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Abstract

Generalizations are proved for theorems of Caratheodory (1907), Kirchberger (1903) and Watson
(1973), the theme of these results being how thickly the convex hull of a family of points is
covered by simplexes whose vertices are chosen from the points of the family.

Subject classification (Amer. Math. Soc. (MOS) 1970): 52A35.

Summary

This paper pursues a train of thought suggested by the theorems of Caratheodory
(1907) and Watson (1973). In two dimensions we ask how thickly covered with
triangles is the convex hull of a family of points, the vertices of the triangles being
points of the family. This leads to the following

THEOREM 1. If F is a family ofn points (n> d) in d-dimensional affine space Rd,

then for any point a e conv F there are at least I ) different selections of r of
\r-dj

the points ofF(n^r>d) that contain a in their convex hull.

(conv F means the convex hull of F, which is the smallest convex set containing
F.)

As a corollary a variant of the theorem of Kirchberger (1903) can be deduced.

An earlier version of this paper was offered at the First Australasian
Mathematics Convention at Christchurch in May 1978.
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Introduction

Given a finite family of F of points in a plane, Caratheodory's theorem says
that any point in conv f is in at least one triangle made from the points of F; or
that conv F is completely covered with such triangles. Watson's theorem shows
that we may restrict ourselves to triangles that have as one of their vertices an
arbitrarily prescribed point of F; they will cover convf by themselves.

It is clear that if F has more than three points then conv F must be covered
with triangles at least two-deep everywhere; and a little experiment suggests that
for n points the triangle-covering is at least («—2)-deep everywhere. It certainly is
exactly in—2)-deep at a point on or just inside one of the sides of the polygonal
boundary of conv F; because a covering triangle for such a point must use the
ends of that side as two of its vertices and can use as its third vertex any of the
remaining n—2 points of F.

This argument, which generalizes to d dimensions, would leave little to do if we
could be sure that the triangle-covering (in d dimensions the simplex-covering)
always gets thicker as you go in from the edge of conv F towards the 'middle'.
However, there is in Baker (1978) an example of a set of points with a central
region less thickly covered with triangles than any of the regions immediately
surrounding it.

As well as generalizing to d dimensions it is convenient also to give considera-
tion to coverings not only by simplexes but also by polytopes defined as the
convex hull of more than d+1 of the points of F.

Proof of Theorem 1

Let k = r—d. So k is an integer greater than zero. It will be kept constant
throughout the proof (which works for any k). The proof is by induction on n
and d.

(1) If d=\ the theorem holds for all n. For suppose that xux2, ...,xn are
distinct points in that order on a line. Points within (xux2) are covered by each

of the I J intervals which are the hulls of jq together with a selection of r — 1

of the other n — 1 points. And if j < \n then (xj,xJ+1) is not less thickly covered
with such hulls than (Xj_uXj), because the only intervals that cover one but not
the other of them—and this happens only if j <r and j > n—r+1—are those
having Xj as an end point, and in this case since j < \n there are more of them to
the right of x} than to the left. Thus in the one-dimensional case the thickness of
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[3] Covering a polygon with triangles 231

covering does increase monotonically until half-way, and then decreases down to

again at the right-hand end.

Observe two things: first, that the boundary points of the intervals into which
conv F is divided are covered at least as thickly as other points of conv Fin their
neighbourhood; and, secondly, that the result remains true if the points xt are
not necessarily all distinct (although distinctly labelled). To see the latter we need
only separate any coincident points by a small amount, apply the above argument,
and close them up again.

(2) If n = d+k the theorem holds for all d. This is trivial, for we have n = r\

and a, which is in conv F, is certainly in the hull of the ( n ,1 = 1 selection of

r points that can be made from the points of F.

(3) The inductive step: if the result holds (i) for all families of n points in d— 1
dimensions and (ii) for all families of n— 1 points in d dimensions, then it holds
for any family of n points in d dimensions.

Single out one of the points of F, x, say. Now a, which is in conv F, is either in
conv(F-x) or it is not.

(a) Suppose aeconv(F— x). By the second part of the inductive hypothesis a

is in at least \ I of the hulls of selections of r of the points of F—x.n-l-d\
r-d )

Further, the ray from x through a must, when produced beyond a, emerge from
conv (F—x) at a point in one of the faces of conv (F—x) which, using
Caratheodory's theorem in d— 1 dimensions, is thus in the hull of some d of the
points of F—x.

These d points together with x form a simplex containing a. We may enlarge
this set of d+\ points to a set of r points by selecting r—d— 1 of the remaining

n-d-l points of F. Thus a is in at least {"~ ~]) hulls of selections of r - 1
\r-d-lj

of the points of F—x together with x itself. Altogether a is in at least

n-l-d\,fn-d-l\ fn-d
{n-l

hulls formed from selections of r of the points of F.
(b) Suppose a^conv(F-x). It follows that x^conv(F-x). Consequently we

may separate x from conv (F—x) by a hyperplane n. Let primes denote the
projections of points and sets onto n with vertex x. If a is coincident with x the
required result is trivial. Otherwise we have a 'e(F-x) ' ; for if not, a would not
be in convF.
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(F—x)' consists of n— 1 points in d— 1 dimensions. Therefore, by the first part

of the inductive hypothesis, a' is in at least ( ,) of the hulls of selections of("4
r—l of the points of (F—x)'. It follows that a itself is in each of the hulls formed
from x together with the corresponding selection of r— 1 of the points of F—x,

that is x is in at least ( I hulls formed from selections of r of the points of("4
F. (Note that in accordance with the observations made earlier it does not matter
if any of the image-points of the points of F—x and of a under the projection
coincide, for at each step of the induction the result may be extended to cover
the possibility of coincident points.)

This completes the inductive step, and so establishes the theorem.

The number I n ] cannot be increased. For consider a point a just insiden-d\
r-d)

one of the boundary hyperfaces of F defined by exactly d of its points, a not
being in the neighbourhood of any lower dimensional face of F. If a is in the
hull of some r points of F, then these r points must include the d points of the

hyperface. There are only ( " I ways of selecting r—d more points.("4
An extension of Kirchberger's theorem

This extension, analogous to that just provided for Caratheodory's theorem,
may be deduced in a routine way.

THEOREM 2. If a family F of n points (n > d+1) in Rd, composed of two mutually
exclusive sets of points B ('Black?) and W ('White'), is 'unsplittable' in the sense
that no hyperplane exists that separates the black points from the white points, then

there are at least [n~ ~ ] subfamilies of r of the points of F (n^r>d+\)

that are similarly unsplittable. (The separation here is understood to be non-
strict.)

PROOF. Embed the Rd in Rd+1 as a hyperplane not through the origin O, and
consider the family F" = B<u —W, where — W consists of the points that are the
reflections in O of the points of W. We must have Oeconv F"; for if not, then
there must be some hyperplane n through O with F" entirely to one side of it.
n would then separate B from W, and the intersection of n with the original Rd

would split the family F into black and white, which, by hypothesis, cannot be
done.
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[5] Covering a polygon with triangles 233

We apply the first theorem to F" which is a family of points in d+l dimensions,

and deduce that O is in at least I , „ 1 of the hulls formed from selections(n-d-l\
\r-d-l)

of r of the points of F". Thus, by the argument of the preceding paragraph, the
corresponding subfamilies of F are unsplittable. This completes the proof.

An extension of Watson's theorem

It will be recalled that the characteristic feature of Watson's theorem was to
prescribe one of the points of Flo be included as a vertex of the simplexes covering
convF. Let us incorporate this idea in a version of our Theorem 1.

THEOREM 3. If F is a family of n points (n> d) in Rd, and if T is a proper sub-
family of F with t points (n—d^t^l), and if aecoavF, then there are at least

\ ) selections of r of the points of F (n ̂  r > d+i) including all of the
\r-t-d)
points ofT that contain a in their convex hull.

The proof is like that of the first theorem; so it is only necessary to indicate a
few modifications: in the one-dimensional case we observe that the thickness of
covering increases monotonically for j < i(n — i) and decreases for j > J(n — t).
(Of course there is no change in thickness at Xj unless T lies entirely to one side

of Xj.) The thickness over the first interval is I ) or I J according as

*! belongs to T or not; the second quantity being the smaller.
In proving the inductive step we single out xeT:

(a) If aeconvCF-x) then it is in ( 1 " " !?" ( ' " !?~j) hulls of r -1 points

involving the t—\ points of T—x, giving [ n I hulls of r points involving
\r-t-d)

all of T.

(b) If a£conv(F-x) then a' is in [ ? ~ ^ ~ ? ~ ^ ~ 5 J ~ ! ) - \ hulls of r - 1
\(r-i)-(t-l)-(d—l)J

points including the t—\ points of (T—x)', so a is in I n~ hulls of r

points including all of T. And this is a greater number than I " ~ ~ , j .

The number given in this result is again the largest possible. There is also a
similarly obtained further extension of Kirchberger's theorem.
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No extension of Helly's theorem

Helly's theorem (1923) is closely related to those of Caratheodory and
Kirchberger, and one might expect an analogous 'theorem': If there is no point
common to each of a family of n convex sets in Rd then there must be at least
n-d subfamilies each containing three of the sets of F and having no common
point. This is not true, however, which can be seen from a counter-example.

Construct n convex sets S} in a plane as follows: let Sx be the interior of the
square whose vertices are (0, +1), (2, +1); and let Sj (1 <j < n) be the image of
St under an anticlockwise rotation of n(J—\)j2{n—2) about the origin; and let
Sn be the interior of the square whose vertices are (2,0), (4,2), (2,4), (0,2). The
subfamily Su 5n_l s Sn just fails to have a common point (1,1); but all other
three-membered subfamilies clearly do have common points.

Concluding remarks

We have been concerned with statements of the form a is in at least so many
hulls. Instead we might look for an upper bound to the number of hulls in which
an arbitrary point of convF may lie. This seems harder, for the answer depends
on the arrangement of the points; see Baker (1978).

Rather similar investigations to the present one are reported by Birch (1959)
and Katchalski (1977).

Conversation with D. R. Watson has stimulated me in this research, and I
thank him.
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