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Shear-induced self-diffusion is a fundamental mode of transport in granular flows. Yet
its critical behaviour and dependence on the particle solid fraction are still unclear.
Here, we rationalize these dependencies by performing two-dimensional pressure-imposed
numerical simulations of dense non-Brownian frictional suspensions. Our results,
combined with existing numerical data on inertial granular flows, show that the
shear-induced diffusion coefficients of both systems can be captured by a single function
of the distance to jamming. They further show that the grain diffusive behaviour is
underpinned by a specific random walk process, having a constant elementary step length
driven at a frequency that increases with the solid fraction. The proposed scaling laws pave
the way for a better understanding of mixing processes in granular media.
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1. Introduction

Shear-induced self-diffusion describes the random and non-affine particle displacements
observed in all flows involving granular materials, be they dry or immersed in a liquid
(Eckstein, Bailey & Shapiro 1977; Zik & Stavans 1991; Sierou & Brady 2004). This
process is key in many situations in nature and industry as it drives grain mixing and can
significantly enhance heat transfers or counterbalance segregation across sheared granular
layers (Rognon & Einav 2010; Metzger, Rahli & Yin 2013; Omori et al. 2013; Koslover,
Chan & Theriot 2017; Thøgersen & Dabrowski 2017; Weijs & Bartolo 2017; Rognon &
Macaulay 2021). Yet its description remains incomplete. Widely investigated for low and
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moderate solid fractions under volume-imposed conditions (Leighton & Acrivos 1987;
Breedveld et al. 2002; Leshansky & Brady 2005; Olsson 2010; Vollebregt, Van Der
Sman & Boom 2010; Hatano 2011; Metzger et al. 2013; Saitoh & Kawasaki 2020, 2022),
shear-induced self-diffusion at the continuum scale is described by an effective diffusion
coefficient D = f (φ) γ̇ d2 featuring dependencies on the flow shear rate γ̇ and the particle
diameter d (Leighton & Acrivos 1987). However, the nature and origin of f (φ), a function
of the particle solid fraction φ, remain elusive, especially in the dense regime (Vollebregt
et al. 2010; Artoni et al. 2021).

During the past two decades, significant progress has been made in understanding the
rheological properties of granular systems using the so-called pressure-imposed approach,
where instead of imposing the particle volume fraction, one controls the confining particle
stress P (MiDi 2004; Da Cruz et al. 2005). The virtue of this approach is to prescribe the
normal stress and let the granular layer dilate or compact accordingly. It conveniently
allows measurements close to the jamming transition, i.e. when φ → φc, where φc is
the maximum packing solid fraction. This pressure-imposed approach allowed major
progress and in particular the identification of the critical behaviours of the rheological
properties of granular flows and dense suspensions (Forterre & Pouliquen 2008; Boyer,
Guazzelli & Pouliquen 2011; Guazzelli & Pouliquen 2018). For inertial grains of density
ρ, this approach also revealed the scaling relation D ∝ γ̇ d2/

√
I between the shear-induced

diffusion coefficient D and the inertial number I = γ̇ d
√

ρ/P, controlling the flow (Kharel
& Rognon 2017).

In this paper, we use pressure-imposed simulations to address the behaviour of
the shear-induced self-diffusion coefficient in dense suspensions composed of rigid,
non-Brownian and frictional particles immersed in a viscous fluid of viscosity η. We
first express the shear-induced self-diffusion coefficient D as a function of the viscous
number J = ηγ̇ /P, the analogue of the inertial number for suspensions (Boyer et al.
2011; Rognon, Einav & Gay 2011; DeGiuli et al. 2015; Guazzelli & Pouliquen 2018).
Then, using the dilatancy laws φ(J) and φ(I) of both suspensions and inertial granular
media, we find that the shear-induced self-diffusion coefficient D of both systems follows
a similar scaling relation with the distance to jamming φc − φ, identifying the function
f (φ) = 0.027(φc − φ)−1/2. This result indicates that particle self-diffusion is oblivious
to the origin of the dissipation mechanism (viscous damping forces or elastic granular
collisions) and is determined primarily by geometrical effects. Moreover, we show that
in suspensions and inertial granular media, the scaling for the particle-shear-induced
self-diffusion coefficient stems from a specific random walk process, featuring a constant
elementary step length driven at a frequency that increases with the solid fraction.

2. Method

Simulations are performed using a discrete element method initially built for
volume-imposed simulations (Mari et al. 2014), and then further developed to address
pressure-imposed configurations (Athani et al. 2022). This method solves for the motion of
individual, inertialess grains considering frictional, linear elastic contacts and lubrication
interactions with neighbouring grains, and an interaction with the imposed external shear
flow through a viscous drag. More details about the simulation method can be found in
Appendix A.

As shown in figure 1(a), the system is composed of a monolayer of hard bidisperse
spheres of mean diameter d confined between two walls. Black particles constitute the rigid
top and bottom walls built out of frozen particles arranged in a disordered configuration.
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Figure 1. Shear-induced self-diffusion in a two-dimensional suspension and comparison with dry inertial
granular media. (a,b) Snapshots of the suspension shown at strains γ = γ̇ t = 0 and 30, sheared under high
(J = 5 × 10−2) and low (J = 5 × 10−4) viscous numbers, respectively. Corresponding movies are available
online at https://doi.org/10.1017/jfm.2024.695. (c) Mean square displacements Δ2

y/d2 versus strain γ̇ t obtained
for various imposed steady viscous numbers J. Inset: same data plotted versus t/Ψ , where Ψ is the persistence
time. (d) Corresponding particle dimensionless diffusion coefficients D/γ̇ d2 versus J (blue diamonds k̃ = 103,
blue triangles k̃ = 104, blue circles k̃ = 105, present study) and comparison with D/γ̇ d2 versus I for a dry
inertial granular system (red squares, data from Macaulay & Rognon 2019). The uncertainty on D arising from
fitting the mean square displacement is ±2 %; typical error bars can be appreciated from the dispersion between
runs.

Note that Wang & Brady (2015) developed a pressure imposed code that, by allowing
a finite compressibility of the fluid phase, enables us to use Lees–Edwards boundary
conditions, thereby preventing the introduction of solid walls. Here, the bottom wall
is fixed, while the top wall, permeable to the fluid, moves horizontally to shear the
suspension, but is also free to move vertically. The control parameters are the external
pressure P acting on the top wall, and the shear rate γ̇ of the imposed background shear
flow. In this pressure-imposed configuration, the solid fraction φ is free to adjust owing
to the value of the imposed viscous number J = ηγ̇ /P. Importantly, such a configuration
was used previously to simulate the transient migration/dilation of a granular layer under
changes of boundary conditions (Athani et al. 2022). The present study is focused on
the behaviour of the particle shear-induced self-diffusion coefficient when imposing
different viscous numbers J. We thus report only measurement performed during steady
states, for which the particle pressure and volume fraction are homogeneous across the
system. Moreover, this pressure-imposed configuration allows us to perform simulations
with a fixed degree of overlap between particle as the parameter k̃ = kn/Pd, where kn,
the particle stiffness, can easily be held constant. Simulations obtained with different
values k̃ = 103, 104 and 105 show that our results are representative of the rigid grains
limit (Da Cruz et al. 2005). We take advantage of the pressure-imposed configuration
to explore the system in the ‘dense’ regime, reaching distances to jamming as small
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as φc − φ = 0.02, or equivalently, J = 10−4. The protocol is as follows. We set the
external pressure P and the shear rate γ̇ , then run the simulation until the suspension
reaches a steady state (with homogeneous particle pressure and volume fraction profiles),
corresponding to the target viscous number J = ηγ̇ /P. From this point, referred to as
t = 0, the simulation is performed for 30 additional strain units, over which the particle
shear induced self-diffusion coefficient is computed.

3. Results

In figures 1(a) and 1(b), we illustrate the grain mixing arising from shear-induced
diffusion by colour coding the top and bottom particles at t = 0. We observe that after
30 strain units, grains have diffused significantly, and that mixing is more pronounced
for the lowest viscous number (i.e. for J = 5 × 10−4). To investigate this phenomenology
more quantitatively, we measure the particle mean square displacements in the gradient
direction Δ2

y(t) = 〈( yi(t0 + t) − yi(t0))2〉, where yi(t) is the transverse position of grain
i at time t, and the operator 〈·〉 denotes a spatial average including all mobile grains
and a temporal average including 103 reference times t0 taken at random during the
flow. Figure 1(c) shows the normalized mean square displacements Δ2

y/d2 versus strain
γ̇ t obtained for different imposed viscous numbers J ∈ [10−4, 10−1], or equivalent solid
fractions φc − φ ∈ [0.02, 0.25]. After a short ballistic regime, where the mean square
displacements increase quadratically with strain, the system transitions towards a linear
diffusive regime. The corresponding diffusion coefficients are extracted according to the
Einstein formula D = limt→∞ Δ2

y(t)/2t, by fitting the mean square displacement, using
Δ2

y/d2 = 2(D/γ̇ d2)γ̇ t, over the strain range highlighted by the dashed lines (γ ∈ [8, 15]),
where the system has reached its diffusive regime. The resulting shear-induced diffusion
coefficients plotted for various values of J in figure 1(d) can be well fitted by the simple
power law D(J)/γ̇ d2 = 0.024J−0.26, suggesting that D follows the scaling law

Dsusp

γ̇ d2 ≈ 0.024J−1/4. (3.1)

For the sake of clarity, all exponents in the following are similarly rounded to the nearest
fractional exponent (within error bars). The fitting procedure, best-fit parameters and
associated error bars are provided in Appendix B. The latter scaling law indicates that
particles in suspensions tend to diffuse more for smaller values of the viscous number J
(or equivalently, for larger φ), as previously observed qualitatively in figures 1(a) and 1(b).
Interestingly, Macaulay & Rognon (2019) report a similar scaling law for inertial granular
media,

Dgran

γ̇ d2 ≈ 0.049I−1/2, (3.2)

as illustrated in figure 1(d). A priori, suspensions and inertial granular flows are different
systems governed by their own dimensionless numbers, namely J and I, which involve
different physical mechanisms. However, as shown in figure 2(a), examination of the
dilation laws φ(J) and φ(I) indicates that for such a frictional suspension,

φsusp ≈ φc − 0.64J1/2, (3.3)

with φc = 0.81 ± 1 × 10−2, and for inertial granular media,

φgran ≈ φc − 0.44I, (3.4)
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Figure 2. Unifying suspension and granular shear-induced self-diffusion. (a) Dilatancy laws φ(J) for
suspensions (blue diamonds k̃ = 103, blue triangles k̃ = 104, blue circles k̃ = 105, present study) and φ(I) for
dry inertial granular media (red squares, data from Da Cruz et al. 2005). Inset: same data plotting φc − φ versus
I and J. (b) Dimensionless particle diffusion coefficients D/γ̇ d2 for suspensions and dry inertial granular media
versus φc − φ show a collapse on a single master curve. Uncertainties on φc are indicated by the horizontal
error bars.

with φc = 0.812 ± 1 × 10−3. By expressing J and I as functions of φc − φ, we expect
that the diffusion coefficients of both the suspension, (3.1), and the inertial granular
media, (3.2), follow the same scaling law Dsusp ∼ Dgran ∼ (φc − φ)−1/2. The striking
result shown in figure 2(b) is that by plotting Dsusp and Dgran versus φc − φ, both sets
of data collapse onto a single master curve. More precisely, the diffusion coefficients of
suspensions and inertial granular media share not only the same exponent −1/2, but also
a very similar numerical prefactor, yielding

Dsusp

γ̇ d2 ≈ Dgran

γ̇ d2 ≈ 0.027(φc − φ)−1/2. (3.5)

Careful examination of figure 2(b) shows that Dsusp is slightly lower than Dgran. (Individual
fits of these two data sets are provided in the supplementary material available at
https://doi.org/10.1017/jfm.2024.695.) This difference is actually surprisingly small given
that the two data sets for suspensions and inertial granular media are obtained from
different numerical codes. The near collapse of the data on a single power law indicates
that shear-induced diffusion in granular systems is oblivious to the nature of the dissipation
mechanism (viscous or inertial), and appears to be mainly geometrical, as set primarily by
the particle solid fraction (see § 4 and Appendix D). This is a striking difference compared
to other quantities related to dissipation, such as the viscosity or the shear stress, which,
owing to stress additivity, collapse only when using a combination of J and I (Trulsson,
Andreotti & Claudin 2012; Tapia et al. 2022).

To probe the physical origin of the above scaling law, we further analyse the
particle trajectories to extract two kinematic quantities: the mean velocity fluctuation
δv = 〈v2

y,i〉1/2 and its persistence time Ψ , which control the particle diffusive
behaviour according to D = δv2Ψ (Rognon & Macaulay 2021). These quantities are
obtained following Olsson (2010), DeGiuli et al. (2015) and DeGiuli, McElwaine &
Wyart (2016) by computing the autocorrelation function of the velocity fluctuations
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Figure 3. Random walk analysis. (a) Normalized velocity fluctuations δv/γ̇ d (filled symbols) and persistence
time Ψ γ̇ (open symbols) versus viscous number J for suspensions (blue symbols, present study), and versus
inertial number I for inertial granular media (red symbols, data from Da Cruz et al. (2005) for δv(I) and from
Macaulay & Rognon (2019) for Ψ (I)). (b) Same data plotted versus φc − φ. (c) Same symbols as figure 2.

C(τ ) = 〈vy,i(t0) vy,i(t0 + τ)〉. Figure 3(a) evidences the scaling laws

δvsusp

γ̇ d
≈ 0.26J−1/4 and Ψsuspγ̇ ≈ 0.35J1/4 (3.6a,b)

obtained with our analysis for suspensions, and

δvgran

γ̇ d
≈ 0.35I−1/2 and Ψgranγ̇ ≈ 0.42I1/2 (3.7a,b)

for inertial granular media, as reported by Da Cruz et al. (2005) for δv(I) and by Macaulay
& Rognon (2019) for Ψ (I); see also Dumont et al. (2023). As before, by virtue of the
complementary scalings followed by the dilatancy laws in suspensions and granular media,
these data sets are also found to collapse reasonably well when plotted versus φc − φ,
yielding the unified scaling laws

δv

γ̇ d
≈ 0.30(φc − φ)−1/2 and Ψ γ̇ ≈ 0.42(φc − φ)1/2, (3.8a,b)

shown in figure 3(b).
These scaling laws point out the random walk process underpinning the grains’ diffusive

behaviour: as shown in figure 3(c), grains take steps in random directions after a
characteristic displacement 
 = δvΨ . Individual fits yield 
 ≈ 0.15d for inertial grains
(red dashed line) and 0.09d for suspensions (blue dashed line). Remarkably, the step size

, typically a small fraction of a grain size, is independent of the solid fraction φ, and
weakly sensitive whether grains are immersed in a viscous fluid or not. By contrast, the
step frequency Ψ −1 ∼ (φc − φ)−1/2 increases when increasing the solid fraction, which
is the sole driver of the increase in the normalized diffusivity captured in (3.1). This
scenario is further confirmed by the inset of figure 1(c), which shows that the mean square
displacements collapse onto a single curve Δ2

y(t/Ψ )/d2, once time is normalized by the
step frequency Ψ −1. For all viscous numbers investigated (or equivalent solid fractions),
the transition between ballistic and diffusive regimes occurs at time t/Ψ ≈ O(1) and for
a typical constant mean square displacement Δ2

y/d2 ≈ 0.02, close to the square of one
elementary step of the random walk 
2/d2 ≈ 0.017. Note that in the kinetic theory for
granular gases, the diffusion coefficient is often plotted as a function of the square root
of the granular temperature, equivalent here to the velocity fluctuations δv. As shown
in Appendix D, we find that indeed D scales with

√
T , but the data obtained from
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suspensions and dry granular media do not collapse onto a single curve. By contrast, the
complete dimensional scaling, introducing also either 
 the step length (such that D = δv
)
or equivalently Ψ the persistence time (such that D = δv2Ψ ), provides a better match
between both data sets.

4. Discussion

The unified framework introduced here allows us to better understand and predict the
process of shear-induced self-diffusion in both suspensions and dry inertial granular flows.
Results from two-dimensional simulations highlight scaling laws for the diffusivity as a
function of the flow property, grain diameter and solid fraction, and provide a physical
rationale for its origin in term of a granular random walk. Of fundamental importance
is the finding of a unique scaling law for D ≈ 0.027(φc − φ)−1/2γ̇ d2 that applies for
both suspensions and inertial granular media. We also show that this scaling stems from
a specific random walk process having a constant elementary step length 
/d driven at
frequency Ψ −1 ∼ γ̇ (φc − φ)−1/2, which increases with the solid fraction.

These results call for several comments. The proposed scaling law for the particle
diffusion coefficient diverges at jamming, i.e. when J → 0 or I → 0 (equivalently, when
φ → φc). As it is unlikely that particles can experience an infinite displacement over a
small but finite strain, we anticipate that this scaling should ultimately break down and
saturate when φ → φc. For a finite-size system, a saturation of the particle diffusion
coefficient is expected when correlated structures in the flow start to reach the system
size, as observed with granular flows in Kharel & Rognon (2017).

Some caution is also required as the scaling laws presented here were obtained in a
uniform shear flow (other non-uniform flows could lead to different scaling relations).
These scaling laws were also drawn from two-dimensional numerical simulations,
although previous numerical works show that exponents characterizing the divergence
of macroscopic quantities are unchanged for simulations performed in two and three
dimensions (DeGiuli et al. 2015).

An important remaining question is the role played by particle friction. Simulations
here were performed with a particle friction coefficient μp = 0.5. However, other studies
have shown that changes in the particle friction coefficient can affect scaling exponents
of velocity fluctuations and persistence time (Trulsson, DeGiuli & Wyart 2017). Whether
these changes can alter the unified description put forth in the present study still needs to
be determined. For instance, the scaling analysis proposed in Olsson (2010) for frictionless
particles suggests that in this case, D ∼ (φc − φ)−0.8. (Olsson (2010) identified that
the particle diffusion coefficient for frictionless particles in the hard core limit obeys
the scaling function D/γ̇ q ∼ (δφ/γ̇ 1/(β+Δ))−x, where δφ = φ − φc. Using that D ∼ γ̇ ,
one expects D ∼ δφ−0.8 as x must be equal to (1 − q)(β + Δ), with q ≈ 0.78 and
1/(β + Δ) ≈ 0.275.)

Our analysis differs from the recent approaches to unify rheological flow rules
of suspensions and inertial granular media using the dimensionless viscous-inertial
number K = J + αI2 (Trulsson et al. 2012; Ness & Sun 2015; Tapia et al. 2022). The
viscous-inertial number is built from the idea of stress additivity, and gives the adjustable
dimensionless prefactor α an important role since it allows us to accommodate the
difference in magnitude of the dissipation mechanisms at play in suspensions and granular
media. Stress additivity seems to be well verified (Trulsson et al. 2012; Ness & Sun
2015; Tapia et al. 2022) – although not always (Otsuki & Hayakawa 2009; Vågberg,
Olsson & Teitel 2016; Ness, Seto & Mari 2022) – thereby yielding a good collapse of
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quantities involving dissipation, like the effective friction or the shear stress. However,
unlike the inertial number I for inertial granular media and the viscous number J for
viscous suspensions, the viscous-inertial number is not a direct outcome of dimensional
analysis. There is therefore no reason to expect that all observables are functions of K.
It particular, we do not expect that stress additivity has any relevance for a microscopic
transport quantity such as D, and therefore that D is a function of K. That a good collapse
is readily found by plotting D versus (φc − φ)−1/2 rather shows that self-diffusion is
primarily set by steric, geometrical effects, and is oblivious to the dissipation mechanism.
The idea that transport properties in granular media are purely kinematic, while stresses
depend on the nature of the interactions, was also put forth in Maiti & Heussinger (2014).
Nonetheless, if we further assume stress additivity, then (φc − φ) is itself a function of
K, and we therefore expect to be able to collapse our diffusion coefficient data with K. As
shown in Appendix C, we can indeed carefully adjust the value of α to find a good collapse
for both suspensions and granular media, which we interpret as merely a validation
of the hypothesis of stress additivity. Finally, note that the behaviour of the collective
shear-induced diffusion coefficient, which drives particle migration in inhomogeneous
systems, is expected to be different. The latter quantity describes the response of the
system to particles stress gradient (osmotic compressibility; Leshansky & Brady 2005),
and should therefore depend on the nature of the dissipation mechanism. Nonetheless,
establishing the link between self and collective diffusivities in the dense regime would be
an interesting problem to investigate in future studies.

To conclude, we can draw some interesting perspectives on mixing granular and
suspension flows, which represents a considerable challenge in industry. For such athermal
systems, particle diffusion is a self-induced process prescribed by the flow itself, as
opposed to standard mixing problems where advection and molecular diffusion are
independent. Having D ∼ f (φ) γ̇ d2 from (3.5), one obtains a Péclet number Pe ∼
γ̇ d2/D ∼ 1/f (φ), which characterizes the mixing process, that is independent of the shear
rate (under volume-imposed conditions) (Souzy et al. 2018; Villermaux 2019). Mixing
dense granular media must then in essence be a purely kinematic process: the state of the
mixture should depend not on the rate at which the substrate is deformed, only on the
magnitude of the deformation – an interesting and quite relevant problem that certainly
deserves further investigations.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.695.

Acknowledgements. We thank O. Pouliquen, M. Wyart and E. Villermaux for discussions.

Funding. This work was supported by ANR ScienceFriction (ANR-18-CE30-0024), and ARC Wear
(DP200101927).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Bloen Metzger https://orcid.org/0000-0003-3031-6543;
Romain Mari https://orcid.org/0000-0001-7877-416X;
Yoël Forterre https://orcid.org/0000-0001-6052-7291;
Pierre Rognon https://orcid.org/0000-0001-7071-2247.

Appendix A. Simulating plane shear of dense suspensions

The material is a suspension of non-Brownian grains in a fluid of viscosity η in the Stokes
regime. The system is quasi-two-dimensional to avoid prohibitive simulation times, and
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comprises N spherical grains set on the xy plane, using a bidisperse size distribution
with diameters d and 1.4d, mixed in equal volume. The mass of the grains is set to
zero to clear inertia and focus on an over-damped dynamics. The equations of motion
are obtained by imposing force and torque balances on each particle. Force balance on
particle i is fd,i + fl,i + fc,i = 0. Here, we omit torque balance, which involves the same
interactions (Mari et al. 2014). In the latter equation, fd,i = −3πηdi(vi − v∞( yi)) is the
Stokes drag, with ri the radius of the particle i, vi its velocity, and v∞( yi) = (γ̇ yi, 0)

the assumed background fluid velocity. The force fl,i is the resulting force of all pairwise
lubrication interactions involving particle i. We include the dominant modes of lubrication
(the ‘squeeze’, ‘shear’ and ‘pump’ modes; Ball & Melrose 1997). These provide normal
and tangential forces which magnitude depend on the dimensionless gap between particles
i and j located at positions ri and rj, hij = 4|rj − ri|/(di + dj) − 2, as 1/(hij + δ) and
log(hij + δ), respectively. The regularization length δ = 10−2 mimics the presence of
particle roughness on this scale that allows for contact to happen despite lubrication. The
force fc,i is the resulting contact force on i. Contact forces involve normal and frictional
tangential components, both modelled with spring and dashpot (Cundall & Strack 1979).
Contacts follow Coulomb’s law with a friction coefficient 0.5. The ratio of tangential
to normal stiffnesses is set as kt/kn = 0.5, and the dashpot resistances are set to match
the normal and tangential resistance of lubrication right at contact (i.e. for hij = 0). The
normal stiffness is varied as kn ∈ [103, 105]Pd to show that our results are representative
of the hard particle limit. The full detail of the interactions and numerical scheme are
presented in Mari et al. (2014).

The suspension is sheared between two rough boundaries, which simultaneously
prescribe a constant shear rate γ̇ and a constant normal stress P. Both boundaries are
made of grains similar to the flowing grains, but moving as a rigid body: grains forming
a boundary share the same velocity in the x and y directions, and have no rotation.
To prescribe the shear rate, one boundary is kept fixed and the other moves along
the x direction at speed V(t) = γ̇ H(t), where H is the mean distance between the two
boundaries. The system is periodic in the x direction. To keep the normal stress P constant,
the moving boundary can also move in the y direction. Again using linearity of dashpot
and lubrication forces in velocities, the y velocity component is set at every time step so
that the sum of all contact and hydrodynamic forces that particles in the moving wall exert
on the particles in the suspension is PLx, with Lx the wall length (Athani et al. 2022).
The motion along y of the wall implies dilation or contraction of the sheared material. We
checked that the steady flow solid fraction φ is independent on the initial solid fraction
φi, ruling out potential micro-structural memory effect. The results were obtained with a
system comprised of N = 1000 grains. We checked that systems comprised of N = 500
and 1500 yielded similar diffusivity, velocity fluctuations and time persistence.

Appendix B. Fitting procedure, parameters and uncertainty

Equations (3.1), (3.2), (3.5)–(3.8) are obtained by fitting the numerical data using a
power law of the form g(x) = axb and by letting both a and b be free parameters. Fits are
performed in the log-log space, effectively fitting the log of the quantities log(g(log(x)))
by an affine function log(a) + log(b) x. For the sake of clarity, the best-fit exponents b were
rounded to the nearest fractional exponent (within their respective standard error). Table 1
summarizes the values of the best-fit parameters and their respective standard errors.

The dilatancy laws (3.3) and (3.4) were fitted by a function φ(x) = φc − axb. First,
the value of φc is obtained by adjusting φc until the data for φ − φc best align along a
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g(x) x a b System Figure

D/γ̇ d2 J 0.024 ± 0.002 −0.26 ± 0.02 Susp. Figure 1(d)
D/γ̇ d2 I 0.049 ± 0.008 −0.51 ± 0.02 Gran. Figure 1(d)
D/γ̇ d2 φc − φ 0.019 ± 0.006 −0.61 ± 0.1 Susp. Figure 2(b)
D/γ̇ d2 φc − φ 0.032 ± 0.006 −0.50 ± 0.06 Gran. Figure 2(b)
D/γ̇ d2 φc − φ 0.027 ± 0.002 −0.53 ± 0.08 Both Figure 2(b)
δv/γ̇ d J 0.258 ± 0.008 −0.25 ± 0.04 Susp. Figure 3(a)
δv/γ̇ d I 0.355 ± 0.008 −0.498 ± 0.002 Gran. Figure 3(a)
δv/γ̇ d φc − φ 0.25 ± 0.01 −0.54 ± 0.07 Susp. Figure 3(b)
δv/γ̇ d φc − φ 0.21 ± 0.01 −0.48 ± 0.05 Gran. Figure 3(b)
δv/γ̇ d φc − φ 0.30 ± 0.02 −0.46 ± 0.06 Both Figure 3(b)
Ψ γ̇ J 0.35 ± 0.02 0.24 ± 0.02 Susp. Figure 3(a)
Ψ γ̇ I 0.42 ± 0.04 0.52 ± 0.04 Gran. Figure 3(a)
Ψ γ̇ φc − φ 0.37 ± 0.06 0.51 ± 0.06 Susp. Figure 3(b)
Ψ γ̇ φc − φ 0.60 ± 0.05 0.50 ± 0.04 Gran. Figure 3(b)
Ψ γ̇ φc − φ 0.42 ± 0.05 0.50 ± 0.05 Both Figure 3(b)

Table 1. Best fit parameters and errors bars obtained when fitting (3.1), (3.2), (3.5)–(3.8) by g(x) = axb.

φ(x) x φc a b System Figure

φ J 0.81 ± 0.01 0.64 ± 0.02 0.42 ± 0.01 Susp. Figure 2(a)
φ I 0.812 ± 0.001 0.44 ± 0.02 1.02 ± 0.01 Gran. Figure 2(a)

Table 2. Best fit parameters and errors bars obtained when fitting (3.3) and (3.4) by φ(x) = φc − axb.

straight line in log-log scales. Then φc is fixed, φ − φc is fitted by the power law axb by
letting both a and b be free parameters. Finally, the error on φc is estimated by fitting
again φ(x) = φc − axb by letting φc be a free parameter but fixing a and b. The difference
between the initially estimated value of φc and that returned by this last fit provides an
estimate of the error on φc. The error bar on φc is represented in figures 2(b) and 3(b).
Table 2 summarizes the values of the best-fit parameters and their respective standard
errors.

Appendix C. Unifying suspension and granular self-diffusion using K = J + αI2

In the spirit of Trulsson et al. (2012) and Tapia et al. (2022), figures 4(a) and 4(b)
revisit the data shown in figures 1(d) and 3(a). Here, self-diffusion coefficients, velocity
fluctuations and persistence times are plotted versus the dimensionless number K =
J + αI2, where α is a numerical fitting factor. Here too, shear-induced self-diffusion
coefficients from suspension and inertial granular media are found to collapse
on a single curve D/γ̇ d2 = 0.027K−1/4, with α = 0.025. Similarly, the normalized
velocity fluctuations follow δv/γ̇ d2 = 0.25K−1/4 and persistence time Ψ γ̇ = 0.44K1/4,
with α = 0.4.

Appendix D. Scaling of D with the granular temperature

In line with the picture of a random walk, the diffusion coefficient should follow D =
δv2Ψ = δv
, where δv = √

T are the velocity fluctuations, by definition equal to the
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Figure 4. Unifying suspension and granular shear-induced self-diffusion using K = J + αI2. (a) Normalized
shear-induced self-diffusion coefficients from figure 1(d) plotted versus K = J + 0.025I2. (b) Normalized
velocity fluctuations δv/γ̇ d (filled symbols) and persistence times Ψ γ̇ (open symbols) from figure 3(a) plotted
versus K = J + 0.4I2.

Suspension

Inertial granular media

101100

10–1

100

10–1
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D
/
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d2

δv2Ψ/γ̇d2
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(δv/γ̇d) ≡ (�T/γ̇d)

Figure 5. Diffusion coefficient and granular temperature. (a) Normalized shear induced self-diffusion
coefficient D/γ̇ d2 versus square root of the granular temperature

√
T/γ̇ d = δv/γ̇ d. (b) Same data versus

δv2Ψ/γ̇ d2 ≡ δv
/γ̇ d2.

square root of the granular temperature (in the kinetic theory of granular gases, e.g. Artoni
et al. 2021), Ψ is the persistence time, and 
 = δvΨ is the step length. As a result,
we find that D scales with

√
T = δv, but the data obtained from suspensions and dry

granular media do not collapse onto a single curve; see figure 5(a). By contrast, plotting
D versus δv
 = δv2Ψ , which accounts for the difference in 
 (or Ψ ) in suspensions and
inertial granular media, provides a full collapse of the data, see figure 5(b). These results
show that the description of the shear induced self-diffusion coefficient cannot be unified
solely using the square root of the granular temperature, one must account for the full
dimensional scaling, introducing also either 
 the step length (such that D = δv
) or
equivalently Ψ the persistence time (such that D = δv2Ψ ).
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