ADDITIVE FUNCTIONALS ON L, SPACES
N. FRIEDMAN AND M. KATZ

1. Introduction. In (1) a representation theorem was proved for a class
of additive functionals defined on the continuous real-valued functions with
domain S = [0,1]. The theorem was extended to the case where S is an
arbitrary compact metric space in (3). Our present purpose is to consider the
corresponding class of additive functionals defined on L, spaces, » > 0. In (4)
Martin and Mizel have considered functionals defined on the class of bounded
measurable functions which, however, satisfy a certain ‘‘stochastic’”’ condition
which we do not require.

In general, the class of linear functionals appears as a subclass of the class
of additive functionals. However it has been shown by M. M. Day (2) that if
the underlying measure space is non-atomic, then the class of non-trivial
linear functionals defined on L, is empty for 1 > p > 0. It follows that an
additive functional defined on L,, 1 > p > 0, is not linear.

In §2 we state our preliminary definitions. In §3 we obtain a general repre-
sentation for an additive functional defined on L,, » > 0, which reduces to
the standard representation theorem for linear functionals when p > 1. The
representation utilizes the concept of an additive transformation, which
appears as a natural generalization of a linear transformation. In §4 we consider
the adjoint of an additive transformation mapping L, into L,, p > 1. We
recall that the adjoint of a linear transformation mapping L, into L,, p > 1,
can be interpreted as a linear transformation mapping L, into L,
g =p/(P — 1). In §4 we show that the adjoint of an additive transformation
mapping L, into L, may be interpreted as a class of linear transformations
mapping L, into L.

Our proofs utilize methods in (1) and in the standard proof for the repre-
sentation of linear functionals on L, spaces, p > 1.

2, Preliminaries. In general, we may consider a linear space N whose
elements are real-valued functions defined on an underlying space S. For each
f € N thereis defined a number ||f|| > 0 which may be regarded as a generalized
norm. We consider a corresponding space N’ and say a mapping T of N into N’
is an additive transformation if 1" satisfies the following three requirements:

(1) Continuaty. For each ¢ > 0 and b > 0, there exists § = §(b, ¢) such that
AL <0, [lgll < b, and [|f — gl < éimply [[7(f) — T'(9)|| < e
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(2) Boundedness. For each b > 0, there exists B = B(b) such that ||f|]| < &
implies || 7°(f)|| < B.
(8) Additivity. If f and g satisfy f(s)g(s) = 0, s € S, then

T(f+g =T + T

Briefly, (1) implies uniform continuity on bounded sets, (2) implies that
bounded sets are mapped into bounded sets, and (3) implies that 7 is additive
on functions with disjoint support. When N’ is the set of real numbers (with
TN = |T()]) we refer to T as an additive functional, which we denote by ¢.

In particular, we shall be concerned with the case when (S, B, u) is a finite
measure space and N = L, = L,(S, B, u), p > 0, with [|f]|, = {[s|f|?du} . If
1 > p > 0, then [|f||, does not satisfy the triangle inequality and consequently
it is not a norm. However, it does satisfy the inequality

IIf + el < 21l + llells],
where ¢ = (1 — p)/p; hence L, is a linear space, p > 0.

3. Representation of additive functionals. In this section, we consider
p>0and L, = L,(S, B, p), where p(S) < . Our representation theorem
may be stated as follows.

THEOREM 1. ¢ is an additive functional in L, if and only if

o(f) = [sK((s), )a(s)dy,  f€ Ly,

where (1) K(0,s) = 0, (ii) K (x, s) s a measurable function of s for each x, (iii)
K(x, s) is a continuous function of x for adu — a.a. s, (iv) for each b > 0, there
exists H = H(b) such that |x| < b implies |K (x,s)| < H for adu — a.a. s, (v)
if Tf(s) = K(f(s), s)a(s), then T is an additive transformation from L, into L.

Condition (v) is essentially a compatibility relation between K and «. In
general, there will be a class of a’s that will satisfy (v) for a given kernel K
satisfying (1)—(iv). For example if K(x, s) = sin sx, then we may choose any
a € L, to satisfy (v).

LemMA 1. For each h, — o < h < o, there exists a function K,(s) which is
a measurable function of s and is uniquely defined up to a u-null set such that

(1.1) Ko(s) =0, s €S,
(1.2) o (hys) = fB Ki(s)du, B € 8.

Proof. Let w,(B) = ¢(hyp), B € B, where ¢ denotes the characteristic
function of the set B. Conditions (1)—(3) imply that u; is a signed measure of
finite variation on B and u, is absolutely continuous with respect to u. There-
fore the Radon—Nikodym theorem implies that there exists a function K, as
above satisfying (1.1) and (1.2).
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We note that if ¢ is linear, then u;(B) = huy(B), B € B; hence
K,(s) = hK(s), s € S.

LEMMA 2. There exists a kernel K (x, s) and o satisfying (1)—(iv) of Theorem 1
such that for each h, — o < h < «, we have

(2.1) ¢(s) = [s K(ys(s), s)a(s)du, B € ®.

Proof. We utilize the method of proof of (1, Lemma 11) to first show that
K,(s) is continuous in % for u — a.a.s. Fix an integer # and for notational
convenience let

KI(S) = K,H.l/zj(S), 1 < l < 27,
Let 6 > 0 and set

-1

Ag=0, A, ={K;—K,.1>8 — U 4, 1<1<K2,
i=0

and 47= U 4.

We shall show that lim;,, u(47) = 0.
Let

27 27
Y1 = ,Z=1 (n+ (¢ —1)/2")¢s, and ;.= ;;1 (n+1/2) 4.

It follows by our preceding notation and by (1.2) that

s0m) = % [ Kan and 6000 = % [ Kol

Therefore by the definition of 4, it follows that ¢ (y,,2) — ¢(¥;,1) > du(4).
Since y;,2(s) — ¥,1(5) <27, s €S, and ||y, | < |[(» + Dy, 2=1,2, it
follows by Condition (1) that lim;|¢(y;2) — ¢(¥,.1)] = 0 and hence
lim,,, u(47) = 0. Since & > 0 was arbitrary, we have

lim sup [K,;(s) — K;-1(s)] =0 for u — a.a.s.
Similarly we show that

lim inf [K;(s) — K;-1(s)] =0 for u — a.a.s.
It follows that there exists a sequence {k;} dense in [r, n + 1] such that
(2.2) hll_gl Ky (s) = K, (), 4 — a.a.s.
Since O

©

(mw,©)=U[nn+ 1],

—
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it follows that there exists a sequence {%;} dense in (— ©, ) such that (2.2)
holds.

If h =hy we set Ki(h,s) = Ku(s). Otherwise we select k; — k and set
Ki(h,s) = limp,_ Ky, (s). Clearly K;(h, s) is continuous in % for u — a.a. s.
Furthermore an argument similar to the above shows that for each % we have
Ki(hy,s) = Ku(s) for u — a.a.s.

Utilizing the method of proof of (1, Lemma 12), we can now obtain K (k, s)
and u+ ~ u such that

(2.3) ¢ (hs) = [5 Ko(h, s)dps

where K. (%, s) satisfies conditions (i), (ii), and (iv) of Theorem 1. Moreover
utilizing the previous argument we can show that Ky(k, s) can be defined so
that for each #, Kq(h, s) is continuous for u+ — a.a.s. We let a denote the
Radon—-Nikodym derivative du«/du. Letting K(k,s) = Ka(h, s), we see that
K (h, s) satisfies (i)—(iv) of Theorem 1 and (2.1).

Note that if ¢ is linear, then K (x,s) = x and a(s) = Ki(s).

For each f € L, we now define ¢:(f) as

(2.4) ¢1(f) = [s K(F(s), s)ae(s)dn.

Lemma 3. ¢1(f) = ¢(f), f € L.

Proof. Condition (3) and (2.1) imply that (2.4) holds if f is a simple function.
Next assume that f is bounded, say |f(s)| < b. We can obtain a sequence of
simple functions f, such that |f,| < &, lim, f,(s) = f(s), and lim, ||f, — f||, = 0.
Condition (1) implies that lim, ¢(f,) = ¢(f) and (iii) implies that

lim, K (f,(s), s)a(s) = K(f(s), s)a(s) for u — a.a.s.
Therefore (iv) and the Lebesgue Bounded Convergence Theorem imply that

lim, d)l(fn) = lim, fs K(fn(s)r S)Ol(s)d/.l. = fK(f(S)y S)a(S)dy..

Since ¢1(f,) = ¢(f.), it follows that ¢:(f) = ¢(f) for bounded f. Finally
consider f € L, and let

E = {s: K(f(s),s)a(s) >0} and F = {s: K(f(s), s)a(s) < 0}.

Let f,(s) = f(s) if |[f(s)] <7 and f,(0) = 0 if |[f(s)] > n. It follows that
lim, ||f. — fll, = 0; hence Condition (1) implies that lim, ¢(f.) = ¢(f). Since
f» is bounded, ¢1(f,) = ¢(f.). Now let

A, = {s:[f6)| <n}, E,=ENA, F,=FNA,
fn.l = ¢Enfny and fn,2 = ‘l’F‘nfn-

We have ||full» < [|fllo; hence ||fa,il» < [Iflls» 2 = 1, 2. Therefore Condition (2)
implies that |¢(f,,.)] < B([|fl|s), # = 1, 2. Hence the following integrals are
uniformly bounded in #:

¢(fn,z‘) = J‘S K(fn,i(s)y S)a(S)d[.L, 1= 1,2.
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Now we can write

$(fa1) = [s K(Faa(s), $)a(s)dn = [ 5, K(f(s), )ar(s)dn

and therefore by the Lebesgue Monotone Convergence Theorem we have

lim, ¢(fp,1) = fE K (f(s), s)a(s)dp.
Similarly

lim, ¢ (fo.2) = [r K(f(s), s)a(s)dp.
Therefore

¢(f) = lim, ¢(fn) = 11mn{¢(fn,1) + ¢(fn,2)} = ¢1(f)

Proof of Theorem 1. Lemma 3 yields the desired representation for ¢(f),
f € L,. Utilizing Conditions (1) and (2) for ¢, the validity of (v) follows in a
straightforward manner. The converse follows immediately.

4. Adjoint transformations. In this section we define the adjoint trans-
formation T* of an additive transformation 7. We shall then consider a
suitable interpretation of 7* when 7" acts in an L, space, p > 1. We now
assume that N and N’ are Banach spaces whose elements are real-valued
functions defined on underlying spaces .S and S’ respectively.

Definition 1. Let T be an additive transformation from N into N’ and let
X be a norm-bounded linear functional on N’. We define 7*\(x) = N7 (x)),
x € N.

LeEMMA 4. Let T and X be as in Definition 1. Then T*\ is an additive functional
on N.

Proof. Immediate.

Lemma 4 implies that in general the adjoint of an additive transformation
maps linear functionals into additive functionals. Definition 1 reduces to the
usual definition when 7" is a linear transformation. We shall now restrict our
attention to the case p > 1 and N = N’ = L,. We consider ¢ = p/(p — 1)
ifp>land ¢ = = if p = 1.

We recall that when 7"is a linear transformation in L,, then 7* can be inter-
preted as a linear transformation in L, such that

(4.1) Js Tf(s)g(s)du = [sf(s)T*g(s)dn, [ € Ly g € L,

If we write T/*g(s) = f(s)T*g(s) and let S(f) denote the support of f, then
we have

(4.2) s Tf()g(s)an = [sin T /*¢(s)dn.

We wish to extend (4.2) to additive transformations and we proceed by a
series of lemmas.
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LEMMA 5. Let T be an additive transformation of L, into L, and let g € L,.
Then for each h, — o < h < o, there exists a linear transformation T,* from
L, into Ly such that

(5.1) [s Tyn(s)g(s)dp = [5 Th*g(s)du, B E B.

Remark. If T is a linear transformation, then T,* = AT *. However, in
general 7,* £ hT,* when T is an additive transformation.

Proof. If we set uy(B) equal to the left side of (5.1), then g, is easily verified
to be a signed measure of finite variation on B which is absolutely continuous
with respect to u. Therefore by the Radon—-Nikodym theorem there exists a
measurable function which we denote by T,* g satisfying (5.1). Given u,
v € L,, we then have

(5.2) [5 Tw*(au + Bv)du = [ (@TW*u + BTy*v)du, B € B.

Since B is arbitrary in (5.2), it follows that 73*(au + 8v) = aT*u + BT )*v.
We next show that T,* is bounded. Let g€ L, E = {T;*¢ > 0}, and
F = {T*g < 0}. By Hoélder’s inequality and Condition (2) on I" we have

(6.3) s Tpx)()g(s)dul < (ITbx)l,llglle < B(8)llglle
64) s Tr) ()e()du] < ITbe)lsllelle < B(8])]lglles

where b = || ||,
It now follows from (5.1), (5.3), and (5.4) that ||Ty*g|lx < 2B(8))|lgll.:
hence || 7%*|| < 2B(|8]).

Definition 2. Let

f= ;h’l‘l’B;

where hy, . . ., h, are the distinct values of f which are taken on the measurable
sets By, ..., B, respectively, and let g € L,. We define T /*g as

T/*g(s) = gl V. ()Th*g(s), s €S

LeEMMA 6. Let f and g be as in Definition 2. Then T /* is a linear transformation
from L, into L such that

Isw Tf(s)g(s)du = [sny T*g(s)dn.

Proof. The linearity follows by Lemma 5. Utilizing Condition (3) on 7" and a
similar decomposition as in the proof of Lemma 5, we obtain || 7" *|| < 2B (||f]],)-

LEMMA 7. Let € > 0, 5 > 0, and g € L,. Then there exists & > 0 such that if
u and v are simple functions for which ||u||, < b, ||v||, < b, and ||u — o||, < 8,
then ||T*¢ — T,*glh < e
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Proof. By Condition (1) on T, there exists 6 > 0 such that [ju — v[|, <5
implies ||[7u — To||, < ¢/2||g||,- Let E = {T,*¢ — T,*¢ > 0} and

F = {T*s — T*¢ < 0}.

Hup=ypguandvg = ¢go, then |[ugll, <, |[vell, < b, |Jug — vull, < 5. We
then have

fE [TW*g — T,,*g]du = fE [TuE*g - T,,E*g]du = fs(a) [Tugp — Tvglgdu;
hence by Hélder’s inequality and the preceding estimate we have
fE (T ¢ — T*gldp < ||Tug — Tvgllsllgll, < €/2.
An identical consideration of the integral over F yields the desired result.

LemMA 8. If f, is @ Cauchy sequence of simple functions in L,, then T, * gisa
Cauchy sequence in L1, g € L,.

Proof. By Lemma 7.

Definition 3. Let f € L, and let f, be a sequence of simple functions in L,
such that ||f.]l, < ||fll, and lim, ||f, — f]|, = 0. We define T'/*g for g € L, as
follows:

T*g(s) = Ly lim, Tp*g(s).

THEOREM 2. Let f € L, and g € L,. Then T/* in Definttion 3 is a linear
operator from L, into L, such that

fs(a) Tf(s)g(s)dp = fs(f) T*g(s)dp.
Proof. Definition 3 implies that 7'/* is linear, and

NT5¥I < 2B(Ifalls) < 2B(/Ifll)

implies that || 7/*|| < 2B(||f||,)- Now we may assume S(f,) = S(f) in Definition
3; hence

[so Tr*e(s)du = [ s Tfu(s)g(s)dp.

It now follows by Definition 3 and an application of Hélder’s inequality that
we have

[sw Tf()g(s)du = lim, [ sy Tfu(s)g(s)du,
= lim, [ s Tr*g(s)dp,

= fs(f) T'*g(s)du,
which is the desired result.
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