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THE VON NEUMANN ALGEBRA VN(G) OF A LOCALLY
COMPACT GROUP AND QUOTIENTS OF ITS SUBSPACES

ZHIGUO HU

ABSTRACT. Let VN(G) be the von Neumann algebra of a locally compact group
G. We denote by ñ the initial ordinal with jñj equal to the smallest cardinality of an
open basis at the unit of G and X = fã ; ã Ú ñg. We show that if G is nondiscrete then
there exist an isometric Ł-isomorphism î of l1(X) into VN(G) and a positive linear
mapping ô of VN(G) onto l1(X) such that ô Ž î = idl1(X) and î and ô have certain
additional properties. Let UCB(Ĝ) be the CŁ-algebra generated by operators in VN(G)
with compact support and F(Ĝ) the space of all T 2 VN(G) such that all topologically
invariant means on VN(G) attain the same value at T. The construction of the mapping
ô leads to the conclusion that the quotient space UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) has l1(X)
as a continuous linear image if G is nondiscrete. When G is further assumed to be
non-metrizable, it is shown that UCB(Ĝ)ÛF(Ĝ)\UCB(Ĝ) contains a linear isomorphic
copy of l1(X). Similar results are also obtained for other quotient spaces.

1. Introduction. Let G be a locally compact group, A(G) the Fourier algebra of
G and VN(G) the von Neumann algebra generated by the left regular representation
föÒL2(G)g. With the action u Ð T defined by hu Ð TÒ vi = hTÒ uvi for T 2 VN(G), u,
v 2 A(G), VN(G) forms an A(G)-module. First we list below some subalgebras and/or
subspaces of VN(G) of our main interest in this paper.

UCB(Ĝ) = the norm closure in VN(G) of fT 2 VN(G) ; supp T is compactgÒ

W(Ĝ) = fT 2 VN(G) ; the map u 7! u Ð T is weakly compactgÒ

M (Ĝ) = the norm closure in VN(G) of the measure algebra M(G) of GÒ

CŁ
ö(G) = the reduced CŁ-algebra of GÒ

F(Ĝ) = fT 2 VN(G) ; m(T) = a fixed constant for all m 2 TIM(Ĝ)gÒ

F0(Ĝ) = fT 2 VN(G) ; m(T) = 0 for all m 2 TIM(Ĝ)gÒ

where TIM(Ĝ) denotes the set of all topologically invariant means on VN(G).
As we know, when G is an abelian group with dual group Ĝ, VN(G) is isometric

algebra isomorphic to L1(Ĝ). In this situation, UCB(Ĝ), W(Ĝ), CŁ
ö(G) (= C0(Ĝ)) are

the spaces of uniformly continuous, weakly almost periodic continuous, continuous
functions vanishing at 1 on Ĝ, respectively. Moreover, M (Ĝ) is the supremum norm
closure of B(Ĝ), where B(Ĝ) is the Fourier-Stieltjes algebra of Ĝ.

There are many results in the literature on these subalgebras and/or subspaces of
VN(G). In particular, the following inclusive relations are well-known: W(Ĝ) � F(Ĝ)
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(see Dunkl and Ramirez [4] and Granirer [8]), CŁ
ö(G) � M (Ĝ) � W(Ĝ) \UCB(Ĝ) (see

Dunkl and Ramirez [4] and Granirer [11]), and CŁ
ö(G) � F0(Ĝ) if G is nondiscrete (see

Dunkl and Ramirez [4] and Lau [19]). Granirer showed that W(Ĝ) � UCB(Ĝ) if G is
amenable (see [8]), and CŁ

ö(G) = M (Ĝ) = UCB(Ĝ) � W(Ĝ) when G is discrete (see [9]).
Also, when G is discrete, the equality F(Ĝ) = VN(G) holds, because G is discrete if and
only if VN(G) has a unique topologically invariant mean (see Lau and Losert [20] and
Renaud [25]).

It is natural to ask whether the above inclusive relations are proper if G is nondiscrete.
In this aspect, Granirer proved that the quotient space UCB(Ĝ)ÛW(Ĝ) is not norm sepa-
rable if G is amenable and nondiscrete (see [8, Corollary 13]). In [1], Chou constructed
a linear mapping ô of VN(G) onto l1 such that ôŁ maps a big subset (having cardinality
2c) of (l1)Ł into TIM(Ĝ) when G is metrizable and nondiscrete. It follows that, under
the same assumption on G, VN(G)ÛF(Ĝ) has l1 as a continuous linear image (i.e., has
l1 as a quotient) and UCB(Ĝ)ÛF(Ĝ)\UCB(Ĝ) (and hence UCB(Ĝ)ÛW(Ĝ)\UCB(Ĝ))
is not norm separable (see [1, Theorem 3.3 and Corollary 3.6]). More generally, we ob-
tained in [17] the following: if G is nondiscrete, then both UCB(Ĝ)ÛF(Ĝ)\UCB(Ĝ) and
VN(G)ÛF(Ĝ) have the density character greater than b(G), where the density character
of a Banach space Y is the smallest cardinality such that there exists a norm dense subset
of Y having that cardinality and b(G) denotes the smallest cardinality of an open basis
at the unit e of G (see [17, Corollary 6.2]). Granirer in [12] investigated quotient spaces
of subspaces of PMp(G), the Banach dual space of the Figà-Talamanca-Gaudry-Herz al-
gebra Ap(G) of G (1 Ú p Ú 1 and A2(G) = A(G)). Among many other things, a special
case of [12, Theorem 6] implies that UCB(Ĝ)ÛF(Ĝ)\UCB(Ĝ) has l1 as a quotient if G
is second countable and nondiscrete. Recently, Granirer improved this result by requiring
only that G is metrizable nondiscrete (see [13, Corollary 7]).

The main purpose of this paper is to generalize and strengthen some of these results
on the quotient Banach spaces of UCB(Ĝ) and VN(G). Here are some details on the
organization of this paper.

Section 2 consists of some definitions and notations used throughout this paper.
For an initial ordinalñ, let X be the set of all ordinals less than ñ and let c0(X) (c(X)) be

the subspace of l1(X) consisting of all f in l1(X) such that limã2X f (ã) = 0 (limã2X f (ã)
exists). In Section 3, we characterize c0(X) and c(X) for uncountable ñ and then show
that l1(X)Ûc0(X) (l1(X)Ûc(X)) contains an isometric (isomorphic) copy of l1(X).

Section 4 concerns itself with some projections in VN(G) when G is a õ-compact
non-metrizable locally compact group. Let ñ be the initial ordinal with jñj = b(G) and let
X = fã ; ã Ú ñg. We unveil at first some new properties of the orthogonal net (Qã)ãÚñ of
projections in VN(G) constructed in our [17]. Then we associate c0(X) with F0(Ĝ) (c(X)
with F(Ĝ)) in the following way: f 2 c0(X) (c(X)) if and only if

P
ãÚñ f (ã)Qã 2 F0(Ĝ)

(F(Ĝ)), where
P
ãÚñ f (ã)Qã denotes the wŁ-limit of f

P
ã2ú f (ã)Qã ; ú � X is finiteg in

VN(G) (Lemma 4.5). This association plays an important role in the attempt to establish
certain isometric relations between some quotient spaces.

In Section 5, we improve Chou [1, Theorem 3.3] and our [17, Theorem 5.4] and
obtain some strong isometric embedding results on some quotient spaces of UCB(Ĝ)
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and VN(G). Let G be a nondiscrete locally compact group, ñ the initial ordinal with
jñj = b(G), and X = fã ; ã Ú ñg. We construct an isometric Ł-isomorphism î of
l1(X) into VN(G) and a bounded linear operator ô of VN(G) onto l1(X) such that
ô Ž î = idl1(X) and ôŁ embeds the big subset F (X) (having cardinality 22jXj ) of l1(X)Ł

into TIM(Ĝ) (Theorem 5.1). The construction of this ô leads to the conclusion that, for
any nondiscrete locally compact group G, VN(G)ÛF(Ĝ) and UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ)
have l1(X) as a quotient (Corollary 5.3). Making use of the isometry î, we further
show that UCB(Ĝ)ÛF0(Ĝ) \ UCB(Ĝ) and VN(G)ÛF0(Ĝ) (UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ)
and VN(G)ÛF(Ĝ)) contain an isometric copy of l1(X)Ûc0(X) (l1(X)Ûc(X)) if G is non-
metrizable (Theorem 5.10).

Combining the embedding results in Sections 3 and 5, we obtain in Section 6 that
VN(G)ÛF0(Ĝ) and UCB(Ĝ)ÛF0(Ĝ) \ UCB(Ĝ) (VN(G)ÛF(Ĝ) and UCB(Ĝ)ÛF(Ĝ) \
UCB(Ĝ)) contain an isometric (isomorphic) copy of l1(X) if G is non-metrizable (Theo-
rem 6.1). We also give some homomorphism results on other quotient spaces of UCB(Ĝ)
and VN(G). In particular, UCB(Ĝ)ÛW(Ĝ)\UCB(Ĝ) and UCB(Ĝ)ÛM (Ĝ) have l1(X) as
a quotient when G is nondiscrete (Theorem 6.3). Finally, we extend some of the previous
results to spaces of operators in VN(G) with small support.

Let d(G) be the smallest cardinality of a covering of G by compact sets. Note that if G
is nondiscrete and if d(G) � b(G) (e.g., if G is nondiscrete and õ-compact) then VN(G)
is isometric to a subspace of l1(X). Hence the isomorphism and homomorphism results
of this paper on quotients of subspaces of VN(G) mean that these quotients are as big as
they can be.

The author is indebted to Professor E. E. Granirer for providing the preprints of his
papers [12] and [13] and to the referee for valuable suggestions.

2. Definitions and notations. Let C be the complex field. For a Banach space E
over C, let EŁ denote the Banach space of all bounded linear functionals on E. If û 2 EŁ,
then the value of û at an element x in E will be written as û(x) or hûÒ xi.

Let G be a locally compact group with unit element e and a fixed left Haar measure
ï. The left invariant Haar integral associated with ï will be denoted by

R
G Ð Ð Ð dx. For

1 � p � 1, let
�
Lp(G)Ò k Ð kp

�
be the usual Banach space associated with G and ï. With

the inner product
( f Ò g) =

Z
G

f (x)g(x) dxÒ f Ò g 2 L2(G)Ò

L2(G) becomes a Hilbert space.
Let VN(G) be the von Neumann algebra generated by the left regular representation

föÒL2(G)g of G, i.e., the closure of the linear span of fö(a) ; a 2 Gg in the weak
operator topology on B

�
L2(G)

�
, where B

�
L2(G)

�
is the Banach algebra of all bounded

linear operators on L2(G) and [ö(a) f ](x) = f (a�1x), x 2 G, f 2 L2(G).
Let A(G) be the Fourier algebra of G, consisting of all functions of the form f Ł g̃,

where f Ò g 2 L2(G) and g̃(x) = g(x�1). If û = f Ł g̃ 2 A(G), then û can be regarded as an
ultraweakly continuous functional on VN(G) defined by

û(T) = (Tf Ò g)Ò for T 2 VN(G)
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Furthermore, as shown by P. Eymard in [5, pp. 210, 218], each ultraweakly continuous
functional on VN(G) is of the form f Ł g̃ with f , g 2 L2(G). Therefore, A(G) is the predual
of VN(G), i.e., A(G)Ł = VN(G). In particular, the wŁ-topology (i.e., the õ

�
VN(G)ÒA(G)

�
-

topology) and the weak operator topology on VN(G) coincide. Also, A(G) with pointwise
multiplication and the norm

kûk = sup
n
jû(T)j ; T 2 VN(G) and kTk � 1

o
forms a commutative Banach algebra.

There is a natural action of A(G) on VN(G) given by

hu Ð TÒ vi = hTÒ uviÒ for uÒ v 2 A(G)ÒT 2 VN(G)

Under this action, VN(G) becomes a Banach A(G)-module. For more details on the
algebras VN(G) and A(G), see Eymard [5].

An m 2 VN(G)Ł is called a topologically invariant mean on VN(G), if
(i) kmk = hmÒ Ii = 1, where I = ö(e) denotes the identity operator,

(ii) hmÒ u Ð Ti = hmÒTi for T 2 VN(G) and u 2 A(G) with u(e) = 1.
Let TIM(Ĝ) be the set of all topologically invariant means on VN(G). It is known that
TIM(Ĝ) is a non-empty wŁ-compact convex subset of VN(G)Ł and it is a singleton if and
only if G is discrete (see Renaud [25] and Lau and Losert [20]). In [17], we obtained
the exact cardinality 22b(G)

of TIM(Ĝ), where b(G) is the smallest cardinality of an open
basis at e when G is nondiscrete. Let P1(G) = fu 2 A(G) ; u is positive definite and
kuk = u(e) = 1g. A net (ûã)ã2Λ in P1(G) is said to be topologically convergent to
invariance if limã kvûã � ûãk = 0, for v 2 A(G) with v(e) = 1. Then any wŁ-cluster
point of (ûã)ã2Λ in VN(G)Ł belongs to TIM(Ĝ).

Let T 2 VN(G). We say that x 2 G is in the support of T, denoted by supp T, if ö(x)
is the ultraweak limit of operators of the form u Ð T, u 2 A(G). An equivalent definition
for supp T is that x 2 supp T if and only if u Ð T = 0 implies u(x) = 0 for all u 2 A(G)
(see [5, Proposition 4.4] or [15, p. 119]).

Let UCB(Ĝ) denote the norm closure of A(G) Ð VN(G) in VN(G). Then UCB(Ĝ) is a
CŁ-subalgebra and an A(G)-submodule of VN(G) (see [9]) which coincides with the norm
closure of fT 2 VN(G) ; supp T is compactg. When G is an abelian group, UCB(Ĝ)
is isometrically algebra isomorphic to the algebra of bounded uniformly continuous
functions on the dual group Ĝ of G. For this reason, operators in UCB(Ĝ) are called
uniformly continuous functionals on A(G) (see [8]). The CŁ-algebra UCB(Ĝ) and its
relationship with other CŁ-subalgebras of VN(G) have been studied by Granirer in [8]
and [9] and by Lau in [19]. See Lau and Losert [20] for recent developments on this
CŁ-algebra and its dual space.

Chou used F(Ĝ) to denote the space of all T 2 VN(G) such that m(T) equals a fixed
constant d(T) as m runs through TIM(Ĝ) and called F(Ĝ) the space of topological almost
convergent elements in VN(G). It is easy to check that F(Ĝ) is a norm closed self-adjoint
A(G)-submodule of VN(G). See Chou [1] for more information on F(Ĝ). We denote
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by F0(Ĝ) the space of all T 2 F(Ĝ) such that d(T) = 0. F0(Ĝ) is also a norm closed
self-adjoint A(G)-submodule of VN(G) and F(Ĝ) = CI ý F0(Ĝ).

Dunkl-Ramirez in [4] called fT 2 VN(G) ; u 7! u ÐT is a weakly compact operator of
A(G) into VN(G)g the space of weakly almost periodic functionals of A(G) and denoted
it by W(Ĝ) It turns out that W(Ĝ) is a self-adjoint closed A(G)-submodule of VN(G)
which coincides with the space of weakly almost periodic functions in L1(Ĝ) when G
is abelian (see [4] for more details).

Let M(G) denote the measure algebra of G, i.e., the space of finite regular Borel
measures on G with convolution as the multiplication. M(G) can be considered as a
subspace of VN(G) by

hñÒ ui =
Z

G
ŭ dñÒ for u 2 A(G)Ò

where ŭ(x) = u(x�1), x 2 G. Now kñkVN(G) � kñkM(G). In particular, if f 2 L1(G), then

h f Ò ui =
R
G f ŭ dx, u 2 A(G), and k fkVN(G) � k fkL1(G). Let M (Ĝ) and CŁ

ö(G) be the norm
closures of M(G) and L1(G) in VN(G), respectively. CŁ

ö(G) is just the reduced CŁ-algebra

of G, i.e., the norm closure of fö( f ) ; f 2 L1(G)g in B
�
L2(G)

�
, where ö( f )(h) = f Ł h

for each h 2 L2(G).
It is known that W(Ĝ) has a unique topologically invariant mean (see [4] and [8]).

In particular, this gives that W(Ĝ) � F(Ĝ). Also, CŁ
ö(G) � M (Ĝ) � W(Ĝ) \ UCB(Ĝ)

(see [4] and [11]) and CŁ
ö(G) � F0(Ĝ) if G is nondiscrete (see [4, Theorem 2.12] and

[19, Proposition 4.2]). The inclusion W(Ĝ) � UCB(Ĝ) was obtained by Granirer when
G is amenable (see [8]). In the same paper, Granirer observed that if G is amenable then
UCB(Ĝ) = A(G) Ð VN(G). The converse is shown true by Chou for discrete groups and
Lau and Losert for general case (see [20]).

Let E1, E2 be two Banach spaces. We say that E2 contains an isometric copy of E1 if
there is a linear mapping L: E1 ! E2 such that kLxk = kxk for all x 2 E1; E2 contains
an isomorphic copy of E1 if there is a linear mapping L: E1 ! E2 and some positive
constants ç1, ç2 such that ç1kxk � kLxk � ç2kxk for all x 2 E1; E2 has E1 as a quotient
if there is a bounded linear mapping from E2 onto E1.

A Banach space X is called injective if for any pair of Banach spaces Y � Z and
every bounded linear mapping T of Y into X there is a bounded linear mapping T̂ of Z
into X which extends T. Note that, if X is an infinite set, then l1(X) is injective (see [21,
p. 105]).

If Y is a Banach space, we denote by D(Y) the density character of Y, i.e., the smallest
cardinality such that there exists a norm dense subset of Y having that cardinality.
D(l1(X)) = 2jXj for any infinite set X.

3. l1(X) and its subspaces and quotient spaces. For any two sets A and B, A n B
denotes their difference, 1A denotes the characteristic function of A as a subset of the
underlying set, 2A is the set of all functions from A to f0Ò 1g, and jAj is the cardinality
of A. Then j2Aj = 2jAj, the cardinality of the power set of A. So we also use 2A to denote
the power set of A.
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If X is a set, let l1(X) be the Banach space of all bounded complex-valued functions
on X with the supremum norm. When X is a directed set, we define two subspaces of X
as following:

c0(X) = f f 2 l1(X) ; lim
ã2X

f (ã) = 0gÒ

c(X) = f f 2 l1(X) ; lim
ã2X

f (ã) existsg

Obviously, c0(X) � c(X) and c(X) = C1 ý c0(X), where 1 is the constant function of
value one. When X = N, the set of all positive integers, l1(X), c0(X) and c(X) are l1, c0

and c, respectively.
When ã is an ordinal number, jãj means the cardinality of the set få ; å is an ordinal

and å Ú ãg. An ordinal ã is called an initial ordinal if jãj is infinite and å Ú ã implies
jåj Ú jãj (see [26, p. 271]).

Let ñ be an initial ordinal and let X = fã ; ã is an ordinal and ã Ú ñg. An element
of l1(X) is called a simple function if it is of the form

Pn
i=1 ci1Ei , where ci is a constant

and Ei is an interval in X, i = 1Ò 2Ò Ð Ð Ð Ò n. Let

s(X) = the norm closure of all simple functions in l1(X)

Then s(X) is a closed subspace of l1(X) and s(X) � c(X). If X = N, then s(X) = c(X) = c.
If jñj Ù @0, the first infinite cardinal number, then s(X) ²

6= c(X) but c � s(X) and s(X) is
not norm separable.

We give at first the following characterizations of c0(X) and c(X) for a uncountable
initial ordinal ñ.

LEMMA 3.1. Let ñ be an initial ordinal with jñj Ù @0. Let X = fã ; ã is an ordinal
and ã Ú ñg. Then

(i) c0(X) = f f 2 l1(X) ; there exists an ãŽ Ú ñ such that f (ã) = 0 for all ãŽ � ã Ú

ñg,
(ii) c(X) = f f 2 l1(X) ; there exists an ãŽ Ú ñ and a constant a such that f (ã) = a

for all ãŽ � ã Ú ñg.

PROOF. Obviously, the set f f 2 l1(X) ; there exists an ãŽ Ú ñ such that f (ã) = 0
for all ãŽ � ã Ú ñg is contained in c0(X).

Conversely, if f 2 c0(X), then there exists a sequence ã1 Ú ã2 Ú Ð Ð Ð Ú ñ such that

j f (ã)j Ú
1
n
Ò for all ãn � ã Ú ñÒ n = 1Ò 2Ò    

Let [0Ò ãn) denote the interval fã ; ã Ú ãng. Then j[0Ò ãn)j = jãnj Ú jñj for n = 1Ò 2Ò    .
By the König-Zermelo’s inequality (see [26, p. 313]),

j
1[

n=1
[0Ò ãn)j �

1X
n=1

jãnj Ú
1Y

n=1
jñj = jñj

@0 = jñjÒ
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since jñj Ù @0. Choose ã0 2 X n
S1

n=1[0Ò ãn). Then ã0 Ú ñ and f (ã) = 0 for all
ã0 � ã Ú ñ. Therefore, (i) is true.

(ii) follows from (i) since c(X) = C1 ý c0(X).
For a compact topological space Ω, let C(Ω) be the Banach space of all continuous

functions on Ω with the supremum norm. If X is a set (with the discrete topology), åX
denotes the Stone-Čech compactification of X. Then l1(X) is isometrically isomorphic
to C(åX). Thus åX can be identified with the spectrum of l1(X), i.e., the set of all
nonzero multiplicative linear functionals on l1(X) with the Gelfand topology (see, say,
[28, Proposition 4.5, p. 18]). In this way, each x 2 X is identified with the evaluation
x̂ on l1(X) at x, i.e., x̂( f ) = f (x) for f 2 l1(X). On the other hand, åX can also be
obtained by “fixing” the free ultrafilters on X, that is, åX = fall ultrafilters on Xg with
fZŁ ; Z � Xg as a base for closed subsets of åX, where ZŁ = fû 2 åX ; Z 2 ûg (see
[6, pp. 86–87]). Now, every x 2 X corresponds to the fixed ultrafilter ûx on X containing
fxg, i.e., ûx = fE ; x 2 E � Xg.

Making use of the Stone-Čech compactification of X, now we consider the embeddings
of l1(X) into its quotient spaces.

LEMMA 3.2. Let ñ be an initial ordinal and let X = fã ; ã is an ordinal and ã Ú ñg.
Then

(i) l1(X)Ûc0(X) contains an isometric copy of l1(X),
(ii) l1(X)Ûc(X) contains an isomorphic copy of l1(X).

PROOF. When X = N, this was shown by Granirer (see [10, p. 161]). In the following,
we assume that jñj Ù @0. We now follow an argument of Granirer [10].

Since jXðXj = jXj = jñj, we can write X =
S
ãÚñ Aã, where jAãj = jXj and Aã\Aå = ;

for all ãÒ å Ú ñ and ã 6= å. For any ã Ú ñ, Aã and X are cofinal, i.e., Aã \ [åÒ ñ) 6= ;

for all å Ú ñ, since ñ is an initial ordinal and jñj = jXj = jAãj, where [åÒ ñ) denotes the
interval fã ; å � ã Ú ñg. Let

Y0 = f f 2 l1(X) ; f (A0) = 0Ò f (Aã) = cãÒ 0 Ú ã Ú ñgÒ

i.e., the functions in l1(X) which are zero on A0 and constant on each Aã. Then Y0 is an
isometric copy of l1(X).

Let X0 be the closure in åX of the set fß 2 åX ; ß is a cluster point of the net (ã)ãÚñ
in åXg. If f 2 l1(X), let f̄ 2 C(åX) be its unique extension and let f̃ = f̄ jX0 . Then the
mapping f 7! f̃ from Y0 to C(X0) satisfies k fk1 = kf̃kC(X0) for all f 2 Y0, since each
f 2 Y0 is constant on each Aã. Thus, C(X0) contains an isometric copy Y0 of l1(X).

To prove (i), we only have to show that C(X0) is isometric to l1(X)Ûc0(X). If f̃ 2 C(X0),
by Tietze’s extension theorem, f̃ has an extension f̄ 2 C(åX). Let f = f̄ jX 2 l1(X). We
define L: C(X0) ! l1(X)Ûc0(X) by L( f̃ ) = f + c0(X). Then L is well-defined. Obviously,
L is linear and onto. Observe that k f̃k = limã sup j f (ã)j. Therefore, by Lemma 3.1,
k f̃k = k f + c0(X)k for all f̃ 2 C(X0), i.e., L is a linear isometry from C(X0) onto
l1(X)Ûc0(X).
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Now, let us prove (ii). Let ß0 2 åX be a cluster point of the net (ã)ã2A0 , where A0

is ordered by its natural way. Then ß0 2 X0. We define the projection P: C(X0) ! C1
by Pf̃ = f̃ (ß0)1. Let Q = I � P. Then C(X0) = C1 ý Q[C(X0)]. If f 2 Y0, then
Qf̃ = f̃ � f̃ (ß0)1 = f̃ , since f (A0) = 0. Thus Ỹ0 � Q[C(X0)], where Ỹ0 = f f̃ ; f 2 Y0g

which is isometric to l1(X). Let L: C(X0) ! l1(X)Ûc0(X) be the linear isometry given
in the previous paragraph. It is easy to see that L(C1) = c(X)Ûc0(X). So C(X0)ÛC1
is isometric to

�
l1(X)Ûc0(X)

�
Û
�
c(X)Ûc0(X)

�
which is isometric to l1(X)Ûc(X). But

Q[C(X0)] is isomorphic to C(X0)ÛC1. Therefore, l1(X)Ûc(X) contains an isomorphic
copy Ỹ0 of l1(X). The proof is completed.

REMARK 3.3. (i) If X = N, the set X0 considered in the above proof is just åN n N.
But for uncountable X, X0 ²

6=
åX n X.

(ii) We do not know whether l1(X)Ûc(X) contains an isometric copy of l1(X).

4. Non-metrizable groups and orthogonal projections in VN(G). In this section,
G will always be a õ-compact non-metrizable locally compact group. Let b(G) be the
smallest cardinality of an open basis at the unit element e of G. Trivially, we have
b(G) Ù @0 (the first infinite cardinal number). Let ñ be the initial ordinal with jñj = b(G)
and let X = fã ; ã is an ordinal and ã Ú ñg.

In [17], we showed an important property of G concerning its local structure at e.
Using this property, we constructed an orthogonal net of projections in VN(G) and a
family of orthogonal nets in P1(G) which is topologically convergent to invariance. For
convenience, we would like to collect some of our results in [17] here.

LEMMA 4.1 ([17, PROPOSITION 4.3]). There exists a decreasing family (Nã)ã�ñ of
normal subgroups of G (i.e., ã � å implies Nã � Nå) such that

(i) N0 = G and Nñ = feg;
(ii) Nã is compact for each ã Ù 0;

(iii) NãÛNã+1 is metrizable but Nã+1 6= Nã for all ã Ú ñ;
(iv) Nç =

T
ãÚç Nã for every limit ordinal ç � ñ;

(v) b(Nã) = b(G) for all ã Ú ñ.
Furthermore, ñ is minimal among all such families.

REMARK 4.2. (a) The main idea in constructing (Nã)ã�ñ is essentially the same as
that used in Lau and Losert [20]. The net (Nã)ã�ï in [20] possesses property (i)–(iv). It is
strengthened in [17] in the following two aspects: (1) the ordinal ï is totally determined
by the local structure of G

�
jïj = b(G)

�
; (2) b(Nã) = b(G) for all ã Ú ñ.

(b) Examining the proof of Lemma 4.1 (see [17]), we find that the family (Nã)ã�ñ
can be chosen such that ï(N1) = 0, where ï is the left Haar measure of G. This fact will
be used later.

Due to the nature of (Nã)ã�ñ, we can define a family (Pã)ãÚñ of projections in
VN(G). Let P0 = 0 2 VN(G) For 0 Ú ã Ú ñ, let Pã 2 VN(G) be the central projection
defined by convolution with the normalized Haar measure ïã of Nã. More explicitly,
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Pã: L2(G) ! L2(GÛNã)
�
� L2(G)

�
is given by

(Pã f )(x) =
Z

Nã

f (t�1x) dïã(t)Ò f 2 L2(G)Ò 0 Ú ã Ú ñÒ

where L2(GÛNã) is the subspace of L2(G) consisting of all functions in L2(G) which are
constant on the cosets of Nã (see [5, (3.23)]).

Now (Pã)ãÚñ is an increasing net of projections in VN(G), i.e., PãPå = PåPã = Pã

for ã Ú å Ú ñ Define
Qã = Pã+1 � PãÒ ã Ú ñ

Then (Qã)ãÚñ is an orthogonal net of projections in VN(G)Ò that is,

QãQå =
(

Qã if ã = åÒ

0 if ã 6= å

Let J be a set with jJj = b(G) and let fUj ; j 2 Jg be an open basis at e. For each j 2 J
and ã Ú ñ, we showed in [17] that there exists a uj

ã 2 P1(G) such that supp u j
ã � UjNã

and

hQåÒ u
j
ãi =

(
1 if ã = åÒ

0 if ã 6= å

Direct J ð X by (iÒ ã) � ( jÒ å) if and only if Uj � Ui and ã � å.

LEMMA 4.3 ([17, LEMMA 5.2]). The net (u j
ã)( jÒã)2JðX has the following properties.

(i) u j
ã 2 P1(G) and supp u j

ã � UjNã for all ( jÒ ã) 2 J ð X.
(ii) For each fixed j 2 J, (u j

ã)ã2X is a mutually orthogonal net in P1(G), i.e.

ku j
ã � u j

åk = ku j
ãk + ku j

åk = 2Ò for all ãÒ å Ú ñ with ã 6= å

(iii) (u j
ã)( jÒã)2 JðX is topologically convergent to invariance.

Let Λ = Λ(X) be the set of all non-empty finite subsets of X directed by inclusion. Let
f 2 l1(X) For each ú 2 ΛÒ let Sú =

P
ã2ú f (ã)Qã Since (Qã)ãÚñ is an orthogonal net of

projections in VN(G) and f 2 l1(X)Ò we have

kSúk � k fk1Ò for all ú 2 ΛÒ

and the net (Sú)ú2Λ is convergent in the weak operator topology (or equivalently, the
õ
�
VN(G)ÒA(G)

�
-topology) to an operator T 2 VN(G) with kTk � k fk1 We denote T

by
P
ãÚñ f (ã)Qã. Also, for any subset E of X,

P
ã2E f (ã)Qã means

P
ãÚñ( f 1E)(ã)Qã,

where 1E is the characteristic function of E.
Here now, we present a few more properties of the orthogonal net (Qã)ãÚñ of projec-

tions in VN(G).

LEMMA 4.4.
(i) For each ã Ú ñ, Qã 2 M (Ĝ) \ F0(Ĝ).

(ii) Let f 2 l1(X). Then k
P
ãÚñ f (ã)Qãk = k fk1.

(iii)
P
åÚã Qå = Pã for all 0 Ú ã Ú ñ.

(iv)
P
ãÚñ Qã = I (the identity operator in VN(G)).
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PROOF. (i) Let ã Ú ñ. Qã 2 M (Ĝ) follows from the definition of Qã. Let m 2

TIM(Ĝ). Then, by [4, Theorem 12],

hmÒQãi = hmÒPã+1 � Pãi = ïã+1

�
feg

�
� ïã(feg) = 0 � 0 = 0Ò

since Nå is nondiscrete for each å Ú ñ, where ïå is the left Haar measure of Nå.
Therefore, Qã 2 F0(Ĝ).

(ii) We only have to prove that k fk1 � k
P
ãÚñ f (ã)Qãk. Let å 2 X. Take a j 2 J.

Then

j f (å)j = j f (å)hQåÒ u
j
åij

= lim
ú2Λ

þþþDX
ã2ú

f (ã)QãÒ u
j
å

Eþþþ
=
þþþDX
ãÚñ

f (ã)QãÒ u
j
å

Eþþþ
�



X
ãÚñ

f (ã)Qã




ku j
åk

=



X
ãÚñ

f (ã)Qã





Therefore, k fk1 = supfj f (å)j ; å Ú ñg � k

P
ãÚñ f (ã)Qãk.

(iii) For each ã Ú ñ, let

Yã = Pã

h
L2(G)

i
= L2(GÛNã)Ò

Zã = Qã

h
L2(G)

i
= (Pã+1 � Pã)

h
L2(G)

i


Then Y1 = Z0 and Yã+1 = YãýZã for allã Ú ñ, whereý denotes the direct sum of Hilbert

spaces. If ã0 Ú ñ is a limit ordinal, then Yã0 =
S
ãÚã0

Yã
kÐk2 by the Stone-Weierstrass

theorem because of the fact Nã0 =
T
ãÚã0

Nã (by Lemma 4.1).
Let 0 Ú ã0 Ú ñ. Assume that, for all 0 Ú ã Ú ã0, Yã = ýåÚãZå. If ã0 = ã + 1,

then Yã0 = Yã ý Zã = (ýåÚãZå) ý Zã = ýåÚã0Zå. Let ã0 Ú ñ be a limit ordinal.

Obviously, ýåÚã0Zå � Yã0 . But Yã0 =
S
ãÚã0

Yã
kÐk2 and ýåÚã0Zå is closed in L2(G). By

the assumption, we have Yã0 = ýåÚã0Zå. By the transfinite induction, Yã = ýåÚãZå for
all 0 Ú ã Ú ñ. Therefore, Pã =

P
åÚã Qå for all 0 Ú ã Ú ñ.

(iv) Similarly, L2(G) =
S
ãÚñ Yã

kÐk2 and L2(G) = ýãÚñZã. Therefore, I =
P
ãÚñ Qã.

Recall that F(Ĝ)
�
F0(Ĝ)

�
is the space of all T 2 VN(G) such that m(T) equals

to a fixed constant d(T)
�
m(T) = 0

�
for all m 2 TIM(Ĝ). Then F0(Ĝ) � F(Ĝ) and

F(Ĝ) = CI ý F0(Ĝ). We associate the space c0(X) with F0(Ĝ) (c(X) with F(Ĝ)) in the
following lemma.

LEMMA 4.5. Let f 2 l1(X). Then
(i) f 2 c0(X) if and only if

P
ãÚñ f (ã)Qã 2 F0(Ĝ),

(ii) f 2 c(X) if and only if
P
ãÚñ f (ã)Qã 2 F(Ĝ).
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PROOF. ()) Let f 2 c0(X). We may assume that f ½ 0. By Lemma 3.1, there exists
an ã0 Ú ñ such that f (ã) = 0 for all ã0 � ã Ú ñ. By Lemma 4.4,

0 �
X
ãÚñ

f (ã)Qã =
X
ãÚã0

f (ã)Qã � k fk1Pã0 

Let m 2 TIM(Ĝ). Then

0 �
D
mÒ

X
ãÚñ

f (ã)Qã

E
� k fk1hmÒPã0i

But hmÒPã0i = ïã0 (feg) (by [4, Theorem 2.12]) and ïã0 (feg) = 0 (since Nã0 is nondis-
crete by Lemma 4.1). Therefore,D

mÒ
X
ãÚñ

f (ã)Qã

E
= 0Ò for all m 2 TIM(Ĝ)Ò

i.e.,
P
ãÚñ f (ã)Qã 2 F0(Ĝ).

If f 2 c(X), say, limã f (ã) = a, then g = f � a1 2 c0(X) and hence
P
ãÚñ g(ã)Qã 2

F0(Ĝ). By Lemma 4.4, X
ãÚñ

(a1)(ã)Qã = a
X
ãÚñ

Qã = aI

Therefore,
P
ãÚñ f (ã)Qã =

P
ãÚñ g(ã)Qã + aI 2 F(Ĝ).

(() Suppose that
P
ãÚñ f (ã)Qã 2 F(Ĝ). Recall that the net (u j

ã)jÒã is topologically
convergent to invariance (Lemma 4.3). By Chou [1, Theorem 4.4], there exists a constant
a such that limjÒã u j

ã Ð [
P
åÚñ f (å)Qå] = aI in norm (a = d

�P
åÚñ f (å)Qå

�
). Choose

v 2 A(G) with v(e) = 1. Then

a = haIÒ vi = lim
jÒã

D
u j
ã Ð

X
åÚñ

f (å)QåÒ v
E

= lim
jÒã

DX
åÚñ

f (å)QåÒ u
j
ãv
E

= lim
jÒã

DX
åÚñ

f (å)QåÒ u
j
ã

E
= lim

ã
f (ã)Ò

i.e., f 2 c(X) and limã f (ã) = a.
If
P
ãÚñ f (ã)Qã 2 F0(Ĝ), then a = 0 and hence f 2 c0(X).

REMARK 4.6. (i) In the proof of Lemma 4.4, by applying the orthogonal net (Qã)ãÚñ
of projections in VN(G), we actually obtained a decomposition of L2(G), i.e., L2(G) is
the direct sum

L
ãÚñ Qã[L2(G)].

(ii) In [1], Chou called elements of F(Ĝ) topological almost convergent. The concept
“almost convergence” was originally introduced by Lorentz [22] for the sequence space
l1. An equivalent condition for f 2 l1 to be almost convergent is that there exists a
constant l such that limnÒp

h
1
p
Pp

i=1 f (n + i)
i

= l. Parallelly, we can extend this notion to

https://doi.org/10.4153/CJM-1997-055-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-055-5


1128 ZHIGUO HU

l1(X) in the following way: f 2 l1(X) is almost convergent if there exists a constant
l such that limã2XÒp2N

h
1
p
Pp

i=1 f (ã + i)
i

= l. The set of all such functions is denoted by
ac(X). Then ac(X) is a closed subspace of l1(X), c(X) � ac(X) but c(X) 6= ac(X) (e.g., let
f (ã) = 1 ifã is even and f (ã) = 0 if ã is odd, then f 2 ac(X) (with l = 1

2 ) but f 62 c(X)). In
general, ac(X) is much larger and more complicated than c(X). For instance, we know that
c is separable but ac(N) is not separable. However, from Lemma 4.5 (also some results
in next section), we see that, when we investigate the topological almost convergence in
VN(G), the subspace of l1(X) corresponding to F(Ĝ) is c(X) rather than ac(X).

5. Results concerning isometric mappings. Let G be a nondiscrete locally compact
group. Let b(G) be the smallest cardinality of an open basis at the unit element e of G.
Let ñ be the initial ordinal satisfying jñj = b(G) and let

X = fã ; ã is an ordinal and ã Ú ñg

In [17], we defined a subset of l1(X)Ł as following:

F (X) =
n
û 2 l1(X)Ł ; kûk = û(1) = 1 and û( f ) = 0 if f 2 c0(X)

o


If X = N, jF (N)j = 22@0 since åN n N � F (N) and jåN n Nj = 22@0 . We showed in [17]
that jF (X)j = 22jXj if jñj Ù @0 (see [17, Proposition 3.3]).

When G is metrizable and nondiscrete, Chou constructed a bounded linear mapping
ô of VN(G) onto l1 such that ôŁ embeds the large set F (N) into TIM(Ĝ) (see [1,
Theorem 3.3]). In the case that G is non-metrizable, we built in [17] a family of bounded
linear operators of VN(G) onto l1(X) and then obtained a one-one map W: l1(X)Ł !
2VN(G)Ł such that W

�
l1(X)Ł

�
� 2TIM(Ĝ). The above results are substantially improved by

the following theorem. For any nondiscrete locally compact group G, we will construct
not only a sole bounded linear mapping ô of VN(G) onto l1(X) satisfying ôŁ

�
F (X)

�
�

TIM(Ĝ) but also an isometric Ł-isomorphism î of l1(X) into VN(G) such that ô Ž î =
idl1(X).

THEOREM 5.1. Let G be a nondiscrete locally compact group. Then there exists an
isometric Ł-isomorphism î of l1(X) into VN(G) and a positive linear mapping ô of
VN(G) onto l1(X) with kôk = 1 such that

(a) ôŽî = idl1(X) and henceôŁ: l1(X)Ł ! VN(G)Ł is isometric into andîŁ: VN(G)Ł !
l1(X)Ł is linear onto with kîŁk = 1;

(b) ôŁ
�
F (X)

�
� TIM(Ĝ) and F (X) � îŁ

�
TIM(Ĝ)

�
.

PROOF. The existence of ô for metrizable group G is due to Chou (see [1, Theo-
rem 3.3]). In this case, we define î: l1 ! VN(G) by

î( f ) =
1X

n=1
f (n)S(un)Ò f 2 l1Ò

where (un)n2N is a sequence in P1(G) which is topologically convergent to invariance
and

�
S(un)

�
n2N

is the same orthogonal sequence of projections in VN(G) as in [1]. Then
î and ô have the required properties of the theorem.
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In the following, we assume that G is non-metrizable. Assume at first that G is õ-
compact. Let (Qã)ãÚñ and (u j

ã)( jÒã)2 JðX be the same as in Section 4. For each fixed
ã 2 X, consider the net (uj

ã)j2 J in P1(G). Since ku j
ãk = 1 for all j 2 J, (u j

ã)j2J contains a
õ
�
VN(G)ŁÒVN(G)

�
-convergent subnet (ujã

ã )jã . Define î: l1(X) ! VN(G) by

î( f ) =
X
ãÚñ

f (ã)QãÒ f 2 l1(X)Ò

and ô: VN(G) ! l1(X) by

ô(T)(ã) = lim
jã
hTÒ ujã

ã iÒ T 2 VN(G)Ò ã 2 X

Clearly, î is an isometric Ł-isomorphism (i.e., î is linear, multiplicative, î( f ) = î( f )Ł

and hence kî( f )k = k fk for all f 2 l1(X)). ô is linear, ô(I) = 1 and ô(T) ½ 0 if T ½ 0.
If T 2 VN(G) and ã 2 X, jô(T)(ã)j = limjã jhTÒ u

jã
ã ij � kTk. Thus, kôk = 1. Also, from

the properties of (Qã)ã and (u j
ã)jÒã, we see that ô Ž î = idl1(X). Therefore, ô is onto.

To show (b), let û 2 F (X). Then

1 = hûÒ 1i =
D
ôŁ(û)Ò I

E
� kôŁ(û)k = kûk = 1Ò

i.e., kôŁ(û)k = hôŁ(û)Ò Ii = 1. If T 2 VN(G) and v 2 A(G) with v(e) = 1, then

lim
ã
ô(v Ð T � T)(ã) = lim

ã
lim

jã
hv Ð T � TÒ ujã

ã i

= lim
ã

lim
jã
hTÒ ujã

ã v � ujã
ã i = 0Ò

since (u j
ã)jÒã is topologically convergent to invariance. By the definition of F (X),D

ôŁ(û)Ò v Ð T � T
E

=
D
ûÒ ô(v Ð T � T)

E
= 0Ò

i.e., hôŁ(û)Ò v Ð Ti = hôŁ(û)ÒTi for all T 2 VN(G) and v 2 A(G) with v(e) = 1. We
conclude that ôŁ

�
F (X)

�
� TIM(Ĝ) and hence F (X) = îŁ Ž ôŁ

�
F (X)

�
� îŁ

�
TIM(Ĝ)

�
.

In the general case (i.e., G not necessarilyõ-compact), let GŽ be a compactly generated
open subgroup of G. Let r: A(G) ! A(GŽ) be the restriction map and let t: A(GŽ) ! A(G)

be the extension map defined by tv =
Ž
v, where

Ž
v= v on GŽ and 0 outside GŽ. Then

rŽt = idA(GŽ), t is an isometry andkrk � 1 (see Eymard [5]). Therefore, rŁ is isometric and
tŁ is onto. Granirer showed that rŁŁ

�
TIM(Ĝ)

�
= TIM(dGŽ) and tŁŁ

�
TIM(dGŽ)

�
= TIM(Ĝ)

(see [7, pp. 118–119]). Note that now GŽ is also non-metrizable and b(GŽ) = b(G). We let
îŽ: l1(X) ! VN(GŽ) and ôŽ: VN(GŽ) ! l1(X) be the mappings given in the previous
paragraph. Define î = rŁ Ž îŽ and ô = ôŽ Ž tŁ. Then î and ô satisfy the requirements.
The proof is completed.

REMARK 5.2. (i) The existence of î and the injectivity of l1(X) (for the definition,
see Section 2) guarantee the existence of a bounded linear mapping õ of VN(G) onto
l1(X) with õ Ž î = idl1(X). But, it is very difficult to see whether such õ is positive and
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satisfies õŁ
�
F (X)

�
� TIM(Ĝ). Therefore, we have to explicitly construct the mapping

ô which possesses the desired properties.
(ii) It is worthwhile to point out that the inclusion î[l1(X)] � UCB(Ĝ) is actually

true when G is non-metrizable. We need this fact later on. In fact, if G is õ-compact, then
supp[

P
ãÚñ f (ã)Qã] � N1 for all f 2 l1(X), where N1 is the same compact subgroup of

G as in Lemma 4.1, and hence î[l1(X)] � UCB(Ĝ). Generally, let GŽ be a compactly
generated open subgroup of G and let r: A(G) ! A(GŽ) be the restriction map. Granirer
showed that rŁ[UCB(dGŽ)] � UCB(Ĝ) (see [8, p. 379]). From the proof of Theorem 5.1,
now we also have î[l1(X)] � UCB(Ĝ).

Before we continue any further investigation on properties of the linear isometry î,
we first present several interesting consequences of Theorem 5.1.

COROLLARY 5.3. Let G be a nondiscrete locally compact group. Then the quotient
Banach spaces VN(G)ÛF(Ĝ) and UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) have l1(X) as a quotient.

PROOF. Let ô be the linear mapping of VN(G) onto l1(X) as in Theorem 5.1. From
the proof of Theorem 5.1, we can see that ô[F0(Ĝ)] � c0(X). Hence, ô[F(Ĝ)] � c(X),
since F(Ĝ) = CI ý F0(Ĝ) and ô(I) = 1. Therefore, VN(G)ÛF(Ĝ) has l1(X)Ûc(X) as
a quotient. Lemma 3.2 combined with the injectivity of l1(X) yields that the quotient
Banach space VN(G)ÛF(Ĝ) has l1(X) as a quotient.

When G is metrizable, the fact that UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) has l1 as a quotient
follows from Granirer [13, Corollary 7]. If G is non-metrizable, thenî[l1(X)] � UCB(Ĝ)
(by Remark 5.2(ii)). Thus l1(X) = ôŽî[l1(X)] � ô[UCB(Ĝ)], i.e., ô[UCB(Ĝ)] = l1(X).
So UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) has l1(X)Ûc(X) as a quotient. Consequently, the quotient
Banach space UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) has l1(X) as a quotient.

COROLLARY 5.4. Let G be a non-metrizable locally compact group. Then the quotient
Banach space UCB(Ĝ)ÛCŁ

ö(G) contains an isometric copy of l1(X).

PROOF. We may assume that G is õ-compact.
Let (Nã)ã�ñ, (Qã)ãÚñ and (u j

ã)jÒã be the same as in Section 4. Let î: l1(X) ! VN(G)
be the linear isometry given by î(f ) =

P
ãÚñ f (ã)Qã. By Remark 5.2(ii), î(f ) 2 UCB(Ĝ)

for all f 2 l1(X). Define the linear mapping L: l1(X) ! UCB(Ĝ)ÛCŁ
ö(G) by L( f ) =

î( f ) + CŁ
ö(G). Then kL( f )k � kî( f )k = k fk. On the other hand, for each å Ú ñ,

f (å) =
DX
ãÚñ

f (ã)QãÒ u
j
å

E
Ò for all j

According to Remark 4.2(b), we may assume that ï(N1) = 0, where ï is the left Haar
measure of G. If ß 2 L1(G), for any fixed å Ú ñ,

jhßÒ uj
åij =

þþþþZG
ß(x)u j

å(x�1) dx
þþþþ � Z

NåU�1
j

jß(x)j dx

Then limj jhßÒ u
j
åij � limj

R
NåU�1

j
jß(x)j dx = 0, since limj ï(NåU�1

j ) = ï(Nå) � ï(N1) =
0. Therefore,

j f (å)j = lim
j

þþþDX
ãÚñ

f (ã)Qã + ßÒ uj
å

Eþþþ
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�



X
ãÚñ

f (ã)Qã +ß





= kî( f ) +ßkÒ for ß 2 L1(G)Ò å Ú ñ

Consequently,k fk � kî(f )+ßk for allß 2 L1(G), i.e., k fk � kî(f )+CŁ
ö(G)k = kL(f )k.

It follows that L: l1(X) ! UCB(Ĝ)ÛCŁ
ö(G) is a linear isometry.

COROLLARY 5.5. Let G be a non-metrizable locally compact group. Then the quotient
Banach space M (Ĝ)ÛCŁ

ö(G) contains an isometric copy of s(X), where s(X) is the
subspace of l1(X) as defined in Section 3.

In particular, M (Ĝ)ÛCŁ
ö(G) is not norm separable and contains an isometric copy

of c.

PROOF. We may assume that G is õ-compact.
Let (Pã)ãÚñ and (Qã)ãÚñ be the same as in Section 4. If E � X is an interval and f = 1E,

by Lemma 4.4,
P
ãÚñ f (ã)Qã is of the form Pç �På or I�På for some 0 � å Ú ç Ú ñ.

Then
P
ãÚñ f (ã)Qã 2 M (Ĝ) since Pã 2 M(G) for eachã. Hence,

P
ãÚñ f (ã)Qã 2 M (Ĝ)

for all f 2 s(X) by the definition of s(X). Let K: s(X) ! M (Ĝ)ÛCŁ
ö(G) be the restriction

to s(X) of the linear isometry in Corollary 5.4. Then K is a linear isometry of s(X) into
M (Ĝ)ÛCŁ

ö(G).
It is not hard to see that there exist 2@0 many infinite subsets Iç of N, ç 2 Γ, jΓj = 2@0,

such that Iç \ Iç0 is finite if ç 6= ç0. This argument remains true for any uncountable
initial ordinal ñ if the generalized continuum hypothesis is assumed. More precisely, if
ñ is an initial ordinal with jñj Ù @0 and X = fã ; ã Ú ñg, there exist 2jXj many subsets
A° of X, ° 2 Ω, jΩj = 2jXj, such that jA°j = jXj and jA° \ A°0 j Ú jXj if ° 6= °0 (see [2,
pp. 19, 288]). Now each A° and X are cofinal because jA°j = jXj = jñj and ñ is an initial
ordinal. Following an argument of Chou [1, p. 218], we can show that TIM(Ĝ) admits
many extreme points by using the linear isometry î in Theorem 5.1.

COROLLARY 5.6.. Let G be a non-metrizable locally compact group. Then TIM(Ĝ)
contains at least 2b(G) many extreme points if the generalized continuum hypothesis is
assumed.

PROOF. We may assume that G is õ-compact. Let (Qã)ãÚñ and (u j
ã)jÒã be the same

as in Section 4. For each ° 2 Ω, let P° =
P
ã2A°

Qã

�
= î(1A°

)
�

and let M° = fm 2

TIM(Ĝ) ; m(P°) = 1g.
It is easy to see that M° is wŁ-compact and convex. M° is nonempty since each

wŁ-cluster point of (u j
ã)j2JÒã2A°

belongs to M°. If ° 6= °0, then jA° \ A°0 j Ú jXj and
hence, by the König’s inequality, there is an ã0 Ú ñ such that A° \ A°0 ² [0Ò ã0). ThusP
ã2A°\A

°0
Qã �

P
ãÚã0 Qã = Pã0 (by Lemma 4.4). For each m 2 TIM(Ĝ),

0 �
D
mÒ

X
ã2A°\A

°0

Qã

E
� hmÒPã0i = ïã0 (e) = 0Ò

i.e., hmÒ
P
ã2A°\A

°0
Qãi = 0. Therefore, M° \ M°0 = ; if ° 6= °0.

By Krein-Milman theorem, each M° contains an extreme point. But extreme points
of M° are also extreme in TIM(Ĝ). It follows that TIM(Ĝ) has at least 2jXj = 2b(G) many
extreme points.
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REMARK 5.7. Chou showed the above corollary for metrizable nondiscrete locally
compact groups without assuming the continuum hypothesis.

Now, we go back to the linear isometry î. In order to establish certain isometric
relations between quotient spaces of VN(G) (or UCB(Ĝ)) and l1(X), a more precise
quantitative understanding on î is desired.

LEMMA 5.8. Let G be a õ-compact non-metrizable locally compact group and let
î: l1(X) ! VN(G) be the same linear isometry as in Theorem 5.1. Then, for any
f 2 l1(X),

(i) kî( f ) + F0(Ĝ)k = kî( f ) + F0(Ĝ) \ UCB(Ĝ)k = k f + c0(X)k ;

(ii) kî( f ) + F(Ĝ)k = kî( f ) + F(Ĝ) \ UCB(Ĝ)k = kf + c(X)k

PROOF. Let f 2 l1(X). If h 2 c0(X), then î(h) 2 F0(Ĝ) \ UCB(Ĝ) (by Lemma 4.5
and Remark 5.2(ii)). Since î is an isometry,

k f + hk = kî( f + h)k = kî( f ) + î(h)k

½ kî( f ) + F0(Ĝ) \ UCB(Ĝ)k ½ kî( f ) + F0(Ĝ)k

Therefore, kf + c0(X)k ½ kî( f ) + F0(Ĝ) \ UCB(Ĝ)k ½ kî( f ) + F0(Ĝ)k.
Conversely, let a = limã sup j f (ã)j. Then there exists a subnet (ãi)i of (ã)ãÚñ such

that a = limi j f (ãi)j. Let (uj
ã)jÒã be the same net in P1(G) as in Section 4. Let m 2 VN(G)Ł

be a wŁ-cluster point of (u j
ãi )jÒi. Then m 2 TIM(Ĝ) (since (u j

ãi )jÒi is also topologically
convergent to invariance by Lemma 4.3) and

jhmÒ î( f )ij = lim
jÒi
jhî( f )Ò uj

ãi
ij

= lim
jÒi
j
X
ãÚñ

f (ã)QãÒ u
j
ãi
ij

= lim
i
jf (ãi)j = a

Thus, for any T 2 F0(Ĝ),

kî( f ) + Tk ½ jhmÒ î( f ) + Tij = jhmÒ î( f )ij = a

But, by the definition of a, for any è Ù 0, there exists an ã0 Ú ñ such that j f (ã)j � a + è
for all ã0 Ú ã Ú ñ. Let h = �f 1[0ÒÒã0]. Then h 2 c0(X) and f + h = f 1(ã0Òñ). So
k f + hk � a + è. Therefore,

kî( f ) + Tk ½ a ½ k f + hk � è ½ k f + c0(X)k � è

Since è Ù 0 and T 2 F0(Ĝ) are arbitrary, we get that k f + c0(X)k � kî( f ) + F0(Ĝ)k.
Therefore, (i) holds.

Similarly, we have k f + c(X)k ½ kî( f ) + F(Ĝ) \ UCB(Ĝ)k ½ kî( f ) + F(Ĝ)k.

https://doi.org/10.4153/CJM-1997-055-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-055-5


THE VON NEUMANN ALGEBRA OF A LOCALLY COMPACT GROUP 1133

Let T 2 F(Ĝ). Then there exists a constant a such that T 2 aI + F0(Ĝ). Notice that
î(1) = I (Lemma 4.4). According to the above proof, we have

k f + c(X)k = k f + C1 + c0(X)k

� k( f + a1) + c0(X)k

= kî( f + a1) + F0(Ĝ)k

= kî( f ) + aI + F0(Ĝ)k

� kî( f ) + Tk

It follows that k f + c(X)k � kî( f ) + F(Ĝ)k. The proof is completed.
Let GŽ be an open subgroup of G and let r: A(G) ! A(GŽ) be the restriction map.

Then r is onto and rŁ is isometric (see Eymard [5]). Granirer showed that rŁ[UCB(dGŽ)] �
UCB(Ĝ) and rŁŁ[TIM(Ĝ)] = TIM(dGŽ) (see [8, p. 379]). Therefore, rŁ

�
F0(dGŽ)

�
�

F0(Ĝ), rŁ[F0(dGŽ) \ UCB(dGŽ)] � F0(Ĝ) \ UCB(Ĝ), rŁ
�
F(dGŽ)

�
� F(Ĝ), and rŁ[F(dGŽ) \

UCB(dGŽ)] � F(Ĝ)\UCB(Ĝ). Furthermore, we can show that rŁ induces linear isometries
on quotient spaces.

LEMMA 5.9. (i) Let T 2 VN(GŽ). Then
(a) krŁ(T) + F0(Ĝ)k = kT + F0(dGŽ)k;
(b) krŁ(T) + F(Ĝ)k = kT + F(dGŽ)k.

(ii) Let T 2 UCB(dGŽ). Then
(a) krŁ(T) + F0(Ĝ) \ UCB(Ĝ)k = kT + F0(dGŽ) \ UCB(dGŽ)k;
(b) krŁ(T) + F(Ĝ) \ UCB(Ĝ)k = kT + F(dGŽ) \ UCB(dGŽ)k.

PROOF. We only give a proof of (i). (ii) can be proved analogously.
Let T 2 VN(GŽ). If S 2 F0(dGŽ), then rŁ(S) 2 F0(Ĝ). Thus,

kT + Sk = krŁ(T + S)k = krŁ(T) + rŁ(S)k

½ krŁ(T) + F0(Ĝ)k

Therefore, kT + F0(dGŽ)k ½ krŁ(T) + F0(Ĝ)k.
Conversely, let (ui) be a net in P1(G) which is topologically convergent to invariance.

Let T1 2 F0(Ĝ). By Chou [1, Theorem 4.4], limi ui Ð T1 = 0 in norm. Then we have

krŁ(T) + T1k ½ lim
i

supkui Ð rŁ(T) + ui Ð T1k

= lim
i

supkui Ð rŁ(T)k

= lim
i

supkrŁ[(rui) Ð T]k

= lim
i

supk(rui) Ð Tk

For each i, (rui) Ð T � T 2 F0(dGŽ). So,

kT + F0(dGŽ)k � kT + (rui) Ð T � Tk

= k(rui) Ð Tk for all i
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Therefore,
kT + F0(dGŽ)k � lim

i
supk(rui) Ð Tk � krŁ(T) + T1k

for all T1 2 F0(Ĝ). Consequently,

kT + F0(dGŽ)k � krŁ(T) + F0(Ĝ)k

Therefore, krŁ(T) + F0(Ĝ)k = kT + F0(dGŽ)k, i.e., (a) holds.
Similarly, we have kT + F(dGŽ)k ½ krŁ(T) + F(Ĝ)k.
Let T2 2 F(Ĝ). Then T2 � aI 2 F0(Ĝ) for some constant a. Notice that rŁ(IŽ) = I,

where IŽ is the identity in VN(GŽ). By the above proved equality, we have

krŁ(T) + T2k = krŁ(T + aIŽ) + (T2 � aI)k

½ krŁ(T + aIŽ) + F0(Ĝ)k

= k(T + aIŽ) + F0(dGŽ)k

½ kT + F(dGŽ)k

It follows that krŁ(T) + F(Ĝ)k ½ kT + F(dGŽ)k. This concludes the proof.
We are now ready to give one of the main results in this section.

THEOREM 5.10. Let G be a non-metrizable locally compact group. Then
(a) the quotient Banach spaces VN(G)ÛF0(Ĝ) and UCB(Ĝ)ÛF0(Ĝ)\UCB(Ĝ) contain

an isometric copy of l1(X)Ûc0(X);
(b) the quotient Banach spaces VN(G)ÛF(Ĝ) and UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) contain

an isometric copy of l1(X)Ûc(X).

PROOF. If G is õ-compact, Lemma 5.8 implies (a) and (b).
Generally, let GŽ be a compactly generated open subgroup of G. Then GŽ is also

non-metrizable and b(GŽ) = b(G). Now (a) and (b) follow from Lemmas 5.8 and 5.9.

6. Isomorphism and homomorphism results and some remarks. Let G be a
nondiscrete locally compact group. Let ñ be the initial ordinal with jñj = b(G) and let
X = fã ; ã is an ordinal andã Ú ñg. Combining the embedding results in Theorem 5.10
and Lemma 3.2, we have

THEOREM 6.1. Let G be a non-metrizable locally compact group. Then
(a) the quotient Banach spaces VN(G)ÛF0(Ĝ) and UCB(Ĝ)ÛF0(Ĝ)\UCB(Ĝ) contain

an isometric copy of l1(X);
(b) the quotient Banach spaces VN(G)ÛF(Ĝ) and UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) contain

an isomorphic copy of l1(X).

REMARK 6.2. Among other results of [13] on PMp(G), the dual Banach space of
the Figà-Talamanca-Gaudry-Herz algebra Ap(G) of G (1 Ú p Ú 1 and A2(G) = A(G)),
Granirer [13, Corollary 7] implies that UCB(Ĝ)ÛF(Ĝ)\UCB(Ĝ) has l1 as a quotient if G
is metrizable nondiscrete. A result of Chou [1, Theorem 3.3] yields that VN(G)ÛF(Ĝ) has
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l1 as a quotient when G is metrizable nondiscrete. Here, in fact, Theorem 6.1 generalizes
their results to non-metrizable groups and the conclusions are also strictly stronger.

We know that

CŁ
ö(G) � M (Ĝ) � W(Ĝ) � F(Ĝ)Ò and M (Ĝ) � UCB(Ĝ)

These inclusions and Corollary 5.3 lead to the following homomorphism results.

THEOREM 6.3. Let G be a nondiscrete locally compact group. Then
(i) the quotient Banach spaces VN(G)ÛW(Ĝ), VN(G)ÛM (Ĝ), and VN(G)ÛCŁ

ö(G)
have l1(X) as a quotient;

(ii) the quotient Banach spaces UCB(Ĝ)ÛW(Ĝ) \ UCB(Ĝ), UCB(Ĝ)ÛM (Ĝ), and
UCB(Ĝ)ÛCŁ

ö(G) have l1(X) as a quotient.

COROLLARY 6.4. Let G be an amenable nondiscrete locally compact group. Then
the quotient Banach space UCB(Ĝ)ÛW(Ĝ) has l1(X) as a quotient.

PROOF. W(Ĝ) � UCB(Ĝ) when G is amenable (see [8, Proposition 1]).
Recall that, for a Banach space Y, D(Y) denotes the density character of Y, i.e., the

smallest cardinality such that there exists a norm dense subsetof Y having that cardinality.
It is known that D

�
l1(X)

�
= 2jXj for any infinite set X. Also, if Y has Z as a quotient,

then D(Y) ½ D(Z). Therefore, by Corollary 5.3, we have the following.

COROLLARY 6.5. Let G be a nondiscrete locally compact group. Then
(i) D[VN(G)ÛF(Ĝ)] ½ 2b(G);

(ii) D[UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ)] ½ 2b(G)

Let u 2 P1(G) and let

u? = fT 2 VN(G) ; u Ð T = 0g

If T 2 u? and m 2 TIM(Ĝ), then m(T) = m(u Ð T) = 0. Hence, u? � F0(Ĝ). The format
of the following corollary is due to Granirer.

COROLLARY 6.6. Let G be a nondiscrete locally compact group. Let u 2 P1(G) and
let Y be a subspace of VN(G) such that UCB(Ĝ) is contained in the norm closure of
W(Ĝ) + Y + u?. Then D(Y) ½ 2b(G).

PROOF. Let Z be the norm closure of F(Ĝ) + Y in VN(G). Then UCB(Ĝ) � Z since
W(Ĝ) + u? � F(Ĝ).

Let YŽ be a dense subset of Y such that jYŽj = D(Y) and let fuigi2I � UCB(Ĝ)
be such that fui + F(Ĝ) \ UCB(Ĝ)gi2I is dense in UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) and jIj =
D[UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ)]. For each i 2 I, since ui 2 Z, there exist sequences ( f n

i )n

in F(Ĝ) and ( yn
i )n in YŽ such that

kui � ( f n
i + yn

i )k Ú
1
n
Ò n 2 N
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If i, j 2 I and i 6= j, then ui � uj 62 F(Ĝ) and hence

k(ui � uj) � ( f n
i � f n

j )k ½ k(ui � uj) + F(Ĝ)k Ù 0Ò for all n 2 N

Therefore, the mapping from I into Y@0
Ž , given by i 7! ( yn

i )n is one-to-one. So jIj �
jY@0

Ž j = D(Y)@0 . But jIj ½ 2b(G) (Corollary 6.5) and D(Y) Ù @0 ([8, Theorem 12]).
Consequently, D(Y) = D(Y)@0 ½ 2b(G).

REMARK 6.7. (i) Since l1(X) contains an isometric copy of l1, Corollary 5.3, 5.4,
Theorem 6.1, 6.3, and Corollary 6.4 remain true if l1(X) is replaced by l1.

(ii) We showed in [17] that both UCB(Ĝ)ÛF(Ĝ) \ UCB(Ĝ) and VN(G)ÛF(Ĝ) have
the density character greater than b(G) if G is nondiscrete (see [17, Corollary 6.2]).
Corollary 6.5 improves the estimate on the density characters of these two quotient
spaces.

(iii) Under the same assumptions of Corollary 6.6, Granirer showed that Y is not
norm separable if G is nondiscrete (see [8, Theorem 12]). We improved this in [18,
Theorem 5.4.3]: D(Y) Ù b(G) if G is nondiscrete. The conclusion is strengthened further
by Corollary 6.6.

(iv) The cardinality estimate in Corollary 6.5 and 6.6 cannot be improved since if G
is nondiscrete and if d(G) � b(G) (e.g., if G is nondiscrete and õ-compact) then VN(G)
is isometric to a subspace of l1(X), where d(G) is the smallest cardinality of a covering
of G by compact sets.

Finally, we want to extend the results obtained so far to spaces of operators in VN(G)
with small support. First, we need the following preparations.

DEFINITION 6.8. Let @ Ù 0 be a cardinal. A nonempty subset B of G is called a
G@-set if B is an intersection of @ many open subsets of G.

If Y is a closed subspace of VN(G) and E is a closed subset of G, we denote by YE the
space of all operators in Y with support contained in E.

Let G be a õ-compact non-metrizable locally compact group and let (Nã)ã�ñ and
(Qã)ãÚñ be the same nets as in Section 4. Let ó be an initial ordinal with ó Ú ñ. Then
ó + ã Ú ñ for all ã Ú ñ and ó + ã = ó + å if and only if ã = å (see [26]). For ã Ú ñ,
let Q0

ã = Qó+ã. Then (Q0
ã)ãÚñ is also an orthogonal net of projections in VN(G) with

supp Q0
ã � Nó for all ã Ú ñ. We point out that Lemma 4.4 and 4.5 remain true if

(Qã)ãÚñ is replaced by (Q0
ã)ãÚñ and parts (iii) and (iv) of Lemma 4.4 are replaced by the

following (iii)0 and (iv)0, respectively:

(iii)0
P
åÚã Q0

å = Pó+ã � Pó, for all 0 Ú ã Ú ñ,
(iv)0

P
ãÚñ Q0

ã = I � Pó.
Let E � G be a closed set which contains a G@-set B with @ Ú b(G) and e 2 B. Since

b(G) Ù @0, we may assume that @ is infinite. If ó is the initial ordinal with jój = @, then,
from the proof of Lemma 4.1 (see [17]), we see that the net (Nã)ã�ñ can be chosen such
that Nó � B � E. Therefore, supp[

P
ãÚñ f (ã)Q0

ã] � E, i.e.,
P
ãÚñ f (ã)Q0

ã 2 UCB(Ĝ)E
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for all f 2 l1(X). If we define

î0( f ) =
X
ãÚñ

f (ã)Q0
ãÒ f 2 l1(X)Ò

ô0(T)(ã) = ô(T)(ó + ã)Ò T 2 VN(G)Ò ã 2 XÒ

then î0 is also a linear isometry of l1(X) into VN(G) and ô0 is a bounded linear mapping
of VN(G) onto l1(X). Also, notice that Pó 2 F0(Ĝ). Examining the proofs of the previous
results on quotient spaces, it is seen that all the subspaces Y of VN(G) there (including
CŁ
ö(G), M (Ĝ), W(Ĝ), F0(Ĝ), F(Ĝ), UCB(Ĝ), and VN(G)) can be replaced by YE if G is

a non-metrizable locally compact group.
Note that if G is metrizable, then any G@-set (@ Ú b(G)) is open in G and hence E

contains a G@-set if and only if int(E) 6= ;, where int(E) denotes the interior of E. A
particular case of Granirer [13, Corollary 7] implies that UCB(Ĝ)EÛ[F(Ĝ)E \UCB(Ĝ)E]
and VN(G)EÛF(Ĝ)E have l1 as a quotient if G is metrizable nondiscrete and e 2 int(E),
i.e., in this case, Corollary 5.3 also holds if VN(G), UCB(Ĝ), and F(Ĝ) are replaced by
VN(G)E, UCB(Ĝ)E, and F(Ĝ)E, respectively.

As a consequence of the above discussion on non-metrizable groups, combining with
Granirer’s result, we conclude the following.

THEOREM 6.9. Let E be a closed subset of G which contains a G@-set B with@ Ú b(G)
and e 2 B. Then Theorem 5.10, 6.1, 6.3, Corollary 5.3, 5.4, 5.5, 6.4, and 6.5 remain true
if all the subspaces Y of VN(G) there are replaced by YE.

For any fixed x 2 G, let Lx be the left translation on A(G) by x (i.e., u 7!x u, u 2 A(G)).
Then LŁx is a linear isometry of VN(G) onto itself. It can be shown that LŁx(YE) = YxE,
where Y = CŁ

ö(G), M (Ĝ), W(Ĝ), or UCB(Ĝ). Therefore, for these spaces, the restriction
e 2 B in the above theorem can be released.

COROLLARY 6.10. Let E be a closed subset of G containing a G@-set in G with
@ Ú b(G). Then Theorem 6.3, Corollary 5.4, 5.5, and 6.4 are true if all the subspaces Y
of VN(G) there are replaced by YE.

REMARK 6.11. Granirer in [12] and [13] investigated operators in PMp(G) (1 Ú p Ú
1) with thin support. In particular, [13, Corollary 6 and 7] imply that VN(G)EÛF(Ĝ)E

and UCB(Ĝ)EÛ[F(Ĝ)E \ UCB(Ĝ)E] have l1 as a quotient if E is first countable at e and
one of the following two conditions is satisfied:

(1) R (or T) is a closed subgroup of G, S ² R (or T) is a symmetric set such that
e 2 aSb � E for some a, b 2 G;

(2) e 2 intaHb(E) for some a, b 2 G and some nondiscrete subgroup H of G.
Notice that if G is non-metrizable and E is a set as in Theorem 6.9, then E is not first
countable at e but it satisfies (2). In fact, let ó be the initial ordinal with jój = @ and GŽ a
compactly generated open subgroup of G. Then a non-metrizable subgroup Nó of GŽ (as
in Lemma 4.1) can be chosen such that e 2 Nó � B � E. Therefore, Theorem 6.9 extends
Granirer’s result to non-metrizable E with l1 replaced by l1(X) and condition (2) by
e 2 B � E for some G@-set B with @ Ú b(G).
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