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THE VON NEUMANN ALGEBRA VN(G) OF A LOCALLY
COMPACT GROUP AND QUOTIENTSOF ITS SUBSPACES

ZHIGUO HU

ABSTRACT. Let VN(G) be the von Neumann algebra of a locally compact group
G. We denote by p the initial ordinal with || equal to the smallest cardinality of an
open basis at theunit of Gand X = {e ; o < pu}. We show that if G is nondiscrete then
there exist an isometric x-isomorphism « of 1°°(X) into VN(G) and a positive linear
mapping 7 of VN(G) onto 1°°(X) such that 7 o & = idi~(x) and x and 7 have certain
additional properties. Let UCB(G) be the C*-algebra generated by operatorsin VN(G)
with compact support and F(G) the space of al T € VN(G) such that all topologically
invariant means on VN(G) attain the same value at T. The construction of the mapping
 leads to the conclusion that the quotient space UCB(G) /F(G) N UCB(G) has 1°°(X)
as a continuous linear image if G is nondiscrete. When G is further assumed to be
non-metrizable, it is shown that UCB(G) / F(G) N UCB(G) contains alinear isomorphic
copy of [°°(X). Similar results are also obtained for other quotient spaces.

1. Introduction. Let G be alocally compact group, A(G) the Fourier algebra of
G and VN(G) the von Neumann algebra generated by the left regular representation
{p,L2(G)}. With the action u - T defined by (u- T,v) = (T,uv) for T € VN(G), u,
v € A(G), VN(G) forms an A(G)-module. First we list below some subalgebras and/or
subspaces of VN(G) of our main interest in this paper.

UCB(G) = thenorm closurein VN(G) of {T € VN(G) ; suppT is compact},
W(G) = {T € VN(G) ; themap u— u- T isweakly compact}.
M (G) = the norm closurein VN(G) of the measure algebraM(G) of G.
C,(G) = thereduced C*-algebraof G,
F(G) = {T € VN(G) ; m(T) = afixed constant for all m € TIM(G)}.
Fo(G) = {T € VN(G) ; m(T) = Ofor all me TIM(G)}.
where TIM(G) denotes the set of all topologically invariant means on VN(G).

As we know, when G is an abelian group with dual group G, VN(G) is isometric
algebra isomorphic to L*°(G). In this situation, UCB(G), W(G), C/(G) (= Co(G)) are
the spaces of uniformly continuous, weakly almost periodig continuous, continuous
functions vanjshing at oo on G, respectively. Moreover, M (G)A is the supremum norm
closure of B(G), where B(G) is the Fourier-Stieltjes algebra of G.

There are many results in the literature on these subalgebras and/or supspaces gf
VN(G). In particular, the following inclusive relations are well-known: W(G) C F(G)
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(see Dunkl and Ramirez [4] and Granirer [8]), C/(G) C M (G) C W(G) NUCB(G) (see
Dunkl and Ramirez [4] and Granirer [11]), and C*(G) C Fo(B) if G is nondiscrete (see
Dunkl and Ramirez [4] and Lau [19]). Granirer showed that W(G) C UCB(G) if G is
amenable(see[8]), and C;(G) = M (G) = UCB(G) - W(G) when Gisdiscrete (see[9]).

Also, when G is discrete, the equality F(G) = VN(G) holds, because G is discrete if and
only if VN(G) has a unique topologically invariant mean (see Lau and Losert [20] and
Renaud [25]).

Itisnatural to ask whether the aboveinclusiverelations are proper if G isnondiscrete.
In this aspect, Granirer proved that the quotient space UCB(G) / W(G) is not norm sepa-
rableif G is amenable and nondiscrete (see [8, Corollary 13]). In [1], Chou constructed
alinear mapping 7 of VN(G) onto 1> such that 7 maps a big subset (having cardinality
2% of (I*°)* into TIM(G) when G is metrizable and nondiscrete. It follows that, under
the same assumption on G, VN(G)/F(G) has | as a continuous linear i image (i.e., has
1° as a quotient) and UCB(G) / F(G) N UCB(G) (and hence UCB(G) / W(G) NUCB(G))
is not norm separable (see [1, Theorem 3.3 and Corollary 3.6]). More generally, we ob-
tained in [17] the following: if G is nondiscrete, then both UCB(G) / F(G) NUCB(G) and
VN(G)/ F(G) have the density character greater than b(G), where the density character
of aBanach spaceY isthe smallest cardinality such that there exists a norm dense subset
of Y having that cardinality and b(G) denotes the smallest cardinality of an open basis
at the unit e of G (see[17, Corollary 6.2]). Granirer in [12] investigated quotient spaces
of subspacesof PMy(G), the Banach dual space of the Figa-Talamanca-Gaudry-Herz al -
gebraAp(G) of G (1 < p < oo and Ay(G) = A(G)). Among many other things, a special
case of [12, Theorem 6] impliesthat UCB(G) /F(G) N UCB(G) has|™ asaquotient if G
issecond countable and nondiscrete. Recently, Granirer improved thisresult by requiring
only that G is metrizable nondiscrete (see [13, Corollary 7).

The main purpose of this paper is to generalize and strengthen some of these results
on the quotient Banach spaces of UCB(G) and VN(G). Here are some details on the
organization of this paper.

Section 2 consists of some definitions and notations used throughout this paper.

For aninitial ordina p, let X bethe set of all ordinalslessthan p andlet co(X) (c(X)) be
the subspace of 1°°(X) consisting of all f in|>°(X) suchthat lim,ex f (o) = 0 (limgex f(a)
exists). In Section 3, we characterize cy(X) and ¢(X) for uncountable p and then show
that 1°°(X) / co(X) (1°°(X)/c(X)) contains an isometric (isomorphic) copy of [°(X).

Section 4 concerns itself with some projections in VN(G) when G is a o-compact
non-metrizablelocally compact group. Let i1 betheinitial ordinal with |x| = b(G) and let
X={a; a < p}.Weunvell at first somenew propertiesof theorthogonal net (Qq )<, Of
projectionsin VN(G) constructed in our [17]. Then we associate co(X) with Fo(G) (c(X)
with F(G)) in the following way: f € co(X) (c(X)) if and only if Yo T(@)Qy € Fo(G)
(F(G)), where Ya<y F()Qy denotes the w*-limit of {S,c- f(@)Q, ; 7 € Xisfinite} in
VN(G) (Lemma4.5). This association plays an important role in the attempt to establish
certain isometric relations between some quotient spaces.

In Section 5, we improve Chou [1, Theorem 3.3] and our [17, Theorem 5.4] and
obtain some strong isometric embedding results on some quotient spaces of UCB(G)
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and VN(G). Let G be a nondiscrete locally compact group, i the initial ordinal with
l¢| = b(G), and X = {& ; o < p}. We construct an isometric x-isomorphism « of
[>°(X) into VN(G) and a bounded linear operator = of VN(G) onto 1>°(X) such that
ok = ide(x and 7 embeds the big subset F (X) (having cardinality 22) of 1>°(X)*
into TIM(G) (Theorem 5.1). The construction of this 7 leads to the conclusion that, for
any nondiscrete locally compact group G, VN(G)/F(G) and UCB(G) /F(G) N UCB(G)
have |*°(X) as a quotient (Corollary 5.3). Making use of the isometry x, we further
show that UCB(G)/Fo(G) N UCB(G) and VN(G)/Fo(G) (UCB(G)/F(G) N UCB(G)
and VN(G)/F(G)) contain an isometric copy of 1°(X) /co(X) (1°(X) /c(X)) if G is non-
metrizable (Theorem 5.10).

Combining the embedding results in Sections 3 and 5, we obtain in Section 6 that
VN(G)/Fo(G) and UCB(G)/Fo(G) N UCB(G) (VN(G)/F(G) and UCB(G)/F(G) N
UCB(G)) contain anisometric (isomorphic) copy of 1°°(X) if G is non-metrizable (Theo-
rem 6.1). We also give some homomorphism results on other quotient spacesof UCB(G)
and VN(G). In particular, UCB(G) /W(G)NUCB(G) and UCB(G) /M (G) havel>(X) as
aquotient when G is nondiscrete (Theorem 6.3). Finally, we extend some of the previous
results to spaces of operatorsin VN(G) with small support.

Let d(G) bethe smallest cardinality of acovering of G by compact sets. Notethat if G
is nondiscrete and if d(G) < b(G) (e.g., if G is nondiscrete and o-compact) then VN(G)
isisometric to a subspace of 1°°(X). Hence the isomorphism and homomorphism results
of this paper on quotients of subspacesof VN(G) mean that these quotients are as big as
they can be.

The author is indebted to Professor E. E. Granirer for providing the preprints of his
papers[12] and [13] and to the referee for valuable suggestions.

2. Definitions and notations. Let C be the complex field. For a Banach space E
over C, let E* denote the Banach space of all bounded linear functionalson E. If ¢ € E*,
then the value of ¢ at an element x in E will be written as ¢(x) or (¢, X).

Let G be alocally compact group with unit element e and a fixed |eft Haar measure
A. The left invariant Haar integral associated with A will be denoted by Jg - - - dx. For
1<p<oo,let(LP(G).| - ||,) betheusual Banach space associated with G and A. With
the inner product

(f.g):/Gf(x)@dx, f.ge LYG),

L2(G) becomes a Hilbert space.

Let VN(G) be the von Neumann algebra generated by the left regular representation
{p,L%(G)} of G, i.e, the closure of the linear span of {p(a) ; a € G} in the weak
operator topology on B(L%(G)), where B(L%(G)) is the Banach algebra of all bounded
linear operators on L?(G) and [p(a) f](X) = f(a~1x), x € G, f € L¥(G).

Let A(G) be the Fourier algebra of G, consisting of all functions of the form f x g,
wheref, g € L?(G) and §(X) = g(x2). If ¢ =f x§ € A(G), then ¢ can be regarded as an
ultraweakly continuous functional on VN(G) defined by

o(T) = (Tf,g), forT € VN(G).
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Furthermore, as shown by P. Eymard in [5, pp. 210, 218], each ultraweakly continuous
functional on VN(G) isof theform f xgwithf, g € L?(G). Therefore, A(G) isthe predual
of VN(G),i.e., A(G)* = VN(G). In particular, thew*-topology (i.e., thea(VN(G). A(G))-
topology) and the weak operator topology on VN(G) coincide. Also, A(G) with pointwise
multiplication and the norm

o]l = sup{|¢(T)| ; T € VN(G) and || T|| < 1}

forms a commutative Banach algebra.
Thereis anatural action of A(G) on VN(G) given by

(u-T,v) =(T.uv), foruveAG),T e VN(G).

Under this action, VN(G) becomes a Banach A(G)-module. For more details on the
algebras VN(G) and A(G), see Eymard [5].

Anm e VN(G)* is called atopologically invariant mean on VN(G), if

@) JJml| = (m,1) = 1, where| = p(e) denotes the identity operator,

(i) (mu-T)y=(m.T) for T € VN(G) and u € A(G) with u(e) = 1.
Let TIM(G) be the set of all topologically invariant means on VN(G). It is known that
TIM(G) is anon-empty w*-compact convex subset of VN(G)* and it isasingleton if and
only if G is discrete (see Renaud [25] and Lau and Losert [20]). In [17], we obtained
the exact cardinality 22 of TIM(G), where b(G) is the smallest cardinality of an open
basis at e when G is nondiscrete. Let P;(G) = {u € A(G) ; u is positive definite and
lull = ue) = 1}. A net (¢u)aca in P1(G) is said to be topologically convergent to
invariance if limy ||Vé, — ¢ol| = 0, for v e A(G) with v(e) = 1. Then any w*-cluster
point of (¢a)acn in VN(G)* belongsto TIM(G).

Let T € VN(G). We say that x € G isin the support of T, denoted by supp T, if p(X)
is the ultraweak limit of operators of theform u - T, u € A(G). An equivalent definition
for suppT isthat x € suppT if and only if u- T = 0 implies u(x) = O for al u € A(G)
(see[5, Proposition 4.4] or [15, p. 119]).

Let UCB(G) denote the norm closure of A(G) - VN(G) in VN(G). Then UCB(é) isa
C*-subalgebraand an A(G)-submoduleof VN(G) (see[9]) which coincideswith the norm
closure of {T € VN(G) ; suppT is compact}. When G is an abelian group, UCB(G)
is isometrically algebra isomorphic to the algebra of bounded uniformly continuous
functions on the dual group G of G. For this reason, operators in UCB(G) are called
uniformly continuous functionals on A(G) (see [8]). The C*-algebra UCB(G) and its
relationship with other C*-subalgebras of VN(G) have been studied by Granirer in [8]
and [9] and by Lau in [19]. See Lau and Losert [20] for recent developments on this
C*-algebraand its dual space.

Chou used F(G) to denote the space of all T € VN(G) such that m(T) equals a fixed
constant d(T) as m runsthrough TIM(G) and called F(G) the space of topological almost
convergent elementsin VN(G). It iseasy to check that F(G) isanorm closed self-adjoint
A(G)-submodule of VN(G). See Chou [1] for more information on F(G). We denote
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by Fo(G) the space of all T e F(G) such that d(T) = 0. Fo(G) is also a norm closed
self-adjoint A(G)-submodule of VN(G) and F(G) = CI & Fo(G).

Dunkl-Ramirezin[4] called {T € VN(G) ; u+— u-T isaweakly compact operator of
A(G) into VN(G)} the space of weakly almost periodic functionals of A(G) and denoted
it by W(G). It turns out that W(G) is a self-adjoint closed A(G)-submodule of VN(G)
which coincides with the space of weakly almost periodic functions in L°(G) when G
is abelian (see[4] for more details).

Let M(G) denote the measure algebra of G, i.e., the space of finite regular Borel
measures on G with convolution as the multiplication. M(G) can be considered as a
subspace of VN(G) by

(p.u) = /G Udu, forue A(G),

where Ui(x) = u(x1), x € G. Now |[ullyne) < llillw)- In particular, if f € LY(G), then
(f.u) = JofUdx, u e AG), and | fllyng) < IfllLsg)- LetM (G) and C;(G) bethenorm
closuresof M(G) and L(G) in VN(G), respectively. C,(G) isjust thereduced C*-algebra
of G, i.e., the norm closure of {p(f) ; f € LY(G)} in B(L%(G)), where p(f)(h) = f x h
for each h € L%(G).

It is known that W(G) has a unique topologically invariant mean (see [4] and [8]).
In particular, this gives that W(G) C F(G). Also, C;(G) € M (G) C W(G) N UCB(G)
(see [4] and [11]) and C}(G) C Fo(G) i]i Gis nondi§crete (see [4, Theorem 2.12] and
[19, Proposition 4.2]). The inclusion W(G) C UCB(G) was obtained by Granirer when
G isamenable (see[8]). In the same paper, Granirer observed that if G is amenablethen
UCB(G) = A(G) - VN(G). The converseis shown true by Chou for discrete groups and
Lau and L osert for general case (see[20]).

Let E;, E; be two Banach spaces. We say that E, contains an isometric copy of E; if
there is alinear mapping L: E; — E;, such that ||Lx|| = ||x|| for al x € Ey; E, contains
an isomorphic copy of E; if there is a linear mapping L: E; — E;, and some positive
constants 1, vz suchthat 71 ||x|| < ||Lx|| < 72||x|| for al x € E1; E; hasE; asa quotient
if there is abounded linear mapping from E;, onto E;.

A Banach space X is called injective if for any pair of Banach spacesY C Z and
every bounded linear mapping T of Y into X there is a bounded linear mapping T of Z
into X which extends T. Note that, if X isan infinite set, then 1°°(X) isinjective (see[21,
p. 105]).

If Y isaBanach space, we denote by D(Y) the density character of Y, i.e., the smallest
cardinality such that there exists a norm dense subset of Y having that cardinality.
D(1°(X)) = 2X! for any infinite set X.

3. 1°°(X) and its subspaces and quotient spaces. For any two setsAand B, A\ B
denotes their difference, 15 denotes the characteristic function of A as a subset of the
underlying set, 2* is the set of all functions from Ato {0, 1}, and |A| is the cardinality
of A. Then |2 = 24 the cardinality of the power set of A. So we also use 2" to denote
the power set of A.
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If Xisaset, let [>°(X) be the Banach space of all bounded complex-valued functions
on X with the supremum norm. When X is a directed set, we define two subspaces of X
asfollowing:

co(X) = {f €1°(X) ; lim () = O}.
cX) ={f elI*(X); I;g} f(a) exists}.

Obviously, co(X) C ¢(X) and ¢(X) = C1 6@ cp(X), where 1 is the constant function of
value one. When X = N, the set of all positiveintegers, 1°°(X), co(X) and c(X) are >, cg
and c, respectively.

When « isan ordina number, || meansthe cardinality of the set {3 ; 8 isan ordinal
and 3 < a}. Anordinal « iscalled aninitial ordinal if |«| isinfiniteand 8 < « implies
18] < |a| (see[26, p. 271]).

Let  be aninitia ordinal and let X = {« ; o isan ordinal and « < p}. An element
of 1°°(X) is called a simple function if it is of the form >°iL, ¢i1g,, where ¢; is a constant
and Ejisaninterval in X, i =1,2.---.n. Let

S(X) = the norm closure of al simple functionsin 1°°(X).

Then s(X) isaclosed subspace of 1°(X) and s(X) C c(X). If X =N, then s(X) = c(X) = c.
If || > Ro, thefirst infinite cardinal number, then s(X) ; c(X) but ¢ C s(X) and s(X) is
not norm separable.

We give at first the following characterizations of ¢co(X) and c(X) for a uncountable
initial ordinal .

LEMMA 3.1. Let p beaninitial ordinal with |u| > Ro. Let X = {« ; isan ordinal
and o < pu}. Then
(i) co(X) = {f €1°(X) ; thereexistsan o, < p suchthat f(a) = 0for all o, < & <

[},

(i) c(X) ={f € 1°°(X) ; there existsan «, < p and a constant a such that f(«) = a
forall oo < o < p}.

PrOOF. Obviously, the set {f € 1°°(X) ; there existsan o, < p suchthat f(o) =0
foral o, < o < p} iscontainedin co(X).
Conversely, if f € ¢co(X), then there existsasequence a; < ap < --- < p such that
[f(o)| < % foralop, <a<p.n=12....

Let[0, ory) denotetheinterval {o ; o < an}. Then|[0. an)| = |an| < |p|forn=1.2,....
By the Kdnig-Zermelo’s inequality (see[26, p. 313)),

o0 o0 o0 N
| UL0. an)| <7 fam| < IT [uel = ] = el
n=1 n=1 n=1
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since |p| > V. Choose ap € X\ Up4[0, o). Then ag < g and f(a) = 0 for all
oo < a < . Therefore, (i) istrue.

(i) follows from (i) since ¢(X) = C1 & co(X). n

For a compact topological space Q, let C(Q) be the Banach space of all continuous
functions on Q with the supremum norm. If X is a set (with the discrete topology), 5X
denotes the Stone-Cech compactification of X. Then I1°°(X) is isometrically isomorphic
to C(5X). Thus 8X can be identified with the spectrum of 1°°(X), i.e, the set of all
nonzero multiplicative linear functionals on 1°°(X) with the Gelfand topology (see, say,
[28, Proposition 4.5, p. 18]). In this way, each x € X is identified with the evaluation
xonl|®(X) at x, i.e, X(f) = f(x) for f € 1°°(X). On the other hand, 3X can also be
obtained by “fixing” the free ultrafilters on X, that is, 8X = {all ultrafilters on X} with
{Z* ; Z C X} asabase for closed subsets of 53X, where Z* = {¢ € 8X ; Z € ¢} (see
[6, pp. 86-87]). Now, every x € X correspondsto the fixed ultrafilter ¢4 on X containing
{x},i.e, ¢x={E; xe€ ECX}.

Making useof the Stone-Cech compactification of X, now we consider the embeddings
of 1°°(X) into its quotient spaces.

LEMMA 3.2. Letp beaninitial ordinal andlet X = {« ; oisanordinal and or < 1}
Then
(i) 1°°(X)/co(X) contains an isometric copy of 1°(X),
(ii) 1°°(X)/c(X) contains an isomor phic copy of 1°°(X).

ProoF. When X = N, thiswas shown by Granirer (see[10, p. 161]). Inthefollowing,
we assumethat || > No. We now follow an argument of Granirer [10].

Since|Xx X| = |X| = |u|, wecanwrite X = J,,, Ax, Where|A,| = [X| and A,NA; =
foral a, 3 < pand o # 3. Forany o < p, A, and X are cofinal, i.e., A, N [B.p) # 0
for al 8 < p, sincep isaninitial ordinal and |u| = |X| = |As|, where[ 3, 1) denotesthe
interval {o; 8 < a < u}. Let

Yo={f €1?°(X) ; f(A)) = 0.F(As) = Ca. 0 < a < i},

i.e., the functionsin I°°(X) which are zero on Ag and constant on each A,.. Then Yp isan
isometric copy of 1°°(X).

Let Xo bethe closurein X of the set {» € 5X; ¢ isacluster point of the net (a)a<,,
in BX}. If f € 1°(X), let f € C(BX) beits unique extension and let f = f |x,. Then the
mapping f — f from Yo to C(Xo) satisfies || f||, = [|f[lc, for al f € Yo, since each
f € Yy isconstant on each A,,. Thus, C(Xg) contains an isometric copy Yo of [°°(X).

Toprove(i), weonly haveto show that C(Xp) isisometric to1°(X) / co(X). Iff e C(Xo),
by Tietze's extension theorem, f has an extension fe C(BX). Letf = f_|x € 1°(X). We
define L: C(Xo) — 1°°(X) / co(X) by L(f) =f +co(X). Then L is well-defined. Obviously,

L is linear and onto. Observe that | f|| = lim, sup| f()|. Therefore, by Lemma 3.1,
|fl] = [|f +co(X)| for al f € C(Xp), i.e, L is a linear isometry from C(Xp) onto
1(X)/Co(X)-
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Now, let us prove (ii). Let po € X be acluster point of the net («)aca,, Where Ag
is ordered by its natural way. Then po € Xo. We define the projection P: C(Xy) — C1
by Pf = f(po)l. Let Q = | — P. Then C(Xo) = C1 & Q[C(Xo)]. If f € Yo, then
Qf = —f(po)1 = f, since f(Ao) = 0. Thus Yo C Q[C(Xo)], where Yo = {f ; f € Yo}
which is isometric to [*°(X). Let L: C(Xo) — 1°°(X)/co(X) be the linear isometry given
in the previous paragraph. It is easy to see that L(C1) = c(X)/co(X). So C(Xo)/C1
is isometric to (1°°(X)/co(X)) /(c(X)/co(X)) which is isometric to 1°(X)/c(X). But
Q[C(Xp)] is isomorphic to C(Xo)/C1. Therefore, I°°(X)/c(X) contains an isomorphic
copy Yo of 1°°(X). The proof is completed. L]

ReEMARK 3.3. (i) If X =N, the set X, considered in the above proof isjust SN \ N.
But for uncountable X, Xp C 8X\ X.
7

(if) We do not know whether 1°°(X) / c(X) contains an isometric copy of 1>°(X).

4. Non-metrizable groupsand orthogonal projectionsin VN(G). In thissection,
G will always be a o-compact non-metrizable locally compact group. Let b(G) be the
smallest cardinality of an open basis at the unit element e of G. Trivialy, we have
b(G) > g (thefirst infinite cardinal number). Let 1, betheinitial ordinal with || = b(G)
andlet X = {«; aisanordina and o < i }.

In [17], we showed an important property of G concerning its local structure at e.
Using this property, we constructed an orthogonal net of projectionsin VN(G) and a
family of orthogonal netsin P1(G) which istopologically convergent to invariance. For
convenience, we would like to collect some of our resultsin [17] here.

LEMMA 4.1 ([17, PROPOSITION 4.3]). There exists a decreasing family (N,) o<, Of
normal subgroupsof G (i.e., o < g implies N, 2 N;) such that
(i) No=GandN, = {e};
(i) N, iscompact for each o > 0;
(iii) No/Ng+1 ismetrizable but No+1 7 N, for all o < g;
(iv) Ny =Ny<y Ny for everylimit ordinal v < y;
(v) b(Ny) =b(G) for all & < p.
Furthermore, 1 isminimal among all such families.

REMARK 4.2. (&) Themain ideain constructing (Nu)a<, is essentially the same as
that usedin Lau and Losert [20]. The net (N ) o< in[20] possessesproperty (i)—(iv). Itis
strengthened in [17] in the following two aspects: (1) the ordinal X istotally determined
by the local structure of G (A = b(G)); (2) b(N) = b(G) for all a < p.

(b) Examining the proof of Lemma 4.1 (see [17]), we find that the family (Ny),<,
can be chosen such that A(N;) = 0, where X isthe left Haar measure of G. Thisfact will
be used later.

Due to the nature of (Ny)o<,, We can define a family (Py)q<, Of projections in
VN(G). Let Pp =0 € VN(G). For 0 < o < i, let P, € VN(G) be the central projection
defined by convolution with the normalized Haar measure ., of N,. More explicitly,
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P.:L%(G) — LA(G/N,)(C L%(G)) isgiven by
P H)X) = /N f(tflx) di.(t), fe LZ(G).O <o < fhy

where L2(G/N,) isthe subspace of L?(G) consisting of all functionsin L?(G) which are
constant on the cosets of N,, (see[5, (3.23)]).
Now (Py)«<, is an increasing net of projectionsin VN(G), i.e., P,Ps = P3Py = P,
for a < 8 < u. Define
Qo =Py+1 — Py, a<pu.

Then (Qu) o<, isan orthogonal net of projectionsin VN(G). that is,

—_ QO( If o= ﬂﬂ

Qs = {o it o # 5.
Let J beasetwith |J] = b(G) andlet {U; ; j € J} bean open basisat e. For eachj € J
and a < p, we showed in [17] that there existsaul, € P1(G) such that suppu’, C U;N,

and Lifeo
@)= gt e zs

Direct J x X by (i. «) < (j.p) if and only if U; C U; and o« < §.

LEMMA 4.3 ([17, LEMMA 5.2]). The net (u(jy)(j.(y)g‘jxx has the following properties.
(i) uj € P1(G) and suppu, C UjN, for all (j, @) € I x X.
(i) For eachfixedj € J, (U),)«ex isa mutually orthogonal netin P1(G), i.e.

U, — ul]| = [jul]| + Julll =2, forall a. 8 < pwith o # 3.

(iii) (ui,)( i) Ixx 1S topologically convergent to invariance.

Let A = A(X) bethe set of all non-empty finite subsetsof X directed by inclusion. Let
f € 1°°(X). Foreacht € A, let S. = ¥y, T ()Qq. Since (Qu)a<y isan orthogonal net of
projectionsin VN(G) and f € [°°(X), we have

IS| <l foralzen.

and the net (S)).<a is convergent in the weak operator topology (or equivalently, the
a(VN(G). A(G))-topology) to an operator T € VN(G) with || T|| < || f||,. We denote T
by Ya<, F()Qq. Also, for any subset E of X, Tyce f()Qy means ¥o<,u( F1e)()Qo,
where 1g is the characteristic function of E.

Here now, we present afew more properties of the orthogonal net (Qq) o<, Of projec-
tionsin VN(G).

LEMMA 4.4.

(i) For eachar < i1, Qy € M (G) NFo(G).

(if) Letf € 1°°(X). Then || Sacy F(@)Qall = [,
(iii) Yp<a Qs =Py forall 0 < o < pu.
(iV) Xa<u Qo =1 (theidentity operator in VN(G)).
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PROOF. (i) Let o < p. Qy € M(G) follows from the definition of Q,. Let m €
TIM(G). Then, by [4, Theorem 12],

(M. Qu) = (M. Poss — Py) = Aosa({€}) — Ao({€}) =0—0=0,

since N is nondiscrete for each 8 < p, where \; is the left Haar measure of Ng.
Therefore, Q, € Fo(G).

(i) Weonly haveto provethat || || < || o<, f(@)Qq|l. Let 8 € X. Takeaj € J.
Then

1F(B)] = [f(8)(Qs.u})]

Ligm@f(a)% ul)|
(3 f(@)Qu- U}

a<p

< |3 f(@Qulul
a<p
= [ f()Qu]-

a<p

Therefore, || f]|, = sup{|f(8)] ; B < n} < | Ca<y F(@)Qull-
(iii) Foreach o < p, let

Ya = Pa[L*(G)] = L(G/Na).
Zy = Qu[LA(G)] = (Pas1 — Po)[LX(G) .

ThenY; = Zgand Yy+1 = Yo B Z, forall o < u, where® denotesthedirect sumof Hilbert
spaces. If ag < p is alimit ordinal, then Y,, = m\lﬁlz by the Stone-Weierstrass
theorem because of the fact No, = (<4, No (by Lemma4.1).

Let 0 < ag < p. Assumethat, for all 0 < o < ag, Yo = @p<aly. If o = o + 1,
then Yo, = Yo ® Zy = (Bp<als) B Za = Pp<apyls- Lt ap < p be alimit ordinal.
Obviously, @< Zs C Yoo BUt Yo = m”’”z and @4 4,25 isclosed in L?(G). By
the assumption, we have Yo, = $3<4,Z5. By the transfinite induction, Y, = $3.,Z5 for
al 0 < o < p. Therefore, Py, = Y3, Qg foral 0 < o < .

(iv) Similarly, L2(G) = Up<, Yo and L2(G) = BaeyZs. Therefore, | = Yoy Q. m

Recall that F(G) (Fo(G)) is the space of al T € VN(G) such that m(T) equals
to a fixed constant d(T)(m(T) = 0) for al m € TIM(G). Then Fo(G) C F(G) and
F(G) = Cl @ Fo(G). We associate the space co(X) with Fo(G) (c(X) with F(G)) in the
following lemma.

LEMMA 4.5. Letf € 1°°(X). Then
(i) f € co(X) if and only if Socy, F()Qu € Fo(G),
(i) f € c(X)ifandonlyif ¥,<, f(2)Q. € F(G).
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PrROOF. (=) Letf € cp(X). We may assumethat f > 0. By Lemma 3.1, there exists
an g < p suchthat f () = 0for al op < o < p. By Lemma4.4,

0< > f(@)Qu= 3 f(@)Qa < [ f]|sPap-

a<p a<og

Let m e TIM(G). Then

0<(m 3 f(@)Qu) < [Ifll, (M Puy).
a<p
But (M, Py,y) = Aao({€}) (by [4, Theorem 2.12]) and A,,({€}) = O (since N, is nondis-
crete by Lemma4.1). Therefore,

(m Y f()Qu) =0, foralme TIM(G),

a<p

.6, Yoy F(@)Qqu € Fo(G).

If f € c(X), say, lim, f(a) = a, theng =f —al € co(X) and hence Y-y« J(@)Qy €
Fo(G). By Lemma4.4,

2 @) ()Qx=a) Q,=al.
a<p a<p
Therefore, So<,, f(@)Qu = Tac, 9(@)Qn +al € F(G).

(<) Supposethat <, f(@)Q, € F(G). Recal that the net (ul);... is topologically
convergent to invariance (Lemma4.3). By Chou[1, Theorem 4.4], there existsa constant
a such that limj , U}, - [Z4<, f(8)Qs] = al in norm (a = d(Zs<, f(3)Qs)). Choose
v € A(G) with v(e) = 1. Then

a=(alv) = Ijim<ug(~ > f(8)Qs. V)

B<pu

= lim( 3~ f(5)Qs. ukv)

@ B<p
= 1lim( > f(8)Qs. ul)
he B<p
= limf(a).
i.e, f ec(X)andlim,f(x) =a.
If Cocy F(@)Qqu € Fo(G), thena = 0and hencef € co(X). "

REMARK 4.6. (i) Inthe proof of Lemmad4.4, by applying the orthogonal net (Qq) o<
of projections in VN(G), we actually obtained a decomposition of L2(G), i.e., L%(G) is
the direct sum @, Q.[L?(G)].

(i) In[1], Chou called elements of F(G) topological almost convergent. The concept
“amost convergence” was originally introduced by Lorentz [22] for the sequence space
[>°. An equivalent condition for f € 1° to be almost convergent is that there exists a
constant | such that Iimn_p[% sP, f(n+i)| = I. Parallelly, we can extend this notion to
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[>°(X) in the following way: f € 1°°(X) is amost convergent if there exists a constant
| such that limex pen [,l) >, f(a +1)] = 1. The set of all such functions is denoted by
ac(X). Then ac(X) isaclosed subspace of 1°°(X), ¢(X) C ac(X) but c(X) # ac(X) (e.g., let
f(a) = lif aisevenandf(a) = Oif avisodd, thenf € ac(X) (with| = %) butf Z c(X)).In
general, ac(X) ismuch larger and more complicated than c(X). For instance, weknow that
c is separable but ac(N) is not separable. However, from Lemma 4.5 (also some results
in next section), we see that, when we investigate the topological almost convergencein

VN(G), the subspace of 1>°(X) corresponding to F(G) is c(X) rather than ac(X).

5. Resultsconcerningisometric mappings. Let Gbeanondiscretelocally compact
group. Let b(G) be the smallest cardinality of an open basis at the unit element e of G.
Let 1 betheinitial ordinal satisfying |x| = b(G) and let

X={a; aisanordina and o < pu}.
In [17], we defined a subset of 1°°(X)* as following:
FOO={o €l ; 6]l = 6(2) = Land ¢(f) = 0if f € co(X)}.

If X =N, |[F(N)] =22° since 3N \ N C F (N) and [N \ N| = 22, We showed in [17]
that |F (X)| = 22" if | u| > R (see[17, Proposition 3.3]).

When G is metrizable and nondiscrete, Chou constructed a bounded linear mapping
7 of VN(G) onto I such that 7* embeds the large set F (N) into TIM(G) (see [1,
Theorem 3.3]). In the casethat G is non-metrizable, webuilt in [17] afamily of bounded
linear operators of VN(G) onto I*°(X) and then obtained a one-one map W.: *°(X)* —
2N©)" such that W(1°(X)*) C 2"(©), Theabove results are substantially improved by
the following theorem. For any nondiscrete locally compact group G, we will construct
not only a sole bounded linear mapping = of VN(G) onto 1°(X) satisfying 7*(F (X)) C
TIM(G) but also an isometric *-isomorphism  of 1°°(X) into VN(G) such that 7 o k =
idpo(x).

THEOREM 5.1. Let G be a nondiscrete locally compact group. Then there exists an
isometric x-isomorphism x of 1°°(X) into VN(G) and a positive linear mapping = of
VN(G) onto 1°°(X) with ||| = 1 such that

(@) mor = idi(x) andhencer™: [*°(X)* — VN(G)* isisometricintoandx™: VN(G)* —
[*°(X)* islinear onto with ||x*|| = 1;
(b) = (F (X)) € TIM(G) and F (X) C &*(TIM(G)).

PROOF. The existence of = for metrizable group G is due to Chou (see [1, Theo-
rem 3.3]). In this case, we define x: > — VN(G) by

k()= S, fel™,
n=1
where (un)nen is a sequence in P1(G) which is topologically convergent to invariance

and (S(un)) heN is the same orthogonal sequence of projectionsin VN(G) asin [1]. Then
x and 7 have the required properties of the theorem.
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In the following, we assume that G is non-metrizable. Assume at first that G is o-
compact. Let (Qu)a<, and (u};)(jﬂ)@xx be the same as in Section 4. For each fixed
a € X, consider the net (Ul,)jc ; in P1(G). Since ||u}|| = 1for all j € J, (ul)je; containsa
a(VN(G)*. VN(G))-convergent subnet (u);, . Define x:1°(X) — VN(G) by

k(F)= 3 f(@)Qu.  f €17°(X),

a<p
and 7: VN(G) — [°°(X) by

7(T)(a) = Iijm(T. Us), TEVN(G).aeX.

Clearly, x isanisometric *-isomorphism (i.e., x islinear, multiplicative, () = r(f)*
and hence ||<(f)|| = || || for al f € [°°(X)). 7 islinear, 7(I) = 1and «(T) > 0if T > 0.
If T € VN(G) and @ € X, |m(T)(x)| = limy, |(T. us)| < ||T||. Thus, ||=]| = 1. Also, from
the properties of (Q,). and (u!x)j,o,, we seethat m o x = idi~(x). Therefore, 7 isonto.

To show (b), let ¢ € F (X). Then

1=(¢. 1) = (7" (@) 1) < 7@ = ¢ =1,
i.e, |[|7T*(®)] = (7*(¢),1) = 1. If T € VN(G) and v € A(G) with v(e) = 1, then
limr(v-T—T)(a) = IiDrCnIijm(v-T—T, )

= limlim(T, Wev — us) = 0,

o JO’

since (u(jx)j,a istopologically convergent to invariance. By the definition of F (X),
(7(@).v-T—=T)=(¢.7(v-T—T)) =0,

i.e, (7(@),v-T) = (7*(¢), T) for dl T € VN(G) and v € A(G) with v(e) = 1. We
concludethat 7 (F (X)) € TIM(G) and hence F (X) = &* o 7*(F (X)) C &*(TIM(G)).
Inthegeneral case(i.e., G not necessarily o-compact), let G, be acompactly generated
opensubgroup of G. Letr: A(G) — A(G,) betherestriction map andlett: A(G,) — A(G)
be the extension map defined by tv =V, where V= v on G, and 0 outside G,. Then
rot = ida,), tisanisometry and ||r|| < 1 (seeEymard[5]). Therefore, r* isisometricand
t* is onto. Granirer showed that r**(TIM(G)) = TIM(G.) and t**(TIM(Gs)) = TIM(G).
(see[7, pp. 118-119]). Notethat now G, isalso hon-metrizableand b(G.) = b(G). Welet
Ko:1°(X) — VN(G,) and 7.: VN(G,) — 1°°(X) be the mappings given in the previous
paragraph. Definek = r* o k, and m = 7, o t*. Then k and 7 satisfy the requirements.
The proof is completed. ]

REMARK 5.2. (i) The existence of x and the injectivity of [°°(X) (for the definition,
see Section 2) guarantee the existence of a bounded linear mapping ¢ of VN(G) onto
[°°(X) with 0 o k = id~(x). But, it is very difficult to see whether such ¢ is positive and
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satisfies o (F (X)) C TIM(G). Therefore, we have to explicitly construct the mapping
m which possessesthe desired properties.

(i) It is worthwhile to point out that the inclusion x[I>°(X)] C UCB(G) is actually
true when G is non-metrizable. We need thisfact later on. Infact, if G is o-compact, then
SUPP[ o<y F(@)Qq] € Ny for all f € 1°°(X), where Ny is the same compact subgroup of
G asin Lemma 4.1, and hence x[I>°(X)] C UCB(G). Generally, let G, be a compactly
generated open subgroup of G and let r: A(G) — A(G.) be the restriction map. Granirer
showed that r*[UCB(é;)] C UCB(G) (see[8, p. 379]). From the proof of Theorem 5.1,
now we also have x[1°(X)] € UCB(G).

Before we continue any further investigation on properties of the linear isometry &,
we first present several interesting consequencesof Theorem 5.1.

COROLLARY 5.3. Let q be a nondisrirete chally compact group. Then the quotient
Banach spaces VN(G) /F(G) and UCB(G) / F(G) N UCB(G) have|*(X) as a quotient.

PROCF. Let 7 bethe linear mapping of VN(G) onto I1°°(X) asin Theorem 5.1. From
the proof of Theorem 5.1, we can see that 7[Fo(G)] C co(X). Hence, 7[F(G)] C c(X),
since F(G) = Cl @ Fo(G) and (1) = 1. Therefore, VN(G)/F(G) has I°(X)/c(X) as
a quotient. Lemma 3.2 combined with the injectivity of |°°(X) yields that the quotient
Banach space VN(G)/F(G) has1*(X) asaquotient.

When G is metrizable, the fact that UCB(G)/F(G) N UCB(G) has 1> as a quotient
followsfrom Granirer [13, Corollary 7]. If Gisnon-metrizable, then x[1°°(X)] C UCB(G)
(by Remark 5.2(ii)). ThusI>(X) = wor[1*°(X)] C 7[UCB(G)], i.e., f[UCB(G)] = I*(X).
So UCB(G) / F(G)N UCB(G) has 1°°(X) / ¢(X) as a quotient. Consequently, the quotient
Banach space UCB(G) / F(G) NUCB(G) has|>(X) asa quotient. "

COROLLARY 5.4. Let G beanon-metrizablelocally compact group. Thenthe quotient
Banach space UCB(G) / C;(G) contains an isometric copy of [°°(X).

PROOF. We may assumethat G is o-compact.

Let (No)a<us (Qu)a<y @nd (Ul,);.« bethe sameasin Section 4. Let x: I°°(X)—>VN(G)
bethelinear isometry givenby r(f) = Tu<, f(@)Qq. By Remark 5.2(ii), x(f) € UCB(G)
for al f € I°°(X). Define the linear mapping L:1°(X) — UCB(é)/C’;(G) by L(f) =
k() +C5(G). Then |[L()|| < [|x(F)]| = || f[|. On the other hand, for each 3 < ,

f(8) = (3 f(0)Qq-u}). forallj.

a<p

According to Remark 4.2(b), we may assume that A(N;) = 0, where X\ is the left Haar
measure of G. If p € LY(G), for any fixed 3 < p,

o ul = | 0o < [ 100l o

Thenlim; |(¢. ul)| < lim; Iy le(¥)] dx = 0, since lim; A(NsU; ™) = A(Ng) < A(Ny) =
0. Therefore,

[H(A] = iml{ 3 1(@)Qu + o))
a<p
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< |3 f(@)Qu + ]

a<p
= [lk(f) + ol forp € LYG). B < p.

Consequently, || f[| < [|x(f)+ || foral ¢ € LY(G),i.e, || ]| < [lk(f)+C(G)|| = [IL(F)]].
It follows that L:1°(X) — UCB(G)/C;(G) is alinear isometry. "

COROLLARY 5.5. Let G beanon-metrizablelocally compact group. Thenthe quotient
Banach space M (&) / C/(G) contains an isometric copy of s(X), where s(X) is the
subspace of [°°(X) as defined in Section 3.

In particular, M (G) /C;(G) is not norm separable and contains an isometric copy
of c.

PROOF. We may assumethat G is o-compact.

Let (Po)o<p @nd (Qu)oa<, bethesameasin Section 4. If E C Xisaninterval andf = 1,
by Lemma4.4, ¥, f(@)Qq isof theform Py — Ps or | — P for some0 < g <v < p.
Thens,<, f(0)Q, € M (G) sinceP, € M(G) for each ar. Hence, Sy, f(0)Q. € M (G)
for al f e s(X) by the definition of s(X). Let K:s(X) — M (G) /C,(G) bethe restriction
to sQ() of the linear isometry in Corollary 5.4. Then K is alinear isometry of s(X) into
M (G)/C;(G). n

It isnot hard to see that there exist 2% many infinite subsetsl, of N,y € I, || = 2%,
such that I, N 1 isfinite if v # 7. This argument remains true for any uncountable
initial ordinal 1 if the generalized continuum hypothesis is assumed. More precisely, if
pisaninitial ordinal with || >R and X = {a ; a < p}, there exist 2 many subsets
A, of X, w e Q,|Q| = 2%, suchthat |A,| = [X| and |A, NA,| < [X|if w # o/ (see[2,
pp. 19, 288]). Now each A, and X are cofinal because |A,| = |X| = |p| and p isaninitial
ordinal. Following an argument of Chou [1, p. 218], we can show that TIM(G) admits
many extreme points by using the linear isometry  in Theorem 5.1.

COROLLARY 5.6.. Let G be a non-metrizable locally compact group. Then TI M(é)
contains at least 2°(4) many extreme points if the generalized continuum hypothesis is
assumed.

Proor. We may assumethat G is o-compact. Let (Qy)a<, and (u);,)j,a be the same
as in Section 4. For each w € Q, let P, = Yoen, Qo= #(1a))) and let M, = {m €
TIM(G) ; m(P,) = 1}.

It is easy to see that M, is w*-compact and convex. M,, is nonempty since each
w*-cluster point of (U(jx)je‘].o(eAﬂ belongsto M,,. If w # «/, then |A, N A,| < |X| and
hence, by the Konig's inequality, thereisan o < p suchthat A, N A, C [0, ap). Thus
Saeamn, Qo < Tacay Qu = Po, (Dy Lemmad.4). For eachm € TIM(G),

0<(m 3 Q) <(MPy,)=Ay(€)=0.
a€A,NA
i.e, (M Ygearn, Qu) = 0. Therefore, M, "M,y =D if w # /.

By Krein-Milman theorem, each M., contains an extreme point. But extreme points
of M,, are also extreme in TIM(G). It follows that TIM(G) has at least 2| = 2°©) many
extreme points. n
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REMARK 5.7. Chou showed the above corollary for metrizable nondiscrete locally
compact groups without assuming the continuum hypothesis.

Now, we go back to the linear isometry . In order to establish certain isometric
relations between quotient spaces of VN(G) (or UCB(G)) and I°°(X), a more precise
guantitative understanding on x is desired.

LEMMA 5.8. Let G be a o-compact non-metrizable locally compact group and let
r:1°(X) — VN(G) be the same linear isometry as in Theorem 5.1. Then, for any
f e 1°(X),

(i) [lx(f) +Fo(G)]| = [Ix(f) +Fo(G) NUCB(G)|| = || f +co(X)]| ;
(i) () +F@G)| = [|x(f) + F(G) NUCB(G)|| = [If +c(X)||.
PROOF. Letf € 1°(X). If h € co(X), then k(h) € Fo(G) N UCB(G) (by Lemma 4.5
and Remark 5.2(ii)). Since x is an isometry,
[f+h] = [[&(f +h)|| = [lx(f) +rN)]
> ||k (f) + Fo(G) NUCB@G)| > ||a(f) + Fo(G)]|-
Therefore, [[f +co(X)|| > [|x(f) + Fo(G) NUCB(G)|| > ||x(f) + Fo(G)].
Conversely, let a = lim,, sup| f(a)|. Then there exists a subnet ()i of (a)a<, SUCh
thata = lim; | f(cs)|. Let (u});.« bethe samenetin Py(G) asin Section4. Letm € VN(G)*

be a w*-cluster point of (ul,);i. Thenm € TIM(G) (since (u(j,,i)j,i is also topologically
convergent to invariance by Lemma 4.3) and

[(m a(D)] = lim](x(). w, )]
= lim| 3 f(e)Qu. U )|

a<p
= lim [f(es)| = @
|

Thus, for any T € Fo(G),
[£(F) + Tl = [(m. s (f) + T)| = [(m, k()] = a.

But, by the definition of a, for any e > 0, thereexistsan o < p suchthat | ()| < a+e
foral ap < o < p. Leth = —f1p o). Then h € cp(X) and f +h = fl,,). So
| f +h|| <a+e. Therefore,

k() + T Za=[[f+h] —e=[[f+cX)] e

Sincee > 0and T € Fo(G) are arbitrary, we get that || f + co(X)|| < ||x(f) + Fo(G)].
Therefore, (i) holds.
Similarly, we have || f + c(X)|| > ||x(f) + F(G) N UCB(G)|| > ||x(f) + F(G)|.

https://doi.org/10.4153/CJM-1997-055-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-055-5

THE VON NEUMANN ALGEBRA OF A LOCALLY COMPACT GROUP 1133

Let T € F(G). Then there exists a constant a such that T € al + Fo(G). Notice that
x(1) =1 (Lemma4.4). According to the above proof, we have

[If +c(X)|| = ||f +CL+co(X)|l
< JI(f +al) + co(X)|
= ||x(f +al) + Fo(G)|
= ||k(f) +al +Fo(G)]|
< [lw(F) +T].

It follows that || f +c(X)|| < ||x(f) + F(G)]|. The proof is completed. "

Let G, be an open subgroup of G and let r: A(G) — A(G,) be the restriction map.
Thenr isonto and r* isisometric (see Eymard [5]). Granirer showed that r*[UCB(é\o)] C
UCB(G) and r*[TIM(G)] = TIM(G.) (see [8, p. 379]). Therefore, r*(Fo(G.)) C
Fo(G), I*[Fo(G-) NUCB(G.)] C Fo(G) NUCB(G), r*(F(G.)) C F(G), and r*[F(G.) N
UCB(G.)] C F(G)NUCB(G). Furthermore, we can show that r* induces|linear isometries
on quotient spaces.

LEMMA 5.9. (i)A LetT e VN(GAO). Then
@ [[r(M+Fo(G)l| = T +Fo(Go)l[;
() [rM+F@G) =[T+FG)|.
(i) LetT € UCB(G.). Then - N
@ [r*(T) +Fo(G) NUCB(G)|| = || T +Fo(G.) NUCB(G.)|[;
(b) ||Ir*(T) + F(G) NUCB(G)|| = ||T + F(G.) N UCB(G.)||.

PrROOF. We only give aproof of (i). (ii) can be proved analogously.
Let T € VN(G,). If Se Fo(Gs), thenr*(S) € Fo(G). Thus,

IT+S| = [F*(T+9) = (M) +r (S
> ||r(T) + Fo(G)]|.

Therefore, || T + Fo(G.)|| > ||r*(T) + Fo(G)]|.
Conversely, let (u;) beanetin P1(G) whichistopologically convergent to invariance.
Let T1 € Fo(G). By Chou [1, Theorem 4.4], lim; u; - Ty = 0 in norm. Then we have

I (T) + Taf| = limsup|ju; - r*(T) + ui - T4

limsup||u; - (T

limsup |r[(ru) - T]]|

Iiimsup||(rui)~T||.

For eachi, (ru;) - T — T € Fo(G.). So,

IT+Fo(Go)ll < [IT+(rw) - T—T|
= ||(ru) - T|| foralli.
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Therefore,
IT+Fo(Ge)|| < limsupl|(ru) - TI| < [[r*(T) + T4|

for al T; € Fo(G). Consequently,
I T +Fo(Go)l| < [Ir*(T) + Fo(G)]I-

Therefore, ||r*(T) + Fo(G)|| = ||T + Fo(G.)||, i.e., (a) holds.

Similarly, we have||T + F(G.)|| > ||r*(T) + F(G)|.

Let T, € F(G). Then T, — al € Fo(G) for some constant a. Notice that r*(l.) = I,
where |, istheidentity in VN(G,). By the above proved equality, we have

[r*(T) + T2 = [|r*(T +al.) + (T, — al)
> ||r*(T+an)+Fo(G)||
= ||(T +al.) + Fo(Go)]|
> [|IT+F@G)-

It follows that ||r*(T) + F(G)|| > || T + F(G.)||. This concludes the proof. "
We are now ready to give one of the main resultsin this section.

THEOREM 5.10. Let G be a non-metrizable locally compact group. Then

(a) thequotient BanachspacesVN(G)/Fo(G) and UCB(G) / Fo(G)NUCB(G) contain
an isometric copy of 1°°(X) / co(X);

(b) the quotient Banach spaces VN(G) / F(G) and UCB(G) / F(G) N UCB(G) contain
an isometric copy of 1°°(X) / ¢(X).

PROCF. If Giso-compact, Lemma5.8implies(a) and (b).
Generally, let G, be a compactly generated open subgroup of G. Then G, is aso
non-metrizable and b(G.) = b(G). Now (a) and (b) follow from Lemmas5.8and5.9. =

6. Isomorphism and homomorphism results and some remarks. Let G be a
nondiscrete locally compact group. Let ¢ be the initial ordinal with |u| = b(G) and let
X={a; aisanordinal and o < p}. Combining the embedding resultsin Theorem 5.10
and Lemma 3.2, we have

THEOREM 6.1. Let G be a non-metrizable locally compact group. Then
() thequotient Banach spacesVN(G) /Fo(G) and UCB(G) / Fo(G)NUCB(G) contain
an isometric copy of 1°°(X);
(b) the quotient Banach spaces VN(G) /F(G) and UCB(G) /F(G) N UCB(G) contain
an isomor phic copy of 1°°(X).

REMARK 6.2. Among other results of [13] on PM,(G), the dual Banach space of
the Figa-Talamanca-Gaudry-Herz algebra Ay(G) of G (1 < p < oo and Ax(G) = A(G)),
Granirer [13, Corollary 7] impliesthat UCB(G) / F(G)NUCB(G) has|™ asaquotientif G
ismetrizable nondiscrete. A result of Chou[1, Theorem 3.3] yieldsthat VN(G) / F(G) has
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[>° asaquotient when G is metrizable nondiscrete. Here, in fact, Theorem 6.1 generalizes
their results to non-metrizable groups and the conclusions are also strictly stronger.
We know that

C:(G) C M(G) C W(G) C F(G). andM (G) C UCB(G).

Theseinclusions and Corollary 5.3 lead to the following homomorphism results.

THEOREM 6.3. Let G be a nondiscrete locally compact group. Then
(i) the quotient Banach spaces VN(G)/W(G), VN(G)/M (G), and VN(G)/C%(G)
have [*°(X) as a quotient;
(i) the quotient Banach spaces UCB(G)/W(G) N UCB(G), UCB(G)/M (G), and
UCB(G)/C;(G) havel*(X) asa quotient.

COROLLARY 6.4. Let G be an amenable nondiscrete locally compact group. Then
the quotient Banach space UCB(G) /W(G) has|>°(X) as a quotient.

Proor. W(G) C UCB(G) when G is amenable (see[8, Proposition 1]). .

Recall that, for a Banach space Y, D(Y) denotes the density character of V, i.e., the
smallest cardinality suchthat there existsanorm densesubset of Y havingthat cardinality.
It is known that D(I1°(X)) = 2! for any infinite set X. Also, if Y has Z as a quotient,
then D(Y) > D(Z). Therefore, by Corollary 5.3, we have the following.

COROLLARY 6.5. Let G be a nondiscrete locally compact group. Then
(i) DIVN(G)/F(G)] > 2°9;
(ii) D[UCB(G)/F(G) NUCB(G)] > 2%©).

Let u € P1(G) and let
ut={T €VN(G);u-T=0}

If T € ul and m e TIM(G), then m(T) = m(u - T) = 0. Hence, u- C Fo(G). The format
of the following corollary is dueto Granirer.

COROLLARY 6.6. Let G be a nondiscretelocally compact group. Let u € P1(G) and
let Y be a subspace of VN(G) such that UCB(G) is contained in the norm closure of
W(G) + Y + ut. Then D(Y) > 20©),

PROOF. Let Z be the norm closure of F(G) + Y in VN(G). Then UCB(G) C Z since
W(G) + ut C F(G).

Let Y, be a dense subset of Y such that |Y,| = D(Y) and let {ui}ic; € UCB(G)
be such that {u; + F(G) N UCB(G)}i« is densein UCB(G)/F(G) NUCB(G) and 1| =
D[UCB(G)/F(G) N UCB(G)]. For eachi € I, since u; € Z, there exist sequences ( f"),
in F(G) and (y"), in Y, such that

1
lui — (f"+yM)| < ~one N.
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Ifi,j €landi#], thenu — u & F(G) and hence
Ui —u) = (" = £ > JI(ui —u) + F(G)| >0. foralneN.

Therefore, the mapping from I into Y2°, given by i — (yM)y is one-to-one. So |I| <
Y¥e| = D(Yy%. But |I| > 2%® (Corollary 6.5) and D(Y) > X, ({8, Theorem 12]).
Consequently, D(Y) = D(Y)* > 2X©), .

REMARK 6.7. (i) Sincel*°(X) contains an isometric copy of |1*°, Corollary 5.3, 5.4,
Theorem 6.1, 6.3, and Corollary 6.4 remain true if 1°°(X) is replaced by 1*°.

(i) We showed in [17] that both UCB(G) /F(G) N UCB(G) and VN(G) /F(G) have
the density character greater than b(G) if G is nondiscrete (see [17, Corollary 6.2]).
Corollary 6.5 improves the estimate on the density characters of these two quotient
spaces.

(ili) Under the same assumptions of Corollary 6.6, Granirer showed that Y is not
norm separable if G is nondiscrete (see [8, Theorem 12]). We improved this in [18,
Theorem5.4.3]: D(Y) > b(G) if G isnondiscrete. The conclusionis strengthened further
by Corollary 6.6.

(iv) The cardinality estimate in Corollary 6.5 and 6.6 cannot be improved sinceif G
isnondiscrete and if d(G) < b(G) (e.g., if G is nondiscrete and o-compact) then VN(G)
isisometric to a subspace of 1°°(X), where d(G) is the smallest cardinality of a covering
of G by compact sets.

Finally, we want to extend the results obtained so far to spaces of operatorsin VN(G)
with small support. First, we need the following preparations.

DEFINITION 6.8. Let X > 0 be a cardinal. A nonempty subset B of G is called a
Gy-set if Bisan intersection of ) many open subsets of G.

If Y isaclosed subspace of VN(G) and E is a closed subset of G, we denote by Yg the
space of all operatorsin Y with support contained in E.

Let G be a o-compact non-metrizable locally compact group and let (Ny)o<, and
(Qu)a<, be the same nets asin Section 4. Let v be an initial ordinal with v < p. Then
vrta<pforala<pandv+oa=v+gifandonly if a« = 3 (see[26]). For o < p,
let Q, = Qu+o- Then (Q,)a<, is also an orthogonal net of projections in VN(G) with
suppQ., € N, for al o < p. We point out that Lemma 4.4 and 4.5 remain true if
(Qu)a<y isreplaced by (Q/,)a<, and parts (iii) and (iv) of Lemma4.4 are replaced by the
following (iii)’ and (iv)’, respectively:

(il)) Ypca Qs =Prao — P, foral 0 < a <y,
(V) TucuQ,=1—P,.

Let E C G beaclosed set which contains a Gy-set Bwith R < b(G) and e € B. Since
b(G) > R, we may assumethat X isinfinite. If v istheinitial ordinal with || =X, then,
from the proof of Lemma 4.1 (see [17]), we see that the net (N, )o<, Can be chosen such
that N, C B C E. Therefore, supp[T o<, f(@)Q.] C E, i.e,, Soey f(2)Q, € UCB(G)e
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foral f € 1°°(X). If we define
k()= > f(a)Q;. f € 17°(X),

a<p

7M@) = (M +a), TeVN@G).acX

then x’ isalso alinear isometry of 1°°(X) into VN(G) and 7’ is a bounded linear mapping
of VN(G) onto1*°(X). Also, noticethat P, € Fo(é). Examining the proofsof the previous
results on quotient spaces, it is seen that all the subspaces Y of VN(G) there (including
C:(G), M (G), W(G), Fo(G), F(G), UCB(G), and VN(G)) can be replaced by Yg if Gis
anon-metrizable locally compact group.

Note that if G is metrizable, then any Gy-set (R < b(G)) is openin G and hence E
contains a Gy-set if and only if int(E) # (), where int(E) denotes the interior of E. A
particular case of Granirer [13, Corollary 7] implies that UCB(G)e / [F(G)e N UCB(G)e]
and VN(G)E/F(G)E havel> asaquotient if G is metrizable nondiscreteand e € int(E),
i.e., in this case, Corollary 5.3 also holds if VN(G), UCB(G), and F(G) are replaced by
VN(G)g, UCB(G)g, and F(G)e, respectively.

Asaconseguenceof the above discussion on non-metrizable groups, combining with
Granirer’s result, we conclude the following.

THEOREM 6.9. Let E bea closed subset of G which containsa Gy-set Bwith R < b(G)
and e € B. Then Theorem5.10, 6.1, 6.3, Corollary 5.3, 5.4, 5.5, 6.4, and 6.5 remain true
if all the subspacesY of VN(G) there arereplaced by Ye.

For any fixedx € G, let Ly betheleft translation on A(G) by X (i.e., u —y U, u € A(G)).
Then L} is alinear isometry of VN(G) onto itself. It can be shown that L}(Yg) = Y.,
where Y = C(G), M (G), W(G), or UCB(G). Therefore, for these spaces, the restriction
e € B in the above theorem can be released.

COROLLARY 6.10. Let E be a closed subset of G containing a Gy-set in G with
R < b(G). Then Theorem 6.3, Corollary 5.4, 5.5, and 6.4 are true if all the subspacesY
of VN(G) there are replaced by Yg.

REMARK 6.11. Granirer in [12] and [13] investigated operatorsin PM(G) (1 < p <
00) with thin support. In particular, [13, Corollary 6 and 7] imply that VN(G)E/F(G)E
and UCB(G)e /[F(G)e N UCB(G)g] havel™ asaquotient if E isfirst countable at e and
one of the following two conditionsis satisfied:

(1) R (or T) isaclosed subgroup of G, S C R (or T) is a symmetric set such that
ecaSh C Eforsomea, b € G;

(2) e € intaup(E) for somea, b € G and some nondiscrete subgroup H of G.

Notice that if G is non-metrizable and E is a set asin Theorem 6.9, then E is not first
countable at e but it satisfies (2). In fact, let v betheinitial ordinal with |v| =X and G, a
compactly generated open subgroup of G. Then a non-metrizable subgroup N, of G, (as
inLemma4.1) canbechosensuchthate € N, C B C E. Therefore, Theorem 6.9 extends
Granirer’s result to non-metrizable E with 1*° replaced by 1°°(X) and condition (2) by
e € B C E for some Gy-set B with X < b(G).

https://doi.org/10.4153/CJM-1997-055-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-055-5

1138 ZHIGUO HU

10.

12.
13.
14.
15.
16.
17.

18.
10.

20.
21
. G. G. Lorentz, A contribution to the theory of divergent series. Acta Math. 80(1948), 167—-190.
23.

24.
25.

26.

27.
28.

REFERENCES

. C. Chou, Topological invariant means on the von Neumann algebra VN(G). Trans. Amer. Math. Soc.

273(1982), 207-229.

. W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters. Springer-Verlag, New York-Heidelberg-

Berlin, 1974.

. M. M. Day, Amenable semigroups. Illinois J. Math. 1(1957), 509-544.
. C. Dunkl and D. Ramirez, Weakly almost periodic functionals on the Fourier algebra. Trans. Amer.

Math. Soc. 185(1973), 501-514.

. P. Eymard, L’ algébre de Fourier d'un groupe locallement compact. Bull. Soc. Math. France 92(1964),

181-236.

. L. Gillman and M. Jerison, Rings Of Continuous Functions. Van Nostrand, Princeton, 1960.
. E. E. Granirer, Properties of the set of topological invariant means on P. Eymard's W*-algebra VN(G).

Indag. Math. 36(1974), 116-121.

, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any
locally compact group. Trans. Amer. Math. Soc. 189(1974), 371-382.

, Density theorems for some linear subspaces and some C*-subalgebras of VN(G). Itituto
Nazionale di Alta Mathematica, Symposia Mathematica 22(1977), 61-70.

, Geometric and topological properties of certain w* compact convex subsets of double duals of
Banach spaces, which arise from the study of invariant means. lllinois J. Math. 30(1986), 148-174.

, On some spaces of linear functionals on the algebras Ay(G) for locally compact groups. Colloag.
Math. 52(1987), 119-132.

, On convolution operatorswith small support which are far frombeing convol ution by a bounded
measure. Collog. Math. 67(1994), 33-60.

, Day points for quotients of the Fourier algebra A(G), extreme nonergodicity of their duals and
extreme non Arens regularity. lllinois J. Math. 40(1996), 402—419.

F. P. Greenleaf, Invariant Means On Topological Groups. Van Nostrand, New York, 1969.

C. Herz, Harmonic synthesis for subgroups. Annalesde I’ Institut Fourier (Grenoble) 23(1973), 91-123.
E. Hewitt and K. A. Ross, Abstract Harmonic Analysis |. Springer-Verlag, New York-Heidelberg-Berlin,
1979.

Z. Hu, Onthe set of topologically invariant means on the von Neumann algebra VN(G). lllinois J. Math.
39(1995), 463-490.

, Locally compact groupsandinvariant meanson their von Neumann algebras. Ph.D. dissertation.
A.T. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group. Trans.
Amer. Math. Soc. 251(1979), 39-59.

A. T. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally
compact group. J. Funct. Anal. 112(1993), 1-30.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. 1. Springer, 1977.

A. L. T. Paterson, Amenability. Math. Surveys Monographs 29, Amer. Math. Soc., Providence, Rhode
Island, 1988.

J. P. Pier, Amenable Locally Compact Groups. John Wiley and Sons, New York, 1984.

P. E. Renaud, Invariant means on a class of von Neumann algebras. Trans. Amer. Math. Soc. 170(1972),
285-291.

J. E. Rubin, Set Theory For The Mathematician. Holden-Day, San Francisco-Cambridge-London-
Amsterdam, 1967.

S. Sakai, C*-Algebras And W*-Algebras. Springer-Verlag, Berlin-Heidelberg-New York, 1971.

M. Takesaki, Theory Of Operator Algebras |. Springer-Verlag, New York-Heidelberg-Berlin, 1979.

Department of Mathematics and Statistics
University of Windsor
Windsor, Ontario

Canada

https://doi.org/10.4153/CJM-1997-055-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-055-5

