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Abstract

Social scientists often use ranking questions to study people’s opinions and preferences. However, little is
understood about the general nature of measurement errors in such questions, let alone their statistical
consequences and what researchers can do about them. We introduce a statistical framework to improve
ranking data analysis by addressing measurement errors in ranking questions. First, we characterize
measurement errors from random responses—arbitrary and meaningless responses based on a wide range
of random patterns. We then quantify bias due to random responses, show that the bias may change our
conclusion in any direction, and clarify why item order randomization alone does not solve the statistical
issue. Next, we introduce our methodology based on two key design-based considerations: item order
randomization and the addition of an “anchor” ranking question with known correct answers. They allow
researchers to (1) learn about the direction of the bias and (2) estimate the proportion of random responses,
enabling our bias-corrected estimators. We illustrate our methods by studying the relative importance of
people’s partisan identity compared to their racial, gender, and religious identities in American politics.
We find that about 30% of respondents offered random responses and that these responses may affect our
substantive conclusions.
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1. Introduction

In the social sciences, researchers often use ranking questions to study public opinion and preferences
on various topics (Alvo and Yu 2014; Marden 1996). Using ranking questions, for example, scholars of
American politics study media framing (Nelson, Clawson, and Oxley 1997), representation (Costa 2021;
Tate 2004), blame attribution (Malhotra and Kuo 2008), political values (Ciuk 2016), and redistricting
(Kaufman, King, and Komisarchik 2021). Comparative politics researchers also study nationalism
(Miles and Rochefort 1991), post-materialism (Inglehart and Abramson 1994), candidate selection
(Jankowski and Rehmert 2022), and ethnic identity (McMurry 2022), whereas international relations
works examine foreign aid (Dietrich 2016), economic coercion (Gueorguiev, McDowell, and Steinberg
2020), and sexual violence (Agerberg and Kreft 2023). In addition to research, ranking questions are
used in actual and polling of elections with ordinal ballots, such as ranked-choice voting (RCV), single
transferable vote, Borda count, and Coombs rule (Atsusaka 2025; Shugart and Taagepera 2017).

Despite the wide usage of ranking, relatively little has been discussed and understood about the
general nature of measurement errors in ranking questions. For example, only 3 out of 28 studies that use
ranking questions published in the American Political Science Review, the American Journal of Political
Science, and the Journal of Politics, 2012–2023, mention potential measurement errors. Meanwhile,
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/
by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
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2 Yuki Atsusaka and Seo-young Silvia Kim

some methodological studies have examined measurement issues, but focus only on specific aspects of
ranking questions, such as item-order effects (Krosnick and Alwin 1987; Malhotra 2009; Serenko and
Bontis 2013), question-order effects (Tranter and Western 2010), their advantage in eliciting relative
preferences compared to other questions (Alwin and Krosnick 1985; Dillman, Smyth, and Christian
2014; Kaufman et al. 2021; Krosnick 1999; Krosnick and Alwin 1988; McCarty and Shrum 2000), and
measurement issues by format (Blasius 2012; Genter, Trejo, and Nichols 2022; Smyth, Olson, and Burke
2018), or by devices and layouts (Revilla and Couper 2018).1

In this paper, we introduce a general statistical framework for understanding measurement errors
in ranking questions based on random responses—rankings based on arbitrary patterns independent
of respondents’ underlying preferences. With the framework, we clarify what ranking-based quantities
researchers can study, what random responses look like in different formats, and why using observed
data alone may induce measurement errors. Moreover, we propose simple design-based methods to
correct the bias with respect to various quantities of interest due to measurement errors. Using item order
randomization, we learn about the direction of the bias due to random responses. Leveraging anchor
questions—auxiliary ranking questions whose correct answers are ex-ante known to researchers—we
estimate the proportion of random responses. The two pieces of information allow our bias-corrected
estimators to estimate many quantities of interest in nonparametric and parametric analyses. In contrast
to existing studies, the proposed framework is general and encompasses measurement issues from
various sources discussed for ranking questions while also contributing to the growing scholarship on
design-based methods to address measurement errors in survey research and beyond (Atsusaka and
Stevenson 2023; Berinsky et al. 2024; Clayton et al. 2023; Horowitz and Manski 1995; Kane and Barabas
2019; Kane, Velez, and Barabas 2023; Tyler, Grimmer, and Westwood 2024).

At first glance, the problem of random responses seems resolvable by randomizing the order of items,
and some of the most well-intended studies adopt this strategy.2 However, we show that randomization
alone does not remove the bias. Instead, randomization makes random responses follow a uniform
distribution. Although this is significantly better than having no randomization, in which measurement
errors have an unpredictable direction, the bias still remains under randomization—the distribution
of observed rankings is now pulled towards a uniform distribution (i.e., indifference among items).
This way, even under randomization, random responses can mask otherwise salient ranked preferences
among respondents and “dilute” empirical results. Thus, understanding and overcoming the limitation
of randomization has important implications for research using ranking questions.

Measurement errors in ranking questions can also have implications for electoral institutions and
democratic representation. Recently, observations of improper ranked ballots in RCV have also been
discussed in light of its growing adoption in American elections (Alvarez, Hall, and Levin 2018; Neely
and Cook 2008; Neely and McDaniel 2015). For example, Atkeson et al. (2024) study voter confusion in
RCV, arguing that voting errors may emerge due to the complexity of ballots and the lack of information
on candidates. Cormack (2024) examines over-voting—ranking the same candidate more than once,
finding their prevalence are higher in areas with lower education and income levels. Similarly, Pettigrew
and Radley (2023) classify ballot-marking errors and ballot rejections, concluding that, on average,
about 4.7% of voters make at least one type of error. Furthermore, Atsusaka (2025) analyzes ballot order
effects—the effect of candidate order on the ballot on voters’ entire candidate rankings, showing that
about 0.6%–3.0% of voters may provide ranked ballots based on “donkey voting” (ranking candidates
in the order they appear on the grid-style ballot). Thus, understanding measurement errors and their
solutions may help assess the quality and validity of elections under RCV.

1For more discussions on ranking questions, see Appendix E of the Supplementary Material.
2For example, Costa (2021, 354) writes, “the [ranking] list of issues respondents could choose from was order randomized.”

Malhotra and Margalit (2014, 1002) note, “[t]he order in which the six traits were presented was fully randomized to ensure
that primacy effects did not bias the rankings.” Rathbun and Pomeroy (2022, 678) write, “[a]ttributes are listed randomly to
avoid order effects.” More recently, Pradel et al. (2024, 7) “used a randomized presentation of the concepts [to be ranked] to
avoid response ordering effects.”
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Political Analysis 3

Figure 1. Ranking question to measure relative partisanship.

This paper is organized as follows. In Section 2, we introduce our motivating application of measuring
and analyzing the relative importance of different identities. In Section 3, we define measurement errors
from random responses and introduce our statistical framework for understanding the consequences
of measurement errors. Section 4 introduces our design-based methodology to correct the resulting
bias. In Section 5, we illustrate our methods with our empirical application and show that about 30% of
respondents offered random responses, which can affect our conclusion. Section 6 provides extended
analyses of our methods by comparing our methods to alternative designs and addressing a wider
population of interest. In Section 7, we discuss our work’s limitations and future directions. Our methods
will be available through the R package rankingQ.

2. Motivating Application: Relative Partisanship

Partisan identity has been one of the most influential variables in modern American politics (Green,
Palmquist, and Schickler 2002; Huddy and Bankert 2017; West and Iyengar 2022). Although many works
stress the centrality of partisan identity in political and social behavior, relatively little is understood
about the relative importance of partisan identity (or any identity) compared to other core social
identities relevant to politics (for exceptions, see Lee 2009; Spry 2017; Setzler and Yanus 2018). For
example, Spry (2021, 434) notes that typical questions in identity and politics ask “respondents to report
their closeness to one group at a time, [but] not to multiple groups within the same measure,” and as a
result, the conventional approach may miss “an opportunity to measure how close a respondent feels to
one group category relative to other categories.”

Using ranking questions, we seek to measure and analyze the multidimensionality of people’s
identities and what we call relative partisanship—the relative importance of partisan identity.3 We obtain
a representative sample of American adults through YouGov (N = 1,082)4 and ask respondents to
rank four sources of their identities, including their (a) political party, (b) race, (c) gender, and (d)
religion, according to their relative importance.5 Figure 1 shows the ranking question used in the

3Of course, ranking is not the only way to measure multidimensional concepts. While multiple rating and point-allocation
questions can be useful, our study focuses on ranking questions.

4We limited our sample to respondents with a computer or tablet device with a sufficiently large screen size. The survey
weights take this decision into account.

5Researchers can also focus on other items when analyzing this question. For example, future research may study relative
racial identification, which may have important implications for minority representation (Atsusaka 2021), collective action
(Lopez, Alvarez, and Kim 2022), and other phenomena related to racial politics.
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survey. In this particular example, religion is the first item on the list, followed by political party,
gender, and race/ethnicity. For the reason we describe below, we randomize item order at the respondent
level.

Our question follows a long tradition in political science of using ranking questions to study identity.
For example, Miles and Rochefort (1991) test a theory of nationalism by examining whether people
near the Nigeria–Niger border rank ethnic identity higher than national consciousness and religious
affinity. Similarly, McCauley and Posner (2019) study the relative importance of religion in identity
using the Cote d’Ivore-Burkina Faso border as a quasi-natural experiment. McMurry (2022) also
uses a rank-order question to assess the relative importance of tribe, religion, gender, and nationality
in the Philippines. Recently, Hopkins, Kaiser, and Perez (2023, 12) study the relative importance of
partisanship among Latinos and Asian Americans compared to “religion, job/occupation, gender, family
role, political party, pan-ethnic group, national origin group, and being American.” In addition, the
Collaborative Multiracial Post-Election Survey (CMPS) also surveys respondents on their relative iden-
tities, such as between national origin, race, and being American (e.g., Question A195_1 in the 2016
wave).

3. Statistical Framework for Measurement Errors

In this section, we introduce a statistical framework for measurement errors in ranking questions. The
framework is general and applies to multiple formats of ranking questions, including radio buttons
or grid-style, drag and drop, numeric entry, and select box formats. While the framework itself has
been considered in existing studies (Horowitz and Manski 1995), we tailor our discussion to ranking
questions and propose two design-based methods below.

3.1. Setup
Suppose there are J items that respondents rank. Here, we assume that (1) all respondents have well-
defined preferences (completeness and transitivity) and (2) respondents rank all items. We also assume
that each person has two potential ranking responses: non-random and random responses. First, we
define non-random responses as responses based on underlying preferences or intentions. Non-random
responses do not need to perfectly align with people’s underlying preferences as long as they reflect
respondents’ substantial intent, whether sincere or strategic.

Next, we define random responses as meaningless responses that are independent of people’s
preferences—irrelevant to/unreflective of true preferences. Our definition is general, and random
responses can take many forms. For example, Figure 2a visualizes what occurs when respondents
provide random response (1,2,3,4) in four commonly used ranking question formats. Here, random
responders (i) use the same order as a presented list (drag and drop), (ii) draw a diagonal line from
the top-left to the bottom-right (radio buttons), (iii) enter in numerical ascension when asked to rank
(numeric entry), or (iv) do not reorder a presented item (select box). Many other patterns are also
possible. Figure 2b provides three visually intuitive examples of random responses we call diagonalizing,
zigzagging, and dog-legging in the radio-button format (for a similar discussion in RCV, see Atsusaka
2025).

Let Y∗i and ei be respondent i’s (i = 1, . . . ,N) non-random and random responses (or errors),
respectively. Let zi be a random variable denoting whether respondent i offers a non-random response
(zi = 1) or otherwise (zi = 0). We denote respondent i’s observed response by Yobs

i = Y∗i zi+ei(1−zi). We
use a general notation g(⋅) to represent a ranking-based quantity of interest (QOI).6

6We assume some linear operator for g(⋅). The QOI can be some function of non-random rankings, including the
probability mass function of unique ranking profiles, f (Y∗i ) (Section 5.2) and the average rank of item j, E[Yi,j,nr] (Section
5.3), among many others.
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Figure 2. Examples of random responses in ranking questions.
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Our framework represents the observed ranking data as a mixture of non-random and random
responses:

g(Yobs
i )

���������������������
praw datap

= g(Y∗i ∣zi = 1)
�����������������������������������������������������

non-random responses

×Pr(zi = 1)+ g(ei∣zi = 0)
������������������������������������������

random responses

×Pr(zi = 0) (1)

wherePr(zi = 1) andPr(zi = 0) are the proportions of non-random and random responses, respectively.
This illustrates why researchers cannot simply use raw data to study their variable of interest—

the data contains the information on what they wish to analyze and irrelevant noises that skew
their understanding of their target concept. Appendix A.1 of the Supplementary Material formally
illustrates the bias from random responses and discusses why it is consequential in empirical studies.
The fundamental problem of random responses is that there is no way for researchers to know which
part of their data is susceptible to errors (i.e., which respondents offer random responses) and to what
extent.

3.2. Quantities of Interest and Identification Problems
There are two classes of quantities that interest researchers, differing in terms of the population of
interest in which the target quantity is defined. The following distinction relates to the difference
between the average engaged response among the engaged and the average engaged response discussed
in Tyler et al. (2024).

The first quantity is a ranking-based quantity among non-random responses:

θz ≡ g(Y∗i ∣zi = 1). (2)

This paper mainly studies the identification of θz. We highlight that this estimand is only defined
among people who offer non-random responses. Rearranging Equation (1), our identification problem
becomes

g(Y∗i ∣zi = 1)
�����������������������������������������������������

what we wish to study

=

derived from raw data
	���������
����������
g(Yobs

i ) −

prop. random resp.
	������������������
�������������������
Pr(zi = 0)

random resp.
	��������������������
��������������������
g(ei∣zi = 0)

1−Pr(zi = 0)
��������������������������������������������������������������

prop. non-random resp.

. (3)

The right-hand side contains three quantities: (1) the target quantity based on observed rankings
g(Yobs

i ), (2) the proportion of random responsesPr(zi = 0), and (3) the target quantity based on random
responses g(ei∣zi = 0).

The key problem is that we only observe the first quantity g(Yobs
i ). Thus, without making any

assumptions, the QOI will never be estimated from raw data alone, regardless of how many responses
researchers collect. Section 4 discusses how our design-based methods allow us to point-estimate the
latter two unknowns.

The second quantity of interest is a ranking-based quantity in the target population from which
samples are drawn:

θ ≡ g(Y∗i ) (4)

= g(Y∗i ∣zi = 1)
�����������������������������������������������������

θz

Pr(zi = 1)+g(Y∗i ∣zi = 0)
�����������������������������������������������������

counterfactual

Pr(zi = 0), (5)

where, θ becomes closer to θz as the probability of error-free responses Pr(zi = 1) increases.
Generally, θ is more difficult to identify than θz because it requires an additional assumption about

the counterfactual quantity g(Y∗i ∣zi = 0)—non-random rankings that random respondents would have

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
4.

33
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2024.33


Political Analysis 7

Figure 3. Design-based methods for estimating the proportion and distribution of random responses.

provided had they not responded randomly. In Section 6, we discuss three identification strategies for
this population-level quantity.7

4. Proposed Methodology

4.1. Overview
Figure 3 summarizes our design-based methodology, which leverages two survey designs: item order
randomization and an anchor question.

4.2. Item Order Randomization
The first design consideration is item order randomization. Many survey platforms support randomiza-
tion, and some studies use item order randomization with ranking questions (Costa 2021; Malhotra and
Margalit 2014; Pradel et al. 2024; Rathbun, Rathbun, and Pomeroy 2022). The primary role of item order
randomization is to identify the distribution of rankings among random responses and the direction of
the bias with respect to our quantities of interest.

Our key theoretical result is that, under item order randomization, the rankings among random
responses follow a uniform distribution with probability 1

J! , where J is the number of items.8 For
example, with three items, random responses will correspond to one of the six profiles in the set
{123,132,213,231,312,321} with probability 1

6 .9

7While this work focuses on point identification and estimation, other works discuss approaches based on partial
identification (Horowitz and Manski 1995; Tyler et al. 2024). While these do not directly address ranking questions, future
research can extend our framework by drawing from these perspectives.

8See Appendix A.2 of the Supplementary Material for proof and details. For a simple, intuitive example, consider a binary
question with two choices—YES and NO. Suppose that all respondents offer random responses. Suppose also that 30% and 70%
of them pick the first and second option, respectively. When YES always appears first and NO second (i.e., no randomization),
the distribution of the two answers is (0.3,0.7). However, with item order randomization, it becomes (0.5,0.5) since half the
30% picks YES and the other half NO, while half the 70% selects YES and the other half NO. Our result is an extension of this
example to ranking questions.

9See Appendix A of the Supplementary Material for technical discussions.
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Figure 4. Example of an anchor ranking question.

Let UJ be a random variable that follows a discrete uniform distribution with J ranking items. Then,
our result implies that

g(ei∣zi = 0) = g(UJ). (6)

This result is powerful because it holds regardless of the pattern of response patterns—item order
randomization transforms all random responses into a set of rankings following the uniform distribu-
tion.

Our result also clarifies why the bias still remains even after randomization. Integrating Equations 1
and 6, we can show that observed data still contain random responses under randomization as
follows:

g(Yobs
i )

���������������������
p raw data p

= g(Y∗i ∣zi = 1)
�����������������������������������������������������

non-random responses

×Pr(zi = 1)+ g(UJ)
�

random responses

×Pr(zi = 0). (7)

The above equation shows that, under randomization, random responses will pull any estimates
towards what researchers may observe when all respondents are indifferent among available items.
Thus, even under randomization, random responses still affect researchers’ substantive inferences by
“diluting” their conclusions.

4.3. Anchor Questions
To identify the proportion of random responses at the time of the target ranking question, Pr(zi = 0), we
propose using an auxiliary ranking question whose “correct answer” is ex-ante known to researchers (for
a similar idea, see Atsusaka and Stevenson (2023)). We call this an anchor question and ask it right before
or after the target ranking question.10 The item order in the anchor question must be randomized just
as it must be randomized for the target question. To illustrate, Figure 4 presents the anchor question
we included in our survey. In this example, the question asks respondents to rank four communities
from the smallest to the largest, and the correct answer is (household, neighborhood, city or town,
state).11

10Note that question order must be randomized.
11Cases with multiple correct answers can also be accommodated; see Section 5.1.
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Estimating the Proportion of Random Responses in the Anchor Question.
First, we estimate the proportion of random answers in the anchor question by using correct responses.
Let ci be a binary variable indicating whether respondent i offers the correct answer in the anchor
question (ci = 1) or not (ci = 0). Let Pr(zanc

i = 0) and Pr(zanc
i = 1) be the proportions of random

and non-random responses in the anchor question, respectively.12 Under item order randomization,
we can estimate the proportion of random responses in the anchor question using the following
estimator.

Proposition 1. Unbiased Estimator of the Proportion of Random Responses in the Anchor Question

P̂r(zanc
i = 0) = 1− P̂r(zanc

i = 1) (8)

= 1−
⎡⎢⎢⎢⎢⎣

∑N
i=1 ci

N
− 1

J!

⎤⎥⎥⎥⎥⎦
����������������������������������������������������������������
adjust overestimation

⎛
⎝

1− 1
J!
⎞
⎠

−1

�������������������������������������������
normalization

. (9)

The proof is in Appendix A.3 of the Supplementary Material. Equation 9 has intuitive interpretations.
The second term suggests that the proportion of non-random responses can be estimated from the
proportion of correct answers ∑

N
i=1 ci
N after accounting for the probability that random responses happen

to be correct (which is 1
J! under item order randomization).13 The third term can then be interpreted as

renormalization to ensure that the resulting quantity becomes probability.

Estimating the Proportion of Random Responses in the Target Question.
Next, we estimate the proportion of random responses in the target question using the above result. To
allow this extrapolation, we make the following assumption.

Assumption 1 (Constant Proportion of Random Responses). The proportion of random responses
remains constant across the target and anchor questions or Pr(zanc

i = 0) =Pr(zi = 0).

One key advantage of our approach is that it allows researchers to design their anchor questions
so that Assumption 1 becomes more plausible—researchers can tailor an anchor question to their
target question so that the two ranking questions have similar substantive topics, instruction length,
the number and length of items, and locations in the survey (i.e., the anchor should come right before
or after the target question). Appendix D of the Supplementary Material offers a practical guide for
building anchor questions. Another advantage is that it does not assume individual-level randomness
to be constant across the questions (see also Section 6.1).

4.4. Bias-Corrected Estimators
Integrating the above results, we propose two approaches to correct measurement errors. The first
strategy is to directly correct the bias with a specific quantity of interest. The second approach is to
apply the idea of inverse probability weighting (IPW).

12They are not the probability that specific respondent i offers a random response.
13As the number of items increases, the impact of 1

J! quickly diminishes, and the anchor question will carry the most weight
in Equation 9.
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Figure 5. Graphical representation of IPW.

4.4.1. Direct Correction
The first approach is to use the following bias-corrected estimator:

ĝ(Y∗i ∣zi = 1) =

raw data
	���������
����������
ĝ(Yobs

i )−

random resp.
�
g(UJ)

prop. random resp.
	�����������������������������������������������������������������������������������
������������������������������������������������������������������������������������
⎛
⎝

1−
⎡⎢⎢⎢⎢⎣
∑

N
i=1 ci
N − 1

J!

⎤⎥⎥⎥⎥⎦

⎛
⎝

1− 1
J!
⎞
⎠

−1
⎞
⎠

⎡⎢⎢⎢⎢⎣
∑

N
i=1 ci
N − 1

J!

⎤⎥⎥⎥⎥⎦

⎛
⎝

1− 1
J!
⎞
⎠

−1

�����������������������������������������������������������������������������������������������������������������������������
prop. non-random resp.

. (10)

This estimator is simple and only requires one extra estimation ∑
N
i=1 ci
N compared to the naïve estimator

ĝ(Yobs
i )while retaining the original sample size. Our proposed estimator has a wider confidence interval

than the naïve estimator due to the additional uncertainty around the estimated proportion of correct
answers. We use bootstrapping for constructing confidence intervals. Moreover, researchers can include
survey weights in ĝ(Yobs

i ) as in typical survey data analysis, where survey weights represent the product
of the design weight and a poststratification or calibration adjustment.

4.4.2. Inverse Probability Weighting
The second strategy is to leverage the idea of IPW. Under this framework, the problem of measurement
errors (Equation 1) can be considered an issue of selection bias. Figure 5 illustrates this idea graphically.
Here, due to random responses, relatively popular rankings (e.g., 123) are under-sampled, while
relatively unpopular rankings (e.g., 231) are over-sampled compared to their true distribution. A natural
solution is to weight up a set of rankings that are supposed to be more prevalent and weight down a set
of rankings that are supposed to be less prevalent than what raw data suggest.
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Table 1. Comparison of two bias correction methods.

Pro Con Useful scenario

Direct correction exact not flexible nonparametric analysis

IPW framework flexible not exact parametric analysis

Let P(Y∗i ∣zi = 1) be the population proportion of respondent i’s ranking profile given non-random
responses. Let P(Yobs

i ) be the same proportion based on observed data, and w = {wi}N
i=1 be a vector of

weights for N respondents included in nonparametric or parametric analyses. We propose the following
inverse probability weight:

wi =
⎡⎢⎢⎢⎢⎣

P(Yobs
i )

P(Y∗i ∣zi = 1)

⎤⎥⎥⎥⎥⎦

−1

. (11)

The weights can be nonparametrically identified via the following plug-in estimator:

ŵi =
⎡⎢⎢⎢⎢⎣

P̂(Yobs
i )

P̂(Y∗i ∣zi = 1)

⎤⎥⎥⎥⎥⎦

−1

. (12)

Let P(UJ) be the uniform distribution with probability 1
J! . Building on a similar derivation to

Equation A.7, the denominator can be unbiasedly estimated with the following estimator:

P̂(Y∗i ∣zi = 1) =
P̂(Yobs

i )−P(UJ)
⎛
⎝

1−
⎡⎢⎢⎢⎢⎣

∑N
i=1 ci

N
− 1

J!

⎤⎥⎥⎥⎥⎦

⎛
⎝

1− 1
J!
⎞
⎠

−1
⎞
⎠

⎡⎢⎢⎢⎢⎣

∑N
i=1 ci

N
− 1

J!

⎤⎥⎥⎥⎥⎦

⎛
⎝

1− 1
J!
⎞
⎠

−1 . (13)

Researchers can also use survey weights in the IPW framework by constructing a new weight
w∗i =wiws

i, where ws
i is respondent i’s survey weight.

4.4.3. Methods Selection
The two approaches complement each other. Table 1 provides a comparison. We recommend that
researchers use the direct approach whenever their target quantities are simple and nonparametrically
identifiable (e.g., average ranks) as it provides exact bias correction to their QOIs. In contrast, when
they wish to perform more complex and parametric analyses, such as running regressions, the IPW
framework can be helpful, as it allows researchers to perform any analyses with the bias-correction
weights.

4.5. Uniformity Test
Finally, our framework also allows researchers to detect the presence of random responses without
requiring any anchor questions. Appendix B of the Supplementary Material introduces the uniformity
test, which shows that recorded responses (what respondents submit in Figure 2; see Appendix A.2 of
the Supplementary Material) will follow a uniform distribution in the absence of random responses.
Conversely, non-uniformity in the test suggests the presence of random responses.
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Figure 6. Visualization of the uniformity test: Distribution over all possible recorded responses in the target and anchor questions.

Note: The dashed line represents 1/24 × 100%, to which the distribution should converge in the absence of random responses.

5. Measuring and Analyzing Relative Partisanship

Using our proposed method, we present the analysis of relative partisanship in American politics.14 We
focus on how bias-corrected estimates can differ from unadjusted estimates under different analyses,
leaving more detailed analyses for future research. All analyses incorporate survey weights calculated
by the polling firm.

Do our data contain random responses? To first address this question, Figure 6a shows the result of the
uniformity test applied to our identity question. The figure visualizes the distribution of respondents’
recorded responses—the exact patterns they provided with respect to the four items presented in a given

14The replication data and code for this article are available in Atsusaka and Kim (2024).
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Table 2. Distribution of responses to the anchor question.

Anchor ranking Count Percent (%) Anchor ranking Count Percent (%)

1234 754 69.80 3124 4 0.40

1243 24 2.20 3142 1 0.10

1324 40 3.70 3214 9 0.80

1342 12 1.10 3412 6 0.60

1423 18 1.70 3421 8 0.70

1432 12 1.10 4123 10 0.90

2134 11 1.00 4132 4 0.40

2143 5 0.50 4213 4 0.40

2314 9 0.80 4231 8 0.70

2341 6 0.60 4312 4 0.40

2413 5 0.50 4321 117 10.80

2431 10 0.90

Note: 1234 corresponds to household→neighborhood→city or town→ state, which is coded as the correct
anchor response.

order. That is to say, the integers refer to submitted “patterns,” as shown in Figure 2b, whose substantive
meanings differ across respondents. For example, “1234” means that respondents ranked the four items
in the order they appear in the question, regardless of what items were presented to them.

Since there are 4! = 24 possible ways to rank, the proportion (percentage) of recorded responses
should converge to 1/24 = 0.042 (4.2%) in the absence of random responses (see A.4 for proof). In
contrast, the graph shows clear evidence for non-uniformity—some recorded responses, notably 1234
(8.8%) and 4321 (6.7%), are more likely to occur than they are supposed to under the null (chi-squared
test statistic = 68.45, p-value < 0.001), suggesting the presence of random responses in the data.

Checking for uniformity also validates the usage of our anchor question. Figure 6b applies the test
to the anchor question only among respondents with correct answers. The result shows a more or less
uniform distribution, and the χ2 test does not reject the null (χ2 test statistic = 32.70, with p-value of
0.1066).15 In contrast, Figure 6c visualizes the test among those who offer incorrect anchor responses.
It offers clear evidence for non-uniformity, where about 20% of respondents submitted either 1234 or
4321 (χ2 test statistic = 107.95, p-value < 0.001).

5.1. Analysis of the Anchor Question
First, we estimate the proportion of random responses using our anchor question. Table 2 reports the
number of each ranking response to the anchor question. We code 1234 (household < neighborhood
< city or town < state) as the correct response (ci = 1) and other rankings as the incorrect response
(ci = 0). The result shows that the empirical proportion of correct responses is ∑

N
i=1 ci
N = 754

1082 ≈ 0.697.
Proposition 1 states that the estimated proportion of random responses can be estimated as 1−[ 754

1082 −
1

24 ](1−
1

24)
−1 ≈ 0.316. That is, we find that about 31.6% of ranking answers are random responses in the

anchor question.16

15It still shows some non-uniformity because some random responses can pass the anchor question with probability 1/24.
16Note that the latter is not1− ∑

N
i=1 ci

N ≈ 0.303 since random responses happen to be correct by chance (which is what
Proposition 1 accounts for).
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By invoking Assumption 1, we estimate that 31.6% of respondents offer random responses in our
target ranking question. We believe that this is not an unreasonably high (or low) estimate. For example,
Berinsky, Margolis, and Sances (2014), using four different screeners, show that the failure rates for them
ranges from 34% to 41%. Relatedly, Atsusaka (2025) finds that about 31% and 37% of respondents in
survey experiments offered the same ranking response to two different ranking questions. Moreover,
Clayton et al. (2023) study measurement errors in conjoint experiments and estimate that about 19.3–
27.0% of respondents offered different responses to an identical question that was asked twice.

In some cases, researchers may encounter “debatable cases,” in which multiple responses can be
considered correct even after carefully designing anchor questions. For example, based on substantive
knowledge, some researchers may think that for some people, the size of the community should be
ordered as household < neighborhood < state < city or town. In another example, after analyzing data,
analysts may find that some ranking responses are more prevalent than other incorrect answers (e.g.,
4321 in Table 2). In these cases, analysts can code more than one response as correct answers. Moreover,
researchers can also give credit to “partially correct answers,” if any, by coding such responses with
known probability (e.g., coding an 80% correct response as correct with probability 0.8). Furthermore,
it is also possible to use the most conservative (only one correct answer) and most liberal (as many
correct answers as possible) coding schemes to make bounds for the resulting estimates.

Note that conservative (liberal) coding leans toward an over-estimation (under-estimation) of the
prevalence of random responses in the anchor question. More importantly, the main focus should be
on satisfying Assumption 1 when researchers consider different coding schemes for ci. If anything, we
recommend underestimating rather than overestimating the proportion of random responses in the
target question because it leads to under-correction of the bias, which guards against inflating Type I
errors. For example, if researchers suspect that there are more random responses in the anchor than
in the main question (e.g., the anchor looks like an attention check, which caused more respondents
to answer randomly), it would be better to code fewer anchor responses as correct answers should the
coding is debatable.

5.2. Summarizing Data with Empirical Distributions
We begin our analysis by describing the distribution of our data. The left panel of Figure 7 presents the
distribution of all possible rankings with our methods, with the gray region indicating where party
was ranked first. We find that while a great variation in the ranking outcome exists, people rarely
rank political party as their first choice. This may provide evidence that relative partisanship is rather
low among American adults—a notable finding given the emphasis on partisan identity in American
political behavior. We also identify that three rankings/orderings are particularly prevalent, including
(gender, race, religion, party), (gender, race, party, religion), and (religion, gender, race, party).

The right panel of Figure 7 visualizes what researchers could have observed had our methods not been
applied (but item order randomization is still implemented). Here, many unpopular rankings (e.g., those
starting with party) are overrepresented due to random responses. Indeed, the panel leads to a different
conclusion that the relative importance of party is as much as that of race. Again, this demonstrates that
random rankings, under item order randomization, pull the naïve estimates towards uniformity, where
each ranking profile is equally prevalent.

5.3. Understanding Average Patterns
Next, we study the average ranks of the four items as another way to measure relative partisanship.
Figure 8 visually compares the results based on our methods and raw data. Overall, we find that the
average rank is the lowest for political party, followed by religion, race and ethnicity, and gender.
Consistent with our statistical argument (Appendix A.1 of the Supplementary Material), the difference
between bias-corrected and unadjusted estimates (and thus bias) is larger when the unknown target
parameter is farther away from the average rank based on uniformity (in this case, 1+4

2 = 2.5).
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Figure 7. Distributions of identity rankings with bias-corrected and raw data.
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Figure 8. Average ranks with and without bias correction

Note: The dashed line represents the average rank that arises when people are indifferent among the four items.

For party and gender, bias-corrected estimates are statistically significantly different from unadjusted
estimates and closer to their bound values (1 and 4). Accordingly, the difference between religion and
party is 1.52 (direct) and 1.36 (IPW) times larger in our methods than unadjusted estimates. Similarly,
the difference between party and gender is 1.55 (direct) and 1.41 (IPW) times larger in our estimates
than unadjusted estimates. In contrast, bias-corrected and raw-data estimates are similar for race and
religion. This is consistent with our argument because while bias pulls the estimated average ranks of
race and religion towards 2.5, unadjusted estimates of the two items were already close to the value.
This illustrates that the magnitude of the bias and the difference between bias-corrected and unadjusted
estimates varies not only by the proportion of random responses but also by the values of the target
parameters. Thus, researchers should keep in mind that finding a small difference for a particular item
after bias correction does not mean that the methods “failed” to address measurement errors.

Researchers can also estimate many other quantities of interest while applying bias correction.
For example, our software, rankingQ, supports the pairwise ranking probability for items j and
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Figure 9. Predicted probabilities with and without bias correction.

j′Pr(Yij < Yij′), the top-k ranking probability Pr(Yij ≤ k), and the marginal ranking probability
Pr(Yij = k) in addition to the average rank E[Yij].

5.4. Regression and Predicted Probability
Moreover, we analyze how respondent characteristics influence their relative partisanship while apply-
ing bias correction. To do so, we construct a Plackett–Luce model (also known as rank-order logistic
regression) to associate people’s ranking choices with their attributes (Alvo and Yu 2014; Train 2003). We
regress identity rankings on age, gender, race, education level, ideology, partisanship, and region, while
incorporating survey and bias-correction weights via the IPW framework. After estimation, we generate
the predicted probabilities that people submit a particular ranking profile with 95% confidence intervals
via parametric bootstrapping (Tomz, Wittenberg, and King 2003) over the range of the ideology variable
(7-point scale).

Here, we examine how ideology influences relative partisanship among Americans who are 40 years
old, white, male, independent, with some college education, and living in the Northeast. We examine
four ranking profiles, including the three most prevalent rankings discussed in Section 5.2 and the most
prevalent ranking profile starting with party.

Figure 9 presents our results. The top-left panel shows that people are more likely to choose (gender,
race, party, religion) as they become more liberal, all things being equal. The first difference in predicted
probabilities between the most liberal and conservative Americans with bias correction is roughly
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0.313−0.067 = 0.246, which is almost 1.6 times larger than its unadjusted counterpart of 0.203−0.046 =
0.157. This illustrates how random responses can weaken the association between an independent
variable and a target ranking profile.

The top-right panel suggests that ideology only weakly relates to ranking (gender, race, religion,
party). While both results show similar patterns, on average, bias-corrected predictions (0.175) are
0.077 points higher than unadjusted predictions (0.109). Thus, without correction, researchers can
underestimate the prevalence of the target ranking profile by 1.61 times. Finally, the lower two panels
provide examples of relatively similar bias-corrected and unadjusted predictions. Importantly, this does
not mean that our methods “did not work.” Rather, it illustrates that the nature of bias depends on the
target ranking profile, the target independent variable, and the reference values at which other variables
are fixed, in addition to the proportion of random responses.

6. Extended Analysis

6.1. Comparison with Alternative Designs
Listwise Deletion.
Some readers may wonder how our methods differ from more traditional solutions relying on attention
checks, repeated questions, and so on. More specifically, how is our proposal different from listwise
deletion based on these alternative design considerations?17

Let z∗i be a binary variable taking 1 if respondent i passes a certain instructional manipulation
check and 0 otherwise. For example, z∗i = 1 when respondent i passes an attention check, provides the
same answer to the same question asked multiple times, or does not speed through the target question.
Researchers then drop all respondents who did not pass the test (i.e., delete all i if z∗i = 0) and produce
“cleaned” data of size Nc,{Yobs

i (z∗i = 1)}Nc
i=1.

When adopting this strategy, researchers often implicitly assume the following.

Assumption 2 (Individually Constant Randomness). Random responders in the target ranking ques-
tion are identical to those who fail the instructional manipulation check. Formally, zi = z∗i for all i= 1, . . . ,N.

Invoking Assumption 2, listwise deletion identifies θz as follows:

g(Yobs
i ∣z∗i = 1) = g(Y∗i ∣zi = 1) (14)

= θz. (15)

This way, listwise deletion along with Assumption 2 allows researchers to estimate θz directly from
the “cleaned” data. In other words, it is assumed that those who failed the test also provided random
responses to the target ranking question. Importantly, this assumption requires that attention is stable
for all respondents across the test and the target question. In this sense, Assumption 2 is much stronger
than Assumption 1, which requires only the proportion of random responses to be the same.

Although the assumption is not directly verifiable, we collected auxiliary information to examine
its plausibility in our survey. We find that Assumption 2 is indeed strong; as we show in Appendix
C.3 of the Supplementary Material, even between two attention checks, there is very little correlation
(ρ = 0.25). This is why we propose anchor questions—to approximate the randomness in the target
ranking question by using a similar ranking question asked right before or after it.

Alternative Anchors.
Researchers may also wish to try multiple anchor questions and study their effectiveness for pilot
studies. To illustrate, we added two additional anchor questions that respectively ask respondents to

17Another possibility is to use these alternative designs to estimate the proportion of random responses; we direct
researchers towards Appendix C of the Supplementary Material to carefully explore the implications.
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(a) alphabetically order four items and (b) order them in the exact order we provide. Appendix C of the
Supplementary Material reports the comparison of the empirical results based on them (along with the
results using listwise deletion from attention checks and repeated questions).

As highlighted in Sections 4.4 and 5.1, researchers have full control of the choice of and the
assessment of the measure to estimate Pr(z = 0) (that is why our methodology is “design-based”). Some
key takeaways are, however, that any anchor questions or instructional/factual manipulation checks
need to be pretested and checked for a few sanity measures such as response time, situated adjacent
to the main ranking question of interest, and preferably also a ranking format (Appendix C of the
Supplementary Material).

6.2. Identification of θ
We now propose three identification strategies for θ = g(Y∗i ) = g(Y∗i ∣zi = 1)Pr(zi = 1) + g(Y∗i ∣zi =
0)Pr(zi = 0)—the ranking-based quantity among all people in the target population. The key is to
identify g(Y∗i ∣zi = 0), which is a function of counterfactual rankings that random respondents would
have provided had they responded non-randomly.

The first approach is to assume that those who provide random responses are indifferent among
available items. More specifically, we assume that the counterfactual ranking of J items is a uniformly
distributed random variable UJ .

Assumption 3 (Uniform Preference). Y∗i (zi = 0) =UJ.

This assumption is plausible, for example, when respondents offer random responses because they do
not have sufficient information about available options. Here, randomness and preference are correlated.
For example, in RCV elections, voters with low education levels may be more likely to provide random
responses and have uniform preferences as they have less contextual knowledge to rank multiple
candidates.

With Assumption 3, it is straightforward to compute g(Y∗i ∣zi = 1) using a uniform distribution and
then estimate θ accordingly. However, our design-based methods provide an even simpler solution.
Using item order randomization, we can show that

θ = g(Y∗i ∣zi = 1)
�����������������������������������������������������

θz

Pr(zi = 1)+g(Y∗i ∣zi = 0)Pr(zi = 0) (16)

= g(Y∗i ∣zi = 1)
�����������������������������������������������������

θz

Pr(zi = 1)+g(UJ)Pr(zi = 0) (17)

= g(Y∗i ∣zi = 1)
�����������������������������������������������������

θz

Pr(zi = 1)+g(ei∣zi = 0)Pr(zi = 0) (18)

= g(Yobs
i ). (19)

In other words, θ can be estimated directly from raw data alone.
A second approach is to assume that random respondents would have submitted similar rankings to

non-random respondents. More specifically, we assume the following.

Assumption 4 (Contaminated Sampling). Y∗i ⊥ zi.

This assumption is plausible, for example, when random responses are based on simple mis-
understandings, confusions, or mistakes that prevent respondents from expressing their underlying
preferences. We call this assumption contaminated sampling building on Horowitz and Manski (1995).
With Assumption 4, researchers can identify θ by replacing counterfactual rankings with observed ones
as follows:
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Figure 10. Average ranks in the entire population under different assumptions.

Note: The dashed line represents the average rank that arises when people are indifferent among the four items.

θ = g(Y∗i ∣zi = 1)Pr(zi = 1)+g(Y∗i ∣zi = 0)Pr(zi = 0) (20)

= g(Y∗i ∣zi = 1)Pr(zi = 1)+g(Y∗i ∣zi = 1)Pr(zi = 0) (21)

= g(Y∗i ∣zi = 1) (22)

= θz. (23)

Assumption 4 is violated whenever there exists a confounder that relates to both randomness and
preference. Our final approach is to relax the assumption by conditioning on such a confounder. Let Xi
be a set of covariates that are related to both random responding zi and preference Y∗i . We assume the
following.

Assumption 5 (Stratified Contaminated Sampling). Y∗i ⊥ zi∣Xi.

For simplicity, consider a single confounder. Let x be a specific covariate value and X be its sample
space. Combined with Equation 23, we propose the following identification strategy via stratification:

θ = ∑
x∈X

θ(Xi = x)Pr(Xi = x) (24)

= ∑
x∈X

θz(Xi = x)Pr(Xi = x). (25)

In other words, we compute the weighted average of θz in each distinct category defined by the
covariate, where the weight is the proportion of each stratum Pr(Xi = x). For example, suppose that
strength in partisanship is related to both random responding and identity ranking. Then, researchers
can estimate θ by estimating θz within groups of people who have reported the same partisan strength
and then sum up the estimates while weighting them by the proportions of the groups.

To illustrate the three strategies, Figure 10 presents the estimates of θ (average rank) under the
three different assumptions. We use partisan strength (Independent, Weak Partisan, Strong Partisan)
to illustrate the stratification approach, which yields similar estimates to the contaminated sampling
approach. The uniform preference approach yields estimates closer to 1+4

2 = 2.5 than the other two
methods, consistently with its assumption. This way, researchers can extend their inference to θ by
leveraging their substantive knowledge about why random responses may occur in their specific
application.
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7. Concluding Remarks

We introduced a statistical framework to quantify and address measurement errors in ranking survey
questions due to random responses. We show that two additional survey designs—item order random-
ization and a paired anchor ranking question—will help us learn about the direction and magnitude
of measurement errors, enabling our bias corrections. Without any corrections, substantial conclusions
can be biased in completely unpredictable directions. Even with the current best practice of item order
randomization, random responses may conceal otherwise interesting patterns in ranking data. More
specifically, we illustrated that measurement errors make the distribution of observed rankings closer
to a uniform distribution under randomization, still affecting our inferences.

Using a motivating application that measures relative identities, we show that more than 30% of
respondents can fall prey to random responses, and not accounting for this can affect our substantive
conclusions. We also show that our methods are valid by showing that recorded responses among
respondents who pass the anchor question are close to a uniform distribution, while those who do
not show a wildly non-uniform pattern. Our framework provides a heightened understanding of why
observed ranking data may be contaminated and what information we require to correct the resulting
bias.

Although our current framework focuses on full-ranking questions, it can be extended in several
ways for future studies. For example, future research may study how our theoretical results change in
more complicated situations that allow partial rankings, top-k rankings, and tie rankings. Moreover,
our methods can be extended to other discrete-choice questions, such as binary, multinomial, and
ordered-choice questions. In fact, many of our methods, including the uniformity test, randomization,
and anchor questions, can be readily applicable to many discrete-choice questions, although such
applications may involve unique challenges (e.g., the inability to randomize option order in ordered-
response questions). With these future directions, this work contributes to a growing body of design-
based methodologies to counter measurement errors in survey research. We hope this work is also
informative to election administrators and election science scholars as the number of jurisdictions
considering RCV increases.
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