
1 Linear Algebra

Basic Object: Vector Spaces
Basic Map: Linear Transformations
Basic Goal: Equivalences for the Invertibility of Matrices

1.1 Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Though a bit of an exaggeration, it can be said that a mathematical problem can be
solved only if it can be reduced to a calculation in linear algebra. And a calculation
in linear algebra will reduce ultimately to the solving of a system of linear equations,
which in turn comes down to the manipulation of matrices. Throughout this text
and, more importantly, throughout mathematics, linear algebra is a key tool (or more
accurately, a collection of intertwining tools) that is critical for doing calculations.

The power of linear algebra lies not only in our ability to manipulate matrices
in order to solve systems of linear equations. The abstraction of these concrete
objects to the ideas of vector spaces and linear transformations allows us to see the
common conceptual links between many seemingly disparate subjects. (Of course,
this is the advantage of any good abstraction.) For example, the study of solutions
to linear differential equations has, in part, the same feel as trying to model the
hood of a car with cubic polynomials, since both the space of solutions to a linear
differential equation and the space of cubic polynomials that model a car hood form
vector spaces.

The key theorem of linear algebra, discussed in Section 1.6, gives many
equivalent ways of telling when a system of n linear equations in n unknowns
has a solution. Each of the equivalent conditions is important. What is remarkable
and what gives linear algebra its oomph is that they are all the same.

1.2 The Basic Vector Space Rn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The quintessential vector space is Rn, the set of all n-tuples of real numbers

{(x1, . . . ,xn) : xi ∈ Rn}.
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2 Linear Algebra

As we will see in the next section, what makes this a vector space is that we can
add together two n-tuples to get another n-tuple

(x1, . . . ,xn)+ (y1, . . . ,yn) = (x1 + y1, . . . ,xn + yn)

and that we can multiply each n-tuple by a real number λ

λ(x1, . . . ,xn) = (λx1, . . . ,λxn)

to get another n-tuple. Of course each n-tuple is usually called a vector and the real
numbers λ are called scalars. When n = 2 and when n = 3 all of this reduces to
the vectors in the plane and in space that most of us learned in high school.

The natural map from some Rn to an Rm is given by matrix multiplication. Write
a vector x ∈ Rn as a column vector:

x =

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ .

Similarly, we can write a vector in Rm as a column vector with m entries. Let A be
an m× n matrix

A =

⎛
⎜⎝

a11 a12 . . . a1n

...
...

...
...

am1 . . . . . . amn

⎞
⎟⎠ .

Then Ax is the m-tuple:

Ax =

⎛
⎜⎝

a11 a12 . . . a1n

...
...

...
...

am1 . . . . . . amn

⎞
⎟⎠
⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ =

⎛
⎜⎝

a11x1 + · · · + a1nxn

...
am1x1 + · · · + amnxn

⎞
⎟⎠ .

For any two vectors x and y in Rn and any two scalars λ and μ, we have

A(λx + μy) = λAx + μAy.

In the next section we will use the linearity of matrix multiplication to motivate the
definition for a linear transformation between vector spaces.

Now to relate all of this to the solving of a system of linear equations. Suppose
we are given numbers b1, . . . ,bm and numbers a11, . . . ,amn. Our goal is to find n

numbers x1, . . . ,xn that solve the following system of linear equations:

a11x1 + · · · + a1nxn = b1

...

am1x1 + · · · + amnxn = bm.
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1.2 The Basic Vector Space Rn 3

Calculations in linear algebra will frequently reduce to solving a system of linear
equations. When there are only a few equations, we can find the solutions by
hand, but as the number of equations increases, the calculations quickly turn from
enjoyable algebraic manipulations into nightmares of notation. These nightmarish
complications arise not from any single theoretical difficulty but instead stem solely
from trying to keep track of the many individual minor details. In other words, it is
a problem in bookkeeping.

Write

b =

⎛
⎜⎝

b1
...

bm

⎞
⎟⎠ , A =

⎛
⎜⎝

a11 a12 . . . a1n

...
...

...
...

am1 . . . . . . amn

⎞
⎟⎠

and our unknowns as

x =

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ .

Then we can rewrite our system of linear equations in the more visually appealing
form of

Ax = b.

When m > n (when there are more equations than unknowns), we expect there to
be, in general, no solutions. For example, when m = 3 and n = 2, this corresponds
geometrically to the fact that three lines in a plane will usually have no common
point of intersection. When m < n (when there are more unknowns than equations),
we expect there to be, in general, many solutions. In the case when m = 2 and
n = 3, this corresponds geometrically to the fact that two planes in space will
usually intersect in an entire line. Much of the machinery of linear algebra deals
with the remaining case when m = n.

Thus we want to find the n× 1 column vector x that solves Ax = b, where A is
a given n× n matrix and b is a given n× 1 column vector. Suppose that the square
matrix A has an inverse matrix A−1 (which means that A−1 is also n× n and more
importantly that A−1A = I , with I the identity matrix). Then our solution will be

x = A−1b

since

Ax = A(A−1b) = Ib = b.

Thus solving our system of linear equations comes down to understanding when the
n×n matrix A has an inverse. (If an inverse matrix exists, then there are algorithms
for its calculation.)
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4 Linear Algebra

The key theorem of linear algebra, stated in Section 1.6, is in essence a list of
many equivalences for when an n× n matrix has an inverse. It is thus essential to
understanding when a system of linear equations can be solved.

1.3 Vector Spaces and Linear Transformations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The abstract approach to studying systems of linear equations starts with the notion
of a vector space.

Definition 1.3.1 A set V is a vector space over the real numbers1 R if there are
maps:

1. R×V → V , denoted by a · v or av for all real numbers a and elements v in V ,
2. V × V → V , denoted by v+w for all elements v and w in the vector space V ,

with the following properties.

(a) There is an element 0, in V such that 0+ v = v for all v ∈ V .
(b) For each v ∈ V , there is an element (−v) ∈ V with v + (−v) = 0.
(c) For all v,w ∈ V , v + w = w + v.
(d) For all a ∈ R and for all v,w ∈ V , we have that a(v + w) = av + aw.
(e) For all a,b ∈ R and all v ∈ V , a(bv) = (a · b)v.
(f) For all a,b ∈ R and all v ∈ V , (a + b)v = av + bv.
(g) For all v ∈ V , 1 · v = v.

As a matter of notation, and to agree with common usage, the elements of a vector
space are called vectors and the elements of R (or whatever field is being used) are
called scalars. Note that the space Rn given in the last section certainly satisfies
these conditions.

The natural map between vector spaces is that of a linear transformation.

Definition 1.3.2 A linear transformation T : V → W is a function from a vector
space V to a vector space W such that for any real numbers a1 and a2 and any
vectors v1 and v2 in V , we have

T (a1v1 + a2v2) = a1T (v1)+ a2T (v2).

Matrix multiplication from an Rn to an Rm gives an example of a linear
transformation.

Definition 1.3.3 A subset U of a vector space V is a subspace of V if U is itself
a vector space.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 The real numbers can be replaced by the complex numbers and in fact by any field (which will be defined in

Chapter 11 on algebra).
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1.3 Vector Spaces and Linear Transformations 5

In practice, it is usually easy to see if a subset of a vector space is in fact a
subspace, by the following proposition, whose proof is left to the reader.

Proposition 1.3.4 A subset U of a vector space V is a subspace of V if U is closed
under addition and scalar multiplication.

Given a linear transformation T : V → W , there are naturally occurring
subspaces of both V and W .

Definition 1.3.5 If T : V → W is a linear transformation, then the kernel of T is:

ker(T ) = {v ∈ V : T (v) = 0}

and the image of T is

Im(T ) = {w ∈ W : there exists a v ∈ V with T (v) = w}.

The kernel is a subspace of V , since if v1 and v2 are two vectors in the kernel
and if a and b are any two real numbers, then

T (av1 + bv2) = aT (v1)+ bT (v2)

= a · 0+ b · 0
= 0.

In a similar way we can show that the image of T is a subspace of W , which we
leave for one of the exercises.

If the only vector spaces that ever occurred were column vectors in Rn, then even
this mild level of abstraction would be silly. This is not the case. Here we look at
only one example. Let Ck[0,1] be the set of all real-valued functions with domain
the unit interval [0,1]:

f : [0,1] → R

such that the kth derivative of f exists and is continuous. Since the sum of any
two such functions and a multiple of any such function by a scalar will still be in
Ck[0,1], we have a vector space. Though we will officially define dimension in
the next section, Ck[0,1] will be infinite dimensional (and thus definitely not some
Rn). We can view the derivative as a linear transformation from Ck[0,1] to those
functions with one less derivative, Ck−1[0,1]:

d

dx
: Ck[0,1] → Ck−1[0,1].

The kernel of d
dx

consists of those functions with df
dx
= 0, namely constant functions.
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6 Linear Algebra

Now consider the differential equation

d2f

dx2
+ 3

df

dx
+ 2f = 0.

Let T be the linear transformation:

T = d2

dx2
+ 3

d

dx
+ 2I : C2[0,1] → C0[0,1].

The problem of finding a solution f (x) to the original differential equation can now
be translated to finding an element of the kernel of T . This suggests the possibility
(which indeed is true) that the language of linear algebra can be used to understand
solutions to (linear) differential equations.

1.4 Bases, Dimension, and Linear Transformations as Matrices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our next goal is to define the dimension of a vector space.

Definition 1.4.1 A set of vectors (v1, . . . ,vn) form a basis for the vector space
V if given any vector v in V , there are unique scalars a1, . . . ,an ∈R with
v = a1v1 + · · · + anvn.

Definition 1.4.2 The dimension of a vector space V , denoted by dim(V ), is the
number of elements in a basis.

As it is far from obvious that the number of elements in a basis will always be
the same, no matter which basis is chosen, in order to make the definition of the
dimension of a vector space well defined we need the following theorem (which
we will not prove).

Theorem 1.4.3 All bases of a vector space V have the same number of elements.

For Rn, the usual basis is{
(1,0, . . . ,0),(0,1,0, . . . ,0), . . . ,(0, . . . ,0,1)

}
.

Thus Rn is n-dimensional. Of course if this were not true, the above definition of
dimension would be wrong and we would need another. This is an example of the
principle mentioned in the introduction. We have a good intuitive understanding of
what dimension should mean for certain specific examples: a line needs to be one
dimensional, a plane two dimensional and space three dimensional. We then come
up with a sharp definition. If this definition gives the “correct” answer for our three
already understood examples, we are somewhat confident that the definition has
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1.4 Bases, Dimension, and Linear Transformations 7

indeed captured what is meant by, in this case, dimension. Then we can apply the
definition to examples where our intuitions fail.

Linked to the idea of a basis is the idea of linear independence.

Definition 1.4.4 Vectors (v1, . . . ,vn) in a vector space V are linearly independent
if whenever

a1v1 + · · · + anvn = 0,

it must be the case that the scalars a1, . . . ,an must all be zero.

Intuitively, a collection of vectors are linearly independent if they all point in
different directions. A basis consists then in a collection of linearly independent
vectors that span the vector space, where by span we mean the following.

Definition 1.4.5 A set of vectors (v1, . . . ,vn) span the vector space V if given
any vector v in V , there are scalars a1, . . . ,an ∈ R with v = a1v1 + · · · + anvn.

Our goal now is to show how all linear transformations T : V → W between
finite-dimensional spaces can be represented as matrix multiplication, provided we
fix bases for the vector spaces V and W .

First fix a basis {v1, . . . ,vn} for V and a basis {w1, . . . ,wm} for W . Before
looking at the linear transformation T , we need to show how each element of the
n-dimensional space V can be represented as a column vector in Rn and how each
element of the m-dimensional space W can be represented as a column vector ofRn.
Given any vector v in V , by the definition of basis, there are unique real numbers
a1, . . . ,an with

v = a1v1 + · · · + anvn.

We thus represent the vector v with the column vector:⎛
⎜⎝

a1
...

an

⎞
⎟⎠ .

Similarly, for any vector w in W , there are unique real numbers b1, . . . ,bm with

w = b1w1 + · · · + bmwm.

Here we represent w as the column vector⎛
⎜⎝

b1
...

bm

⎞
⎟⎠ .
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8 Linear Algebra

Note that we have established a correspondence between vectors in V and W and
column vectors Rn and Rm, respectively. More technically, we can show that V is
isomorphic to Rn (meaning that there is a one-to-one, onto linear transformation
from V to Rn and that W is isomorphic to Rm, though it must be emphasized that
the actual correspondence only exists after a basis has been chosen (which means
that while the isomorphism exists, it is not canonical; this is actually a big deal, as
in practice it is unfortunately often the case that no basis is given to us).

We now want to represent a linear transformation T : V → W as an m×n matrix
A. For each basis vector vi in the vector space V , T (vi) will be a vector in W . Thus
there will exist real numbers a1i, . . . ,ami such that

T (vi) = a1iw1 + · · · + amiwm.

We want to see that the linear transformation T will correspond to the m×n matrix

A =

⎛
⎜⎝

a11 a12 . . . a1n

...
...

...
...

am1 . . . . . . amn

⎞
⎟⎠ .

Given any vector v in V , with v = a1v1 + · · · + anvn, we have

T (v) = T (a1v1 + · · · + anvn)

= a1T (v1)+ · · · + anT (vn)

= a1(a11w1 + · · · + am1wm)+ · · ·
+ an(a1nw1 + · · · + amnwm).

But under the correspondences of the vector spaces with the various column spaces,
this can be seen to correspond to the matrix multiplication of A times the column
vector corresponding to the vector v:

⎛
⎜⎝

a11 a12 . . . a1n

...
...

...
...

am1 . . . . . . amn

⎞
⎟⎠
⎛
⎜⎝

a1
...

an

⎞
⎟⎠ =

⎛
⎜⎝

b1
...

bm

⎞
⎟⎠ .

Note that if T : V → V is a linear transformation from a vector space to itself, then
the corresponding matrix will be n× n, a square matrix.

Given different bases for the vector spaces V and W , the matrix associated to
the linear transformation T will change. A natural problem is to determine when
two matrices actually represent the same linear transformation, but under different
bases. This will be the goal of Section 1.7.
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1.5 The Determinant 9

1.5 The Determinant
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our next task is to give a definition for the determinant of a matrix. In fact, we will
give three alternative descriptions of the determinant. All three are equivalent; each
has its own advantages.

Our first method is to define the determinant of a 1× 1 matrix and then to define
recursively the determinant of an n× n matrix.

Since 1×1 matrices are just numbers, the following should not at all be surprising.

Definition 1.5.1 The determinant of a 1×1 matrix (a) is the real-valued function

det(a) = a.

This should not yet seem significant.
Before giving the definition of the determinant for a general n × n matrix, we

need a little notation. For an n× n matrix

A =

⎛
⎜⎝

a11 a12 . . . a1n

...
...

...
...

an1 . . . . . . ann

⎞
⎟⎠ ,

denote by Aij the (n−1)× (n−1) matrix obtained from A by deleting the ith row

and the j th column. For example, if A =
(

a11 a12
a21 a22

)
, then A12 = (a21). Similarly

if A =
⎛
⎝2 3 5

6 4 9
7 1 8

⎞
⎠, then A12 =

(
6 9
7 8

)
.

Since we have a definition for the determinant for 1 × 1 matrices, we will now
assume by induction that we know the determinant of any (n− 1)× (n− 1) matrix
and use this to find the determinant of an n× n matrix.

Definition 1.5.2 Let A be an n× n matrix. Then the determinant of A is

det(A) =
n∑

k=1

(−1)k+1a1k det(A1k).

Thus for A =
(

a11 a12
a21 a22

)
, we have

det(A) = a11 det(A11)− a12 det(A12) = a11a22 − a12a21,
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10 Linear Algebra

which is what most of us think of as the determinant. The determinant of our above
3× 3 matrix is:

det

⎛
⎝2 3 5

6 4 9
7 1 8

⎞
⎠ = 2 det

(
4 9
1 8

)
− 3 det

(
6 9
7 8

)
+ 5 det

(
6 4
7 1

)
.

While this definition is indeed an efficient means to describe the determinant, it
obscures most of the determinant’s uses and intuitions.

The second way we can describe the determinant has built into it the key algebraic
properties of the determinant. It highlights function-theoretic properties of the
determinant.

Denote the n × n matrix A as A = (A1, . . . ,An), where Ai denotes the ith
column:

Ai =

⎛
⎜⎜⎜⎝

a1i

a2i

...
ani

⎞
⎟⎟⎟⎠ .

Definition 1.5.3 The determinant of A is defined as the unique real-valued
function

det : Matrices → R

satisfying:
(a) det(A1, . . . ,λAk, . . . ,An) = λ det(A1, . . . ,Ak).
(b) det(A1, . . . ,Ak + λAi, . . . ,An) = det(A1, . . . ,An) for k �= i.
(c) det(Identity matrix) = 1.

Thus, treating each column vector of a matrix as a vector in Rn, the determinant
can be viewed as a special type of function from Rn×· · ·×Rn to the real numbers.

In order to be able to use this definition, we would have to prove that such
a function on the space of matrices, satisfying conditions (a) through (c), even
exists and then that it is unique. Existence can be shown by checking that our first
(inductive) definition for the determinant satisfies these conditions, though it is a
painful calculation. The proof of uniqueness can be found in almost any linear
algebra text, and comes down to using either elementary column operations or
elementary row operations.

The third definition for the determinant is the most geometric but is also the most
vague. We must think of an n×n matrix A as a linear transformation fromRn toRn.
Then A will map the unit cube in Rn to some different object (a parallelepiped).
The unit cube has, by definition, a volume of one.
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1.5 The Determinant 11

Definition 1.5.4 The determinant of the matrix A is the signed volume of the
image of the unit cube.

This is not well defined, as the very method of defining the volume of the image
has not been described. In fact, most would define the signed volume of the image to
be the number given by the determinant using one of the two earlier definitions. But
this can all be made rigorous, though at the price of losing much of the geometric
insight.

Let us look at some examples: the matrix A =
(

2 0
0 1

)
takes the unit square to

1

1

1 2

1

(
2 0
0 1

)

Since the area is doubled, we must have

det(A) = 2.

Signed volume means that if the orientations of the edges of the unit cube are
changed, then we must have a negative sign in front of the volume. For example,

consider the matrix A =
(−2 0

0 1

)
. Here the image is

1

1

−1−2

1

(−2 0
0 1

)
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12 Linear Algebra

Note that the orientations of the sides are flipped. Since the area is still doubled,
the definition will force

det(A) = −2.

To rigorously define orientation is somewhat tricky (we do it in Chapter 6), but its
meaning is straightforward.

The determinant has many algebraic properties.

Lemma 1.5.5 If A and B are n× n matrices, then

det(AB) = det(A) det(B).

This can be proven either by a long calculation or by concentrating on the
definition of the determinant as the change of volume of a unit cube.

1.6 The Key Theorem of Linear Algebra
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is the key theorem of linear algebra. (Note: we have yet to define eigenvalues
and eigenvectors, but we will in Section 1.8.)

Theorem 1.6.1 (Key Theorem) Let A be an n× n matrix. Then the following are
equivalent.

1. A is invertible.
2. det(A) �= 0.
3. ker(A) = 0.
4. If b is a column vector in Rn, there is a unique column vector x in Rn satisfying

Ax = b.
5. The columns of A are linearly independent n× 1 column vectors.
6. The rows of A are linearly independent 1× n row vectors.
7. The transpose At of A is invertible. (Here, if A = (aij ), then At = (aji)).
8. All of the eigenvalues of A are non-zero.

We can restate this theorem in terms of linear transformations.

Theorem 1.6.2 (Key Theorem) Let T : V → V be a linear transformation. Then
the following are equivalent.

1. T is invertible.
2. det(T ) �= 0, where the determinant is defined by a choice of basis on V .
3. ker(T ) = 0.
4. If b is a vector in V , there is a unique vector v in V satisfying T (v) = b.
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5. For any basis v1, . . . ,vn of V , the image vectors T (v1), . . . ,T (vn) are linearly
independent.

6. For any basis v1, . . . ,vn of V , if S denotes the transpose linear transformation
of T , then the image vectors S(v1), . . . ,S(vn) are linearly independent.

7. The transpose of T is invertible. (Here the transpose is defined by a choice of
basis on V .)

8. All of the eigenvalues of T are non-zero.

In order to make the correspondence between the two theorems clear, we must
worry about the fact that we only have definitions of the determinant and the
transpose for matrices, not for linear transformations. While we do not show it,
both notions can be extended to linear transformations, provided a basis is chosen.
But note that while the actual value det(T ) will depend on a fixed basis, the condition
that det(T ) �= 0 does not. Similar statements hold for conditions (6) and (7). A proof
is the goal of exercise 8, where you are asked to find any linear algebra book and
then fill in the proof. It is unlikely that the linear algebra book will have this result
as it is stated here. The act of translating is in fact part of the purpose of making
this an exercise.

Each of the equivalences is important. Each can be studied on its own merits. It
is remarkable that they are the same.

1.7 Similar Matrices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recall that given a basis for an n-dimensional vector space V , we can represent a
linear transformation

T : V → V

as an n×n matrix A. Unfortunately, if you choose a different basis for V , the matrix
representing the linear transformation T will be quite different from the original
matrix A. The goal of this section is to find a clean criterion for when two matrices
actually represent the same linear transformation but under a different choice of
bases.

Definition 1.7.1 Two n× n matrices A and B are similar if there is an invertible
matrix C such that

A = C−1BC.

We want to see that two matrices are similar precisely when they represent
the same linear transformation. Choose two bases for the vector space V , say
{v1, . . . ,vn} (the v basis) and {w1, . . . ,wn} (the w basis). Let A be the matrix
representing the linear transformation T for the v basis and let B be the matrix
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14 Linear Algebra

representing the linear transformation for the w basis. We want to construct the
matrix C so that A = C−1BC.

Recall that given the v basis, we can write each vector z ∈ V as an n× 1 column
vector as follows: we know that there are unique scalars a1, . . . ,an with

z = a1v1 + · · · + anvn.

We then write z, with respect to the v basis, as the column vector:⎛
⎜⎝

a1
...

an

⎞
⎟⎠ .

Similarly, there are unique scalars b1, . . . ,bn so that

z = b1w1 + · · · + bnwn,

meaning that with respect to the w basis, the vector z is the column vector:⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ .

The desired matrix C will be the matrix such that

C

⎛
⎜⎝

a1
...

an

⎞
⎟⎠ =

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ .

If C = (cij ), then the entries cij are precisely the numbers which yield:

wi = ci1v1 + · · · + cinvn.

Then, for A and B to represent the same linear transformation, we need the
diagram:

C
Rn A→ Rn

↓ ↓
Rn

→
B Rn

C

to commute, meaning that CA = BC or

A = C−1BC,

as desired.
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1.8 Eigenvalues and Eigenvectors 15

Determining when two matrices are similar is a type of result that shows up
throughout math and physics. Regularly you must choose some coordinate system
(some basis) in order to write down anything at all, but the underlying math or
physics that you are interested in is independent of the initial choice. The key
question becomes: what is preserved when the coordinate system is changed?
Similar matrices allow us to start to understand these questions.

1.8 Eigenvalues and Eigenvectors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the last section we saw that two matrices represent the same linear transformation,
under different choices of bases, precisely when they are similar. This does not tell
us, though, how to choose a basis for a vector space so that a linear transformation
has a particularly decent matrix representation. For example, the diagonal matrix

A =
⎛
⎝1 0 0

0 2 0
0 0 3

⎞
⎠

is similar to the matrix

B =
⎛
⎝−1 −2 −2

12 7 4
−9 −3 0

⎞
⎠ ,

but all recognize the simplicity of A as compared to B. (By the way, it is not obvious
that A and B are similar; I started with A, chose a non-singular matrix C and then
computed C−1AC to get B. I did not just suddenly “see” that A and B are similar.
No, I rigged it to be so.)

One of the purposes behind the following definitions for eigenvalues and
eigenvectors is to give us tools for picking out good bases. There are, though,
many other reasons to understand eigenvalues and eigenvectors.

Definition 1.8.1 Let T : V → V be a linear transformation. Then a non-zero
vector v ∈ V will be an eigenvector of T with eigenvalue λ, a scalar, if

T (v) = λv.

For an n × n matrix A, a non-zero column vector x ∈ Rn will be an eigenvector
with eigenvalue λ, a scalar, if

Ax = λx.

Geometrically, a vector v is an eigenvector of the linear transformation T with
eigenvalue λ if T stretches v by a factor of λ.
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16 Linear Algebra

For example,

(−2 −2
6 5

)(
1
−2

)
= 2

(
1
−2

)
,

and thus 2 is an eigenvalue and

(
1
−2

)
an eigenvector for the linear transformation

represented by the 2× 2 matrix

(−2 −2
6 5

)
.

Luckily there is an easy way to describe the eigenvalues of a square matrix, which
will allow us to see that the eigenvalues of a matrix are preserved under a similarity
transformation.

Proposition 1.8.2 A number λ will be an eigenvalue of a square matrix A if and
only if λ is a root of the polynomial

P(t) = det(tI − A).

The polynomial P(t) = det(tI − A) is called the characteristic polynomial of
the matrix A.

Proof: Suppose that λ is an eigenvalue of A, with eigenvector v. Then Av = λv,
or

λv − Av = 0,

where the zero on the right-hand side is the zero column vector. Then, putting in
the identity matrix I , we have

0 = λv − Av = (λI − A)v.

Thus the matrix λI − A has a non-trivial kernel, v. By the key theorem of linear
algebra, this happens precisely when

det(λI − A) = 0,

which means that λ is a root of the characteristic polynomial P(t) = det(tI −A).
Since all of these directions can be reversed, we have our theorem. �

Theorem 1.8.3 Let A and B be similar matrices. Then the characteristic
polynomial of A is equal to the characteristic polynomial of B.
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1.8 Eigenvalues and Eigenvectors 17

Proof: For A and B to be similar, there must be an invertible matrix C with
A = C−1BC. Then

det(tI − A) = det(tI − C−1BC)

= det(tC−1C − C−1BC)

= det(C−1) det(tI − B) det(C)

= det(tI − B)

using that 1 = det(C−1C) = det(C−1) det(C). �
Since the characteristic polynomials for similar matrices are the same, this means

that the eigenvalues must be the same.

Corollary 1.8.4 The eigenvalues for similar matrices are equal.

Thus to see if two matrices are similar, one can compute to see if the eigenvalues
are equal. If they are not, the matrices are not similar. Unfortunately, in general,
having equal eigenvalues does not force matrices to be similar. For example, the
matrices

A =
(

2 −7
0 2

)

and

B =
(

2 0
0 2

)

both have eigenvalue 2 with multiplicity two, but they are not similar. (This can be
shown by assuming that there is an invertible 2 × 2 matrix C with C−1AC = B

and then showing that det(C) = 0, contradicting the invertibility of C.)
Since the characteristic polynomial P(t) does not change under a similarity

transformation, the coefficients of P(t) will also not change under a similarity
transformation. But since the coefficients of P(t) will themselves be (complicated)
polynomials of the entries of the matrix A, we now have certain special polynomials
of the entries of A that are invariant under a similarity transformation. One of these
coefficients we have already seen in another guise, namely the determinant of
A, as the following theorem shows. This theorem will more importantly link the
eigenvalues of A to the determinant of A.

Theorem 1.8.5 Let λ1, . . . ,λn be the eigenvalues, counted with multiplicity, of a
matrix A. Then

det(A) = λ1 · · · λn.
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18 Linear Algebra

Before proving this theorem, we need to discuss the idea of counting eigenvalues
“with multiplicity.” The difficulty is that a polynomial can have a root that must
be counted more than once (e.g., the polynomial (x − 2)2 has the single root 2
which we want to count twice). This can happen in particular to the characteristic
polynomial. For example, consider the matrix⎛

⎝5 0 0
0 5 0
0 0 4

⎞
⎠

which has as its characteristic polynomial the cubic

(t − 5)(t − 5)(t − 4).

For the above theorem, we would list the eigenvalues as 4, 5, and 5, hence counting
the eigenvalue 5 twice.

Proof: Since the eigenvalues λ1, . . . ,λn are the (complex) roots of the character-
istic polynomial det(tI − A), we have

(t − λ1) · · · (t − λn) = det(tI − A).

Setting t = 0, we have

(−1)nλ1 · · · λn = det(−A).

In the matrix (−A), each column of A is multiplied by (−1). Using the second
definition of a determinant, we can factor out each of these (−1), to get

(−1)nλ1 · · · λn = (−1)n det(A)

and our result. �
Now finally to turn back to determining a “good” basis for representing a linear

transformation. The measure of “goodness” is how close the matrix is to being a
diagonal matrix. We will restrict ourselves to a special, but quite prevalent, class:
symmetric matrices. By symmetric, we mean that if A = (aij ), then we require
that the entry at the ith row and j th column (aij ) must equal the entry at the j th
row and the ith column (aji). Thus⎛

⎝5 3 4
3 5 2
4 2 4

⎞
⎠

is symmetric but ⎛
⎝5 2 3

6 5 3
2 18 4

⎞
⎠

is not.

https://doi.org/10.1017/9781108992879.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108992879.002


1.9 Dual Vector Spaces 19

Theorem 1.8.6 If A is a symmetric matrix, then there is a matrix B similar to A

which is not only diagonal but has the entries along the diagonal being precisely
the eigenvalues of A.

Proof: The proof basically rests on showing that the eigenvectors for A form
a basis in which A becomes our desired diagonal matrix. We will assume that
the eigenvalues for A are distinct, as technical difficulties occur when there are
eigenvalues with multiplicity.

Let v1,v2, . . . ,vn be the eigenvectors for the matrix A, with corresponding
eigenvalues λ1,λ2, . . . ,λn. Form the matrix

C = (v1,v2, . . . ,vn),

where the ith column of C is the column vector vi . We will show that the matrix
C−1AC will satisfy our theorem. Thus we want to show that C−1AC equals the
diagonal matrix

B =

⎛
⎜⎝

λ1 0 · · · 0
...

...
...

...
0 0 · · · λn

⎞
⎟⎠ .

Denote

e1 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , e2 =

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ , . . . ,en =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ .

Then the above diagonal matrix B is the unique matrix with Bei = λiei , for all i.
Our choice for the matrix C now becomes clear as we observe that for all i, Cei = vi .
Then we have

C−1ACei = C−1Avi = C−1(λivi) = λiC
−1vi = λiei,

giving us the theorem. �
This is of course not the end of the story. For non-symmetric matrices, there

are other canonical ways of finding “good” similar matrices, such as the Jordan
canonical form, the upper triangular form and rational canonical form.

1.9 Dual Vector Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It pays to study functions. In fact, functions appear at times to be more basic than
their domains. In the context of linear algebra, the natural class of functions is
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linear transformations, or linear maps from one vector space to another. Among all
real vector spaces, there is one that seems simplest, namely the one-dimensional
vector space of the real numbers R. This leads us to examine a special type of
linear transformation on a vector space, those that map the vector space to the real
numbers, the set of which we will call the dual space. Dual spaces regularly show
up in mathematics.

Let V be a vector space. The dual vector space, or dual space, is:

V ∗ = {linear maps from V to the real numbers R}
= {v∗ : V → R | v∗ is linear}.

One of the exercises is to show that the dual space V ∗ is itself a vector space.
Let T : V → W be a linear transformation. Then we can define a natural linear

transformation

T ∗ : W ∗ → V ∗

from the dual of W to the dual of V as follows. Let w∗ ∈ W ∗. Then given any
vector w in the vector space W , we know that w∗(w) will be a real number. We
need to define T ∗ so that T ∗(w∗) ∈ V ∗. Thus given any vector v ∈ V , we need
T ∗(w∗)(v) to be a real number. Simply define

T ∗(w∗)(v) = w∗(T (v)).

By the way, note that the direction of the linear transformation T : V → W is
indeed reversed to T ∗ : W ∗ → V ∗. Also by “natural” we do not mean that the map
T ∗ is “obvious” but instead that it can be uniquely associated to the original linear
transformation T .

Such a dual map shows up in many different contexts. For example, if X and Y

are topological spaces with a continuous map F : X → Y and if C(X) and C(Y )

denote the sets of continuous real-valued functions on X and Y , then here the dual
map

F ∗ : C(Y ) → C(X)

is defined by F ∗(g)(x) = g(F (x)), where g is a continuous map on Y .
Attempts to abstractly characterize all such dual maps were a major theme of

mid-twentieth-century mathematics and can be viewed as one of the beginnings of
category theory.

1.10 Books
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mathematicians have been using linear algebra since they have been doing
mathematics, but the styles, methods and terminologies have shifted. For example,
if you look in a college course catalog in 1900, or probably even 1950, there will
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be no undergraduate course called linear algebra. Instead there were courses such
as “Theory of Equations” or simply “Algebra.” As seen in one of the more popular
textbooks in the first part of the twentieth century, Maxime Bocher’s Introduction
to Higher Algebra [18], the concern was on concretely solving systems of linear
equations. The results were written in an algorithmic style. Modern-day computer
programmers usually find this style of text far easier to understand than current math
books. In the 1930s, a fundamental change in the way algebraic topics were taught
occurred with the publication of Van der Waerden’s Modern Algebra [192, 193],
which was based on lectures of Emmy Noether and Emil Artin. Here a more abstract
approach was taken. The first true modern-day linear algebra text, at least in English,
was Halmos’ Finite-Dimensional Vector Spaces [81]. Here the emphasis is on the
idea of a vector space from the very beginning. Today there are many beginning
texts. Some start with systems of linear equations and then deal with vector spaces,
others reverse the process. A long-time favorite of many is Strang’s Linear Algebra
and Its Applications [185]. As a graduate student, you should volunteer to teach or
assist teaching linear algebra as soon as possible.

Exercises

(1) Let L : V → W be a linear transformation between two vector spaces. Show that

dim(ker(L))+ dim(Im(L)) = dim(V ).

(2) Consider the set of all polynomials in one variable with real coefficients of degree
less than or equal to three.
a. Show that this set forms a vector space of dimension four.
b. Find a basis for this vector space.
c. Show that differentiating a polynomial is a linear transformation.
d. Given the basis chosen in part (b), write down the matrix representative of the

derivative.
(3) Let T : V → W be a linear transformation from a vector space V to a vector space

W . Show that the image of T

Im(T ) = {w ∈ W : there exists a v ∈ V with T (v) = w}
is a subspace of W .

(4) Let A and B be two n× n invertible matrices. Prove that

(AB)−1 = B−1A−1.

(5) Let

A =
(

2 3
3 5

)
.

Find a matrix C so that C−1AC is a diagonal matrix.
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(6) Denote the vector space of all functions

f : R→ R

which are infinitely differentiable by C∞(R). This space is called the space of
smooth functions.
a. Show that C∞(R) is infinite dimensional.
b. Show that differentiation is a linear transformation:

d

dx
: C∞(R)→ C∞(R).

c. For a real number λ, find an eigenvector for d
dx

with eigenvalue λ.
(7) Let V be a finite-dimensional vector space. Show that the dual vector space V ∗ has

the same dimension as V .
(8) Find a linear algebra text. Use it to prove the key theorem of linear algebra. Note

that this is a long exercise but is to be taken seriously.
(9) For a vector space V , show that the dual space V ∗ is also a vector space.
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