Bull. Austrāl. Math. Soc. Vol. 39 (1989) [361-367]

DEFORMATIONS OF RINGS

JOE YANIK

Let A and A_0 be rings with a surjective homomorphism $A \to A_0$. Given a flat extension B_0 of A_0 , a deformation of B_0/A_0 over A is a flat extension B of A such that $B \otimes_A A_0$ is isomorphic to B_0 . We show that such a deformation will exist if A_0 is an Artin local ring, A is noetherian, and the homological dimension of B_0 over A_0 is ≤ 2 . We also show that a deformation will exist if the kernel of A is nilpotent and if A_0 is a finitely generted A_0 -algebra whose defining ideal is a local complete intersection.

0. Introduction

The purpose of this paper is to examine some special cases of the following general question. Given rings A and A_0 with surjection $u \colon A \to A_0$ and a flat A_0 -algebra B_0 , when does there exist a flat A-algebra B such that $B \otimes_A A_0$ is isomorphic to B_0 as an A_0 -algebra? If it exists, such a B is called a deformation of B_0/A_0 over A. An important case is when $\ker(u)$ is nilpotent. In this case B is said to be an infinitesimal deformation.

One general situation in which a deformation always exists is when u admits a retraction $t: A_0 \to A$ (that is $u \circ t = 1$). In this case $B = B_0 \otimes_{A_0} A$ is a deformation, called the *trivial deformation*. This is the usual setting in algebraic geometry with A_0 a field and the problem is to find the structure of the set of nontrivial deformations.

In this paper, however, we take the ring-theoretic approach and consider the general question of when any deformation exists at all. We prove that a deformation exists in two general cases. One is when A_0 is an Artin local ring and B_0 is of homological dimension ≤ 2 with A noetherian (the noetherian hypothesis can be dropped for an infinitesimal deformation). The other case is the case of an infinitesimal deformation where the defining ideal for B_0 is a local complete intersection. The first case is done in Section 2 while the second is in Section 3.

1. Some Remarks on Flatness

We begin with a well-known observation.

Received 19 July 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

LEMMA 1.1. Let A be a ring and

$$0 \to K \to L \to M \to 0$$

an exact sequence of A-modules with L flat. Then:

- (1) given an ideal $A \subseteq A$, $\operatorname{Tor}_{1}^{A}(M, A/A) = 0$ if and only if $AL \cap K = AK$;
- (2) M is flat if and only if $AL \cap K = AK$ for every ideal A of A.

PROOF: Tensor the sequence with A/A and note that $\operatorname{Tor}_1^A(L, A/A) \cong 0$ so $\operatorname{Tor}_1^A(M, A/A) = (AL \cap K)/AK$. (1) follows, and (2) is a consequence of (1).

DEFINITION: Given a ring A, an ideal \mathcal{A} of A, and an A-module M, we say that M is idealwise separated for \mathcal{A} if for every finitely generated ideal I of A, $\bigcap_{n=1}^{\infty} \mathcal{A}^n(I \otimes_A M) = 0$.

An important special case in which M is ideal-wise separated for \mathcal{A} is when there is a noetherian A-algebra B so that M is a finite B-module and $\mathcal{A}B$ is contained in the Jacobson radial of B.

THEOREM 1.2. Assume that there is an exact sequence of A-modules

$$0 \to K \to L \to M \to 0$$

where L is flat. Let A be an ideal in A, and suppose that either:

- (i) A is nilpotent or
- (ii) A is noetherian and M is idealwise separated for A.

Then the following are equivalent:

- (1) M is A-flat;
- (2) M/AM is (A/A)-flat and $AL \cap K = AK$.

PROOF: Follows from [6, (20.C)] and Lemma 1.1.

In general it is not true that condition (2) implies that M is A-flat, even when S is a local ring.

Example. Let k be a field. k[u,v,w] the polynomial ring in 3 variables. Let $\mathcal{M} = (u,v,w)$ and set $A = k[u,v,w]_{\mathcal{M}}$, the localization at \mathcal{M} . Take M = A[x,y]/(ux-1,vy-w). Then we have an exact sequence as in Theorem 1.2 with L = A[x,y] and K = (ux-1,uy-w). Note that $M/\mathcal{M}M = (0)$ and $ML \cap K = \mathcal{M}K$ since \mathcal{M} and K are comaximal. However, $(v,w)L \cap K \neq (v,w)K$ so M is not flat by Lemma 1 (2).

Let A be a ring, A an ideal of A, $A_0 = A/A$, and B_0 a finitely generated A_0 -algebra which is flat over A_0 . In order to deform B_0/A_0 over A we must find a

flat A-algebra, B, such that $B/AB = B_0$. If $B_0 = A_0[x_1, \ldots, x_m]/I_0$ one can easily find an ideal I such that if $B = A[x_1, \ldots, x_m]/I$ then $B/AB = B_0$. Simply choose preimages for the generators for I_0 under the map $A[x_1, \ldots, x_m] \to A_0[x_1, \ldots, x_m]$. The difficulty is choosing I so that B is A-flat. Later on we will demonstrate that under certain circumstances I can be chosen so that $AA[x_1, \ldots, x_m] \cap I = AI$. Hence we are in the context of Theorem 1.2 with M = B, $L = A[x_1, \ldots, x_m]$, K = I, lacking only hypothesis (i) or (ii). As the example demonstrates, we cannot in general conclude flatness. However, we do have:

THEOREM 1.3. Let A be a noetherian ring, $B = A[x_1, \ldots, x_m]/I$, A an ideal of A, $A_0 = A/A$, and $B_0 = B/AB$. Suppose that B_0 is A_0 -flat and $AA[x_1, \ldots, x_m] \cap I = AI$. Then there is an $f \in B$ which is a unit modulo A and such that B_f is A-flat.

Hence, there is a finitely generated A-algebra $B'=B_f$ which is a deformation of B/AB over A.

PROOF: Let P be a prime in $B, Q \subset A[x_1, \ldots, x_m]$ the inverse image of P under the surjection $A[x_1, \ldots, x_m] \to B$, and let $C = A[x_1, \ldots, x_m]_Q$. Then $AC \cap IC = AIC$ by the hypothesis.

If $AB \subseteq P$ then B_P is flat by Theorem 1.2. By [6, Theorem 5.3] there is an open set U in spec (B) containing V(AB) such that B_P is flat for all $P \in U$. We wish to find an affine open set with the same property. Let $\operatorname{spec}(B) - U = V(J)$. Since $V(J) \cap V(AB) = 0$, we have J + AB = B. Choose $f \in J$ so that (f) + AB = B. Then B_f is A-flat by [6, (3j)].

2. Deformations in Homological Dimension ≤ 2

Our object is to prove:

THEOREM 2.1. Given an Artin local ring A_0 and a finitely generated A_0 -algebra $A_0[x_1, \ldots, x_m]/I_0$, suppose that B_0 is A_0 -flat and that $dh_{A_0[x_1, \ldots, x_m]}(B_0) \leq 2$. Let A be a ring and $\mathcal{M} \subseteq A$ an ideal such that $A/\mathcal{M} \cong A_0$. Suppose that either:

- (i) M is nilpotent or
- (ii) A is noetherian.

Then there is a deformation B of B_0/A_0 over A.

PROOF: Let $R_0 = A_0[x_1, ..., x_m]$. By hypothesis there is a resolution of the form:

$$0 \rightarrow P_2 \rightarrow P_1 \rightarrow R_0 \rightarrow B_0 \rightarrow 0$$

where P_1 and P_2 are projective R_0 -modules of finite rank. But P_1 and P_2 are free modulo the maximal ideal N of A_0 by [7] or [9]. Since the maximal ideal is nilpotent

 P_1 and P_2 must be free. (Apply Nakayama's Lemma to the preimage of a basis mod N). Therefore we have a resolution

$$0 \to R_0^{r-1} \stackrel{\phi_2}{\to} R_0^r \stackrel{\phi_1}{\to} R_0 \to B_0 \to 0.$$

We now apply a standard technique using Burch's Theorem. We can find no reference that precisely fits our situation so we give the details (see [1] and [8]). Let $M = [a_{ij}]$ be the $r \times (r-1)$ matrix that represents ϕ_2 and $[f_1, \ldots, f_r]$ the matrix representation for ϕ_1 . Let f_i be the minor of M obtained by omitting the ith row of M. By Burch's Theorem ([4, p.148, problem 8]) there is a regular element $f \in R_0$ such that $fd_i = f_i$. We let $R = A[x_1, \ldots, x_m]$ and define $\psi_2 \colon R^{r-1} \to R^r$ by lifting M to a matrix $\tilde{M} = [\tilde{a}_{ij}]$ over R. Let \tilde{f} be a lifting for f and define $g_i = \tilde{f}\tilde{d}_i$ where \tilde{d}_i is the minor of \tilde{M} obtained by omitting the ith row. Then $\psi_1 \circ \psi_2 = 0$ since, for any k

$$g_1 \tilde{a}_{1k} + \ldots + g_r a_{rk} = \tilde{f} \deg \begin{bmatrix} a_{1k} & a_{11} & \ldots & a_{1k} & \ldots & a_{1k-1} \\ \vdots & \vdots & \ldots & \vdots & \ddots & \vdots \\ a_{rk} & a_{r1} & \ldots & a_{rk} & \ldots & a_{rk-1} \end{bmatrix} = 0$$

Į

We now use the following lemma:

LEMMA 2.2. Let R be a ring, $A \subseteq R$ an ideal, and $R_0 = R/A$. Suppose we have a diagram:

$$\begin{array}{ccccc} G_2 & \stackrel{\psi_2}{\rightarrow} & G_1 & \stackrel{\psi_1}{\rightarrow} & G_0 \\ \downarrow \alpha_2 & & \downarrow \alpha_1 & & \downarrow \alpha_0 \\ F_2 & \stackrel{\phi_2}{\rightarrow} & F_1 & \stackrel{\phi_1}{\rightarrow} & F_0 \end{array}$$

with the bottom row an exact sequence of R_0 -modules and the top row a complex of R-modules (that is $\psi_1 \circ \psi_2 = 0$). Suppose further that, for each i, $F_i = F_i \otimes_R R_0$ with α_i the canonical projection.

Then $AG_0 \cap \operatorname{im}(\psi_1) = A\operatorname{im}(\psi_1)$.

PROOF: Choose $z \in \mathcal{A}G_0 \cap \operatorname{im}(\psi_1)$. Then $z = \psi_1(w)$ for some $w \in G_1$. But $z \in \mathcal{A}G_0 \Rightarrow \alpha_0(z) = 0$. Hence $\phi_1\alpha_1(w) = \alpha_0\psi_1(w) = 0$. By exactness $\alpha_1(w) = \phi_1(u')$ for some $u' \in F_2$. Pick $u \in G_2$ with $\alpha_2(u) = u'$. Then $\alpha_1(w) = \alpha_1(\psi_2(u))$ and $w - \psi_2(u) \in \ker \alpha_1 = \mathcal{A}G_1$ and $\psi_1(w - \psi_2(u)) \in \mathcal{A}\operatorname{im}(\psi_1)$. But $\psi_1(w - \psi_2(u)) = \psi_1(w) = z$ and $z \in \mathcal{A}\operatorname{im}(\psi_1)$.

We have shown that

$$\mathcal{A}G_0 \cap (\psi_1) \subseteq \mathcal{A}\operatorname{im}(\psi_1).$$

The reverse inclusion is obvious.

Now applying the lemma to the sequence

$$\begin{array}{ccccc} R^{r-1} & \stackrel{\psi_2}{\rightarrow} & R^r & \stackrel{\psi_1}{\rightarrow} & R \\ \downarrow & & \downarrow & & \downarrow \\ R_0^{r-1} & \stackrel{\phi_2}{\rightarrow} & R_0^r & \stackrel{\phi_1}{\rightarrow} & R \end{array}$$

and letting $1 = \operatorname{im}(\psi_1)$ we get that $MR \cap 1 = M1$. Hence, by Theorem 1.3 in the noetherian case or Theorem 1.2 in the nilpotent case we get the result.

COROLLARY 2.3. Let A_0 be an Artin local ring and $B_0 = A_0[x_1, x_2]/I_0$ be a flat A_0 -algebra. Let A be a ring with an ideal $\mathcal M$ such that either:

- (i) M is nilpotent, or
- (ii) A is noetherian.

Then there is a deformation B of B_0/A_0 over A.

(<u>Note</u>: There are examples of rings A, A_0 as above and $B_0 = A[x_1, x_2, x_3, .x_4, x_5, x_6]/I_0$ for which there is no deformation of B_0/A_0 over A. (See [2] or [3].))

PROOF: We need show only that $dh_{R_0}(B_0)\leqslant 2$ with $R_0=A_0[x_1,\,x_2]$. Consider the exact sequence

$$0 \to K \to R_0^n \to R_0 \to B_0 \to 0.$$

Let k be the residue field of A_0 .

By the flatness of B_0 we have

$$0 \to K \otimes_{A_0} k \to R_0^n \otimes_{A_0} k \to R_0 \otimes_{A_0} k \to B_0 \otimes_{A_0} k \to 0.$$

 $R_0 \otimes_{A_0} k = k[x_1, x_2]$ which has global dimension 2 so $K \otimes_{A_0} k$ is projective (hence free) and that implies that K is free.

3. Infinitesimal deformations of local complete intersections

DEFINITION: Let R be a ring and $I \subset R$ an ideal. I is a local complete intersection if, for every $P \in \operatorname{spec}(R)$ with $I \subseteq P$, IR_P is generated by an R_P -regular sequence.

Our objective is to prove the following theorem:

THEOREM 3.1. Given a noetherian ring A_0 and a finitely generated A_0 -algebra $B_0 = A_0[x_1, \ldots, x_n]/I_0$, suppose that B_0 is A_0 -flat and that I_0 is a local complete intersection in $A_0[x_1, \ldots, x_n]$. Let A be a ring and $A \subseteq A$ an ideal in A such that $A/A = A_0$ and A is nilpotent. Then there is a finitely generated A-algebra B such that B is a deformation of B_0/A_0 over A.

Furthermore, if B is any deformation of B_0/A_0 over A and $B = A[y_1, \ldots, y_m]/I$. Then I is a local complete intersection in $A[y_1, \ldots, y_m]$.

In order to prove Theorem 3.1 we need to use the upper cotangent functor $T^i(B/A, M)$ associated with a ring homomorphism $A \to B$ and a B-module M. (see [5]). We state two results from [5].

THEOREM 3.2. ([5, 3.2.2]) Let A be a noetherian ring and B a finitely generated A-algebra. The following conditions are equivalent:

- (a) $B = A[x_1, ..., x_n]/I$ where I is a local complete intersection in $A[x_1, ..., x_n]$;
- (b) for any surjection $A[y_1, \ldots, y_m] \to B$ the kernel is a local complete intersection of $A[y_1, \ldots, y_m]$;
 - (c) $T^2(B/A, M) = 0$ for every B-module M.

Before stating the next theorem we need a little explanation. Consider a sequence of ring homomorphisms $A \to A_0 \to B_0$ where $A_0 = A/A$ with $A^2 = 0$. This gives a long exact change of rings sequence of cotangent functors. In particular, we have a map

$$\delta \colon T^1(A_0/A, \mathcal{A} \otimes_{A_0} B_0) \to T^2(B_0/A_0, \mathcal{A} \otimes_{A_0} B_0).$$

(Note that $\mathcal{A} = \mathcal{A}/\mathcal{A}^2$ is an A_0 -module). It is known that $T^1(A_0/A, \mathcal{A} \otimes_{A_0} B_0) \cong \operatorname{End}_{B_0}(\mathcal{A}_0, \mathcal{A} \otimes_{A_0} B)$. Hence there is a canonical element $\delta(1) \in T^2(B_0/A_0, \mathcal{A} \otimes_{A_0} B_0)$.

THEOREM 3.3. ([5, 4.3.3]) Let A be a ring and let $A_0 - A/A$ with $A^2 = 0$. Suppose that B_0 is a flat A_0 -algebra. Then there is a deformation of B_0/A_0 over A if and only if $\delta(1) = 0$ in $T^2(B_0/A_0, A \otimes_{A_0} B_0)$.

PROOF OF THEOREM 3.1: We first prove the last statement. So assume that B is a deformation of B_0/A_0 over A. By Theorem 3.2 it is sufficient to prove that $T^2(B/A, M) = 0$ for every B-module M. Since A is nilpotent there is an integer k such that $A^k M = 0$. Our proof is by induction on k.

For k=1, M is a $B/AB \cong B_0$ -module. Since B is flat over A we can conclude by [5, 2.3.2] that $T^2(B/A, M) \cong T^2(B_0/A_0, M)$. Therefore, by Theorem 3.2, I is a local complete intersection.

Now suppose k > 1 and consider the exact sequence of B-modules

$$0 \rightarrow \mathcal{A}M \rightarrow M \rightarrow M/\mathcal{A}M \rightarrow 0$$
.

By the induction hypothesis $T^2(B/A, AM) = T^2(B/A, M/AM) = 0$ and by the long exact sequence of T^i ([5, 2.3.6]) $T^2(B/A, M) = 0$ and I is a local complete intersection.

Now assume that B_0 , A_0 , and A are as in the theorem and we wish to show that a deformation exists. Let k be such that $\mathcal{A}^k = 0$. Again, we proceed by induction on k. If $k \leq 2$ we are done by Theorem 3.2 and Theorem 3.3 so assume that k > 2 and let B_{k-1} be a deformation of B_0/A_0 over $A_{k-1} = A/\mathcal{A}^{k-1}$ of the form $B_{k-1} = A_{k-1}[y_1, \ldots, y_n]/I_{k-1}$. By the first part of the proof I_{k-1} is a local complete intersection and we can find a finitely generated deformation of B_{k-1}/A_{k-1} over A.

REFERENCES

- D. Buchsbaum and D. Eisenbud, Lifting modules and a theorem on finite free resolutions, in Ring Rheory (Academic Press, New York, 1972).
- [2] M. Hochster, 'An obstruction to lifting cyclic modules', Pacific J. Math 61 (1975), 457-463.
- [3] J.W. Hoffman, 'Counterexamples to the lifting problem for singularities', Comm. Algebra 11 (1983), 523-549.
- [4] I. Kaplasky, Commutative Rings (Univ. of Chicago Press, 1974).
- [5] S. Lichtenbaum and M. Schlessinger, 'The cotangent complex of a morphism', Trans. Amer. Math. Soc 128 (1967), 41-70.
- [6] H. Matsumura, Commutative Algebra (2nd ed.) (Benjamin Cumming, Reading Mass, 1980).
- [7] D. Quillen, 'Projective modules over polynomial rings', Invent. Math. 36 (1976), 167-171.
- [8] M. Schaps, 'Deformations of Cohen-Macauley schemes of codimension 2 and non-singular deformations of space curves', Amer. J. Math 99 (1977), 669-685.
- [9] A.A. Suslin, 'Projective modules over a polynomial ring are free', Dokl. Akad. Nauk. S.S.S.R. 229 (1976), 1063-1066. Soviet Math. Dokl 17 (1976), 1160-1164.

Department of Mathematical Sciences Virginia Commonwealth University Richmond, VA 23284 United States of America