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1. Introduction. In this note we consider the possibility of
unisolvence of a family 4 of real continuous functions on a compact
subset X of m-dimensional Euclidean space. Such a study is of
interest for two reasons. First, an elegant theory of Chebyshev
approximation has been constructed for the case where the
approximating family Qj is unisolvent of degree n on an interval
[¢,B]. We study what sort of theory results from unisolvence of
degree n on a more general space. Secondly, uniqueness of best
Chebyshev approximation on a general compact space to any
continuous function on X can be shown if the approximating family %
is unisolvent of degree n and @ satisfies certain convexity
conditions. It is therefore of importance to Chebyshev approximation
to consider the domains X on which unisolvence can occur. We will
also study a more general condition on IQ involving a variable
degree.

2. Unisolvence.
DEFINITION. A family Mj of real continuous functions is called

unisolvent of degree n on a space X if for any given distinct points
., x , and real numbers Wi' ...,w , there exists a unique
n

Xi,..

element Ge ,@ such that

G(x,) = w, i=1,...,n.
1 1

Such a family is called by Tornheim and Curtis an n-parameter family.

LEMMA 1. Let @ be unisolvent of degree 2 on a closed
interval [xi’XZ]’ then two distinct approximants G1 and G2 cannot

with an interior zero at which no sign change

have a difference Gi—G2

occurs.

Proof. Suppose such approximants G1 and G2 exist. By
definition of unisolvence G1~G2 can have no other zeros. Select
G3£ ’9 such that
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G,(x,) = G,(x)), Gylx,) = (G1(X2)+G2(x2))/2-

372

By drawing a diagram it is seen that one of the differences G3_G1’

G3—G2 must have two zeros in [xi, xz].

A tripod is a set of m-dimensional real space consisting of

three non-degenerate line segments S1, SZ, S3, joined at and only at

one common endpoint, a ramification point. In [1, pp. 16-17} can be
found a diagram of a tripod and Haar's ingenious argument that a
unisolvent linear family of dimension greater than one cannot exist on
a space containing a tripod.

THEOREM 1. Let ?J be unisolvent of degree n on X, n> 2,
then X does not contain a tripod.

Proof. Assume the theorem is false. In the case n > 2 we can
take distinct points x X in the interior of the segment Si’ and

37"
if we choose values w3, ..., w , the requirement that
n
G(x.) = w. i=3,...,n
i i

gives us a subset of @ which is unisolvent of degree 2 on a set
comprising SZ, S3, and a subset S1' of S1 connected with the other

segments. We therefore have a family @ ' unisolvent of degree 2 on
the tripod Si'USZUSZv'

It only remains to show that no family )2_4 unisolvent of degree 2
on a tripod 81U SZU 53 can exist. Let G1 and Cr2 be two

approximants with the same value at the ramification point and differing
on some other fixed point. By definition G1_GZ has no other zeros.

On two of the three segment interiors, Gi—G2 has therefore the same

sign; assume without loss of generality that these segments are S

and SZ. We therefore have the difference of two distinct approximants
having an interior zero with no sign change on the interval SiU SZ.

By lemma 1 this is impossible and the theocrem is proven.

THEOREM 2. Let 9 be unisolvent of degree n>1 on X
containing a subset X homeomorphic to the circumference of a circle

A
in 2-space, then X =X and n is odd.

Proof. First we consider the case where n is even. Let

x .,xn be n distinct points on )/2 and let G1 and G2 be chosen

1’

470

https://doi.org/10.4153/CMB-1968-056-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-056-6

in % such that G1(xi) = GZ(xi) (i=1,...,n-1) and G1(xn) # Gz(xn).
G1 and G2 are distinct elements of -Qj which agree on the n-1 points
{xi, RETEN 1} ; by definition they can agree on no other point. From

the circularity of 3\(, oddness of n-1, and continuity of Gi_GZ’ the
difference Gi-GZ cannot change sign at all its zeros; hence there is
a zero x, Of,\ G1~-G2 at which no sign change occurs. Let S be a
segment of X containing x. as an interior point and no other zeros
of G1—G2. Let 9 2 be the family of elements G of ‘9 such that
G(xi) = G1(xi) (i=1,...,n-1, i #j); then ‘g 2 is unisolvent of
degree 2 on S and contains Cr1 and GZ. Applying the lemma, we

A
obtain a contradiction, and so n must be odd, Next suppose X~X is
a non-empty set containing X and n is odd, then define 9 n to be

the set of elements G of »9 such that G(xo) = 0. % n is unisolvent

of degree n-1, which is even, on X, which is impossible by the
previous argument. The theorem is proven.

If we consider compact arcwise-connected subsets X of
m-dimensional Euclidean space, we find there are only three
possibilities topologically. First, X can be homeomorphic to a
closed interval, which is topologically equivalent to a proper arcwise-
connected subset of the circumference of the circle. Secondly, X can
be homeomorphic to the circumference of the circle. Thirdly X can
contain a tripod. Applying the previous results we obtain

THEOREM 3. Let ‘Qﬁ be unisolvent of degree n greater than
one on a compact arcwise-connected subset X of m-dimensional
Euclidean space; then X is homeomorphic to an arcwise-connected
subset of the circumference of the circle in 2-space. If n is even the
subset of the circumference must be a proper subset.

COROLLARY. Let X be a compact arcwise-connected subset
of finite dimensional m-space and be unisolvent of degree n on X.
It {Gk}s g converges pointwise to Goeg on a set of n distinct

points, then {Gk} converges uniformly to GO.

Proof of Corollary. The result is easily seen to be true in the
case where n =1. In the case n> 1 we can assume without loss of
generality that X is an arcwise-connected subset of the circumference
of the circle, and it is readily shown by the arguments of Tornheim
[4, pp. 450-462], for the case X 1is an interval and the argument of
Curtis [ 2, p. 1014], for the case X is the circumference, that the
result is true. If the hypotheses of the corollary are satisfied it
follows that closed bounded subsets of ‘g are compact.
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We obtain the standard alterna‘ing theory [4, pp. 463-466] of
Chebyshev approximation if we insist that X be arcwise-connected and
be unisolvent of degree n on X.

In case X 1is not connected, unisolvent families may no longer
possess the topological properties given in the corollary. For example,

let X be a space of 2 points, xi,x2) and let 0 be a 1-1 function

from reals to reals, then the family of functions @ = {F(a,.)},

F(a,x1) = a F(a,xz) = p(a),
is unisolvent of degree 1 on X, @ need have no topological
structure if is highly discontinuous. If , is selected such that for
any reals b,c,b<c, {p(a):b< a<c} is dense in the real line, then
the only functions on X with best Chebyshev approximations are
elements of '@ . Similar pathological cases can be given for
unisolvence of higher degree and X consisting of a finite point set
plus an interval. It is an open question whether the corollary is true
when n>1 and X consists of non-degenerate intervals,

3. Families with variable degree. Properties more general
than unisolvence are also important in Chebyshev approximation. Among
these properties is Rice's unisolvence of variable degree [3}; we
introduce a more general property including Rice's property. It is
convenient to give the space of continuous functions on X the norm

ell = max {|g(x)]: xeX} .

DEFINITION. @ has degree n at G if
(i) G—G)1 having n zeros implies G =G1,
(ii) for given n distinct points, real e£> 0, and real numbers

Ww,,...,w taking values -1,0,1, there is an element
n

G, ¢ ‘6 such that HGi—GH < e and sgn [Gi(xi)_G(Xi)] =W,

1=~ -

i=1,...,n.

LEMMA 2. Let {_ﬁ/ have positive degree at all elements and X
contain a non-degenerate interval I, then for any element G at which
{9 has degree n, there exists §> 0 such that l [G~Gﬂl <8

implies 9 has degree at least n at Gi'

Proof. Let I contain an ordered set xi, PR Xn of points.

Select G1 € ? such that

sgn (G(xi) - G1(Xi)) = (=1) i=1,...,n.
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Let 6 = inf {,G(xi)—Gi(xi),: i=14,...,n}. Select GZE g such
that [ [GZ-G] |< 5. It is easily seen that

sgn (G,(x)-G,(x) = (1)  i=1,...,n,

and hence GZ-G1 has at least n-41 =zeros in [x1,xn]. Hence the

degree of é’ at G2 is at least n, and the lemma is proven.

Let @ have a maximum degree n and the hypotheses of lemma 2
hold; then it is easily seen from lemma 2 and the definition that the
family g o the set of elements of fJ at which -:’? has degree n,
has degree n at each of its elements on X. We can easily obtain
analogues of lemma 1, Theorem 1, and Theorem 2, using similar
arguments on _{/ n and from these we obtain the analogue of Theorem 3.

THEOREM 4. Let é have positive degree at all of its elements
and have maximum degree n> 1 on a compact arcwise-connected
subset X of m-dimensional Euclidean space, then X is homeomorphic
to an arcwise-connected subset of the circumference of the unit circle

in 2-space. If n is even the subset of the circumference must be a

proper subset.

In the case where X is an interval or circumference of a
circle and has a positive degree at all of its elements, it is readily
shown by arguments similar to those of Rice [3, pPP- 300-301] that a
necessary and sufficient condition for an element G at which é has
degree n to be a best Chebyshev approximation to f is that -G
alternate n times. It follows that we obtain the standard alternating
theory if we require that X be arcwise-connected and 9 have
positive degree at all elements on X.

It should be noted that results stronger than those of this paper
have been established for linear unisolvent families by Mairhuber and

Curtis (these results apply also to rational families with a degree).
The proofs of this paper are however much more elementary.

The author would like to thank Dr. E. Barbeau and Dr.
E. W. Cheney for their suggestions.
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