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Green's relations are essential for "co-ordinatizing" semigroups. Jacqueline Klasa, in
applying cognate ideas to categories [4, 5], has shown that divisibility in suitably-behaved
categories may be described in terms of subobjects and quotients.

Here it is shown that adjoint functors which are onto objects preserve divisibility (in a
certain sense). The inclusion functor of the category of sets into the category R of binary
relations is such a functor. A slight modification of its right adjoint allows the representation
of R as a full subcategory in a category CSL of complete semilattice morphisms.

K. A. Zaretskii's criteria for divisibility in R [10, Sections 2.2 and 2.3] may thus be described
in terms of subobjects and quotients in CSL, although neither R nor CSL meets the hypotheses
used by Klasa.

The concepts of "pseudo-injective" and "pseudo-projective" sets of objects are introduced
to afford an internal characterization of divisibility in categories with less restrictive factoring
properties (we use bicategorical structure and sometimes less). The results are applicable to R
as well as familiar semigroups and categories, and so yield a unified treatment of several
published cases.

1. Background. We work with the basic ideas of category theory as expounded by
S. MacLane [6], with the purely formal difference that we compose mappings from left to
right rather than the reverse. Thus epis are our left cancellable arrows, and so on. Moreover
we always regard a category as consisting of arrows only. We formally identify objects with
identity arrows and write a : a -* b to indicate that the arrow a has source (left identity) a and
target (right identity) b.

The characters A,B, C will indicate arbitrary categories, while S and R will be reserved for
the categories of (mappings between) sets and of relations between sets respectively. Addition-
ally we use, for a category C and an arrow a of C, the notation Ca for the set {/J e C | /? = ya
for some yeC}—and similarly for <xC, CaC, and aCa.

Let b be an object (i.e. identity arrow) of the category C. The set D of monos with target
b may be endowed with the equivalence relation kb = {(/i,v)efl x D|C/x = Cv} of mutual
right division. Each Vclass is called a subobject of b. Dually, a quotient of the object b is an
equivalence class of epis, having common source b, under the relation {($,0) \ <f>C = 0C}.

For subobjects N, N' of b, we write iVs; N' if Cv £ Cv' for some (and hence all) veN
and v' e Jv*'. Dually we have an ordering on quotients of b, also denoted by 5j|. We shall use
the following possible comparison between subobjects and quotients. Let a be the source of a
mono in the subobject N and b the target of an epi in the quotient Q. Then we write N ~ Q
if aCb contains an iso. (This does not depend on the particular a, b chosen.)

We say C has images if for each a e C there are arrows ft, n such that a = Pn, /i is a mono,
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DIVISIBILITY IN CATEGORIES OF A CLASS 23

and any mono right dividing a also right divides fi. If in addition p is an epi, we say C has epic
images. If the respective dual statements hold we say C has [monic] coimages.

If C has images, then the set of monos n satisfying the conditions of the definition con-
stitutes a subobject, to be called Im(<x), of the target of a; the dual term is Coim(a), a quotient
of the source of a.

A category is said to be balanced ifeach of its arrows which is simultaneously an epi and a
mono is in fact an iso. A category C is filtering if every arrow a of C is a product a = <j>n,
where <f> is an epi and fi a mono. As in [5], we say that a category C is quasi-strong if each
arrow a of C can be written both as a = 4>n', where </» is left invertible and \i' is a mono, and
also as a = <$>'\i, where </>' is an epi and fi is right invertible. In this case, /i'elm(a) and

Klasa has, in effect, obtained the following

RESULT 1 [5, Proposition 15]. Let C be a quasi-strong category and a, /?eC. ThenaeCfi
if and only i/Im(a) ^ Im(/?); andaefiC if and only ifCoim(<x) :g CoirnQS).

Now consider the categories S of mappings between sets, I of (1-1) partial functions
between sets, and V of linear transformations between vector spaces over a certain field, with the
usual composition in each case. Each category is quasi-strong and the images and coimages of
their arrows correspond to the traditional ranges and quotients. There are several published
results, in effect dealing with divisibility in S, V and I, which are thus corollaries of Result 1.
These appear respectively in Section 2.2 of the work of A. H. Clifford and G. B. Preston [1,
Lemmas 2.5 and 2.6, p. 52 and Exercise 6, p. 57] and in a paper of N. R. Reilly [8, Lemma 2].
(For the first result, see also G. B. Preston [7, Lemmas 1 and 2].)

The category R of binary relations has arrows (a, a, a')—denoted alternatively by
a : a -»a!—where a and a' are sets and a £ a x a'. For arrows a : a -* a' and P :b-> b' of R,
the composite a/? is defined if and only if a' = b and is then given by

afi = {(x,z)ea x V \ {x,y)ea and

(y,z)eP for some ysb}.
We put

a"1 = {(x,y)\(y,x)eot} ;

so that a"1 : a' -»a. For s £ a, we write

sot. = {vea' |(u,v)ecc for some ues}.
Then

Ma = {sa | s £ a}

is a complete lattice of subsets of a' closed under arbitrary set-theoretic union, and

L, = {a\t\teMa-l}

is a complete lattice of subsets of a closed under intersection (K. A. Zaretskii [10, Section 1.7]).
Among the elegant results of Zaretskii's study of the algebraic structure of R was the

following
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24 D. G. FITZ-GERALD

RESULT 2 [10, Sections 2.2 and 2.3]. Let a :a^d and P :b-*b' be arrows o/R. Then
aeRj? if and only if a' = b' and Ma £ Mp; and ae/?R if and only ifa = b and La £ Lp.

Despite the similarity between Results 1 and 2, the latter cannot be deduced from the
former, because R is not quasi-strong, nor even filtering, as we shall see later in Lemma 5.

2. A representation of R. G. B. Preston and the present author in [2] reduced divisi-
bility in R to a consideration of divisibility in S by utilizing the functor P : R -+ S defined as
follows. For a : a -* b in R, and for x s a , let x(aP) = {u e b | (t, u) e a for some t6 x}, so that
aP : 2" -»•2* in S. We can thus identify 2" with aP, etc. It is straightforward to verify that
P is indeed a functor, that it is (1-1) and that its restriction P | s to the subcategory S of R is
simply the usual power-set functor of S to S.

LEMMA 1. The functor P has a left adjoint, namely the inclusion functor I: S -> R, but no
right adjoint.

Proof. For each arrow a : a -»b in S and each tea, {tot.} = {t}aP = {t}aIP, so that the
"singleton map"}0 : t\-> {t} of a into aP satisfies the condition a. }b — }„. <xIP. This is nothing
but the condition that } :ai~+}a be a natural transformation } : S - ^ / P (S denoting the
identity functor S -»S).

For the opposite aspect, db = {(x, t) | tex, x £ b} is a relation from bP to b satisfying fiPI.
db = da-P f°r e a c n P -a-*b in R, so that d :Z>t->36 provides a natural transformation
d : P/-i*R. Moreover } a P . daP and }aI. da are identities in S and R respectively, so that } and
9 serve as the unit and counit of the claimed adjunction.

Suppose that / : S -»• R is a right adjoint of P. Then aPSb s dRbJ for all sets a, b. But if
a is finite and b has cardinal 3,

|aPSb| = 3 | f l P | while \aRbJ\ = 2 " l c W | .

Therefore no such right adjoint exists.
We note that the left adjoint I of P has the following property. A functor F : A ->B is

onto objects if for each object b ofB, b = of for some object a of A. We use this in

LEMMA 2. Suppose the functor F : A -»B has a left [right] adjoint G : B -»A which is onto
objects. Then for arrows a : a -> b and p :c->b in A, [a :a^b and P :a-*c in A], ae A/J J/
anrf on/y if aFe B.pF[aePA if and only if aFe PF. B].

Proo/. Clearly aeA/J implies aFeB.pF. For the converse, suppose that aF = y.pF
with y e B; then aFG = yG. /JFG. Let n and 2 be the unit and counit of the adjunction, so that

ad . a = a.FG .bd = yG. pFG . bd

= yG.cd.p.
But a = dG for some object d of B and so

a = dG = dnG . dGd = dnG . ad;

thus <x = a<x = di^G.yG.cd .Pe\p.
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This lemma applied to the functor P yields a new proof of Result 2.
The range of the functor P is easily calculated. Let a e S and a : aP -* bP. Then a e RP

if and only if (u m)a = u{xa | x e m} for all m £ aP; that is if and only if a preserves the
structure of the power set as a complete semilattice with union as supremum (which semi-
lattice we denote by (aP, u) or simply by aP).

So let CSL denote the category of all complete semilattice morphisms—that is, of triples
(/, 0, /') where / and /' are sets endowed with supremum maps sup ://*->/ and sup' : I'P -»/',
and <t> : I'-*/' satisfies (supm)<p = sup' {t<f>\ tern} for all m £ /. Composition in CSL is
defined in the usual way. Then the proof of the next lemma is quite straightforward and will
be omitted.

LEMMA 3. The map T : R -> CSL defined by

T:(a,«,b)^(aP,aP,bP)

is a (1-1) full functor ofR into CSL.
The category CSL is a balanced category and has epic images and monic coimages.

(Such a category can be regarded as a bicategory, in the sense of Isbell [3].) Subobjects of an
object in CSL are in (1-1) correspondence with the usual c0/w/?/e/esubsemiIattices, and quotients
are in (1-1) correspondence with the usual complete congruences. Under the first corre-
spondence, the lattice Mx (for aeR) introduced in Result 2 corresponds to Im(ai>). To dis-
cover what La corresponds to, we make use of the dual nature of complete semilattices, as
follows.

Let (/,sup) be a complete semilattice and define an operation inf : IP-* I by setting, for
k £ /, inf k = sup{te/| t ^ x for all xek). Then (/,sup,inf) becomes a complete lattice.

We may also regard / as a small cocomplete category and a : (I, sup) -»(/', sup') in CSL
as a cocontinuous functor. By the classical adjoint functor theorem [6, p. 126], a is the left
half of a Galois connexion (i.e. an adjunction) whose unique right half, a # say, is given, for
xel and ye I', by x^y<x# if and only ifxa^y. Equivalently, ya# = sup{xel\xa = y},
so that the "closed" elements of / are the greatest elements of the classes of the congruence
aa"1. Further, a# :(/',inf)»->(/,inf) in CSL since right adjoints preserve products, and
(aj8)# = / ? # « # for a,j?eCSL, so that the map # : at->a# (aeCSL) is a contra variant
functor # : CSL -> CSL. Because the order induced in (/, inf) is the opposite to that in
(/,sup),(a#) # = a and thus we have proved

LEMMA 4. There is a (1-1) correspondence between the set of complete congruences on
(/, sup) and the set of complete subsemilattices {m, inf) of (/, inf). Specifically the complete
congruence n corresponds to the complete semilattice {n*, inf) consisting of the greatest elements
from each n-class.

Additionally, it is clear that nY £ n2 if and only if TT, * 2 n2*.
In the case of the complete semilattice (crP,u), the complete congruence (a.P)(a.P)~Y

induced by the arrow a : a -* b of R corresponds to the intersection semilattice Lx of Result 2.
For x(aP) = y{ctP) means that, for each element t of the target of a, the set {fja"1 intersects
both x and y or else intersects neither. Thus the greatest element of an {aP)(a.P)~l class is the
complement of a union of sets {t}x~l, that is is an element of Lx, and vice versa,

c
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Thus La represents Coim(aP). Result 1, however, applies to neither R nor CSL.

LEMMA 5. R is not filtering and CSL is not quasi-strong.

Proof. Let a = {1,2,3} and a = {(t,u)ea x a 11 # u}. Suppose that we have a factor-
ization a = <j>fi with $ : a -* c an epi in R and n : c -»a a mono in R. Then </>r is an epi of
R7", hence onto cP, and jiTis a mono of RT, hence (1-1) into aP. Thus the range of ccP should
be isomorphic to a power set. A small calculation shows however that ccP actually has the
five-element modular non-distributive lattice M5 as its range. Therefore R is not filtering.

The same arrow a.T factors in CSL, in an essentially unique way, through an epi
i/f : aP -* M5 and a mono 0 : M5 -* aP, and it may be verified directly (or deduced from the
Corollary 2 to Lemma 7 below) that \p is not left invertible and 9 is not right invertible. Thus
CSL is not quasi-strong.

The question then arises—under what conditions common to S, I, V, and CSL can we
prove results with the content of Result 1 ?

3. Divisibility in an appropriate class of categories. We observe that (aP,u) is freely
generated, as a complete semilattice, by its singletons—in fact that ai-» (aP, u) is the object
part of a left adjoint to the forgetful functor of CSL to S—and so is projective in CSL.
Reflecting the fact that left divisibility is more difficult to deal with than right divisibility, the
dual is not true—(aP, u) is not injective in CSL. It does, however, have a weaker property,
which we now discuss.

Call a class of objects E of the category C pseudo-injective if, for all a, b, ceE, for each
object d of C such that cCd contains an epi, for each a :d^a and for each mono \x :d-*b,
there exists t, :b-+a with ^ = a. We may depict this situation in the diagram below. Note
that the object d need not necessarily be in the pseudo-injective class.

LEMMA 6. {(bP, u) | b is a set} is pseudo-injective in CSL.

Proof. Suppose that a : l->aP, n:l-+bP and (f> : cP -*l are arrows of CSL with fi
a mono and <f) an epi, and define Z, : bP -* aP as follows:

{t}^ = {usa | zee and te{z}(j)fi imply ue{z}4>a.}

for all teb, and
yt = v{{t}Z\tey}

for all yebP. Then £ is in CSL and for each zee,{Z}(J>HQ c {z}$oc. On the other hand, if
x4 {z}($>ii£, then there exists, for each (e{z}^>n,s,ec such that (e{s,}<j)n but x£{s,}<f)a. Let s
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be the collection of elements s, ; then {z}</>/( c s<j>n but xfscfxx. Since /< is a mono, this implies
that {z}(f> £ s<£ and hence that x${z}<j>a.

In short, this proves that $/!<!; = 0<x and hence that n£ = a.
Of course, any subclass of a pseudo-injective class of objects is also pseudo-injective.
The term dual to "pseudo-injective" is pseudo-projective. The origin of these terms is to

be found in the observation (and its dual) that if b is projective, then {b} is pseudo-projective.
Moreover, if the class of all objects of a category is pseudo-projective, then each object is
projective.

One can now appreciate that the following sequence of lemmas reflects the situation
existing in S, I, V, and CSL. The first has the same basic content as Proposition 13 and
Theorem fl of Klasa [5]. Recall that a e C is regular if aeaCa.

LEMMA 7. Let C be filtering and a e C. Then a is regular if and only ;/Im (a) exists and is
a retract and Coim (a) exists and is a coretract.

Proof. There is an epi <j> and a mono fi with a = <t>n; so, if a is regular, we have
0/i = $/</?$// for some /?. Thus $ = a/?$ and \i = fifict, so that any left divisor of a is a left
divisor of </>, whence <j> e Coim (a). Likewise, n e Im (a). Moreover ///?<£ is an identity, so
Coim (a) consists of left invertible arrows, that is it is a coretract. Similarly Im (a) is a retract.

Conversely, suppose that a = (f>n = r\P = y6, where (f> is an epi, /i is a mono, n e Coim (a)
and is left invertible, and 0 e Im (a) and is right invertible. Then ju right divides 9 since 0 e Im (a);
cancelling /<, one sees that y left divides <f>. Similarly /? right divides fi. But a right divides /?,
hence also //, and left divides y, hence also <f>. Thus a = 4>fieaCa and is regular.

COROLLARY 1. If a is a regular element of a filtering category, then Im (a) ~ Coim (a).

Proof a = </>/< with /(elm(a) and </>eCoim(a).

COROLLARY 2. A complete subsemilattice of aP is a retract in CSL if and only if it is
completely distributive as a complete lattice.

Proof. According to Section 3.2 of Zaretskii [10] (anticipating J.-C. Yang [9]) oceR is
regular if and only if Mx is completely distributive. Together with Lemma 7 this gives the
result.

REMARK. Elementary techniques of lattice theory can be used to provide an alternative
proof of Corollary 2 and thus also an independent proof of [10, Section 3.2], referred to above.

LEMMA 8. Let C be a balanced category which has epic images and monk coimages, and
a G C. Then Im (a) ~ Coim (a).

Proof. Let 0elm(a) and <j>e Coim (a). We have a = fid = (fry, with P an epi and y a
mono. Then 9 = 5y and /?<5 = </>, whence 5 is both an epi and a mono. Since C is balanced,
5 is an iso from the source of 9 to the target of (p.
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LEMMA 9. Suppose that the balanced category C has images and coimages. Let N be a
subobject ofb and Q a quotient of a such that N ~ Q. Then there exists an arrow or. \a-*b such
that Im (a) = N and Coim (a) = Q.

Proof. Let n e N and (j> e Q; there is an iso 6 for which <p6n ( = a, say) is defined. If
velm(a), then there exists A (necessarily a mono) such that v = Xd/x. Cancel Ofi to see that A
right divides $ ; so A is also an epi, hence an iso. This shows that / ielm(a); similarly
</>eCoim(a), completing the proof.

THEOREM A. Let C have epic images and monk coimages. Let A be a full subcategory of
C with a pseudo-projective and pseudo-injective class of objects, and suppose that a,/} e A. Then

(i) a e A/? if and only if Im (a) ^ Im(j6),
(ii) ae/?A if and only »/Coim(a) < Coim(/?),

(iii) ifC is balanced, a e A/? A if and only if there exist a subobject N of the target of a and
a quotient Q of the source of ft such that N ~ Q, Im(a) < iV and Q < Coim(/?) (and dually).

Proof, (i) If /} right divides a, so does any mono fi in Im (/?). Thus /x right divides any
mono in Im(a); that is to say, Im(a) ̂  Im(jS). Conversely, suppose that <x = nn and /? = 0v
with /i6lm(a), veIm(jS), 6 an epi and n = Av, and consider the arrows nk and 6. By the

assumption of pseudo-projectiveness, there is an arrow % satisfying £0 = nX. Thus <!;/? = nXv = a
and moreover £eA, since A is full. Thus aeA/?.

(ii) The proof of (ii) is dual to the above.
(iii) Suppose that C is balanced and that a = yP5(y,5eA). Let JV = Im(/?(5) and

Q = Coim(/?<5); then, by Lemma 8, N~ Q while Im(a) < N and Q ^ CoimO?), by parts (i)
and (ii) above.

If, conversely, such N and Q exist, then, by Lemma 9, there exists ( with Im (() = JV and
Coim(0 = Q ; £eA, since A is full. But parts (i) and (ii) above show that a e A£ and CejSA;
thus aeAjSA.

This concludes the theorem.

REMARK. For balanced categories with images [coimages] the condition of pseudo-
projectiveness [pseudo-injectiveness] is necessary for the statement (i) [statement (ii)] of
Theorem A.
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Theorem A is applicable to R since R is, by Lemma 3, isomorphic to the full subcategory
RT of CSL, and the objects of RT are projective and pseudo-injective in CSL (Lemma 6).
This gives Result 2 cited above, and certain other results of Zaretskii [10]. In this particular
case, condition (iii) of Theorem A reduces to the condition that Ma be merely order-isomorphic
with some subset of Mf [10, Theorem 2.4]. I am unable to obtain such a neat character-
ization in the general case.

In the categories S, I and V each object is projective and injective, so that the theorem
holds, yielding once again the published results cited immediately before Result 2 above.

The category P of partial transformations between sets, whose arrows are functions each
defined on a subset of its source, is a further example of Theorem A. In fact, P is isomorphic
to a full subcategory of the category S* of pointed sets [6, p. 26] under the functor H : P -> S*,
where, for 5 : X-> Yin P, SH : X\j{X) -* YKJ{Y} in S , is defined by

•{;
_ jxS if x8 is defined

Y otherwise.

This observation easily reproduces the characterization in [2] of divisibility in the category P.
Finally, it is of interest to specialize Theorem A to provide the following characterization

of Green's relations (if, Si, 3tf', 3l and / ) on suitable semigroups of endomorphisms, such as
the semigroups of endomorphisms in S, I, V, R and P.

THEOREM B. Let C have epic images and monic mintages. Let a be an object ofC such
that {a} is both pseudo-projective and pseudo-injective, and suppose that a,peaCa. Then

(i) ctSep if and only i/Im(a) =
(ii) a®p if and only j/Coim (a) = Coim(P),
(iii) aj^P if and only if 7m (a) = Im(/3) and Coim(a) = CoimO?),
(iv) if a and P are regular elements, then ct.2P if and only if lm(a) ~ Coim(j5),
(v) if C is balanced, then <x£dp if and only if Im (a) ~ Coim (/?), and u.#P if and only if there

exist subobjects N, N' and quotients Q, Q' such that

N ~Q, N' ~ Q', N' < Im (a) =S N and Q < Coim (a) s-c Q'.

Proof. Parts (i), (ii) and (iii) are simple consequences of Theorem A, (i) and (ii).
(iv) If a and /? are regular, and there exists y such that a.$P y@P, then y is regular, and so

Im (y) ~ Coim (y), by Corollary 1 of Lemma 7. Thus using parts (i) and (ii) above, Im (a) ~
Coim(/?). For the converse, suppose that ^elm(a) and $eCoim (/?). By hypothesis, there
is an iso 6 such that </>fyi (= y, say) is defined. Since (j> is left invertible, ^elm(y) and it
follows that Im (y) = Im (a). Similarly Coim (y) = Coim (/?) and thus a3>P by parts (i) and (ii)
above.

(v) To characterize 3), we recall that Coim(y) ~ Im(y) for yeC, since C is balanced, and
apply Lemma 9 and parts (i) and (ii) of this theorem. The characterization of,/ is simply an
application of Theorem A (iii) and its dual.
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