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Translational and angular velocities statistics of
inertial prolate ellipsoids in a turbulent channel
flow up to Reτ = 1000
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Direct numerical simulations of the turbulent flow in a channel are conducted up to Reτ =
1000 to examine the influence of the friction Reynolds number on the translational and
angular velocities of inertial, prolate ellipsoids. The quadrant distribution of the turbulent
events seen by the particles is not significantly affected by the value of Reτ , but subtle
modifications take place, depending on the position in the channel and on the particle
relaxation time. Overall, the influence of Reτ on the first and second statistical moments
of the ellipsoids translational velocity is the same as that observed for the fluid velocity.
The weak dependence of these statistics to the particle shape previously observed at low
Reynolds number remains at higher values of Reτ . Similarly, the mean and root mean
square (r.m.s.) of the angular velocity of the fluid seen by the particles weakly depend on
particle shape and they have the same dependence to Reτ as the angular velocity statistics
of the carrier fluid. Particle angular velocity statistics are more strongly affected by the
flow Reynolds number due to the evolution of the complex shape and inertia dependent
rotation orbits with Reτ . In the near-wall region the average angular velocity of weakly
inertial ellipsoids increases with Reτ due to their stronger alignment with the mean fluid
vorticity. Furthermore, the r.m.s. of the wall-normal component of the angular velocity of
more inertial ellipsoids increases with Reτ owing to the larger fluctuations of the angle
between the particle major axis and the velocity-gradient plane.

Key words: channel flow, multiphase flow, turbulence simulation

1. Introduction

The dynamics of particles in turbulent flows is of interest to understand a wide variety
of natural phenomena, ranging from the dispersion of plankton in the marine environment
(Font-Muñoz et al. 2015) to the formation of ice crystals in mixed phase clouds (Naso et al.
2018), as well as to optimize industrial processes such as papermaking (Lundell, Söderberg
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& Alfredsson 2011). Non-spherical particles can be modelled by spheroids, and provide
a better understanding of the two-phase flow characteristics than a spherical model (Voth
& Soldati 2017). The challenge encountered in predicting the behaviour of such flows is
linked to the particle shape, whose interaction with the fluid velocity and velocity-gradient
fields results in complex translational and rotational dynamics.

Several experimental studies have been dedicated to understand the influence of
turbulent fluid motion on particle orientation. For example, Bernstein & Shapiro (1994)
observed that long fibres align along the mean velocity in a laminar duct flow, but did
not observe this preferential alignment if the flow is turbulent. Parsheh, Brown & Aidun
(2005) analysed the influence of the turbulent intensity on the preferential orientation of
rigid fibres in a planar contraction and concluded that preferential orientation is controlled
by the mean velocity gradient rather than by the turbulent intensity. In an open channel,
Abbasi Hoseini, Lundell & Andersson (2015) observed that the preferential orientation
relative to the mean flow and the turbulent events sampled by weakly inertial fibres strongly
depends on their length. Capone, Felice & Pereira (2021) noted a peak in the concentration
of nylon fibres at a wall distance equivalent to half the particle length in a turbulent channel
flow at Reτ = 530 (based on the wall-shear velocity uτ and the channel half-width δ), and
reported that the mean angle between the fibres and the streamwise direction strongly
varied with the distance from the wall. Shaik et al. (2020) measured the orientation and
angular velocity of long, rigid nylon fibres (having an aspect ratio of 30.7 and 47) in
a turbulent channel flow at Reτ = 435. They found that the average orientation of such
particles weakly depends on their length, but that longer particles exhibit higher tumbling
rates. Alipour et al. (2021) reported a moderate influence of curvature on the orientation
and angular velocity of weakly inertial, flexible rods at Reτ = 360. Finally, Baker & Coletti
(2022) measured the preferential orientation and the tumbling rate of long (50 in wall
units), inertial fibres in a turbulent channel flow at Reτ = 620. They observed that the
fibres major axis is preferentially aligned with the mean flow in the near-wall region,
but that high tumbling rates occur intermittently due to the effect of the mean shear, the
turbulent fluid velocity fluctuations and the particle–wall interactions.

Besides experimental studies, numerical simulations have proved to be a powerful
tool to study the dynamics of non-spherical particles in a turbulent channel flow. The
pioneering study of Zhang et al. (2001) introduced a methodology based on direct
numerical simulation (DNS) of the turbulent flow coupled with Lagrangian tracking of
ellipsoidal particles, treated as material points under a one-way coupling assumption. Such
a method requires modelling the force and torque applied by the flow on the ellipsoids. This
is generally done by the theoretical formulas of Happel & Brenner (1965) for the force and
Jeffery (1922) for the torque. Such formulas have been successfully used to reproduce the
orientational dynamics of weakly inertial rods in homogeneous isotropic turbulence (Parsa
et al. 2012). This methodology was later extended to simulate more complex systems, such
as dense suspensions where two-way (Zhao, Andersson & Gillissen 2013) and four-way
(van Wachem et al. 2015; Zhao, George & van Wachem 2015a) coupling effects are
important, or to model flexible fibres (Dotto, Soldati & Marchioli 2019). To focus on the
effect of turbulence on the particle dynamics, one-way particle–fluid coupling is adopted
in the present study: the effect of the particle on the fluid flow is supposed negligible as
well as the interparticle interactions.

In their study, Zhang et al. (2001) simulated the turbulent flow in a channel at
a friction Reynolds number Reτ = 125 to study the deposition of fibres modelled
as prolate ellipsoids. Marchioli, Fantoni & Soldati (2010) worked with a somewhat
similar Reτ = 150 and provided additional orientation and translational velocity statistics.
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Velocities statistics of ellipsoids in a turbulent channel flow

The same methodology was used by Mortensen et al. (2008a) to study the influence of the
particle aspect ratio and inertia on translational velocity and angular velocity statistics in
a turbulent channel flow at Reτ = 180. They found that translational velocity statistics are
not significantly affected by particle shape, but that angular velocity statistics are strongly
shape dependent in the near-wall region, where the mean velocity gradient causes periodic
rotation of the ellipsoids. Marchioli, Zhao & Andersson (2016) analysed the relative
rotation between the particle and fluid, and also noted an important influence of the aspect
ratio. More recently, Zhao et al. (2019) mapped the ellipsoids rotation modes at different
locations in the channel and noted that in the viscous sublayer the particles rotation plane
depends on their aspect ratio and inertia. Finally, Challabotla, Zhao & Andersson (2016)
and Arcen et al. (2017) noted a strong influence of gravity on the preferential orientation
and concentration of inertial ellipsoids at Reτ = 180. These studies provided insight into
the dynamics of inertial and ellipsoidal particles in a low-Reynolds-number turbulent
channel flow.

Several groups also conducted studies at higher values of the Reynolds number. van
Wachem et al. (2015) conducted four-way coupled large-eddy simulations of the flow in
a horizontal channel at Reτ = 600. They analysed the particle shape effect, as well as the
influence of the wall roughness. They notably found a significant effect on translational
velocity statistics and concentration profiles. Ouchene et al. (2018) conducted DNS of the
turbulent flow at Reτ = 1440 to study acceleration statistics of inertial ellipsoids. While
they noted a significant effect of the particles aspect ratio on these statistics, they did not
examine the effect of the flow Reynolds number. The influence of this parameter on the
dynamics of ellipsoidal particles has only been examined in a few studies. Zhao, Marchioli
& Andersson (2014) computed the mean and root mean square (r.m.s.) of the slip velocity
of inertial ellipsoids at Reτ = 150, 180 and 300. They noted an increase of the magnitude
of these properties, but did not generalize their conclusions to higher values of the flow
Reynolds number. They indicated that simulations at higher values of the Reynolds number
are required to confirm the influence of Reτ on these statistics. Jie et al. (2019) used
pre-computed DNS flow fields at Reτ = 1000 to examine the influence of this parameter
on orientation and rotation statistics of inertialess ellipsoids in the channel core. They
did not report an important effect of Reτ on the preferential orientation, but observed
a strong decrease of the ellipsoids rotation rate in the quiescent core at Reτ = 1000.
In a recent communication, Michel & Arcen (2021b) examined the influence of Reτ on
the concentration profiles and orientation statistics of inertial ellipsoids. They noted that
increasing the value Reτ resulted in a stronger alignment between the particle major axis
and vorticity vector in the channel core, as well as in a modification of the rotation
orbits induced by Jeffery (1922)’s formula in the near-wall region, up to Reτ = 550.
A uniformization of the ellipsoids concentration profile was also noted as the Reynolds
number increases, in a manner similar to that observed for inertial spheres by Bernardini
(2014).

Numerical studies of the translational and rotational dynamics of inertial spheroidal
particles were mainly focused on the influence of the particle shape and inertia at low
Reynolds numbers. The present study aims at gaining more insight into the influence
of Reτ on the statistical properties describing the translation and rotation of inertial
ellipsoids in a turbulent channel flow. The methodology relies on DNS of the turbulent
flow, coupled with Lagrangian particle tracking. To obtain reliable data, simulations
are conducted until the particle distribution has reached a statistically steady state
before computing the dispersed phase statistics (Michel & Arcen 2021a). Using this
methodology, the concentration profiles and preferential orientation of inertial ellipsoids
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were examined up to Reτ = 550 (Michel & Arcen 2021b). In the present study the
dynamical quantities characterizing the interaction of the particles with the turbulent
flow are analysed. Preferential concentration, translational velocity and angular velocity
statistics are computed up to Reτ = 1000 to analyse the dynamics of inertial ellipsoids
in a fully turbulent channel flow. The paper is organized as follows. Equations of
fluid and particle motion are presented in § 2, followed by the numerical set-up and
simulation parameters in § 3. To quantify the influence of Reτ on the dispersed phase
dynamics, statistics about preferential concentration, translational velocity and angular
velocity are then presented. Quadrant analysis is performed in § 4 to quantify preferential
concentration. Translational velocity statistics are described in § 5, and angular velocity
statistics are presented in § 6. Finally, the main findings are summarized in § 7

2. Governing equations

2.1. Fluid phase
The turbulent flow is described by the continuity and momentum conservation equations
for a Newtonian, incompressible and isothermal fluid,

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = − 1
ρf

∇p + ν∇2u, (2.2)

where u is the velocity field, p the pressure field, ρf the fluid density and ν the fluid
kinematic viscosity.

2.2. Lagrangian particle tracking
Particles are modelled as prolate spheroids of aspect ratio λ = a/b > 1, a and b being the
lengths of the semi-major and semi-minor axes. The particle position and orientation are
obtained by solving the following sets of equations:

dxp

dt
= up, mp

dup

dt
= F , (2.3a,b)

dqp

dt
= 1

2
qpω

′
p, I I

dω′
p

dt
+ ω′

p × (I Iω
′
p) = T ′. (2.4a,b)

Here xp and up are the particle position and translational velocity, while qp and ω′
p are

the unit quaternion describing the orientation of the particle and particle angular velocity
vector, respectively; mp = ρp(4/3)πab2 is the particle mass, ρp denotes its density and I I
is the particle inertia tensor; F is the fluid force and T ′ the torque acting on the particle.
Note that translation equations are solved in the Eulerian frame (x, y, z) while rotation
equations are solved in the frame linked to the particle principal axes (x′, y′, z′). In this
frame, the particle major axis is aligned with x′.

Particles are treated as material points, and the coupling between the fluid and particle
phases is modelled and not directly solved. The force and torque models employed in
the present study were obtained under the Stokes flow assumption. They are therefore
valid if the particle Reynolds number Rep = deq‖ur‖/ν � 1, where deq = 2b 3√λ is the
diameter of the volume equivalent sphere, and ur = ũ − up is the relative velocity between
the particle and the fluid, ũ = u(xp, t) being the fluid velocity at the particle position.
In addition, the mass density is assumed to be homogeneously distributed within each
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particle. The additional gravitational torque that would arise in the presence of the gravity
is therefore not considered. The force F is obtained by the formula from Happel & Brenner
(1965),

F = νρf (A−1KA)ur, (2.5)

where A is the direction cosine matrix that is used to express vectors and tensors from
the Eulerian frame in the particle frame. This matrix is computed knowing the particle
orientation, as described in Zhang et al. (2001). Here K is the translational resistance
tensor that describes the influence of particle shape on its translational motion. It is
diagonal in the particle frame (x′, y′, z′) and, for prolate spheroids, the components are
(Gallily & Cohen 1979)

Kx′x′ = 8πb(λ2 − 1)[
ln

(
λ+ √

λ2 − 1
) 2λ2 − 1√
λ2 − 1

]
− λ

, (2.6)

Ky′y′ = 16πb(λ2 − 1)[
ln

(
λ+ √

λ2 − 1
) 2λ2 − 3√
λ2 − 1

]
+ λ

, (2.7)

Kz′z′ = Ky′y′ . (2.8)

Due to the product A−1KA, F can be decomposed as F = F D + F L. Here F D is the drag
force, the component of F collinear to ur, while F L is the lift force, the component of F
orthogonal to ur. This lift force is induced by the particle anisotropy and orientation and
it is not related to the shear-induced lift, for which an expression was recently derived by
Cui et al. (2018). To retain the same framework as the one generally used (Mortensen et al.
2008a; Marchioli et al. 2010; Siewert, Kunnen & Schröder 2014b; Voth & Soldati 2017;
Zhao et al. 2019), the shear-induced lift is not included.

With F known, the particle relaxation time can be obtained. It is the characteristic time
required for a particle to adjust to a change in the flow characteristics. This time is not
unique and several definitions are summed up by Siewert et al. (2014a). In the present
study we use the definition from Shapiro & Goldenberg (1993), obtained by averaging K
over an isotropic orientation distribution

τp = 2λρpb2

9ρf ν

ln(λ+ √
λ2 − 1)√

λ2 − 1
. (2.9)

When expressed in wall units (using uτ and ν), this is the particle Stokes number: the ratio
of the particle relaxation time to the viscous time scale of the flow (ν/u2

τ ).
The torque is modelled with the formula from Jeffery (1922),

T ′ = 16πμab2

3

⎛
⎜⎜⎜⎜⎜⎝

1
β0

[
(Ω ′

zy − ω′
px)

]
1

β0 + λ2α0

[
(1 − λ2)S′

xz + (1 + λ2)(Ω ′
xz − ω′

py)
]

1
λ2α0 + β0

[
(λ2 − 1)S′

yx + (λ2 + 1)(Ω ′
yx − ω′

pz)
]

⎞
⎟⎟⎟⎟⎟⎠

, (2.10)

with μ the fluid dynamic viscosity and ω′
pi the components of the particle angular velocity.

Here S′
ij and Ω ′

ij are the fluid rate-of-strain tensor and rate-of-rotation tensor at particle
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Reb Reτ Lx/δ Lz/δ Nx Ny Nz �+
x �+

y �+
z �t+ η+

k,min η+
k,max

2820 179 4π 1.33π 288 128 160 7.85 0.98 − 4.44 4.67 0.11 1.54 3.69
10 050 543 2π 1.33π 450 352 400 7.68 1.08 − 4.94 5.62 0.08 1.44 4.84
20 000 994 2π π 768 448 512 8.17 1.02 − 8.03 6.09 0.07 1.41 5.58

Table 1. Value of the bulk Reynolds number and corresponding friction Reynolds number, domain size,
number of mesh point, grid spacing, temporal increment. The minimum and maximum values of Kolmogorov’s
length scale, η+

k,min and η+
k,max, were estimated using the data provided by Lee & Moser (2015). The superscript

+ indicates a quantity expressed in wall units (normalized using uτ and ν).

position, expressed in the particle frame (x′, y′, z′),

S′
ij = 1

2

(
∂ui/∂xj + ∂uj/∂xi

)′
, Ω ′

ij = 1
2

(
∂ui/∂xj − ∂uj/∂xi

)′
. (2.11a,b)

By definition, the components of the rate-of-rotation tensor are directly linked to the
vorticity by the formula

Ωij = −1
2εijkωk, (2.12)

where εijk is the Levi–Civita tensor. The explicit expression of α0 and β0 are given by
Gallily & Cohen (1979). As previously explained, the present study is conducted in the
same framework as the one generally used to examine the dynamics of inertial ellipsoids
in a turbulent channel flow. The fluid inertia contribution is therefore neglected in the
models of the hydrodynamic force and torque.

3. Simulation set-up

A finite difference DNS solver is used to compute the turbulent flow in a channel of
width 2δ at three different Reynolds numbers. Periodic boundary conditions are applied in
the x and z directions (statistically homogeneous directions) and a no-slip/no-penetration
condition is enforced at y = ±δ. The numerical method is described by Michel & Arcen
(2021a), only its main characteristics are presented hereafter. Similarly to the finite
difference code used by Vreman & Kuerten (2014), the spatial derivatives appearing
in (2.1) and (2.2) are approximated using fourth-order schemes in the streamwise
and spanwise directions, while second-order schemes are used in the wall-normal
direction. The time advancement is performed by a fully explicit third-order low-storage
Runge–Kutta scheme (Le & Moin 1991), and the time step is obtained by fixing a constant
Courant number of 0.5. At each Runge–Kutta stage, the pressure–velocity coupling
problem is solved using the pressure-correction method proposed by Timmermans, Minev
& van de Vosse (1996).

The mean flow is directed along x, and statistical stationarity of the turbulent flow is
enforced by keeping the flow rate constant. The flow characteristics are therefore specified
by fixing the bulk Reynolds number, Reb = Ubδ/ν, based on the mean bulk velocity
Ub. The associated friction Reynolds number, Reτ , based on the wall-shear velocity, is
computed a posteriori. Table 1 summarizes the values of Reb used to obtain the three
target friction Reynolds numbers, Reτ = 180, 550 and 1000, as well as the number of
mesh points, grid spacing and averaged time step for each case. A preliminary study of
the flow statistics has shown very good agreement with the statistics provided by Vreman
& Kuerten (2014) for Reτ = 180, and by Lee & Moser (2015) for Reτ = 550 and 1000,
respectively. The relative error on the mean and r.m.s. velocity and vorticity profiles did
not exceed 1.5 %.
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ρp/ρf
λ a+ b+ τ+

p = 1 τ+
p = 5 τ+

p = 30

1 0.50 0.50 18 90 540
3 1.04 0.35 20 100 601
10 2.32 0.23 27.8 139 833

Table 2. Characteristics of prolate spheroids. The volume equivalent sphere diameter is constant and
equal to d+

eq = 1.

Particles are modelled as prolate spheroids. Three aspect ratios λ = 1, 3 and 10 are
investigated as well as three relaxation times (2.9), in wall units τ+

p = 1, 5 and 30.
Particle geometry was chosen so that the volume equivalent sphere diameter remains
constant. With this definition, the ratio of the major axis length to the minimal value of
Kolmogorov’s length scale, 2a+/η+

k,min, is lower than 1 for λ = 1 for the three values
of Reτ considered in the present study. For the ellipsoids, the ratio 2a+/η+

k,min varies
between 1.35 (λ = 3 and Reτ = 180) and 3.29 (λ = 10 and Reτ = 1000). Jeffery’s formula
(2.10) can be reasonably employed to compute the torque acting on ellipsoidal particles
under this condition (Ravnik, Marchioli & Soldati 2018). The particle parameters are
provided in table 2. To focus on the effect of turbulence on the particle dynamics, the
particle–fluid coupling is one way: the effect of the particles on the fluid dynamics is
supposed negligible as well as interparticle interactions. Therefore, the results presented
in this study apply to the dilute limit of particle-laden flows. The particle volume fraction
is a function of the number of particles introduced in the computational domain, and this
number was selected in order to get reliable statistics in the time window studied and to
keep the computational cost affordable. Periodic boundaries are applied to the dispersed
phase in the streamwise and spanwise directions. Wall-particle collisions are treated as
elastic when the distance between the particle centre of mass and the wall is smaller than
deq/2. Note that the particle orientation is not accounted for in the rebound treatment,
and that only the wall-normal component of the particle translational velocity is reversed
when a collision occurs. This approximation is commonly used to study the dynamics of
ellipsoids in a turbulent channel flow (Mortensen et al. 2008a; Zhao et al. 2015b; Ouchene
et al. 2018; Zhao et al. 2019). The equations governing the ellipsoidal translational and
rotational motions are solved with the same third-order low-storage Runge–Kutta scheme
as used in the fluid solver. The time step used to integrate in time the particle equations
of motion is also similar to that used in the fluid solver. Its value is obtained from the
formula �t = min(�tf , �tp,1, �tp,2), where �tf is the time step provided by the flow
solver with the previously mentioned Courant–Friedrichs–Lewy (CFL) condition. Here
�tp,1 and �tp,2 are additional time step restrictions imposed to solve the particle equations
of motion; �tp,1 = τ s

p/10, where τ s
p = (ρpd2

eq)/(18ρf ν) is the spherical particle relaxation;
�tp,2 is an equivalent CFL condition for the particle phase that prevents particles crossing
over more than one cell in one time step. The averaged time step is provided in table 1.
The fluid velocity and velocity gradient necessary to compute the hydrodynamic actions on
each particle are interpolated at the particle position using a tricubic Hermite interpolation
and a trilinear interpolation, respectively.

Here 300 000 prolate spheroids are seeded uniformly in the turbulent flow field. The
particle translational and rotational velocities are initially equal to that of the fluid at their
position, while their orientation is randomized.
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After the particles are released in the turbulent flow, their metrics are collected every
200 iterations, corresponding to an average time interval of 18 in wall units. The same
methodology as the one presented in Michel & Arcen (2021a) was used to avoid the
statistical bias due to transient effects. First, the temporal evolution of the entropy
parameter (Picano, Sardina & Casciola 2009) was computed to determine the time required
by the particle distribution to reach a statistically steady state. Second, from this time, data
were accumulated over an interval of duration of 20 000 in wall units to ensure that the
sample used to compute statistics is large enough to be representative, even in regions of
low particle concentration. For all three values of Reτ , the distribution of τ+

p = 1 and 5
particles reached steady state before 30 000 viscous time units. At Reτ = 1000 however, a
longer time (approximately 40 000 in wall units) was required for the distribution to reach
steady state for the more inertial (τ+

p = 30) particles. To our knowledge, this is the first
time that such long simulations are realized to study the dynamics of prolate ellipsoids, at
different values of the Reynolds number, in a turbulent channel flow.

4. Preferential concentration

In a turbulent flow near solid boundaries, the spatial organization of the coherent vortices
(Robinson 1991) induces a characteristic preferential concentration of inertial particles.
Particularly, Kaftori, Hetsroni & Banerjee (1995) showed that spherical, inertial particles
accumulate in regions of negative streamwise fluid velocity fluctuation (the so-called
low-speed streaks). Using DNS, this characteristic concentration was similarly observed
for ellipsoidal particles by Zhang et al. (2001) and Mortensen et al. (2008a), with a small
influence of λ. To illustrate this particle segregation, an instantaneous visualization of the
fluctuation field, u′+

x , as well as ellipsoids located in 1 < y+
p < 5 are presented in figure 1.

It should be noted that this phenomenon could be emphasized using other techniques.
Some of them were recently applied to experimental and DNS data for spherical particles
(see, for instance, Fong, Amili & Coletti 2019; Jie et al. 2022). Results are given for
λ = 3 only because the influence of the aspect ratio is minor. From figure 1(a,b), small
differences are visible between τ+

p = 5 and 30 ellipsoids at Reτ = 180. In both cases,
particle distribution is not random, and long particle streaks can be observed. There is
a good agreement between the particle streaks and regions where the fluctuations of the
streamwise velocity component are negative, corresponding to low-speed fluid streaks.
More τ+

p = 30 particles nonetheless appear to be located in regions of positive u′+
x .

Figure 1(c,d) presents a similar visualization for the case Reτ = 1000. While the general
appearance of the instantaneous flow seems more complex, due to the smaller size of the
turbulent flow structures, a careful examination reveals that the main features observed at
Reτ = 180 are still visible. Long particle streaks can be observed, and these correspond
to regions of negative u′+

x . This qualitative independence of the preferential concentration
to the Reynolds number was also observed by Bernardini (2014) for spherical particles. In
addition, Bernardini noted that the spacing between the streaks remains constant, in wall
units (δ+

z ≈ 120), as the Reynolds number increases. This is similarly observed for the
ellipsoids, and suggests that the universal organisation of inertial particles in the viscous
sublayer does not depend on their shape.

To highlight the preferential sampling of the flow by the particles, the probability density
function (p.d.f.) of the fluctuation of the streamwise component of the fluid translational
velocity conditioned at particle location, ũ′+

x , is presented in figure 2. This statistic was
also selected by Marchioli & Soldati (2002) to quantify the preferential concentration of
inertial spheres in a turbulent channel flow at Reτ = 150 and by Yuan et al. (2018) for
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Figure 1. Visualization of the fluctuation of the streamwise component of the fluid translational velocity (u′+
x )

in the (x, z) plane at position y+ = 3. The colouration represents the value of the fluctuations. The black dots
represent the position of the centre of mass of λ = 3 ellipsoids with position 1 < y+

p < 5. Results are shown
for (a,c) τ+

p = 5, (b,d) τ+
p = 30, (a,b) Reτ = 180, (c,d) Reτ = 1000.

inertial ellipsoids at Reτ = 180. To evaluate this quantity, the DNS fluid velocity field is
first interpolated at the particle location using the method mentioned in § 3. Statistics are
then extracted by averaging over time and over the particles located in the slab 4 < y+ <

5. The p.d.f. of u′+
x , the fluctuation of the streamwise component of the unconditioned

fluid velocity is also presented. The peak of the p.d.f., both for ũ′+
x and u′+

x , is visible for
negative streamwise fluctuations, and it is higher for the fluid seen by the particles than
for the unconditioned fluid. This corresponds to the characteristic particles accumulation
in low-speed fluid streaks, which was observed in figure 1. The positive skew of the p.d.f.
of u′+

x nonetheless indicates the rare occurrence of strong events associated to positive
streamwise velocity fluctuations. The p.d.f. of the velocity fluctuations of the fluid seen
by the particles exhibits a weaker skew, and the more intense events experienced by the
particles depend on their relaxation time. For instance, the tail of the p.d.f. for τ+

p = 30
particles (figure 2b) is longer than for τ+

p = 5 (figure 2a), indicating a higher probability to
experience strong positive streamwise velocity fluctuations. This trend reflects the different
characteristics of the regions of the flow preferentially sampled by particles with respect to
their relaxation time. Increasing the flow Reynolds number does not significantly alter the
general shape of the p.d.f., but a higher probability of strong positive velocity fluctuation
events can be noticed at higher Reτ , both for the fluid and for the fluid seen by the particles.

To more finely quantify the influence of the flow Reynolds number on preferential
concentration, we analyse how the fluctuations of the fluid seen by the particles are
distributed in terms of the four types of turbulent events contributing to Reynolds
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Figure 2. Probability density function (p.d.f.) of the fluctuation of the streamwise component of the fluid
translational velocity sampled by the particles in the region 4 < y+ < 5. Results are shown for (a) τ+

p = 5, (b)
τ+

p = 30. Black line with symbols: unconditioned fluid. Circles: Reτ = 180; squares: Reτ = 1000. The data
are normalized by the velocity r.m.s.

4 < y+ < 5 28 < y+ < 32 Channel core
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

τ+
p = 1, Reτ = 180 12.5 35.5 22.9 29.1 17.3 33.7 14.4 34.6 26.5 22.8 22.3 28.4

τ+
p = 1, Reτ = 1000 12.4 36.5 24.1 27.0 16.9 34.6 17.3 31.2 26.5 22.8 21.8 28.9

τ+
p = 5, Reτ = 180 8.90 44.4 27.3 19.4 14.1 39.0 15.5 31.4 28.3 21.0 20.3 30.4

τ+
p = 5, Reτ = 1000 8.50 44.5 29.0 18.0 14.6 39.1 18.2 28.1 26.8 22.7 22.4 28.1

τ+
p = 30, Reτ = 180 10.3 40.3 26.3 23.1 17.4 37.4 15.2 30.0 29.9 19.3 18.8 32.0

τ+
p = 30, Reτ = 1000 10.9 38.9 27.0 23.2 16.7 38.5 18.5 26.3 28.7 21.0 20.8 29.5

Table 3. Quadrant analysis of the fluid seen by the particles for λ = 3 ellipsoids at different wall-normal
locations in the channel. The channel core is defined as 170 < y+ < 180 and 950 < y+ < 1000 for Reτ = 180
and 1000, respectively.

shear stress. These are called the quadrants and are characterized by the sign of u′
x and

u′
y (Wallace, Eckelmann & Brodkey 1972). The first quadrant (Q1), u′

x > 0 and u′
y > 0,

corresponds to the motion of a fluid parcel with high streamwise velocity towards the
channel centre; the second quadrant (Q2), u′

x < 0 and u′
y > 0, is associated to ejections

of low-speed fluid towards the channel core; the third quadrant (Q3), u′
x < 0 and u′

y < 0,
corresponds to the motion of low-speed fluid towards the wall; the fourth quadrant (Q4),
u′

x > 0 and u′
y < 0, is representative of the motion of high speed fluid towards the wall

(sweeps). From such an analysis, Marchioli & Soldati (2002) showed that Q2 and Q4
events are strongly correlated to spherical particle motion toward and outward from the
wall.

The average percentage of particles in each quadrant at different wall-normal locations
in the channel is presented in table 3 for three values of the relaxation time. Only the
results for λ = 3 are reported, because from a quantitative perspective, we did not notice
important differences with the other aspect ratios. In the viscous sublayer (4 < y+ < 5), at
Reτ = 180 , most of τ+

p = 5 and 30 ellipsoids (65–70 %) sample Q2 and Q3 events, which
correspond to regions where u′

x < 0. This result is connected with the accumulation of
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Velocities statistics of ellipsoids in a turbulent channel flow

τ+
p = 5 and 30 particles in the low-speed streaks that was observed in figure 1(a,b). The

picture is different for τ+
p = 1 ellipsoids, which preferentially sample Q2 and Q4 events.

At a further distance from the wall, particles interact differently with the turbulent flow,
and sample different regions. Results from the quadrant analysis at y+ ≈ 30 are presented
in table 3. In this region, a large fraction of the ellipsoids are surrounded by Q2 and Q4
events. This compares well with what Vinkovic et al. (2011) observed for τ+

p = 5 spherical
particles in a channel at Reτ = 587 around y+ = 38. Note that the results presented in
table 3 show that such events are also dominant for τ+

p = 1 and 30 in this region. Finally,
in the channel core, ellipsoids preferentially sample Q1 and Q4 events. These correspond
to regions where the fluctuations of the streamwise velocity are of a positive sign, and
contrast with the preferential concentration in the near-wall and buffer regions. It is
noteworthy to mention that the distribution of the fluctuations of the fluid velocity sampled
at particle location is not isotropic in the channel core. This result compares well to the
anisotropy of the fluid velocity distribution in the channel core reported by Kim, Moin &
Moser (1987) at Reτ = 180.

The results presented in table 3 also show the influence of the Reynolds number on
the properties of the fluid velocity seen by the particles. Increasing the value of Reτ does
not deeply alter the distribution of the fluctuations of the velocity of the fluid seen by
the particles. A finer comparison nonetheless reveals a complex evolution of the quadrant
distribution, with different trends depending on the position in the channel and on the
relaxation time. In the near-wall region the influence of Reτ on the turbulent events
surrounding the particles depends on the relaxation time. For example, τ+

p = 1 ellipsoids
experience more Q2 (ejection) events at higher values of Reτ , while the probability of
encountering such events decreases for τ+

p = 30. Higher values of Reτ are also associated
with a decrease of the fraction of Q4 (sweep) events sampled by τ+

p = 1 ellipsoids in
this region, but this is not the case for τ+

p = 30. In the buffer layer results presented in
table 3 show that the influence of Reτ on the quadrants is similar for all relaxation times.
The fraction of Q4 events decreases, while that of Q3 increases. Ellipsoids surrounded
by fluid moving towards the wall therefore experience more negative streamwise velocity
fluctuations at higher values of Reτ . Finally, in the channel core there is a weak influence
of Reτ on the turbulent events experienced by τ+

p = 1 ellipsoids. For more inertial
particles, however, a clear increase of the fraction of Q2 and Q3 events can be noticed,
while the probability of Q1 and Q4 events decreases. This indicates that τ+

p = 5 and 30
ellipsoids are more likely to be surrounded by negative streamwise velocity fluctuations
in the channel core at higher Reτ . This evolution is likely related to the interaction of
these particles with very-large-scale motions (VLSM), which have a more important
contribution to the turbulent flow dynamics as Reτ increases (Balakumar & Adrian 2007).
It was previously shown that these large-scale structures have a strong effect on the
preferential concentration of spherical particles with a relaxation time ranging between
5 < τ+

p < 300 (Jie et al. 2022). This result seems to apply to ellipsoidal particles as well.
Increasing the flow Reynolds number results in a more homogeneous distribution of the
velocity fluctuations of the fluid seen by τ+

p = 5 and 30 particles in this region.
These observations show that increasing the flow Reynolds number has an effect on the

fluid velocity fluctuations sampled by the particles, especially in the buffer region, and in
the channel core for moderately inertial particles. To better understand the influence of Reτ

on the particle dynamics, several statistics describing the particle and fluid translational
velocity seen by the particles are analysed in the next section.

966 A17-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.420


A. Michel and B. Arcen

0

5

10

15

20
Reτ = 180

Reτ = 550

Reτ = 1000

–0.10

–0.05

0

0.05

0.10

 0

 5

 10

 15

 20

100 101 102 103

y+
100 101 102 103

100 101 102 103 100 101 102 103

y+

–0.10

–0.05

0

0.05

0.10
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Figure 3. Average value of the streamwise (a,c) and wall-normal (b,d) components of the translational velocity
of the fluid at particle position, as a function of y+. Continuous line, λ = 1; dotted line, λ = 3; dashed line,
λ = 10. Results are shown for (a,b) τ+

p = 1, (c,d) τ+
p = 30. Black line with symbols: unconditioned fluid.

Circles: Reτ = 180; triangles: Reτ = 550; squares: Reτ = 1000.

5. Translational velocity statistics

5.1. Mean fluid seen velocity and drift velocity
We now describe the statistical properties of the fluid velocity conditioned at particle
location (also referred to as fluid velocity seen or sampled by the particles in the following).
As previously explained, the DNS fluid velocity field is first interpolated at the particle
location using the method mentioned in § 3 to evaluate this quantity. Statistics are then
extracted by averaging over time and over the particles located in a given wall-normal slab
whose thickness is provided by the Eulerian mesh. The average streamwise component of
the fluid velocity seen by the particles is presented in figure 3(a,c) for relaxation times
τ+

p = 1 and 30, and for three aspect ratios. At Reτ = 180, Mortensen et al. (2008b) did
not notice a strong influence of λ on this statistic, and this result was later confirmed by
the experimental measurements of Abbasi Hoseini et al. (2015). This statement remains
valid at Reτ = 550 and 1000. In addition, the evolution of the streamwise component of
the fluid velocity seen by the particles with Reτ is analogous to that of the unconditioned
fluid. In the viscous sublayer the average velocity, expressed in wall units, is independent
of the Reynolds number, but the maximum value of 〈ũ+

x 〉 increases in the channel core.
These observations are valid for all the relaxation times considered.

The mean wall-normal component of the fluid velocity seen by the particles is presented
in figure 3(b,d). The average ũ+

y is not zero, because of the preferential particle segregation
in the flow field. Increasing Reτ has a notable influence on this statistic, which depends on
the position in the channel and relaxation time. For τ+

p = 1, the mean wall-normal velocity
of the fluid seen by the particles increases with Reτ , everywhere in the channel. This can
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be noticed in the buffer region, where 〈ũ+
y 〉 is maximum. It is interesting to observe that

this result cannot be explained by the evolution of the quadrant distribution. For example,
at y+ = 30, results presented in table 3 indicate that 51 % of the τ+

p = 1 particles sample
regions of positive ũ′+

y at Reτ = 180 (the sum of Q1 and Q2). This fraction is 51.5 % at
Reτ = 1000, and should not result in a visible increase of 〈ũ+

y 〉. Therefore, the increase of
〈ũ+

y 〉 with Reτ observed in figure 3(b) is caused by the higher intensity of the fluctuations
of the fluid seen by the particles. In the channel core, for τ+

p = 1, 〈ũ+
y 〉 is slightly negative

at Reτ = 180, and does not significantly vary with the Reynolds number.
For τ+

p = 30, figure 3(d) also shows that 〈ũ+
y 〉 increases with Reτ in the buffer region.

Around y+ = 30, the maximum of 〈ũ+
y 〉 is higher for Reτ = 550 and 1000 than for Reτ =

180. This is coherent with the increase of the number of events associated with positive
ũ′

y sampled by the particles at higher Reτ (table 3). In the near-wall region and in the
channel core, the average wall-normal velocity of the fluid seen by the particles does not
vary with Reτ . This result was not expected from the results presented in table 3, because
the quadrant analysis at y+ = 5 indicates that the fraction of τ+

p = 30 particles sampling
Q1 and Q2 events is lower if the value of Reτ is higher (50.6 % at Reτ = 180 and 49.8 % at
Reτ = 1000). The expected outcome would be a lower value of 〈ũ+

y 〉 for higher Reτ . The
fact that the mean value of the wall-normal velocity seen by the particles does not decrease
indicates that the intensity of the turbulent events sampled by the particles increases with
Reτ . Finally, in the near-wall region and in the channel core, 〈ũ+

y 〉 is mostly unaffected by
the value of Reτ .

To obtain more information about the properties of the fluid sampled by the particles,
the streamwise component of the translational drift velocity is presented in figure 4. The
translational drift velocity corresponds to the average fluctuation of the velocity of the fluid
sampled by the particles, computed by taking the unconditioned fluid velocity average as
a reference,

udx = 〈ũx − 〈ux〉〉. (5.1)

In the channel at Reτ = 180, negative values of u+
dx up to y+ ≈ 50 indicate that the particles

sample regions of the flow where the streamwise velocity is lower than the average, that
is, where the fluctuations of the streamwise velocity are negative. This observation is
connected with the results presented in table 3: regardless of the relaxation time and
aspect ratio, a majority of particles sample Q2 and Q3 events. Increasing the flow Reynolds
number has a notable influence on u+

dx, which is similar for all aspect ratios but differs as
a function of the relaxation time.

For τ+
p = 1 (figure 4a), the region of the channel for which u+

dx is negative increases with
Reτ . In addition, a decrease of the drift velocity is observed in this region, indicating that
ellipsoids see more negative fluctuations of the streamwise fluid velocity as the Reynolds
number increases. This is connected with the results presented in table 3 at y+ = 5 and
30. There is a higher fraction of particles in Q2 and Q3 events at Reτ = 1000 than at
Reτ = 180 at these two locations. Similar observations can be made for τ+

p = 5 (figure 4b),
although the influence of increasing from Reτ = 550 to Reτ = 1000 is less important for
this relaxation time. A notable exception is for λ = 10. For this aspect ratio, increasing the
Reynolds number from Reτ = 550 to Reτ = 1000 results in a significant increase of the
fraction of the channel where the drift velocity is negative for τ+

p = 5. In consequence,
the sign of the drift velocity differs from that observed for λ = 1 and 3 over a large
fraction of the channel height. This result is remarkable because such influence of the
aspect ratio is not visible at Reτ = 180 and 550. Therefore, there might be unexpected
effects of the aspect ratio on the particle statistics at higher values of the Reynolds number.

966 A17-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.420


A. Michel and B. Arcen

–1.6

–1.2

–0.8

–0.4

 0

 0.4

Reτ = 180

Reτ = 550

Reτ = 1000
–1.6

–1.2

–0.8

–0.4

 0

 0.4

–1.6

–1.2

–0.8

–0.4

 0

 0.4

100 101 102 103

 

u+dx 

u+dx 

y+

100 101 102 103

y+
100 101 102 103

y+

(b)(a)

(c)

Figure 4. Streamwise component of the translational drift velocity as a function of y+. Continuous line,
λ = 1; dotted line, λ = 3; dashed line, λ = 10. Results are shown for (a) τ+

p = 1, (b) τ+
p = 5, (c) τ+

p = 30.

Such dependence of the drift velocity to the flow Reynolds number is likely due to the
interaction of the ellipsoidal particles with the VLSM present in the flow at Reτ = 1000.
For instance, Wang & Richter (2019) reported that the VLSM have a strong influence
on the streamwise drift velocity of inertial spherical particles in the outer region of an
open channel flow. The present results suggest that the influence of the VLSM on the
drift velocity additionally depends on the particle shape, especially for weak and moderate
particle inertia. For τ+

p = 30, such influence of the aspect ratio is not visible in figure 4(c).
There is however a different evolution of u+

dx with the Reynolds number. The minimum
value of the drift velocity increases with Reτ for τ+

p = 30, indicating a decrease of the
preferential concentration of such particles in regions of negative streamwise fluid velocity
fluctuations. This trend is the opposite of what was observed for smaller relaxation times.
Finally, increasing the flow Reynolds number has a weak effect on u+

dx in the channel core
and only results in a slight decrease of the drift velocity in this region.

5.2. Fluctuations of the particle and fluid seen velocities
We now examine the influence of Reτ on the r.m.s. of the fluid seen and particle
translational velocities. The r.m.s. of the streamwise component of the velocity of the fluid
at particle position is presented in figure 5 for relaxation times τ+

p = 5 (figure 5a) and 30
(figure 5c). In a general manner, there is a similar evolution of r.m.s.(u+

x ) and r.m.s.(ũ+
x ):

increasing the Reynolds number leads to higher velocity fluctuations, everywhere in the
channel. A well-known effect of particle inertia observed both for spheres and ellipsoids
(Mortensen et al. 2008a) at Reτ = 180 is that the r.m.s. of the fluid seen by the particles
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(ũ
x+

)
r.

m
.s

. 
(ũ
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Figure 5. The r.m.s. of the streamwise component of the fluid translational velocity at particle position
(a,c) and of the particle translational velocity (b,d) as a function of y+. Continuous line, λ = 1; dotted line,
λ = 3; dashed line, λ = 10. Results are shown for (a,b) τ+

p = 5, (c,d) τ+
p = 30. Black line with symbols:

unconditioned fluid velocity. Circles: Reτ = 180; triangles: Reτ = 550; squares: Reτ = 1000.

is higher than r.m.s.(u+
x ). Figure 5(a,c) shows that this observation does not depend on the

Reynolds number, and neither does the position at which r.m.s.(ũ+
x ) becomes higher than

r.m.s.(u+
x ). In figure 5(a) we can nonetheless observe that for τ+

p = 5, r.m.s.(ũ+
x ) does not

depend on λ for Reτ = 180 and 550, but this is not the case for Reτ = 1000. In the channel
core the r.m.s. of the fluid seen by λ = 10 and τ+

p = 5 ellipsoids is nearly equal to that
of the fluid for this Reynolds number. For τ+

p = 30, these results weakly depend on the
aspect ratio, up to Reτ = 1000.

These results can be compared with the particle velocity r.m.s., which are presented in
figure 5(b,d). In their study, Mortensen et al. (2008a) showed that r.m.s.(u+

px) for ellipsoidal
particles at Reτ = 180 is greater than that of the fluid, everywhere in the channel. This is
a well-known effect induced by the presence of a mean fluid velocity gradient, which was
previously documented for spheres (see, for instance, Liljegren 1993). The present results
confirm this trend for higher values of the Reynolds number. Previously, we also remarked
that r.m.s.(ũ+

x ) increases in a way similar to that of the fluid. This is the case for r.m.s.(u+
px)

as well. Nonetheless for τ+
p = 30 (figure 5d), we remark that the increase of r.m.s.(u+

px)
is less pronounced than the increase observed for the fluid. To conclude, regardless of the
Reynolds number, the effect of the aspect ratio on r.m.s.(u+

px) is similar to that observed
on r.m.s.(ũ+

x ). There is generally a weak effect of this parameter, except for the r.m.s. for
λ = 10 and τ+

p = 5 in the central region of the channel at Reτ = 1000.
The wall-normal and spanwise components of the r.m.s. of the fluid translational

velocity sampled at particle position are presented in figure 6(a,c) for τ+
p = 5. For all three

Reynolds numbers considered, r.m.s.(ũ+
y ) and r.m.s.(ũ+

z ) are lower than those of the fluid.
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Figure 6. The r.m.s. of the fluid translational velocity at particle position (a,c) and of the particle translational
velocity (b,d) as a function of y+ for particles with relaxation time τ+

p = 5. Continuous line, λ = 1; dotted line,
λ = 3; dashed line, λ = 10. Results are shown for (a,b) wall-normal component; (c,d) spanwise component.
Black line with symbols: unconditioned fluid. Circles: Reτ = 180; triangles: Reτ = 550; squares: Reτ = 1000.

The influence of the aspect ratio on these components of r.m.s.(ũ+
i ) is minor at Reτ = 180,

and this statement remains true at Reτ = 550 and 1000 as well. Figure 6(b,d) indicates that
the same conclusions apply to the r.m.s. of the wall-normal and spanwise components of
the particle translational velocity. Results for τ+

p = 1 and τ+
p = 30 similarly reveal a weak

influence of λ for all the Reynolds numbers considered and are not presented for brevity
reasons.

6. Angular velocity statistics

6.1. Mean particle and fluid seen angular velocities
To complete this study, we now examine the influence of Reτ on the angular velocity
statistics.

The mean angular velocity of the fluid seen by the particles is presented in figure 7(a,c)
for τ+

p = 1 and 30. The angular velocity of the fluid sampled by the particles is nearly
the same as that of the fluid, regardless of the aspect ratio, relaxation time and Reynolds
number. Nonetheless, in the viscous sublayer the mean angular velocity of the fluid seen
by the particles is slightly lower than the average angular velocity of the fluid, while it
is slightly higher around y+ = 30. These differences are more important for τ+

p = 30
than for τ+

p = 1. Because the average angular velocity of the fluid seen by the particles
only depends on the wall-normal derivative of 〈ũ+

x 〉, it can be related to the preferential
concentration. In the viscous sublayer the particles are located in low-speed streaks
(table 3), corresponding to regions where 〈ũ+

x 〉 < 〈u+
x 〉. The wall-normal derivative of the
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Figure 7. Average spanwise component of the angular velocity of the fluid at particle position (a,c) and angular
drift velocity (b,d) as a function of y+. Continuous line, λ = 1; dotted line, λ = 3; dashed line, λ = 10. Results
are shown for (a,b) τ+

p = 1, (c,d) τ+
p = 30. Black line with symbols: unconditioned fluid. Circles: Reτ = 180;

triangles: Reτ = 550; squares: Reτ = 1000.

mean streamwise translational velocity of the fluid seen by the particles in this region is
therefore lower than the one of the fluid. This explains the lower values of 〈Ω̃+

z 〉 observed
in figure 7(a,c) up to y+ = 8. In the buffer region, figure 3(a,c) shows that 〈ũ+

x 〉 increases
more quickly than 〈u+

x 〉. This is consistent with the values of 〈Ω̃+
z 〉 being higher than

〈Ω+
z 〉. Increasing the value of the Reynolds number does not strongly modify the mean

angular velocity of the fluid, nor the mean angular velocity of the fluid sampled by the
particles.

In order to highlight the differences between the angular velocity of the fluid seen by
the particles and the mean fluid angular velocity, figure 7(b,d) presents the angular drift
velocity, the average fluctuation of the angular velocity of the fluid conditioned at particle
position, computed with the average fluid angular velocity as a reference,

ωdz = 〈Ω̃z − 〈Ωz〉〉. (6.1)

For the two relaxation times considered, the angular drift velocity is negative in the
viscous sublayer and positive in the buffer region. This is consistent with the observation
previously reported from figure 7(a,c). In figure 7(b) we remark that increasing the flow
Reynolds number has a minor effect on the angular drift velocity for τ+

p = 1 particles. For
τ+

p = 30 (figure 7d), the magnitude of ω+
dz is lower for higher values of Reτ . On average,

at higher Reτ , the angular velocity of the fluid seen by the particles is closer to that of the
unconditioned fluid. Finally, the influence of the aspect ratio on the angular drift velocity
is marginal, which confirms the previous remarks about the angular velocity of the fluid
seen by the particles.
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Figure 8. Average spanwise component of the particle angular velocity as a function of y+. Continuous line,
λ = 1; dotted line, λ = 3; dashed line, λ = 10. Results are shown for (a) τ+

p = 1, (b) τ+
p = 5, (c) τ+

p = 30.
Black line with symbols: unconditioned fluid. Circles: Reτ = 180; triangles: Reτ = 550; squares: Reτ = 1000.

The ellipsoids mean angular velocity is presented in figure 8. In the near-wall region
the particle mean angular velocity strongly depends on the aspect ratio and relaxation
time. This is a consequence of the periodic rotation orbits caused by the mean velocity
gradient in this region. The characteristics of the rotation orbits strongly vary with the
particle shape and inertia (Lundell & Carlsson 2010; Zhao et al. 2015b). For example,
λ = 10 and τ+

p = 1 particles have long rotation periods in the plane (x, z), where they
spend extended periods of time spinning with their major axis aligned with the mean flow
(Michel & Arcen 2021b). These conclusions, drawn up to Reτ = 550, can be extrapolated
up to Reτ = 1000. On average, it results in a low mean spanwise angular velocity for high
aspect ratios (figure 8a). Ellipsoids of relaxation time τ+

p = 30, however, rotate around
one of their minor axis and with a nearly constant angular velocity in the velocity-gradient
(x, y) plane (Michel & Arcen 2021b). Their average angular velocity is close to that of the
spherical particles, and also close to the mean angular velocity of the fluid (figure 8c).

In the near-wall region there is a notable influence of the Reynolds number on the mean
angular velocity of λ = 10 and τ+

p = 1 ellipsoids. Figure 8(a) clearly shows the increase
of the mean angular velocity of these particles with Reτ . There is an analogous influence
of Reτ on the angular velocity of λ = 3 and τ+

p = 1 ellipsoids, although less important. A
possible explanation can be obtained by examining the influence of the Reynolds number
on the rotation mode of the ellipsoids. In the near-wall region higher values of Reτ increase
the alignment of the particle major axis with the mean vorticity for τ+

p = 1 (Michel
& Arcen 2021b). This stronger alignment induces a higher average particle angular
velocity. For τ+

p = 30 ellipsoids, increasing Reτ results in an increase of the mean angle
between the particle major axis and the velocity-gradient plane (Michel & Arcen 2021b).
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Figure 9. The r.m.s. of the streamwise (a), wall-normal (b) and spanwise (c) components of the angular
velocity of the fluid at particle position as a function of y+ for particles with relaxation time τ+

p = 30.
Continuous line, λ = 1; dotted line, λ = 3; dashed line, λ = 10. Black line with symbols: unconditioned fluid.
Circles: Reτ = 180; triangles: Reτ = 550; squares: Reτ = 1000.

While a decrease of the mean angular velocity of these particles could be expected,
figure 8(c) suggests only minor changes of 〈ω+

pz〉 with the flow Reynolds number for such
ellipsoids. In figure 8(b), however, we note a slight decrease of the mean angular velocity of
λ = 10 and τ+

p = 5 particles when Reτ increases. These ellipsoids have a hybrid rotation
mode, that share characteristics from both rotations of τ+

p = 1 and τ+
p = 30 ellipsoids.

For moderate inertia, the modification of the rotation orbits when Reτ increases therefore
results in a reduction of the average angular velocity.

6.2. Fluctuations of the particle and fluid seen angular velocities
To conclude this study, we examine the effect of the flow Reynolds number on the
fluctuations of the angular velocity. The r.m.s. of the three components of the angular
velocity of the fluid sampled at particle position are presented in figure 9. Only the
results for τ+

p = 30 are presented because the influence of τ+
p on this statistic is minor.

The intensity of r.m.s.(Ω̃+
x ) and r.m.s.(Ω̃+

z ) increases with the Reynolds number. This
is clearly visible in the near-wall region and to a lesser extent in the buffer region.
In contrast, r.m.s.(Ω̃+

y ) does not strongly vary with Reτ . This trend is similar to that
observed for the r.m.s. of the angular velocity of the unconditioned fluid (black line with
symbols). Similarly to Mortensen et al. (2008a), a minor influence of the aspect ratio on
the r.m.s.(Ω̃+

i ) at Reτ = 180 is noted. This weak effect of λ persists for higher values
of Reτ .
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Figure 10. The r.m.s. of the streamwise (a,b), wall-normal (c,d) and spanwise (e, f ) components of the particle
angular velocity as a function of y+. Continuous line, λ = 1; dotted line, λ = 3; dashed line, λ = 10. Results are
shown for (a,c,e) τ+

p = 1, (b,d, f ) τ+
p = 30. Black line with symbols: unconditioned fluid. Circles: Reτ = 180;

triangles: Reτ = 550; squares: Reτ = 1000.

Figure 10 presents the three components of the r.m.s. of the particle angular velocity for
τ+

p = 1 and 30. These statistics strongly depend on the particle shape and relaxation time,
and this is a direct consequence of the rotation induced by the mean velocity gradient.
Spherical particles do not exhibit preferential rotation orbits and r.m.s.(ω+

pi) are close to
those of the fluid in the near-wall region for these particles. This trend is less pronounced
for τ+

p = 30 than for τ+
p = 1 and this is a pure consequence of their higher inertia. For

spherical particles, the intensity of r.m.s.(ω+
px) and r.m.s.(ω+

pz) increases with Reτ . This is
consistent with the evolution of the r.m.s. of the fluid angular velocity. The decrease of
the maximum of r.m.s.(ω+

py) for higher values of Reτ is however unexpected. It matches
neither the evolution of r.m.s.(Ω+

y ) nor the evolution of r.m.s.(Ω̃+
y ).

Concerning the ellipsoidal particles, it is known that they favour different rotation modes
depending on their characteristics, which strongly influence the particle angular velocity
r.m.s. All three components of the particle angular velocity r.m.s. exceed those of the fluid
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in the near-wall region for τ+
p = 1 ellipsoids, with a complex dependence of the angular

velocity statistics to the aspect ratio. This is visible in figure 10(a) where r.m.s.(ω+
px) are

the highest for λ = 10 and in figure 10(c,e) where r.m.s.(ω+
py) and r.m.s.(ω+

pz) are maximum
for λ = 3. The decrease of the intensity of the r.m.s. of the wall-normal component of
the angular velocity with the particle length was also observed experimentally by Abbasi
Hoseini et al. (2015) for weakly inertial fibres. The influence of the aspect ratio is less
pronounced for τ+

p = 30. Here r.m.s.(ω+
px) and r.m.s.(ω+

pz) follow the same evolution as
r.m.s.(Ωi), but have lower intensity. Only r.m.s.(ω+

py) for λ = 10 strongly exceeds that of the
fluid in the near-wall region. Everywhere in the channel, the main features characterizing
the components of the ellipsoids angular velocity r.m.s. do not significantly vary between
Reτ = 180 and Reτ = 1000. This effect was expected in the range Reτ = 180 to 550 since
the ellipsoids rotation orbits only exhibit moderate variations (Michel & Arcen 2021b).
The same trend is also noted from the analysis of the ellipsoids rotation orbits up to
Reτ = 1000 (not shown here). Higher values of Reτ nonetheless result in an increase of
r.m.s.(ω+

px) and r.m.s.(ω+
pz), hence to a higher spread of the ellipsoids angular velocity. A

finer analysis also reveals a complex evolution of r.m.s.(ω+
py) with the Reynolds number. In

figure 10(c), for example, the influence of Reτ on the near-wall angular velocity r.m.s. for
τ+

p = 1 ellipsoids is more pronounced for λ = 3 than for λ = 10. This evolution is different
from that of r.m.s.(Ω̃+

y ), and must therefore be associated to the influence of Reτ on the
ellipsoids rotation orbits. The effect of Reτ on the rotation orbits of τ+

p = 1 ellipsoids
is more important for λ = 3 (Michel & Arcen 2021b), hence a more visible effect on the
angular velocity r.m.s. of such particles. For τ+

p = 30 ellipsoids (figure 10d), higher values
of Reτ result in a more important increase of r.m.s.(ω+

py) for λ = 10 rather than for λ = 3.
This is associated to the increase of the mean angle between the particle major axis and
the velocity-gradient plane with the flow Reynolds number (Michel & Arcen 2021b). In
general, it is difficult to predict the influence of Reτ on the r.m.s.(ω+

py) due to the strong
nonlinearity of the coupling between the three components of the particle angular velocity
(2.4a,b).

7. Conclusion

Direct numerical simulation coupled with a Lagrangian particle tracking has been used
to investigate the effect of the flow Reynolds number effect on the dynamics of inertial,
prolate ellipsoids in a turbulent channel flow. Three values of the aspect ratio λ = 1, 3
and 10 and three values of the relaxation time τ+

p = 1, 5 and 30 have been examined for
a total of nine particle sets. For each set, simulations have been performed at three values
of the Reynolds number Reτ = 180, 550 and 1000, and conducted until the distribution of
300 000 particles has reached a statistically steady state.

First, the effect of the Reynolds number on the particle preferential concentration has
been analysed by means of a quadrant analysis and visualizations. Increasing Reτ does not
significantly modify the preferential concentration. Nevertheless, a careful analysis reveals
a slight evolution of the particle distribution in each quadrant everywhere in the channel.
This effect depends on the particle relaxation time in the near-wall region (y+ < 5) and in
the channel core, suggesting a different response of the particles to the fluid fluctuations.
A notable increase of the average wall-normal component of the translational velocity
of the fluid seen by τ+

p = 30 particles is noticed, and this effect cannot be explained by
the evolution of the quadrant distribution. It is a consequence of the intensification of the
fluctuations of the wall-normal component of the fluid translational velocity sampled by
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the particles. Regardless of the particle shape and inertia, mean and r.m.s. properties of
the translational velocity of the fluid seen by the particles evolve similarly to those of the
fluid with Reτ . Their intensity increases, moderately in the viscous sublayer but strongly
in the buffer region and in the channel core. At low and moderate values of the Reynolds
number, particle translation statistics weakly depend on the aspect ratio, and the influence
of this parameter is only slightly more pronounced at Reτ = 1000. This result indicates
that statistical properties about the translational velocity of ellipsoidal particles can be
reasonably approximated by those of spherical particles up to Reτ = 1000.

Finally, we examined the effect of Reτ on angular velocity statistics. Overall, the
statistical properties of the angular velocity of the fluid seen by the particles have the same
dependence to the flow Reynolds number than the fluid angular velocity. The average
angular velocity and the r.m.s. of the wall-normal component weakly vary, while the
r.m.s. of the streamwise and spanwise components increase with Reτ . Higher values of the
flow Reynolds number also result in stronger fluctuations of the streamwise and spanwise
components of the particle angular velocity. The influence of Reτ on the r.m.s. of the
wall-normal component of the ellipsoids angular velocity and on the average particle
angular velocity is more complex, because it depends on the evolution of their favoured
rotation orbits. These orbits vary with the particle shape and inertia, and depend on the
local value of the ratio between a turbulent time scale and the viscous time scale (Zhao
et al. 2019). The stronger fluctuations of the turbulent shear at higher Reτ noticeably affect
the ellipsoids rotation statistics in the near-wall region. For example, the wall-normal
component of the angular velocity r.m.s. for tumbling ellipsoids increases with Reτ . This
is associated to the increase of the mean angle between the particle major axis and the
velocity-gradient plane with the flow Reynolds number. In the viscous sublayer, alignment
of weakly inertial ellipsoids with the direction of the mean vorticity increases with Reτ

and this is associated to an increase of their average angular velocity. The derivation of
a model reproducing the Reynolds number dependence of the angular velocity statistics
of non-spherical particles represents a notable challenge when the Lagrangian particle
tracking is coupled with a Reynolds-averaged Navier–Stokes (RANS) approach. This study
provides a first look into the Reynolds number effects on the dynamics of non-spherical
particles in a turbulent channel flow. Further investigation is nonetheless still required,
both numerically and experimentally, to confirm the dependence of the dispersed phase
statistics to Reτ . Moreover, the fluid inertia contribution is neglected in the standard
models of the hydrodynamic force and torque used in the present study. This shortcoming
should be considered in the future using low-Reynolds-number approximations (Brenner
1961; Dabade, Marath & Subramanian 2015, 2016; Einarsson et al. 2015) and correlations
derived at moderate Reynolds numbers from experiments and numerical simulations
(Zastawny et al. 2012; Ouchene et al. 2016; Sanjeevi, Kuipers & Padding 2018; Fröhlich,
Meinke & Schröder 2020).
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