + R̃n
[>mn+1]

) ◦XtFn |t=1 = Nn + {Nn, Fn} + Rn

+
∫ 1

0
{(1 − t){Nn, Fn} + Rn, Fn} ◦XtFn dt + R̃n

[>mn+1] ◦�n
= Nn+1 + R̃n+1. (3.4)

Notice that by extracting all the terms of orders mn + 1, . . . , mn+1 from the equation
above, one gets the cohomological equation (3.1).

3.2. Homological equation order by order. Here we rewrite equation (3.1) as a
(finite) set of equations for each degree of I. Equations corresponding to degrees
mn + 1, . . . , mn+1 will formally determine Fn (they are written out explicitly in (3.5)).
The rest of the equations define Cn (which is a part of the new remainder term). Equating
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coefficients with the same homogeneous degree in I in both sides of (3.4), we obtain for
the degrees from mn + 1 to mn+1 the following recursive formula (we write m instead of
mn for typographic reasons):

{N0, F [m]} + R[m+1] = N [m+1],

{N0, F [m+1]} + {N [3], F [m]} + R[m+2] = N [m+2],

{N0, F [m+2]} + {N [4], F [m]} + {N [3], F [m+1]} + R[m+3] = N [m+3],

· · ·

{N0, F [2m−2]} +
m−3∑
j=0

{N [m−j ], F [m+j ]} + R[2m−1] = N [2m−1].

(3.5)

Recall that 2mn − 1 = mn+1; see §2.1.2. From the formal solvability we know that each
of these equations has a formal solution F [m+j ]

n . Of course, such a solution is not unique.
We will make the solution unique by prescribing the condition∫

Td

F
[m+j ]
n (I , θ) = 0.

As we will see, this normalization will allow us to get the estimates needed for the proof
of the convergence. The sum of the terms of orders mn+1 + 1, . . . , mn+1 +mn − 2 (that
is, 2mn, . . . , 3mn − 3) that appear in equation (4.1) is denoted by Cn. In the notation
m = mn, we have Cn = C

[2m,3m−3]
n . The terms of the uniform degree satisfy

C[2m]
n = {N[3], F [2m−2]} + {N[4], F [2m−3]} + · · · + {N[m], F [m+1]},
C[2m+1]
n = {N[4], F [2m−2]} + {N[5], F [2m−3]} + · · · + {N[m], F [m+2]},

· · ·
C[3m−3]
n = {N[m], F [2m−2]}.

(3.6)

This can be written more compactly as

Cn =
m−2∑
k=1

{F [2m−1−k],
m∑

j=k+2

N [k+j ]}. (3.7)

This should be viewed as a definition of the remainder term Cn.

3.3. An important simplification. In the case when the normal form is an analytic
function of N0(I ) as in (2.2), we have an important simplification. Denote

g2j (I ) := jbj (N0(I ))
j−1 and g2j+1(I ) ≡ 0. (3.8)

Then, for j ∈ N, we have

{N [2j ], F } = {bj (N0)
j , F } = jbj (N0)

j−1{N0, F } = g2j (I ){N0, F },
{N [2j+1], F } = g2j+1(I ){N0, F } ≡ 0.

(3.9)

We formulate this as a lemma.
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LEMMA 3.3. If the normal form is an analytic function of N0(I ) as in (2.2), then equation
(3.5) is equivalent to

{N0, F [m]} + R[m+1] = N [m+1],

{N0, F [m+1]} + g3(I ){N0, F [m]} + R[m+2] = N [m+2],

{N0, F [m+2]} + g4(I ){N0, F [m]} + g3(I ){N0, F [m+1]} + R[m+3] = N [m+3],

· · ·

{N0, F [2m−2]} +
m−3∑
j=0

gm−j (I ){N0, F [m+j ]} + R[2m−1] = N [2m−1],

(3.10)

and

Cn =
m−2∑
k=1

(
{F [2m−1−k], N0} ·

m∑
j=k+2

gj

)
. (3.11)

3.4. Homological equations in majorants. Here we study a simple recursive formula
and estimate its terms. Later it will provide an important estimate of |{N0, Fj }|ρn,ρn . Here
is the idea: suppose that in the lemma above for some ε > 0, for all j = 0, . . . , m, we
have

Pj := |R[m+j ]|ρn,ρn + |N [m+j ]|ρn,ρn ≤ ε, |gj |ρn ≤ 1/4j .

Define Sj by the relations (3.12) below. Then, by Lemma 3.3, for all j = 0, . . . , m, we
have

|{N0, Fj }|ρn,ρn ≤ Sj .

LEMMA 3.4. Given ε > 0, suppose that for all j = 1, . . . , m− 1, the numbers Pj satisfy

0 < Pj ≤ ε.

Let Sj be defined recursively by the equations

S1 = P1,

S2 = P2 + 1
4S1,

S3 = P3 + 1
4
S2 + 1

42 S1,

S4 = P4 + 1
4
S3 + 1

42 S2 + 1
43 S1,

· · ·

Sm−1 = Pm−1 +
m−1∑
j=1

1
4j
Sm−1−j .

(3.12)

Then, for each j, we have

Sj ≤ 2ε, j = 1, . . . , m− 1.
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Proof. By the formula for S[j ] above,

Sj ≤ Pj + 1
4Sj−1 + 1

4 (Sj−1 − Pj−1) = Pj + 2 1
4Sj−1 ≤ Pj + Sj−1/2.

This implies that

Sj ≤
j−1∑
k=0

2−kPj−k ≤ ε

j−1∑
k=0

2−k < 2ε.

4. Formal solution provides analytic one with estimates
In this section we study a homological equation (4.1) below with an analytic right-hand
side Q(I , θ). Assuming that it has a formal solution, we will find an analytic one and
estimate it in terms of the right-hand side. Similar procedures appear in [Ll].

LEMMA 4.1. Let N0(I ) = I tr�I , where � is a symmetric matrix with det � 
= 0, and let
Q(I , θ) be analytic in an annulus Aρ,σ for some ρ, σ > 0. Suppose that the following
equation has a formal solution F̃ (I , θ):

{N0, F̃ } = Q. (4.1)

Then equation (4.1) has an analytic solution F(I , θ), defined in Aρ,σ , and, for any 0 <
δ < ρ, 0 < γ < σ , we have

|F |ρ−δ,σ−γ ≤ c(d , �)
1
δγ d

|Q|ρ,σ ,

where c(d, �) is a constant only depending on d and �.
Moreover, if Q(I , θ) is a homogeneous polynomial in I with coefficients depending on

θ , then so is F(I , θ).

Proof. Expanding F formally into a Fourier series: F = ∑
k∈Zd F̂k(I )e2πi〈k,θ〉, we get

{N0, F } =
d∑
j=1

Fθj (N0)Ij = 2πi
∑
k∈Zd

〈k, 2�I 〉F̂k(I )e2πi〈k,θ〉.

Recall that� is symmetric, so 〈k, �I 〉 = 〈�k, I 〉. ExpressingQ = ∑
k∈Zd Q̂k(I )e

2πi〈k,θ〉,
we can rewrite equation (4.1) as a series of equations indexed by k:

Q̂k(I ) = 4πi〈�k, I 〉F̂k(I ). (4.2)

If 〈k, �I 〉 
= 0, we can express F̂k = Q̂k(I )/(4πi〈�k, I 〉).
Since we have assumed existence of a formal solution of the homological equation (4.1)

(and, hence, a solution of (4.2) for each k), we have

〈�k, I 〉 = 0 ⇒ Q̂k(I ) = 0.

Hence, for 〈�k, I 〉 = 0, the equation is satisfied for any value of F̂k(I ). We define F̂k at
these points by continuity. A way to do it is the following. Differentiate equation (4.2) in
the direction of �k:

〈�k, ∇Q̂k(I )〉 = 4πi(|�k|2F̂k(I )+ 〈�k, I 〉〈�k, ∇F̂k(I )〉),
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where, for a vector v ∈ Rd , we denote |v|2 = ∑d
j=1 v

2
j . For 〈�k, I 〉 = 0, define F̂k(I ) =

〈�k, ∇Q̂k(I )〉/(4πi|�k|2). Summing up, we have defined a continuous function F̂k(I ) by

F̂k(I ) = 1
4πi

⎧⎪⎨
⎪⎩

〈�k, I 〉−1Q̂k(I ), 〈�k, I 〉 
= 0,
1

|�k|2 〈�k, ∇Q̂k(I )〉, 〈�k, I 〉 = 0.

Moreover, since F̂k(I ) is analytic in Dρ \ {〈�k, I 〉 = 0} and bounded in Dρ , it is analytic
in Dρ . Notice that if in equation (4.2) Q̂k(I ) is a homogeneous polynomial in I, then so is
F̂k(I ).

Now let us estimate the norm of the solution. Fix 0 < δ < ρ/2, 0 < γ < σ . For each
fixed k ∈ Zd , we will estimate the corresponding F̂k(I ) in two steps: first ‘ δ/2-close’ to
the resonant plane 〈�k, I 〉 and then in the rest of Dρ−δ .

For the first step, let �δ = {〈�k, I 〉 = 0} ∩ Dρ−δ be the part of the resonant plane
falling into Dρ−δ . Notice that the orthogonal complement to this plane is formed by the
vectors αe2πiφ�k, α ≥ 0, φ ∈ [0, 1). Let

� =
{
I = α

�k

|�k|e
2πiφ

∣∣∣∣ α < δ/2, φ ∈ [0, 1)
}

be the complex disk of radius δ/2 centered at zero and orthogonal to �δ . Note that the
restrictions of Q̂k(I ) and F̂k(I ) to this disk are analytic. Consider the δ/2-neighborhood
Oδ of �δ: Oδ = ⋃

I0∈�δ (I0 +�). Then Oδ ⊂ Dρ−δ .
For each fixed I ∈ Oδ , there exists I0 ∈ �δ such that I ∈ I0 +�. We can estimate

|F̂k(I )| by the maximum modulus principle on the disk I0 +�. Namely, for I lying on the
boundary of this disk, we have |〈�k, I 〉| = |〈�k, I0〉 + 〈�k, δ�k/(2|�k|)〉| = |�k|δ/2.
Hence, for such I, we have

|F̂k(I )| ≤ 2|Q̂k|ρ
4πδ|�k| <

|Q̂k|ρ
δ|�k| .

As the second step in this estimate, consider I ∈ Dρ−δ \Oδ . Here |〈�k, I 〉| ≥ |�k|δ/2, so
|F̂k(I )| satisfies the same estimate as above.

By Cauchy estimates, we have

|Q̂k|ρ ≤ |Q|ρ,σ e
−|k|σ .

Since det � 
= 0, there exists a constant c(�) such that |�k| ≥ |k|/c(�) for all k. Then

|F̂k|ρ−δ ≤ 1
δ|�k| |Q̂k|ρ ≤ c(�)

e−σ |k|

δ|k| |Q|ρ,σ .

Finally, for small δ and γ , we have

|F |ρ−δ,σ−γ ≤
∑

k∈Zd\{0}
e(σ−γ )|k||F̂k|ρ−δ ≤ c(�)

δ

∑
k∈Zd\{0}

e−γ |k|

|k| |Q|ρ,σ

≤c(d, �)
δγ d

|Q|ρ,σ ,
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where c(d, �) is a constant only depending on d and �. The estimates above are very
wasteful, but they are enough for our purposes.

5. Proof of Proposition 2.2
Here we summarize the preparatory work to complete the proof of Proposition 2.2. Let us
return to the original problem. For a fixed n, let the necessary constants be as in §2.1.2,
|R̃n|ρn ≤ δκn , and let g2j (I ) = j bj (N0(I ))

j−1 as in (3.8).

5.1. Estimate of |{N0, Fn}|ρn,ρn and |Cn|ρn,ρn . For j = 1, . . . , mn − 1, denote

Pj := |N [mn+j ]|ρ0 + |R[mn+j ]|ρn .

By the choice of ρ0, see §2.1.2, for all j = 1, . . . , mn − 1, we have

|gj (I )|ρ0 ≤ 4−j , |N [mn+j ]|ρ0 ≤ δκn .

Since, for j = 1, . . . , mn − 1, we have |R[mn+j ]|ρn ≤ |R̃n|ρn ≤ δκn , for these values of j,
we get

Pj ≤ 2δκn .

Let Sj be defined by (3.12). By Lemma 3.4, for j = 1, . . . , m− 1, we have Sj ≤ 2ε.
Equations (3.10) imply that for j = 1, . . . , m− 1, we have

|{N0, F [m+j−1]
n }|ρn,ρn ≤ Sj ≤ 2ε = 4δκn . (5.1)

By linearity,

|{N0, Fn}|ρn,ρn ≤
mn−1∑
j=1

|{N0, F [mn+j−1]
n }|ρn,ρn ≤ 4mnδκn ≤ 4δκ−1

n .

The latter estimate follows from the definition of mn and δn; see §2.1.2.
Moreover, by (3.11),

|Cn|ρn =
m−2∑
k=1

(
Sm−k

m∑
j=k+2

Gj

)
≤
m−2∑
k=1

(
Sm−k

∞∑
j=k+2

4−j
)

≤ 1
3

m−2∑
k=1

4−(k+1)Sm−k ≤ 1
2
ε = δκn .

Hence,

|Cn|ρn ≤ δκn . (5.2)

5.2. Estimates for Fn. Consider equation (5.1). Lemma 4.1 with ρ = σ = ρn, δ = γ =
δn, and |Q|ρ,σ ≤ 4δκn implies that

|F [m+j−1]
n |ρn−δn,ρn−δn ≤ 4c(d, �)δκ−d−1

n .
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Since Fn = F
[mn,mn+j−1]
n , where mn ≤ δ−1

n , we get

|Fn|ρn−δn,ρn−δn ≤
mn−1∑
j=1

|F [m+j−1]
n |ρn−δn,ρn−δn ≤ mn 4c(d, �)δκ−d−1

n ≤ δκ−d−3
n ≤ δ3

n.

(5.3)

The latter estimate follows from the definition of κ; see §2.1.2.

5.3. Estimates for �n. Here we prove that with Fn as above, estimates (2.10) and (2.11)
hold true. Indeed, the coordinate change �n = X1

Fn
is the time-one map of the flow XtFn

defined by the equations

İ = ∂θFn(I , θ), θ̇ = −∂IFn(I , θ).

By (5.3) and Cauchy estimates, we get

|∂IFn|ρn−2δn,ρn−δn ≤ δ2
n, |∂θFn|ρn−δn,ρn−2δn ≤ δ2

n. (5.4)

Then, for any t ≤ 1,

|XtFn(I , θ)− (I , θ)|ρn−3δn,ρn−3δn ≤ t δ−1
n |Fn|ρn−2δn,ρn−2δn ≤ δ2

n,

XtFn : Aρn−3δn,ρn−3δn �→ Aρn−2δn,ρn−2δn . (5.5)

In particular, since �n = X1
Fn

, we get the desired formulas (2.10) and (2.11).

5.4. Estimate of the new remainder R̃n+1.

LEMMA 5.1. For Fn constructed above, the estimate (2.9) holds:

|R̃n+1|ρn−3δn,ρn−3δn < 4δκn .

Proof. By Lemma 3.2,

R̃n+1 = An + Bn + Cn,

where An, Bn, and Cn are defined by (3.2) and (3.3).
Estimate of An: Using (5.5), we get

|R̃n[>mn+1] ◦�n|ρn−3δn,ρn−3δn ≤ |R̃n|ρn−2ρn,ρn−2δn ≤ δκn .

Estimate of Cn: We showed in §5.1 that

|Cn|ρn,ρn ≤ δκn .

Estimate of Bn: By (5.4), |∂IFn|ρn−2δn,ρn−δn ≤ δ2
n and |∂θFn|ρn−δn,ρn−2δn ≤ δ2

n. By
(2.9),

|Rn|ρn,ρn ≤ |R̃n|ρn,ρn ≤ δκn .

This implies, using Cauchy estimates, that

|{Rn, Fn}|ρn−2δn,ρn−2δn ≤ δκn .
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Notice that, by formulas (3.1) and (3.3), we have {Nn, Fn} = Rn +Nn −Nn−1 + Cn.
By (2.6),

|Nn −Nn−1|ρ0,ρ0 =
mn∑
j=1

N [mn+j ] ≤ mnδ
κ+1
n ≤ δκn

and therefore

|{Nn, Fn}|ρn,ρn = |Rn|ρn,ρn + |Nn −Nn−1|ρn,ρn + |Cn|ρn,ρn ≤ 3δκn .

Combining the above estimates, we get

|{{Nn, Fn}, Fn}|ρn−2δn,ρn−2δn ≤ δκn ,

Since, by (5.5), for any t ≤ 1 we have XtFn : Aρn−3δn,ρn−3δn �→ Aρn−2δn,ρn−2δn , we obtain

|{{Nn, Fn} + Rn, Fn} ◦XtFn |ρn−3δn,ρn−3δn

≤ |{{Nn, Fn} + Rn, Fn}|ρn−2δn,ρn−2δn ≤ 2δκn .

Here we get the desired estimate for the remainder term. We have proved above that

|R̃n+1|ρn−3δn,ρn−3δn < 4δκn .

Recall that R̃n+1 = R̃n+1
[>mn+1]

. By Lemma 5.2 proved below, this implies the desired
estimate

|R̃n+1|ρn+1,ρn+1 < δκn+1.

This finishes the proof of Proposition 2.2 and hence Theorem 1.1 (as explained in the intro-
duction). �

LEMMA 5.2. Suppose that the constants κ , b, δn, qn, ρn are defined in §2.1.2, an analytic
function G(I , θ) satisfies G = G[>mn+1], and

|G|ρn−3δn,ρn−3δn < 4δκn .

Then

|G|ρn+1,ρn+1 < δκn+1.

Proof. By the definition of κ in §2.1.2, we have qmn+1+1
n = q2n+1+2

n < q2n+1

n = 2b =
2−κ−2. Also, recall that δn+1 = 2−1δn.

Since G starts with terms of degree mn+1 = 2n+1 + 2, we have

|G|qn(ρn−3δn),qn(ρn−3δn) < q2n+1+2
n 4δκn ≤ 2−κ−2 4δκn ≤ δκn+1.

Acknowledgements. R. de la Llave was supported in part by NSF, DMS 1800241. M.
Saprykina was supported in part by the Swedish Research Council, VR 2015-04012.

https://doi.org/10.1017/etds.2021.71 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.71


Convergence of the Birkhoff normal form 1187

REFERENCES

[Br71] A. D. Bruno. Analytic Form of Differential Equations. I, II (Trudy Moskovskogo Matematicheskogo
Obshchestva, 25). Moscow State University, Moscow, 1971, pp. 119–262.

[Br89] A. D. Bruno. Normalization of a Hamiltonian system near an invariant cycle or torus. Russian Math.
Surveys 44(2) (1989), 53–89.

[Dragt] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics.
https://www.physics.umd.edu/dsat/docs/Book19Nov2020.pdf.

[EFK13] L. H. Eliasson, B. Fayad and R. Krikorian. KAM-tori near an analytic elliptic fixed point. Regul.
Chaotic Dyn. 18(6) (2013), 806–836.

[EFK15] L. H. Eliasson, B. Fayad and R. Krikorian. Around the stability of KAM tori. Duke Math. J. 164(9)
(2015), 1733–1775.

[F] B. Fayad. Lyapunov unstable elliptic equilibria. Preprint, 2020, arXiv:1809.09059.
[Ga] G. Gallavotti. A criterion of integrability for perturbed harmonic oscillators. ‘Wick ordering’ of the

perturbations in classical mechanics and invariance of the frequency spectrum. Comm. Math. Phys.
87 (1982–1983), 365-383.

[Gu66] F. G. Gustavson. On constructing formal integrals of a Hamiltonian system near an equilibrium point.
Astron. J. 71 (1966), 670–686.

[Kri] R. Krikorian. On the divergence of Birkhoff normal forms. Preprint, 2020, arXiv:1906.01096.
[Ll] R. de la Llave. On necessary and sufficient conditions for uniform integrability of families of

Hamiltonian systems. Int. Conf. Dynamical Systems (Montevideo, 1995) (Pitman Research Notes in
Mathematics Series, 362). Longman, Harlow, 1996, pp. 76–109.

[LlMM] R. de la Llave, J. Marco and R. Moriyón. Canonical perturbation theory of Anosov systems and
regularity results for the Livšic cohomology equation. Ann. of Math. (2) 123(3) (1986), 537–611.

[MHO] K. R. Meyer, G. R. Hall and D. Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem (Applied Mathematical Sciences, 90). Springer, New York, 2009.

[Mo60] J. Moser. On the integrability of area preserving Cremona mappings near an elliptic fixed point. Bol.
Soc. Mat. Mexicana (2) 5 (1960), 176–180.

[Mu] J. Murdock. Normal Forms and Unfoldings for Local Dynamical Systems (Springer Monographs in
Mathematics). Springer, New York, 2003.

[PM] R. Pérez-Marco. Convergence or generic divergence of the Birkhoff normal form. Ann. of Math. (2)
157(2) (2003), 557–574.

[Po92] H. Poincaré. Les méthodes nouvelles de la mécanique céleste. Tome I. Librairie Scientifique et
Technique Albert Blanchard, Paris, 1987.

[Rü02] H. Rüssmann. Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno
condition. Ergod. Th. & Dynam. Sys. 22(5) (2002), 1551–1573.

[Rü04] H. Rüssmann. Convergent transformations into a normal form in analytic Hamiltonian systems with
two degrees of freedom on the zero energy surface near degenerate elliptic singularities. Ergod. Th.
& Dynam. Sys. 24(5) (2004), 1787–1832.

[Rü59] H. Rüssmann. Über die Existenz einer Normalform inhaltstreuer elliptischer Transformationen. Math.
Ann. 137 (1959), 64–77.

[Rü67] H. Rüssmann. Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe
einer Gleichgewichtslösung. Math. Ann. 169 (1967), 55–72.

[S] M. Saprykina. Domain of analyticity of normalizing transformations. Nonlinearity 19(7) (2006),
1581–1599.

[Si54] C. L. Siegel. Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen
in der Nähe einer Gleichgewichtslösung. Math. Ann. 128 (1954), 144–170.

[SM71] C. L. Siegel and J. Moser. Lectures on Celestial Mechanics (Grundlehren der mathematischen
Wissenschaften, 187). Trans. C. I. Kalme. Springer, New York, 1971.

[Ze73] E. Zehnder. Homoclinic points near elliptic fixed points. Comm. Pure Appl. Math. 26 (1973), 131–182.

https://doi.org/10.1017/etds.2021.71 Published online by Cambridge University Press

https://www.physics.umd.edu/dsat/docs/Book19Nov2020.pdf.
https://doi.org/10.1017/etds.2021.71

	1 Introduction
	1.1 Classical theory of normal forms: existence and uniqueness
	1.2 Generic divergence both of the Birkhoff normal form and the normalizing transformation
	1.3 Convergence of the transformations under the Diophantine conditions for some particularly simple BNF
	1.4 `Sometimes' convergence of the BNF implies convergence of a normalizing transformation
	1.5 Overview of the proof

	2 Notation and a step of induction
	2.1 Notation*-10pt
	2.1.1 Norms and majorants
	2.1.2 Important constants for the iterative procedure
	2.1.3 Polynomials

	2.2 Base of induction: an equivalent problem
	2.3 Induction step
	2.4 Proof of Theorem 1.1

	3 Formal analysis
	3.1 Iterative procedure
	3.2 Homological equation order by order
	3.3 An important simplification
	3.4 Homological equations in majorants

	4 Formal solution provides analytic one with estimates
	5 Proof of Proposition 2.2
	5.1 Estimate of |{N0,Fn }|ρn, ρn and |Cn |ρn, ρn 
	5.2 Estimates for Fn
	5.3 Estimates for Φn
	5.4 Estimate of the new remainder Rn+1"0365Rn+1

	Acknowledgements
	References

