
ADDITIVE FUNCTIONALS ON Lv SPACES 
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1. Introduction. In (1) a representation theorem was proved for a class 
of additive functionals defined on the continuous real-valued functions with 
domain S = [0, 1]. The theorem was extended to the case where 5 is an 
arbitrary compact metric space in (3). Our present purpose is to consider the 
corresponding class of additive functionals defined on Lp spaces, p > 0. In (4) 
Martin and Mizel have considered functionals defined on the class of bounded 
measurable functions which, however, satisfy a certain "stochastic" condition 
which we do not require. 

In general, the class of linear functionals appears as a subclass of the class 
of additive functionals. However it has been shown by M. M. Day (2) that if 
the underlying measure space is non-atomic, then the class of non-trivial 
linear functionals defined on Lp is empty for 1 > p > 0. It follows that an 
additive functional defined on -/-/p, 1 > p > 0, is not linear. 

In §2 we state our preliminary definitions. In §3 we obtain a general repre­
sentation for an additive functional defined on LP1 p > 0, which reduces to 
the standard representation theorem for linear functionals when p > 1. The 
representation utilizes the concept of an additive transformation, which 
appears as a natural generalization of a linear transformation. In §4 we consider 
the adjoint of an additive transformation mapping Lp into Lp, p > 1. We 
recall that the adjoint of a linear transformation mapping Lv into LP1 p > 1, 
can be interpreted as a linear transformation mapping Lq into LQ, 
0 = Pi(P ~~ 1). In §4 we show that the adjoint of an additive transformation 
mapping Lv into Lp may be interpreted as a class of linear transformations 
mapping LQ into Lx. 

Our proofs utilize methods in (1) and in the standard proof for the repre­
sentation of linear functionals on Lp spaces, p > 1. 

2. Preliminaries. In general, we may consider a linear space N whose 
elements are real-valued functions defined on an underlying space S. For each 
/ G N there is defined a number 11/| | > 0 which may be regarded as a generalized 
norm. We consider a corresponding space N' and say a mapping T of N into Nf 

is an additive transformation if T satisfies the following three requirements: 
(1) Continuity. For each e > 0 and b > 0, there exists ô = ô(b, e) such that 

ll/ll < J, | | g | | < 6, and \\f-g\\<ô imply \\T(f) - T(g)\\ < e. 
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(2) Boundedness. For each b > 0, there exists B = B(b) such that | |/ | | < b 
implies 11 r t f ) | | < 3 . 

(3) Additivity. If / and g satisfy f{s)g{s) = 0, s G S, then 

nf+g) = T(f) + T(g). 
Briefly, (1) implies uniform continuity on bounded sets, (2) implies that 

bounded sets are mapped into bounded sets, and (3) implies that T is additive 
on functions with disjoint support. When N' is the set of real numbers (with 
11 T(J) 11 = | T(f) | ) we refer to T as an additive functional, which we denote by </>. 

In particular, we shall be concerned with the case when (S, 33, M) is a finite 
measure space and N = Lp = LP(S, 93, /*), p > 0, with ||/||p = {Js\f\

pdfJi}L/p. If 
1 > p > 0, then Il/Dp does not satisfy the triangle inequality and consequently 
it is not a norm. However, it does satisfy the inequality 

ll/ + ^HK2 f f[| |/llp + l|g||,L 

where q = (1 — p)/p\ hence Lp is a linear space, p > 0. 

3. Representation of additive functionals. In this section, we consider 
p > 0 and Lp = LP(S, S3, /*), where /*(S) < oo. Our representation theorem 
may be stated as follows. 

THEOREM 1. <t>is an additive functional in Lv if and only if 

0(f) =fsK(f(s),s)a(s)dix, feLpt 

where (i) K(0, s) = 0, (ii) K(x, s) is a measurable function of s for each x, (iii) 
K(x, s) is a continuous function of x for adfx — a.a. s, (iv) for each b > 0, there 
exists H = H(b) such that \x\ < b implies \K(x, s)\ < H for ad/x — a.a. s, (v) 
if Tf(s) = K(f(s), s)a(s), then T is an additive transformation from Lp into Lx. 

Condition (v) is essentially a compatibility relation between K and a. In 
general, there will be a class of as that will satisfy (v) for a given kernel K 
satisfying (i)-(iv). For example if K(x, s) = sin sx, then we may choose any 
a G Li to satisfy (v). 

LEMMA 1. For each h, — °° < h < °°, there exists a function Kh(s) which is 
a measurable function of s and is uniquely defined up to a fi-null set such that 

(1.1) K0(s) = 0 , s e 5, 

(1.2) cj>{h^B) = j B Kh(s)dn, B e S3. 

Proof. Let nh(B) = <j>(h\pB), B G 33, where ^ s denotes the characteristic 
function of the set B. Conditions ( l ) - (3) imply that nh is a signed measure of 
finite variation on S3 and nh is absolutely continuous with respect to \x. There­
fore the Radon-Nikodym theorem implies that there exists a function Kn as 
above satisfying (1.1) and (1.2). 
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We note that if <f> is linear, then ixh(B) = hin(B), B G 33; hence 
Kh(s) = hK^s), s e S. 

LEMMA 2. There exists a kernel K(x, s) and a satisfying (i)-(iv) of Theorem 1 
such that for each h, — «> < h < c° t we have 

(2.1) «(ft**) = / a K(hïB(s), s)a(s)dv, B Ç S3. 

Proof. We utilize the method of proof of (1, Lemma 11) to first show that 
i£/,(s) is continuous in h for p — a.a. s. Fix an integer n and for notational 
convenience let 

Kl(s) = J S ^ i f r ) , 1 < / < 2>. 

Let ô > 0 and set 

4 o = 0 , ^* = {£« - i ^ i > 5} - U Ai9 l<l<2\ 

23 

and ,4'* = U 4̂ ,. 

We shall show that l i m ^ , n(Aj) = 0. 
Let 

yj,i = E ( » + ( / - D/2')fci« and y i t 2 = E (n + / / 2 0 ^ | . 

It follows by our preceding notation and by (1.2) that 

23 /» 23 r% 

<t>(yj,i) = Z) I Ki-i(s)dii and 0(3^,2) = Z) I Ki(s)dn. 
1=1 •) Ai 1=1 t / Ai 

Therefore by the definition of A t it follows that 0(3^,2) — ̂ CVy.i) > fy(Aj). 
Since 3^,200 - 3 .̂1 (*) < 2~', 5 G 5, and ||;y,,<|| < ||(w + 1)^, | | , i = 1, 2, it 
follows by Condition (1) that lim^ 1 (̂3 ,̂2) — <t>(yj,i)\ = 0 and hence 
lim^oo jLiC4') = 0. Since ô > 0 was arbitrary, we have 

lim sup [Kt(s) — Kt-x(s)] = 0 for /z — a.a. 5. 

Similarly we show that 

lim inf [Kt(s) — Kt^i(s)] = 0 for y — a.a. 5. 

It follows that there exists a sequence {ht} dense in [n, n + 1] such that 

(2.2) lim Khi(s) = KhiQ(s), M - a.a. 5. 

Since 

00 

( - 0 0 , 00) = \j [Ui n + 1], 
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it follows t h a t there exists a sequence {ht} dense in (— œ , œ ) such t h a t (2.2) 
holds. 

If h = hu we set Ki(h, s) = Kh(s). Otherwise we select hf-^h and set 
Ki(h, s) = lim^^n Khi(s). Clearly Ki(h, s) is continuous in h for /x — a.a. s. 
Fur thermore an argument similar to the above shows t h a t for each h we have 
Ki(h, s) = Kh(s) for \x — a.a. 5. 

Utilizing the method of proof of (1 , Lemma 12), we can now obtain K2(h, s) 
and y* ~ /JL such t h a t 

(2.3) 4>(h+B) =fBK2(h,s)dv* 

where K2(h, s) satisfies conditions (i), (ii), and (iv) of Theorem 1. Moreover 
utilizing the previous argument we can show t h a t K2(}i, s) can be defined so 
t h a t for each h, K^Qi, s) is continuous for n* — a.a. s. We let a denote the 
R a d o n - N i k o d y m derivative dy,*/dfi. Lett ing K(h, s) = K^Qi, s), we see t ha t 
K(h, s) satisfies ( i ) - ( iv ) of Theorem 1 and (2.1). 

Note t h a t if 0 is linear, then K(x, s) = x and a(s) = Ki(s). 
For each / £ Lp we now define 0i(f) as 

(2.4) 0x(f) = jsK(f(s),s)a(s)d». 

LEMMA 3. 0x(f) = <t>(f), f Ç Lp. 

Proof. Condition (3) and (2.1) imply t ha t (2.4) holds if/ is a simple function. 
Next assume t h a t / is bounded, say \f(s)\ < b. We can obtain a sequence of 
simple functions fn such tha t \fn\ < b, limn fn(s) = f(s), and limn \\fn — f\\p = 0. 
Condition (1) implies t ha t limw0(fw) = 0(f) and (hi) implies t ha t 

lim„ K(fn(s), s)a(s) = K(f(s), s)a(s) for /x — a.a. s. 

Therefore (iv) and the Lebesgue Bounded Convergence Theorem imply t h a t 

l im n 0i ( f n ) = \imn Js K(Jn(s)1s)a(s)dfi = $K(f(s), s)a(s)dn. 

Since 0 i ( / n ) = 0(fra), it follows t h a t 0i(f) = 0(f) for bounded / . Finally 
consider / £ Lp and let 

£ = {s: K(f(s), s)a(s) > 0} and F = {s: K(f(s), s)a(s) < 0}. 

Let fn(s) =f(s) if | / (5) | < n and / n (0 ) = 0 if | / (* ) | > n. I t follows t h a t 
limn \\fn — f\\p = 0; hence Condition (1) implies t ha t l im n 0( / w ) = 0 ( f ) . Since 
/„ is bounded, 0i(fn) = 0(fw). Now let 

/n.l = ^n/ t t , and fn,2 = \pFnfn-

We have ||/W||P < \\f\\P] hence ||/n,z||P < | | / |U i = 1, 2. Therefore Condition (2) 
implies t ha t |0(f»,*)| < ^ ( | | / | | p ) , i = 1,2. Hence the following integrals are 
uniformly bounded in n: 

4>(fn.t) = js K(fnti(s), s)a(s)d/jL, i = 1,2. 
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Now we can write 

*(/;,!) = j s K(fntl(s), s)a(s)d» = JEn K(f(s), s)a(s)d» 

and therefore by the Lebesgue Monotone Convergence Theorem we have 

limn <t>(fn,i) = JE K(f(s), s)a(s)dn. 

Similarly 

limn 4>(fnt2) = fFK(f(s),s)a(s)dfx. 

Therefore 

4>(f) = limn <t>(fn) = limn{4>(fn.i) + 0(fn,2)} = faif). 

Proof of Theorem 1. Lemma 3 yields the desired representation for 0(f), 
/ G Lp. Utilizing Conditions (1) and (2) for <£, the validity of (v) follows in a 
straightforward manner. The converse follows immediately. 

4. Adjoint transformations. In this section we define the adjoint trans­
formation T* of an additive transformation T. We shall then consider a 
suitable interpretation of T* when T acts in an Lp space, p > 1. We now 
assume that N and N' are Banach spaces whose elements are real-valued 
functions defined on underlying spaces S and S' respectively. 

Definition 1. Let T be an additive transformation from N into N' and let 
X be a norm-bounded linear functional on N'. We define T*\(x) = \(T(x)), 
x £ N. 

LEMMA 4. Let T and X be as in Definition 1. Then T*\ is an additive functional 
on N. 

Proof. Immediate. 

Lemma 4 implies that in general the adjoint of an additive transformation 
maps linear functionals into additive functionals. Definition 1 reduces to the 
usual definition when T is a linear transformation. We shall now restrict our 
attention to the case p > 1 and N = N' = Lp. We consider q = p/(p — 1) 
if p > 1 and q = °° if p = 1. 

We recall that when T is a linear transformation in LPf then T* can be inter­
preted as a linear transformation in Lq such that 

(4.1) j s Tf(s)g(s)d» = f8f(s)T*g(s)d», ftLp,g£ Lq. 

If we write Tf*g(s) = f(s)T*g(s) and let S(f) denote the support of/, then 
we have 

(4.2) / « , ) Tf(s)g(s)dn = j s ( f ) Tf*g(s)dn. 

We wish to extend (4.2) to additive transformations and we proceed by a 
series of lemmas. 
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LEMMA 5. Let T be an additive transformation of Lp into Lp and let g Ç Lq. 
Then for each h, — <» < h < oo, there exists a linear transformation Th* from 
Lq into Li such that 

(5.1) j s T(h^B(s)g(s)dfx = j B Th*g(s)d», 5 e 8 . 

Remark. If T is a linear transformation, then Th* = hTi*. However, in 
general Th* ^ hTi* when T is an additive transformation. 

Proof. If we set nh{B) equal to the left side of (5.1), then fih is easily verified 
to be a signed measure of finite variation on 33 which is absolutely continuous 
with respect to ix. Therefore by the Radon-Nikodym theorem there exists a 
measurable function which we denote by Th* g satisfying (5.1). Given u, 
v 6 Lq, we then have 

(5.2) j B Th*(au + 0v)dfji = JB (aTh*u + /3Th*v)dn, B G » . 

Since B is arbitrary in (5.2), it follows that Th*(au + 0v) = aTh*u + &Th*v. 
We next show that Th* is bounded. Let g G Lqi E = {Th*g > 0}, and 
F = \Th*g < 0}. By Holder's inequality and Condition (2) on T we have 

(5.3) \fa T{WE)(s)g{s)d»\ < | l r (W,) |W|* | | , < B{\b\)\\g\\qi 

(5.4) \js T(WrHs)g(s)dp\ < \\T(Mr)\\,\\g\\< < B(\b\)\\g\\v 

where b = ||W^||P. 
I t now follows from (5.1), (5.3), and (5.4) that ||r»*g||i < 2J5(|J|)||g||f; 

hence | | r ,*| | < 2B(\b\). 

Definition 2. Let 

n 

where hi, . . . , hn are the distinct values of/ which are taken on the measurable 
sets B\, . . . , Bn respectively, and let g 6 Lq. We define T*g as 

r / g ( s ) = Ê Ms)Thi*g(s), s € 5 . 
i= l 

LEMMA 6. Let f and g be as in Definition 2. Then Tf* is a linear transformation 
from Lq into Lx such that 

Js(ç) Tf(s)g(s)dfi = Jsu) Tf*g(s)d». 

Proof. The linearity follows by Lemma 5. Utilizing Condition (3) on T and a 
similar decomposition as in the proof of Lemma 5, we obtain 1177* 11 < 2B (| |/| \P). 

LEMMA 7. Let e > 0, b > 0, and g 6 Lq. Then there exists ô > 0 such that if 
u and v are simple functions for which \\u\\p < b, \\v\\p < b, and \\u — v\\p < 5, 
then \\Tu*g — Tv*g\\i < e. 
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Proof. By Condition (1) on T, there exists ô > 0 such that \\u — v\\p < 5 
implies \\Tu- Tv\\p < e/2\\g\\t. Let E = \Tu*g - T*g > 0} and 

F= {Tu*g-T*g<0}. 

If uE = \pE u and vE = ^Ev, then ||w^||p < b, \\vE\\p < b, \\uE — vE\\p < <5. We 
then have 

JE [Tu*g - Tv*g]dn = j E [TUE*g - T,B*g]dn = JS(9) [TuE - TvB]gdn; 

hence by Holder's inequality and the preceding estimate we have 

JE [Tu*g - T*g]dv < \\TuE - TvB\\v\\g\\* < */2. 

An identical consideration of the integral over F yields the desired result. 

LEMMA 8. If fn is a Cauchy sequence of simple functions in Lp, then P/n* g is a 
Cauchy sequence in L\, g G Lq. 

Proof. By Lemma 7. 

Definition 3. Let / £ Lp and let fn be a sequence of simple functions in Lp 

such that \\fn\\p < H/IIP and limn \\fn — f\\p = 0. We define Tf*g for g 6 Lq as 
follows: 

T/*g0) = Li limn r / n *g(» . 

THEOREM 2. Le£ f ^ Lp and g (E £ff. 77&e« 7"/* iw Definition 3 is a linear 
operator from Lq into L\ such that 

js(g) Tf(s)g(s)dix = j s u ) Tf*g(s)dix. 

Proof. Definition 3 implies that Tf* is linear, and 

II7VIK 25 (|l/,||,)< 25(||/||,) 
implies that | | r /11 < 25( | | / | |p) . Now we may a.ssumeS(fn) = S(f) in Definition 
3 ; hence 

Js(/) Tfn*g(s)dv = j ' s ( g ) Tfn(s)g(s)dfx. 

It now follows by Definition 3 and an application of Holder's inequality that 
we have 

js(9) Tf(s)g(s)dfx = limn/s(„) Tfn(s)g(s)dfi} 

= l imnJ s ( /) Tfn*g(s)dix, 

= Js(f) Tf*g(s)dn, 

which is the desired result. 
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