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The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace
operator from Rn to metric measure spaces through limits of averaging integrals.
The AMV Laplacian is however not a symmetric operator in general. Therefore, we
consider a symmetric version of the AMV Laplacian, and focus lies on when the
symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and
3D contact sub-Riemannian manifolds, we show that they are identical on a large
class of metric measure spaces, including locally Ahlfors regular spaces with suitably
vanishing distortion. In addition, we study the context of weighted domains of
Rn—where the two operators typically differ—and provide explicit formulae for
these operators, including points where the weight vanishes.
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1. Introduction

For any u ∈ C2(Rn) and x ∈ R
n, the second-order Taylor expansion of u at x yields

the identity  
Br(x)

u(y) − u(x) dy = cnr
2Δu(x) + o(r2)

as r ↓ 0, where cn := 1/(2n+ 4). Building upon this elementary observation, we
proposed in [21] a definition for the pointwise Laplacian of a locally integrable
function u defined on a general metric measure space (X, d, μ) by setting

Δd
μu(x) := lim

r↓0
1
r2

 
Br(x)

u(y) − u(x) dμ(y) (1.1)
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2 A. Minne and D. Tewodrose

for any x ∈ X where the limit converges, see definition 3.1 for a rigorous definition.
The quantity Δd

μu(x) is called the pointwise Asymptotic Mean Value (AMV for
short) Laplacian of u at x. We proved several results including maximum and
comparison principles for the operator Δd

μ.
However, a disadvantage of Δd

μ is that it—in general—is not a self-adjoint oper-
ator on L2(X, μ), see [21, Theorem 5.3 and Remark 5.4]. To face this issue, we
consider in this paper a symmetrized version of Δd

μ, inspired by the symmetrized
r-Laplacian introduced by Adamowicz, Kijowski, and Soultanis [2], which we define
as

Δ̃d
μu(x) := lim

r↓0
1

2r2

 
Br(x)

(u(y) − u(x))
(

1 +
μ(Br(x))
μ(Br(y))

)
dμ(y).

We call Δ̃d
μu(x) the pointwise Symmetrized Asymptotic Mean Value (SAMV for

short) Laplacian of u at x. The Fubini theorem together with the symmetry of the
metric show that

ˆ
X

(Δ̃d
μu)v dμ =

ˆ
X

u(Δ̃d
μv) dμ

for any u, v ∈ L2(X, μ) for which Δ̃d
μu and Δ̃d

μv converge in L2(X, μ); see remark
3.6.

The primary goal of this article is to study for which instances the operators
Δd

μ and Δ̃d
μ coincide, and in which sense they do. This coincidence depends on the

infinitesimal interplay between the metric and the measure. For that reason, the
asymptotic behaviour as r ↓ 0 of the function

δr : (x, y) �→ 1 − μ(Br(x))
μ(Br(y))

which we call the r-distortion of the space (see definition 2.10), plays a critical role.
Indeed, the assumption

sup
y∈Br(x)

|δr(x, y)| = o(r2)

as r ↓ 0 ensures that the pointwise equality Δd
μu(x) = Δ̃d

μu(x) holds, see proposition
4.2. On smooth Riemannian manifolds equipped with the canonical Riemannian
distance and volume measure, this observation coupled with the classical volume
expansion of asymptotically small balls easily yield that the AMV and SAMV
Laplacians coincide almost everywhere, see proposition 4.3. A similar expansion
found by Barilari, Beschatnyi, and Lerario [7] implies that the same holds true on
3-dimensional contact sub-Riemannian manifolds equipped with the Popp volume,
see proposition 4.4; the case of general sub-Riemannian manifolds would be worth
a deeper investigation.

In our previous article, we also defined a weak AMV Laplacian [21, Definition
5.5]. We refine this notion in the present paper, and we additionally propose a
definition of weak SAMV Laplacian: see definition 3.10. In proposition 4.8, we
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SAMV and AMV Laplacian in metric measure spaces 3

prove that on a locally Ahlfors regular space, if

1
r

( 
Br(·)

|δr(·, y)|dμ(y)

)
dμ(·) ⇀ 0

as r ↓ 0, in the sense of weak convergence of measures against compactly supported
continuous functions, then the weak AMV and SAMV Laplacians of any Lipschitz
function coincide if one of the two exists. This allows us to remove the curvature
assumption made in [2] where the coincidence between the weak AMV and SAMV
Laplacians was established for non-collapsed RCD(K, N) spaces with vanishing
metric-measure boundary, see remark 4.11.

The secondary goal of this article is to derive concrete formulae for the pointwise
AMV and SAMV Laplacians in weighted domains of R

n, that is to say metric
measure spaces of the form (Ω, d, μ) where Ω is a domain of R

n, d is a distance
on Ω and μ is absolutely continuous with respect to the restriction of the Lebesgue
measure L n to Ω, with Radon–Nikodym derivative w [17]. In this context, there
are two different cases depending on whether w is strictly positive or zero at the
point x ∈ Ω.

If w(x) > 0 we assume that w ∈ C1(Ω) and that d satisfies a mild symmetry
assumption, (5.7). We show that in this case, if the matrix of limits of average
second moments

M(x) := lim
r↓0

( 
Br(x)

(y − x)i(y − x)j

r2
dy

)
1�i,j�n

exists, then for any u ∈ C2(Ω),

Δd
μu(x) =

1
2
Tr(M(x)∇2u(x)) +

1
w(x)

〈∇w(x),M(x)∇u(x)〉. (1.2)

If in addition one has

1
r

 
Br(x)

∣∣∣∣1 − L n(Br(x))
L n(Br(y))

∣∣∣∣dy → 0 (1.3)

as r ↓ 0, then

Δ̃d
μu(x) =

1
2w(x)

Tr(M(x)∇(w∇u)(x)), (1.4)

see proposition 5.3. In case d is associated with a norm, equality (1.2) has already
been established in [1] in an Lp

loc sense (see § 2); in this case the limit matrix M(x)
always exists and is independent of x. For the Euclidean distance, (1.2) was proven
in [21, Proposition 2.3]. It is likely that (1.4) also holds in an Lp

loc sense under an
appropriate Lp

loc replacement of (1.3), but we do not investigate this question in
this paper.

If w(x) = 0, we restrict our study to the case where d is associated with a
norm, hence we can assume without loss of generality that x = 0n ∈ Ω. We also
assume that w is locally integrable, in which case the assumption w(x) = 0 must

https://doi.org/10.1017/prm.2023.118 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.118


4 A. Minne and D. Tewodrose

be understood in a Lebesgue point sense. In proposition 5.8, we show that under
the infinitesimal evenness property

L n − ess sup
x∈Br(0n)

|w(x) − w(−x)| = o

(
r

 
Br(0n)

w dL n

)
as r ↓ 0,

and the existence of a weak limit measure

ν := lim
r↓0

w(r ·)rn

μ(Br(x))
L n ¬

B1(0n),

setting Mν := (
´

B1(0n)
yiyj dν(y))1�i,j�n, we get

Δd
μu(0n) =

1
2
Tr(Mν∇2u)(0n).

Under a natural comparability assumption in the spirit of [4, 5, 23] (see definition
2.1), we get an analogous result in the case of the SAMV Laplacian, see proposition
5.10.

Let us conclude this section with a last comment: proposition 5.1 shows that on
weighted Euclidean domains the SAMV Laplacian coincides with the usual weighted
Laplacian Δu+ 〈∇ lnw, ∇u〉 (also known as drifted Laplacian, or f -Laplacian, or
Witten Laplacian, see e.g. [11, 22] and the references therein) while the AMV
does not. This suggests that Δ̃d

μ is the natural AMV Laplacian to consider in
the future, in accordance with [2] where local minimizers of the Korevaar–Schoen
energy with target R [19] are identified as those Sobolev maps having zero weak
SAMV Laplacian.

2. Preliminaries

Throughout the paper, we write AMV as a shortform for “Asymptotic Mean Value’
and SAMV for ‘Symmetrized Asymptotic Mean Value’. We keep a positive integer
n fixed and we denote by 0n the origin of the vector space R

n, by de the Euclidean
distance on R

n, by ωn the Lebesgue measure of the unit Euclidean ball and by σn−1

the total surface measure of the unit Euclidean sphere.
We say that a triple (X, d, μ) is a metric measure space if (X, d) is a metric space

and μ is a fully supported Borel measure on (X, d) such that 0 < μ(Br(x)) < +∞
for any x ∈ X and r > 0. In case X is an open subset of a space equipped with a
norm ‖ · ‖ and d is the canonical distance associated with ‖ · ‖, we write (X, ‖ · ‖, μ).

Let (X, d, μ) be a metric measure space. We use classical notation to denote
function spaces on X, like C(X) for the set of continuous functions, Lip(X) for the
set of Lipschitz functions, and so on. We set R := R ∪ {±∞}. We shall often identify
a μ-measurable function f : X → R with its equivalence class under μ-a.e. equal-
ity. For any p > 0, we let Lp(X, μ) be the set of p-integrable functions, that is,
μ-measurable functions f : X → R such that

´
X
|f |p dμ < +∞. We also let

Lp
loc(X, μ) be the set of locally p-integrable functions, that is, μ-measurable

functions f : X → R such that any x ∈ X admits a neighbourhood V such that´
V
|f |p dμ < +∞. We let L∞(X, μ) be the set of essentially bounded μ-measurable
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functions on X, and L∞
loc(X, μ) be the set of locally essentially bounded μ-

measurable functions on X, that is, the μ-measurable functions f : X → R such
that μ-a.e. x ∈ X admits a neighbourhood V such that the essential supremum of
f on V is bounded from above. In case X is an open subset of R

n and μ is the
Lebesgue measure, we simply write Lp(X), Lp

loc(X), L∞(X), and L∞
loc(X) respec-

tively. If A is a bounded Borel subset of X, we write 1A for the characteristic
function of A, and for any locally integrable function u : X → R, we set 

A

u dμ :=
1

μ(A)

ˆ
A

u dμ.

Assume that (X, d) is locally compact. Under this assumption, we shall often make
use of compact sets. We use the subscript c to denote the restriction of a function
space to compactly supported functions: for instance, by Cc(X) we mean the set
of compactly supported continuous functions. We recall that a Radon measure ν
on (X, d) is a Borel measure which is locally finite and inner regular, meaning
that any x ∈ X admits a neighbourhood V such that ν(V ) < +∞, and any mea-
surable subset A ⊂ X satisfies μ(A) = sup{μ(K) : K ⊂ A compact}, respectively.
The Riesz–Markov–Kakutani theorem states that the space of Radon measures
Rad(X) is the topological dual of Cc(X). Therefore, we equip Rad(X) with the
associated weak topology, and we denote by ⇀ the convergence in this topology.
Lastly, for any f ∈ L1

loc(X, μ), we denote by fμ the Radon measure defined by

(fμ)(A) :=
ˆ

A

f dμ

for any measurable A ⊂ X.
Lebesgue points. Let (X, d, μ) be a metric measure space. For any u ∈ L1

loc(X, μ),
we recall that x ∈ X is a Lebesgue point of u if there exists some real number u∗(x)
such that

lim
r↓0

 
Br(x)

|u(y) − u∗(x)|dμ(y) = 0. (2.1)

We write Leb(u) for the set of Lebesgue points of u. It is easily checked that neither
the set Leb(u) nor the real number u∗(x) for any x ∈ Leb(u) depend on the choice
of a representative in the equivalence class of u. Moreover, the following hold.

(1) If (X, d) is locally compact, then for any u ∈ C(X) a simple argument based
on the Heine–Cantor theorem shows that Leb(u) = X and u∗(x) = u(x) for
any x ∈ X.

(2) If (X, d, μ) is infinitesimally doubling, meaning that

lim sup
r↓0

μ(B2r(x))
μ(Br(x))

< +∞ (2.2)

for μ-a.e. x ∈ X, then μ(X\Leb(u)) = 0 for any u ∈ L1
loc(X, μ) and u∗(x) =

u(x) for μ-a.e. x ∈ X. This follows from the Lebesgue Differentiation Theorem
for infinitesimally doubling metric measure spaces: see [15, Theorem 3.4.3 and
page 77].

https://doi.org/10.1017/prm.2023.118 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.118


6 A. Minne and D. Tewodrose

Comparability conditions. We now introduce a couple of definitions which
originate at least from [23]. They have also appeared in a different way in [4,
5].

Definition 2.1 Comparability conditions. Let (X, d, μ) be a metric measure
space.

(1) We say that μ satisfies a comparability condition on A ⊂ X if for any x ∈ A
there exist r0 = r0(x), C = C(x) > 0 such that for any r ∈ (0, r0), for μ-a.e.
y ∈ Br(x),

μ(Br(x)) � Cμ(Br(y)). (2.3)

In case A = {x} for some x ∈ X we often say that μ satisfies a comparability
condition at x.

(2) We say that μ satisfies a locally uniform comparability condition if any x0 ∈
X admits a neighbourhood V and two constants r0 = r0(x0), C = C(x0) > 0
such that the inequality (2.3) holds for μ-a.e. x ∈ V , for any r ∈ (0, r0) and
for μ-a.e. y ∈ Br(x).

(3) We say that μ satisfies a uniform comparability condition if there exist
r0, C > 0 such that for any x ∈ X the inequality (2.3) holds for any r ∈ (0, r0)
and μ-a.e. y ∈ Br(x).

Observe that: (3) ⇒ (2) ⇒ (1).

Remark 2.2. If (X, d) is locally compact, then the neighbourhoods in the previous
definition can be chosen compact. In particular, if μ satisfies a locally uniform
comparability condition, it is not difficult to show that for any compact set K ⊂ X
there exists rK , CK > 0 such that

μ(Br(x)) � CKμ(Br(y))

for μ-a.e. x ∈ K, any r ∈ (0, rK) and μ-a.e. y ∈ Br(x).

Example 2.3. A metric measure space is doubling at scale r0 > 0 if there exists a
constant C � 1 such that

μ(B2r(x)) � Cμ(Br(x))

for any x ∈ X and r ∈ (0, r0/2). Any such space trivially satisfies a uniform
comparability condition (3), since for any y ∈ Br(x) where x, r are as above,

μ(Br(x)) � μ(B2r(y)) � Cμ(Br(y)).

Example 2.4. For any Q > 0, we say that a metric measure space (X, d, μ) is
Ahlfors Q-regular if there exist C � 1 and r0 ∈ (0, +∞] such that

C−1rQ � μ(Br(x)) � CrQ (2.4)

for any x ∈ X and r ∈ (0, r0). Non-trivial examples including fractal-type ones
may be found in [9, 18, 20], see also [8] where they are called fractional metric
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measure spaces. Ahlfors regular spaces are obviously doubling, hence they satisfy
a uniform comparability condition (3). Moreover, we say that (X, d, μ) is locally
Ahlfors Q-regular if any x0 ∈ X admits a neighbourhood V and two constants
r0 = r0(x0), C = C(x0) > 0 such that

C−1rQ � μ(Br(x)) � CrQ

for any x ∈ V and r ∈ (0, r0). In this case μ trivially satisfies a locally uniform
comparability condition (2).

Example 2.5. Let us provide an example of a space which, according to the ter-
minology introduced in definition 2.1, satisfies (1) at any point but does not satisfy
(3). For any n ∈ N\{0}, let Cn be the circle of centre xn := (3n, 0) with radius 1/n
and yn,1, . . . , yn,n be distinct points on Cn. Join each yn,i with xn by the geodesic
segment between them and consider the set X ⊂ R

2 obtained as the union of all
these segments and [1, +∞) × {0}. Equip X with the length distance d induced
by the Euclidean one on R

2 and with the Borel measure μ defined as the sum
of the 1-dimensional Hausdorff measure and Dirac masses at each xn, yn,i. Then
μ(B3/(2n)(xn)) � 1 + n+ 3/2 while μ(B3/(2n)(yn,i)) = 5/2 + 1/n for any n and any
i, hence (X, d, μ) cannot satisfy (3).

Averaging operator. We recall now the definition and some properties of the
averaging operator.

Definition 2.6 Averaging operator. Let (X, d, μ) be a metric measure space. For
any r > 0, the averaging operator Ar is defined by setting, for all f ∈ L1

loc(X, μ)
and μ-a.e. x ∈ X,

Arf(x) :=
 

Br(x)

f dμ.

Remark 2.7. Obviously supr>0 ‖Ar‖L∞(X,μ)→L∞(X,μ) � 1. In addition, if f ∈
L∞

loc(X, μ), then any x ∈ X admits a neighbourhood V and a radius r0 = r0(x)
such that ‖Arf‖L∞(V,μ) < +∞ for any r ∈ (0, r0). Indeed, if W is a neighbourhood
of x such that ‖f‖L∞(W,μ) < +∞, then there exists r0 > such that B2r0(x) ⊂W ,
and for any r ∈ (0, r0) and μ-a.e. y ∈ Br0(x),

|Arf(y)| �
 

Br(y)

|f(z)|dμ(z) � ‖f‖L∞(Br(y),μ) � ‖f‖L∞(W,μ) < +∞,

hence we can take V = Br0(x).

Lemma 2.8. Let (X, d, μ) be a metric measure space and p ∈ [1, +∞).

(1) Assume that μ satisfies a uniform comparability condition (3) with parameters
r0, C. Then, the operator Ar is bounded from Lp(X, μ) into itself, with norm
at most C1/p, for any r ∈ (0, r0).

(2) Assume that μ satisfies a locally uniform comparability condition. Then, for
any f ∈ Lp

loc(X, μ) and x ∈ X, there exist r0 = r0(x, f), C = C(x, f) > 0
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8 A. Minne and D. Tewodrose

and a neighbourhood V of x also depending of f , such that for any r ∈ (0, r0),ˆ
V

|Arf |p dμ < C

ˆ
V

|f |p dμ < +∞.

Proof. (1) If μ satisfies a uniform comparability condition with parameters r0, C,
then for any x ∈ X and r ∈ (0, r0),

ar(x) :=
ˆ

Br(x)

dμ(y)
μ(Br(y))

� C.

This implies boundedness of Ar from L1(X, μ) to itself with norm at most C, see
[4, Theorem 3.3] for instance. Then, the Jensen inequality implies the case p > 1,
see e.g. [5, Theorem 2.9].

(2) Consider x ∈ X and f ∈ Lp
loc(X, μ). By (4.2), there exist r0 = r0(x, f),

C = C(x, f) > 0 and a neighbourhood V of x also depending of f such that´
V
|f |p dμ < +∞, B2r0(x) ⊂ V and μ(Br(y)) � Cμ(Br(z)) for μ-a.e. y ∈ V , any

r ∈ (0, r0) and μ-a.e. z ∈ Br(y). The Hölder inequality yields( 
Br(z)

|f(y)|dμ(y)

)p

�
 

Br(z)

|f(y)|p dμ(y).

Then,ˆ
V

|Arf |p dμ �
ˆ

V

 
Br(z)

|f(y)|p dμ(y) dμ(z) =
ˆ

V

ˆ
V

1Br(z)(y)
|f(y)|p
μ(Br(z))

dμ(y) dμ(z)

�
ˆ

V

|f(y)|p
ˆ

Br(y)

dμ(z)
μ(Br(z))

dμ(y)

� C

ˆ
V

|f(y)|p dμ(y).

�

Remark 2.9 Adjoint of Ar. Assume that a uniform comparability condition holds
with parameters r0, C. Then, for any r ∈ (0, r0), the operator A∗

r defined by

A∗
rf(x) :=

ˆ
Br(x)

f(y) dμ(y)
μ(Br(y))

for μ-a.e. x ∈ X, is bounded from Lp(X, μ) into itself for any p � 1. Indeed,

A∗
rf(x) =

 
Br(x)

f(y)μ(Br(x)) dμ(y)
μ(Br(y))

� C

 
Br(x)

f(y) dμ(y) = CArf(x).

Moreover, the Fubini theorem and the symmetry of the distance easily imply that

A∗
rf(x) :=

ˆ
Br(x)

f(y) dμ(y)
μ(Br(y))

for μ-a.e. x ∈ X, for all f ∈ L2(X, μ). This means that A∗
r is the adjoint of Ar with

respect to the L2 scalar product. More generally, we have that for any p, q � 1 such
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that 1/p+ 1/q = 1, one has
ˆ

X

(Arg)hdμ =
ˆ

X

g(A∗
rh) dμ

for all g ∈ Lp(X, μ) and h ∈ Lq(X, μ).

Distortion. We finally introduce a couple of notions which helps us formalizing
the infinitesimal relation between the metric and the measure of a metric measure
space. Compare with [16].

Definition 2.10. Let (X, d, μ) be a metric measure space. For any r > 0, we
define:

(1) for any x, y ∈ X,

δr(x, y) := 1 − μ(Br(x))
μ(Br(y))

,

(2) for any x ∈ X,

zr(x) :=
 

Br(x)

|δr(x, y)|dμ(y).

We say that δr is the r-distortion function of (X, d, μ).

Remark 2.11. In [16], the authors considered the r-deviation functions

vr(x) := 1 − μ(Br(x))
ωnrn

which measure in a very rough way how much a metric measure space differs from
the Euclidean R

n. These deviation functions may behave quite differently from the
distortion ones. For instance, consider a smooth Riemannian manifold equipped
with its canonical Riemannian distance and volume measure. At an interior point
x of such a space,

vr(x) = cS(x)r2 +O(r4) as r ↓ 0,

where S(x) is the scalar curvature at x and c is a dimensional constant (see (4.8)).
However, we show in the proof of proposition 4.3 that if y = y(r) ∈ Br(x) for any
r > 0, then

δr(x, y) = c(S(y) − S(x))r2 +O(r4) as r ↓ 0,

where O(r4) does not depend on y. In particular, if the scalar curvature is constant
but non-zero, then vr(x) = cr2 +O(r4) but δr(x, y) = O(r4).

3. Definitions

In this section, we refine the definitions of AMV Laplacian proposed in [1, 21] and
we put forward similar definitions for the SAMV Laplacian.
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10 A. Minne and D. Tewodrose

Pointwise AMV and SAMV Laplacians. In order to define the pointwise AMV
Laplacian of a locally integrable function u over a metric measure space (X, d, μ),
in [21, Definition 1.1] we made the convention of choosing the representative ũ of
u defined by

ũ(x) := lim
r↓0

 
Br(x)

u(y) dμ(y)

for any x ∈ X where this limit exist and then to set

Δd
μu(x) :=

1
r2

 
Br(x)

u(y) − ũ(x) dμ(y). (3.1)

However, this definition has a couple of disadvantages which we point out in remark
3.2. Therefore, we propose a new definition, formalized with the aid of Lebesgue
points, along with a similar definition for the SAMV Laplacian.

Definition 3.1 Pointwise AMV/SAMV Laplacian. Let (X, d, μ) be a metric
measure space and u ∈ L1

loc(X, μ) be given.

(1) For any x ∈ Leb(u) and r > 0, we set

Δd
μ,ru(x) :=

1
r2

 
Br(x)

u(y) − u∗(x) dμ(y).

If there exists a real number Δd
μu(x) such that

lim
r↓0

Δd
μ,ru(x) = Δd

μu(x), (3.2)

then we say that u admits a pointwise AMV Laplacian at x, and we call
Δd

μu(x) the pointwise AMV Laplacian of u at x.

(2) For any x ∈ Leb(u) and r > 0, we set

Δ̃d
μ,ru(x) :=

1
2r2

 
Br(x)

(u(y) − u∗(x))
(

1 +
μ(Br(x))
μ(Br(y))

)
dμ(y).

If there exists a real number Δ̃d
μu(x) such that

lim
r↓0

Δ̃d
μ,ru(x) = Δ̃d

μu(x), (3.3)

then we say that u admits a pointwise SAMV Laplacian at x, and we call
Δ̃d

μu(x) the pointwise SAMV Laplacian of u at x.

Remark 3.2. Let us explain why we favour (3.2) over our previous definition (3.1).
A first reason is that unlike (3.1) this new definition does not require to choose
any representative in the equivalent class of u. A second reason is the following: If
x ∈ Leb(u) then ũ(x) exists and is equal to u∗(x). However, it may happen that ũ(x)
exists while x /∈ Leb(u). For instance, let u ∈ L1(R) be the equivalent class of the
sign function R\{0} � x �→ x/|x|. Equip R with the natural distance associated with

https://doi.org/10.1017/prm.2023.118 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.118


SAMV and AMV Laplacian in metric measure spaces 11

the absolute value. Then, ũ(0) exists and is equal to 0 while 0 /∈ Leb(u). Therefore,
according to (3.1) the function u is pointwise AMV harmonic on R, while (3.2)
yields that Δd

μu(0) is not defined and u is pointwise AMV harmonic on R\{0} only:
this is in better agreement with the distributional Laplacian of u being equal to a
multiple of the derivative of the Dirac distribution in 0, as mentioned in the last
sentence of [21].

Strong AMV/SAMV Laplacian. In [1] the authors proposed a definition of
strongly AMV-harmonic functions by appealing on compact sets. In order to work
in a more general setting, we define here a strong AMV Laplacian and a strong
SAMV Laplacian without involving compact sets. Let (X, d, μ) be a metric mea-
sure space. Consider u ∈ L∞

loc(X, μ). According to remark 2.7, any x ∈ X admits a
neighbourhood V and a radius r0 > 0 such that

‖Δd
μ,ru‖L∞(Br0 (x),μ) �

2‖u‖L∞(V,μ)

r2

for any r ∈ (0, r0). This observation guarantees the well-posedness of the following
definition.

Definition 3.3 Strong AMV Laplacian. Let (X, d, μ) be a metric measure space.
We say that u ∈ L∞

loc(X, μ) admits a strong AMV-Laplacian if there exists a
function v ∈ L∞

loc(X, μ) such that any x ∈ X admits a neighbourhood V such that

lim
r↓0

‖Δd
μ,ru− v‖L∞(V,μ) = 0,

in which case we say that Δd
μu := v is the strong AMV-Laplacian of u.

Let us provide a analogous definition in the symmetrized case. To this aim, we
assume that μ satisfies a local comparability condition. Under this condition, for
any u ∈ L∞

loc(X, μ) and x ∈ X, there exist C, r0 > 0 and a neighbourhood V of x
such that

‖Δ̃d
μ,ru‖L∞(Br0 (x)) �

2C‖u‖L∞(V,μ)

r2

for any r ∈ (0, r0).

Definition 3.4 Strong SAMV Laplacian. Let (X, d, μ) be a metric measure space.
Assume that μ satisfies a local comparability condition. We say that u ∈ L∞

loc(X, μ)
admits a strong SAMV-Laplacian if there exists a function v ∈ L∞

loc(X, μ) such that
any x ∈ X admits a neighbourhood V such that

lim
r↓0

‖Δ̃d
μ,ru− v‖L∞(V,μ) = 0,

in which case we say that Δ̃d
μu := v is the strong SAMV-Laplacian of u.

Lp/Lp
loc-AMV/SAMV Laplacian. Let us consider p ∈ [1, +∞). Recall that

lemma 2.8 ensures that under a uniform comparability condition, the operator
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12 A. Minne and D. Tewodrose

Ar is bounded from Lp to itself for any sufficiently small r. As a consequence, also
Δd

μ,r is bounded from Lp to itself. Then, the following definition is well-posed.

Definition 3.5 Lp AMV/SAMV Laplacian. Let (X, d, μ) be a metric mea-
sure space such that μ satisfies a uniform comparability condition. Consider u ∈
L1

loc(X, μ) and p ∈ [1, +∞).

(1) We say that u admits an Lp-AMV Laplacian if there exists a function v ∈
Lp(X, μ) such that

lim
r↓0

‖Δd
μ,ru− v‖Lp(X,μ) = 0,

in which case we say that Δd
μu := v is the Lp-AMV Laplacian of u.

(2) We say that u admits an Lp-SAMV Laplacian if there exists a function v ∈
Lp(X, μ) such that

lim
r↓0

‖Δ̃d
μ,ru− v‖Lp(X,μ) = 0,

in which case we say that Δ̃d
μu := v is the Lp-SAMV Laplacian of u.

Remark 3.6. Let u, v ∈ L2(X, μ) be both admitting an L2-SAMV Laplacian.
Since

Δ̃d
μ,ru(x) =

ˆ
X

kr(x, y)(u(y) − u(x)) dμ(y)

for any r > 0 and μ-a.e. x ∈ X, where

kr(x, y) :=
1

2r2
1[0,r)(d(x, y))

(
1

μ(Br(x))
+

1
μ(Br(y))

)
,

the Fubini theorem implies
ˆ

X

(Δ̃d
μ,ru)v dμ =

ˆ
X

u(Δ̃d
μ,rv) dμ,

hence from letting r ↓ 0 we obtain
ˆ

X

(Δ̃d
μu)v dμ =

ˆ
X

u(Δ̃d
μv) dμ. (3.4)

Let us now provide a definition of Lp
loc-AMV Laplacian and Lp

loc-SAMV
Laplacian. In this case we assume a locally uniform comparability condition.

Definition 3.7 Lp
loc AMV/SAMV Laplacian. Let (X, d, μ) be a metric measure

space such that μ satisfies a locally uniform comparability condition. Consider u ∈
L1

loc(X, μ) and p ∈ [1, +∞).

(1) We say that u admits an Lp
loc-AMV Laplacian if there exists a function v ∈

Lp
loc(X, μ) such that for any x ∈ X there exists a neighbourhood V of x such
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that

lim
r↓0

‖Δd
μ,ru− v‖Lp(V,μ) = 0,

in which case we say that Δd
μu := v is the Lp

loc-AMV Laplacian of u.

(2) We say that u admits an Lp
loc-SAMV Laplacian if there exists a function

v ∈ Lp
loc(X, μ) such that for any x ∈ X there exists a neighbourhood V of x

such that

lim
r↓0

‖Δ̃d
μ,ru− v‖Lp(V,μ) = 0,

in which case we say that Δ̃d
μu := v is the Lp

loc-SAMV Laplacian of u.

Remark 3.8. By lemma 2.8, the locally uniform comparability condition guaran-
tees that for any x ∈ X there exist a neighbourhood V of x and a constant r0 such
that Δd

μ,ru ∈ Lp(V, μ) for any r ∈ (0, r0).

Remark 3.9. The Hölder inequality implies that if u admits an Lp
loc-AMV Lapla-

cian, then u admits an Lq
loc-AMV Laplacian for any q � p which coincides μ-a.e.

with the Lp
loc-AMV Laplacian. This remark holds in the SAMV case too.

Weak AMV/SAMV Laplacian. Let us now define a notion of weak AMV Lapla-
cian and weak SAMV Laplacian. We focus on locally compact metric measure
spaces (X, d, μ) such that μ satisfies a locally uniform comparability condition.
Under these assumptions, remark 2.2 implies that if K is the support of a function
ϕ ∈ Cc(X), then there exists rK > such that for any r ∈ (0, rK),∣∣∣∣

ˆ
K

Δd
μ,rϕdμ

∣∣∣∣+
∣∣∣∣
ˆ

K

Δ̃d
μ,rϕdμ

∣∣∣∣ < +∞.

Then, the following definition is well-posed.

Definition 3.10 Weak AMV/SAMV Laplacian. Let (X, d, μ) be a locally compact
metric measure space such that μ satisfies a locally uniform comparability condition.
Let u ∈ L1

loc(X, μ) be given.

(1) We say that u admits a weak Asymptotic Mean Value Laplacian (weak AMV
Laplacian for short) if there exists a Radon measure Δd

μu such that

(Δd
μ,ru)μ ⇀ Δd

μu

as r ↓ 0, in which case we say that Δd
μu is the weak AMV Laplacian of u.

(2) We say that u admits a weak Symmetrized Asymptotic Mean Value Laplacian
(weak SAMV Laplacian for short) if there exists a Radon measure Δ̃d

μu such
that

(Δ̃d
μ,ru)μ ⇀ Δ̃d

μu

as r ↓ 0, in which case we say that Δ̃d
μu is the weak SAMV Laplacian of u.
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Remark 3.11. A corresponding definition for the distributional AMV/SAMV
Laplacian can be made for smooth manifolds by considering weak convergence in
the dual of C∞

c (X) instead of the dual of Cc(X).

We point out that if u admits a weak SAMV Laplacian and ϕ ∈ Cc(X) admits
an L2-SAMV Laplacian, it follows from (3.4) that

ˆ
X

ϕdΔ̃d
μu =

ˆ
X

(Δ̃d
μ,rϕ)udμ.

The connection between the weak and Lp
loc Laplacians is the following.

Proposition 3.12. Let (X, d, μ) be a locally compact metric measure space
such that μ satisfies a locally uniform comparability condition. Assume that u ∈
L1

loc(X, μ) admits an Lp
loc-AMV Laplacian Δd

μu for some p ∈ [1, ∞]. Then, u
admits a weak AMV Laplacian which is absolutely continuous with respect to μ
with Radon–Nikodym derivative equal to Δd

μu. The same holds with AMV replaced
by SAMV.

Proof. Consider ϕ ∈ Cc(X) with support K. Let q be the conjugate exponent of p,
i.e. 1/p+ 1/q = 1. Then, for any sufficiently small r > 0,

∣∣∣∣
ˆ

X

ϕ(Δd
μ,ru− Δd

μu) dμ
∣∣∣∣ �

ˆ
K

|ϕ|
∣∣Δd

μ,ru− Δd
μu
∣∣dμ

� ‖ϕ‖Lq(K,μ)

∥∥Δd
μ,ru− Δd

μu
∥∥

Lp(K,μ)
.

The last term tends to zero as r ↓ 0, hence limr↓0
´

X
ϕΔd

μ,ru dμ =
´

X
ϕΔd

μu dμ.
The SAMV case is proved the same way. �

Some functions admit a distributional or weak AMV Laplacian but no Lp
loc-AMV

Laplacian. Here is an example.

Example 3.13. Consider (R, de, L 1) and u(x) = x/|x|, defined to be zero for
x = 0. Then, an easy computation shows that

Δde
L 1,ru(x) =

⎧⎨
⎩
x− rsgnx

r3
, r > |x|,

0, r � |x|.

Let V be any open neighbourhood around the origin on which v is p-integrable.
Then, there exists an ε > 0 such that (−ε, ε) ⊆ V , and we can assume without loss
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of generality that 3r < ε. Then, for p ∈ (1, +∞),

‖Δde
L 1,ru− v‖Lp(V ) � ‖Δde

L 1,ru− v‖Lp([−ε,ε])

� ‖Δde
L 1,ru‖Lp([−ε,ε]) − ‖v‖Lp([−ε,ε])

� 1
r3

(ˆ ε

2r

(x− r)pdx

)1/p

− ‖v‖Lp([−ε,ε])

� 1
r3

((ε− 2r)(2r − r)p)1/p − ‖v‖Lp([−ε,ε])

� r1/p · r
r3

− ‖v‖Lp([−ε,ε]) → +∞, r ↓ 0.

This shows that u does not admit an Lp
loc-AMV Laplacian for any p ∈ (1, +∞). This

result trivially extends to p = ∞. Instead, u has a distributional AMV Laplacian
which can be shown to be the distributional derivative of the Dirac delta at the
origin divided by three [21, p. 21].

4. Equality between the AMV and SAMV Laplacians

In this section, we study some contexts where the equality Δd
μ = Δ̃d

μ holds in a
suitable sense.
Topological groups. We recall that a topological group is a set G equipped with
a group law · and a topology T with respect to which the maps (g, h) �→ g · h and
g �→ g−1 are continuous. A left-invariant distance d on a topological group (G, ·, T )
is a distance on G which induces the same topology as T and such that

d(g · x, g · y) = d(x, y)

for any g, x, y ∈ G. When a topological group (G, ·, T ) is locally compact, it
admits a unique—up to a positive multiplicative constant—non-zero Borel mea-
sure μ, called Haar measure, which is finite on compact sets, quasi-regular, and
left-invariant in the sense that

μ(g ·A) = μ(A)

for any g ∈ G and A ∈ T .

Proposition 4.1. Let (G, ·, T , μ) be a locally compact topological group equipped
with a Haar measure μ and metrized by a left-invariant distance d. Then, the
following hold:

(1) For any u ∈ L1
loc(G, μ) and any x ∈ Leb(u), one has that Δd

μ,ru(x) converges
if and only if Δ̃d

μ,ru(x) does, in which case

Δd
μu(x) = Δ̃d

μu(x). (4.1)

(2) For any p ∈ [1, +∞), a function u ∈ Lp(G, μ) admits a Lp
loc-AMV Laplacian

if and only if it admits a Lp
loc-SAMV Laplacian, in which case

Δd
μu = Δ̃d

μu μ-a.e. (4.2)
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16 A. Minne and D. Tewodrose

Proof. For any x ∈ G, r > 0 and y ∈ Br(x), since d is left-invariant,

y · x−1 ·Br(x) = Br(y),

and since μ is left-invariant, this implies that

μ(Br(x)) = μ(Br(y)). (4.3)

Then, for any u ∈ L1(G, μ) and any x ∈ Leb(u), one has Δd
μ,ru(x) = Δ̃d

μ,ru(x) for
any r > 0, from which (4.1) follows as r ↓ 0. Moreover, (4.3) ensures that μ trivially
satisfies a uniform comparability condition. �

Riemannian and sub-Riemannian manifolds. We provide in the next propo-
sition a general criterion to get that Δd

μ and Δ̃d
μ coincide. We phrase this result in

terms of the r-distortion function δr(x, y) introduced in definition 2.10.

Proposition 4.2. Let (X, d, μ) be a metric measure space. For any x ∈ X and
r > 0, set

εx(r) := sup
y∈Br(x)

|δr(x, y)|. (4.4)

Let u ∈ L1
loc(X, μ) be given. Then, for any x ∈ Leb(u) such that

εx(r) = O(r2), r ↓ 0, (4.5)

it holds that

lim
r↓0

|Δd
μ,ru(x) − Δ̃d

μ,ru(x)| = 0. (4.6)

In particular, if x ∈ Leb(u) satisfies (4.5), then Δd
μ,ru(x) converges if and only if

Δ̃d
μ,ru(x) does, in which case Δd

μu(x) = Δ̃d
μu(x).

Proof. For any x ∈ Leb(u) and r > 0,

Δd
μ,ru(x) − Δ̃d

μ,ru(x) =
1

2r2

 
Br(x)

δr(x, y)(u(y) − u∗(x)) dμ(y). (4.7)

Then,

|Δd
μ,ru(x) − Δ̃d

μ,ru(x)| � εx(r)
2r2

 
Br(x)

|u(y) − u∗(x)|dμ(y).

The conclusion follows since
ffl

Br(x)
|u(y) − u∗(x)|dμ(y) → 0 as r ↓ 0. �

Thanks to proposition 4.2 we can immediately show that Δd
μ and Δ̃d

μ coincide on
regular enough Riemannian manifolds. Indeed, let M be a smooth n-dimensional
manifold equipped with a C2 Riemannian metric. Let μ be the associated Rie-
mannian volume measure. As is well-known (see e.g. [13]), the scalar curvature of
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(M, g) is a continuous function Sg : M → R such that

μ(Br(x))
ωnrn

= 1 − cnSg(x)r2 +O(r4) as r ↓ 0 (4.8)

for any x ∈M , where cn := (n+ 2)−16−1 and O(r4) depends only on curvature
terms of g at x — in particular, if K is a compact subset of M , then O(r4) can be
made independent of x ∈ K.

Proposition 4.3. Let M be a smooth manifold equipped with a C2 Riemannian
metric g. Let μ be the associated Riemannian volume measure. Let u ∈ L1

loc(M, μ)
be given. Then, for μ-a.e. x ∈M ,

lim
r↓0

|Δd
μ,ru(x) − Δ̃d

μ,ru(x)| = 0.

In particular, for μ-a.e. x ∈M , one has that Δd
μ,ru(x) converges if and only if

Δ̃d
μ,ru(x) does, in which case Δd

μu(x) = Δ̃d
μu(x).

Proof. Let n be the dimension of M . For any x ∈M and y ∈ Br(x), thanks to (4.8)
we find that

μ(Br(y))
μ(Br(x))

=
1 − cnSg(y)r2 +O(r4)
1 − cnSg(x)r2 +O(r4)

= (1 − cnSg(y)r2 +O(r4))(1 + cnSg(x)r2 +O(r4))

= 1 − cn(Sg(y) − Sg(x))r2 +O(r4)

as r ↓ 0, where we choose O(r4) uniform over points in the closed ball B1(x).
Since Sg is continuous it is uniformly continuous on B1(x) hence it admits a
non-decreasing modulus of continuity ω. Therefore,

εx(r)
r2

� cn

(
sup

y∈Br(x)

|Sg(y) − Sg(x)|
)

+O(r2) � cnω(r) +O(r2)

as r ↓ 0. This shows that (4.5) holds at any x ∈M .
Let us show now that (M, g) satisfies the infinitesimally doubling condition (2.2).

Thanks to (4.8), for any x ∈M ,

μ(B2r(x))
μ(Br(x))

= 2nμ(B2r(x))
ωn(2r)n

ωnr
n

μ(Br(x))
= 2n 1 − cnSg(z)(2r)2 +O(r4)

1 − cnSg(z)r2 +O(r4)
,

as r ↓ 0, where we choose O(r4) uniform over points in the closed ball B1(x), hence

lim
r↓0

μ(B2r(x))
μ(Br(x))

= 2n.

From (2.2) we get that μ-a.e. point x ∈M is a Lebesgue point of u, hence the result
follows from proposition 4.2. �
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Let us pass now to the context of sub-Riemannian manifolds. We recall that a
sub-Riemannian structure on a manifold M is a pair (D, g) where D is a bracket
generating subbundle of the tangent bundle TM , i.e. Lie brackets of vector fields
tangent to D span the full tangent bundle, and g is a smooth metric defined on
D. Such a structure yields a well-defined distance d called the sub-Riemannian
(or Carnot–Carathéodory) distance. More precisely, d(p, q) is the infimum of the
length of Lipschitz curves tangent to D (also called horizontal curves) joining two
points p and q. Here the length of the curve is computed with respect to the metric
g. We refer to [3] for a complete introduction to sub-Riemannian geometry.

In this context, the analysis made in [7] yields the following.

Proposition 4.4. Let (M, D, g) be a 3-dimensional, contact sub-Riemannian
manifold equipped with the Popp volume μ. Let u ∈ L1

loc(M, μ) be given. Then,
for μ-a.e. x ∈M , it holds that

lim
r↓0

|Δd
μ,ru(x) − Δ̃d

μ,ru(x)| = 0.

In particular, for μ-a.e. x ∈M , one has that Δd
μ,ru(x) converges if and only if

Δ̃d
μ,ru(x) does, in which case Δd

μu(x) = Δ̃d
μu(x).

Proof. From [7, Theorem 1] we know the following for any x ∈M ,

μ(Br(x))
cor4

= 1 − c1κ(x)r2 +O(r3) as r ↓ 0, (4.9)

where co and c1 are positive constants and κ depends smoothly of x. Then, the
proof of proposition 4.3 carries over and yields the result. �

Spaces with suitably vanishing distortion. We investigate now the case of
spaces where the distortion functions δr satisfy more subtle assumptions. We begin
with the following elementary lemma. Recall that zr(x) is defined in definition 2.10
as the average of |δr(x, y)|.

Lemma 4.5. Let (X, d, μ) be a locally compact metric measure space. Then, for any
u ∈ Lip(X), ϕ ∈ Cc(X), and r > 0,∣∣∣∣

ˆ
X

ϕ(Δd
μ,ru− Δ̃d

μ,ru) dμ
∣∣∣∣ � Lip(u)

2

ˆ
X

|ϕ|zr

r
dμ.

Proof. The result follows from a direct computation:∣∣∣∣
ˆ

X

ϕ(Δd
μ,ru− Δ̃d

μ,ru) dμ
∣∣∣∣ � 1

2

ˆ
X

|ϕ(x)|
 

Br(x)

|δr(x, y)|
|u(y) − u(x)|

r2
dμ(y) dμ(x)

� Lip(u)
2

ˆ
X

|ϕ(x)|
 

Br(x)

|δr(x, y)|
d(x, y)
r2

dμ(y) dμ(x)

� Lip(u)
2

ˆ
X

|ϕ(x)|
 

Br(x)

|δr(x, y)|
r

dμ(y) dμ(x)

=
Lip(u)

2

ˆ
X

|ϕ(x)|zr(x)
r

dμ(x).
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�

As an immediate corollary, we obtain the following result by letting r ↓ 0.

Corollary 4.6. Let (X, d, μ) be a locally compact metric measure space such that
zr ∈ L1

loc(X, μ) for all r > 0 small enough. Assume that

zr

r
μ ⇀ 0 as r ↓ 0. (4.10)

Then, u ∈ Lip(X) admits a weak AMV Laplacian if and only if u admits a weak
SAMV Laplacian, in which case Δd

μu = Δ̃d
μu.

Remark 4.7. If μ satisfies a locally uniform comparability condition, then zr ∈
L1

loc(X, μ). Indeed, this assumption and the local compactness of (X, d) imply
that there exist r0, C > 0 such that for any x ∈ X, r ∈ (0, r0) and any compact
neighbourhood K of x,

ˆ
K

zr dμ � (1 + C)μ (∪x̄∈KBr(x̄)) < +∞.

We are going to apply corollary 4.6 in the context of locally Ahlfors regular spaces
(see example 2.4 for the definition). Let Q be a fixed positive number. We set

ωQ :=
πQ/2

Γ(Q/2 + 1)

where Γ is the classical Gamma function; if Q is an integer n, then ωQ coincides
with the Lebesgue measure of the unit Euclidean ball in R

n. For a locally Ahlfors
Q-regular metric measure space (X, d, μ), we define

θr(x) :=
μ(Br(x))
ωQrQ

for any x ∈ X and r > 0, and

μr =
1 − θr

r
μ.

Each μr is a signed Radon measure. We let

|μr| =
|1 − θr|

r
μ

be the associated total variation measure. Here is the main result of this paragraph.

Proposition 4.8. Let (X, d, μ) be a locally compact, locally Ahlfors Q-regular
metric measure space satisfying

|μr|⇀ 0 as r ↓ 0. (4.11)

Then, u ∈ Lip(X) admits a weak AMV Laplacian if and only if u admits a weak
SAMV Laplacian, in which case Δd

μu = Δ̃d
μu.
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To prove proposition 4.8, we need the following lemma.

Lemma 4.9. Let (X, d, μ) be a locally compact metric measure space satisfying a
locally uniform comparability condition. For any compact set K ⊂ X, there exist
rK , CK > 0 depending only on K, and another compact set K ′ ⊂ X containing K
such that for any f ∈ L∞

loc(X, μ),

sup
r∈(0,rK)

‖A∗
rf − f‖L∞(K,μ) � CK‖f‖L∞(K′,μ). (4.12)

Proof. Let K ⊂ X be a compact set. The local compactness of (X, d) ensures that
there exist rK > 0 and another compact set K ′ ⊂ X containing K such that⋃

x∈K

BrK
(x) ⊂ K ′.

Consider f ∈ L∞
loc(X, μ). For μ-a.e. x ∈ K and any r ∈ (0, rK),

|A∗
rf(x) − f(x)| =

∣∣∣∣∣
ˆ

Br(x)

(
f(y)

μ(Br(y))
− f(x)
μ(Br(x))

)
dμ(y)

∣∣∣∣∣
�
∣∣∣∣∣
ˆ

Br(x)

f(y) − f(x)
μ(Br(y))

dμ(y)

∣∣∣∣∣
+

∣∣∣∣∣
ˆ

Br(x)

(
f(x)

μ(Br(y))
− f(x)
μ(Br(x))

)
dμ(y)

∣∣∣∣∣
�
ˆ

Br(x)

|f(y) − f(x)|
μ(Br(y))

dμ(y) + |f(x)|
∣∣∣∣∣
ˆ

Br(x)

dμ(y)
μ(Br(y))

− 1

∣∣∣∣∣
� 2‖f‖L∞(K′,μ)

ˆ
Br(x)

dμ(y)
μ(Br(y))

+ ‖f‖L∞(K′,μ)

(ˆ
Br(x)

dμ(y)
μ(Br(y))

+ 1

)

= ‖f‖L∞(K′,μ)

(
3
ˆ

Br(x)

dμ(y)
μ(Br(y))

+ 1

)
.

By remark 2.2, the locally uniform comparability condition implies that
ˆ

Br(x)

dμ(y)
μ(Br(y))

� C ′
K

for some C ′
K > 0 depending only on K. We obtain the desired result by setting

CK := 3C ′
K + 1. �

We are now in a position to prove proposition 4.8.
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Proof of proposition 4.8. By example 2.4 our space fulfils a locally uniform compa-
rability condition, and by remark 4.7 we infer that zr ∈ L1

loc(X, μ). Hence corollary
4.6 shows that we only need to prove that

zr

r
μ ⇀ 0

as r ↓ 0. Take ϕ ∈ Cc(X). Up to decomposing ϕ as ϕ+ − ϕ−, we do not lose any
generality in assuming that ϕ is non-negative, what we do from now on. Let K be
the support of ϕ. Let rK , CK and K ′ be given by lemma 4.9. Consider r ∈ (0, rK).
Observe that if x ∈ K and y ∈ Br(x), then

|δr(x, y)| =
|μ(Br(y)) − μ(Br(x))|

μ(Br(y))
=

|θr(y) − θr(x)|
θr(y)

� 1
θr(y)

(|θr(y) − 1| + |1 − θr(x))|)

� ω−1
Q CK′

(
|θr(y) − 1| + |1 − θr(x)|

)

where we have multiplied and divided by ωQr
Q to get the second equality and we

have used the local Ahlfors regularity property on K ′ to get the last one. Then,

ˆ
X

ϕ
zr

r
dμ =

ˆ
X

ϕ(x)
 

Br(x)

|δr(x, y)|
r

dμ(y) dμ(x)

� ω−1
Q CK′

(ˆ
X

ϕ(x)
 

Br(x)

|θr(y) − 1|
r

dμ(y) dμ(x)

+
ˆ

X

ϕ(x)
|θr(x) − 1|

r
dμ(x)

)

By (4.11), the second term on the right-hand side converges to 0 when r ↓ 0. Let
us show that also the first one converges to 0. We have

ˆ
X

ϕ(x)
 

Br(x)

|θr(y) − 1|
r

dμ(y) dμ(x) =
ˆ

X

ϕ(x)Ar

[
|θr(·) − 1|

r

]
(x) dμ(x)

=
ˆ

X

A∗
rϕ(x)

|θr(x) − 1|
r

dμ(x).

Since x /∈ K ′ yields Br(x) ∩ suppϕ = ∅ which in turn implies that A∗
rϕ(x) = 0, we

may replace the previous integral over X with an integral over K ′. Then,

ˆ
X

ϕ(x)
 

Br(x)

|θr(y) − 1|
r

dμ(y) dμ(x)

�
ˆ

K′
|A∗

rϕ(x) − ϕ(x)| |θr(x) − 1|
r

dμ(x) +
ˆ

K′
ϕ
|θr − 1|

r
dμ
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� C‖ϕ‖L∞(X,μ)

ˆ
K′

|θr − 1|
r

dμ

� C‖ϕ‖L∞(X,μ)

ˆ
X

ψ
|θr − 1|

r
dμ

where we have used (4.12) to get the second inequality and we have set ψ(·) :=
(1 − d(·, K ′)/ρ)+ for ρ > 0 small enough to ensure that ψ ∈ Cc(X). By (4.11), we
get

lim
r↓0

ˆ
X

ψ
|θr − 1|

r
dμ = 0. �

Remark 4.10. In [16], the authors introduced the following definition: a met-
ric measure space (X, d, μ) has vanishing metric measure boundary if μr ⇀ 0 as
r ↓ 0. It would be interesting to study whether a result like proposition 4.8 may be
obtained with (4.11) replaced by this weaker assumption.

Remark 4.11. For K ∈ R and N ∈ [1, +∞), an RCD(K, N) space is a proper
(hence locally compact) metric measure space satisfying a synthetic notion of Ricci
curvature bounded below by K and dimension bounded above by N ; we refer to
[6, 14], for instance, for a nice account on these spaces. According to [12], an
RCD(K, N) space (X, d, μ) is called non-collapsed if N is an integer and μ = H N .
Non-collapsed RCD(K, N) spaces are locally Ahlfors N -regular; this is a conse-
quence of [12, Theorem 1.3]. By [10, Theorem 1.2] (see also [2, Theorem 3.7]),
any non-collapsed RCD(K, N) space with vanishing metric-measure boundary sat-
isfies (4.11). Building upon this, Adamowicz, Kijowski, and Soultanis proved in
[2, Corollary 3.9] that the weak AMV and SAMV Laplacians coincide on such a
space. Our result provides the same conclusion in a setting where no curvature-
dimension condition is assumed. In this regard, it would be worth investigating the
validity of (4.11) in contexts which are not RCD, like sub-Riemannian or Finsler
spaces.

5. Weighted Lebesgue measures

In this section, we study the context of weighted Lebesgue measures where the two
notions of pointwise Laplacian do not coincide. We first focus on points where the
weight is positive, before tackling points where the weight vanishes.

5.1. Positive weights

We begin this subsection with a straightforward result.

Proposition 5.1. Let Ω ⊂ R
n be an open set equipped with the Euclidean distance

de, and μ := wL n ¬
Ω where w ∈ C1(Ω). Consider (Ω, de, μ). Then, for any x ∈

Ω such that w(x) > 0, any u ∈ C2(Ω) admits a pointwise AMV Laplacian and a
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pointwise SAMV Laplacian at x, and

Δde
μ u(x) =

1
2(n+ 2)

(Δu(x) + 2〈∇ lnw,∇u〉(x)), (5.1)

Δ̃de
μ u(x) =

1
2(n+ 2)

(Δu(x) + 〈∇ lnw,∇u〉(x)) · (5.2)

Proof. The first equality was proved in [21, Proposition 2.3]. Let us prove the
second equality following the same lines. Let r0 > 0 be such that Br0(x) ⊂ Ω and
w(y) > w(x)/2 for any y ∈ Br0(x). Then, for any r ∈ (0, r0),

Δ̃de
μ,ru(x) =

1
2
(
Δde

μ,ru(x) + I(r)
)
. (5.3)

where

I(r) :=
1
r2

ˆ
Br(x)

(u(y) − u(x))
w(y)

μ(Br(y))
dy.

We claim that

I(r) → Δu(x)
2(n+ 2)

as r ↓ 0. (5.4)

Once this claim is proved, (5.2) follows from letting r ↓ 0 in (5.3) and using (5.1).
We now prove (5.4). Since w is C1, a first-order Taylor expansion shows that for
any 0 < r < r0/2, y ∈ Br(x), and z ∈ Br(y),

w(z) = w(y) + 〈Ry(z), y − z〉

for some Ry(z) ∈ R
n such that

|Ry(z)| � C := sup
ξ∈Br0 (x)

|∇w(ξ)|.

Then,

μ(Br(y)) =
ˆ

Br(y)

w(z) dz = L n(Br(y))

(
w(y) +

 
Br(y)

〈Ry(z), y − z〉dz

)

so that

w(y)
μ(Br(y))

=
1

L n(Br(y))
(
1 + 1

w(y)

ffl
Br(y)

〈Ry(z), y − z〉dz
) · (5.5)

Now ∣∣∣∣∣ 1
w(y)

 
Br(y)

〈Ry(z), y − z〉dz

∣∣∣∣∣ � 2C
w(x)

r = O(r) (5.6)

and L n(Br(y)) = L n(Br(x)), hence we get

I(r) =
1

r2(1 +O(r))

 
Br(x)

u(y) − u(x) dy → Δu(x)
2(n+ 2)

as r ↓ 0.

�
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Remark 5.2. Proposition 5.1 shows that if w > 0 everywhere in Ω, then Δ̃de
μ

coincides with a dimensional constant times the classical weighted Laplacian
of (Rn, de, wL n) (also known as drifted Laplacian, or f -Laplacian, or Witten
Laplacian, see e.g. [11, 22] and the references therein), namely

Δu+ 〈∇ lnw,∇u〉.

Moreover, working in exponential coordinates, it is not difficult to show that (5.1)
and (5.2) extend to the setting of weighted Riemannian manifolds (M, g, wμ) where
μ is the canonical Riemannian measure and w : M → (0, +∞) is a smooth map.

We now study the case where the Euclidean distance on Ω is replaced with a
more general distance d. To this aim, for any x ∈ Ω and r > 0, we set

Mr(x) :=

(
Mr

ij(x) :=
1
r2

 
Br(x)

(y − x)i(y − x)j dy

)
1�i<j�n

.

In case d is associated with a norm, the change of variable ξ = (y − x)/r shows that
the matrices Mr(x) are all equal to the second-moment matrix

M(0) :=

(
Mij(0) :=

 
B1(0)

ξiξj dξ

)
1�i<j�n

.

We will also work under the assumption that balls for d are symmetric with respect
to the vector space structure of R

n, in the sense that for any x ∈ Ω and r > 0 such
that Br(x) ⊂ Ω, for any v ∈ R

n,

x+ v ∈ Br(x) ⇐⇒ x− v ∈ Br(x). (5.7)

This is trivially satisfied when d is associated with a norm. But it may fail in
general. For instance, set

d(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|x− y|, x, y � 0,

1
2
|x− y|, x, y > 0,

1
2
y − x, x � 0, y > 0,

1
2
x− y, y � 0, x > 0.

Then, d is a metric on R such that 1
2de � d � 2de and Br(0) = (−r, 2r) for any

r > 0.
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A large class of distances d which satisfy (5.7) without being associated with a
norm is given by the following: For α = (α1, . . . , αn) ∈ {1, 2}n, set

Φα(x) := (xα1
1 , . . . , xαn

n )

for any x = (x1, . . . , xn) ∈ (0, +∞)n. Set

dα(x, y) := ‖Φα(x) − Φα(y)‖

for any x, y ∈ (0, +∞)n, where ‖ · ‖ is any lp-norm on R
n. Then, dα is a distance

on (0, +∞)n which always satisfies (5.7); it is associated with a norm if and only
if α1 = . . . = αn = 1, because otherwise homogeneity fails.

Our next result makes use of zL n

r , i.e. the average of the absolute value of the
distortion function, defined for any r > 0 by

zL n

r (x) :=
 

Br(x)

∣∣∣∣1 − L n(Br(x))
L n(Br(y))

∣∣∣∣ dy. (5.8)

for any x ∈ R
n.

Proposition 5.3. Let Ω ⊂ R
n be open with respect to a distance d satisfying

(5.7). For w ∈ C1(Ω) set μ := wL n ¬
Ω. Consider (Ω, d, μ). Let x ∈ Ω be such that

w(x) > 0.

(1) Assume that the limit M(x) := limr↓0+ Mr(x) exists. Then, any u ∈ C2(Ω)
admits a pointwise AMV Laplacian at x, and

Δd
μu(x) =

1
2
Tr(M(x)∇2u(x)) +

1
w(x)

〈∇w(x),M(x)∇u(x)〉. (5.9)

(2) If in addition

zL n

r (x) = o(r) (5.10)

as r ↓ 0, then u admits a pointwise SAMV Laplacian at x, and

Δ̃d
μu(x) =

1
2w(x)

Tr(M(x)∇(w∇u)(x)). (5.11)

Proof. Step 1. We first prove (5.9). To this aim, we claim that for any r > 0,

Δd
μ,ru(x) =

L n(Br(x))w(x)
μ(Br(x))

(
1
2
Tr
(
∇2u(x)Mr(x)

)

+
1

w(x)
〈Mr(x)∇u(x),∇w(x)〉

)
+O(r). (5.12)
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Once this is proved, (5.9) follows immediately since μ(Br(x))/L n(Br(x)) → w(x)
as r ↓ 0. Let us prove (5.12). By a second-order Taylor expansion of u and a first-
order Taylor expansion of w, for any y ∈ Br(x) we infer that

(u(y) − u(x))w(y) =
n∑

i=1

[wui](x)(y − x)i

+
n∑

i,j=1

[wuij

2
+ wiuj

]
(x) (y − x)i(y − x)j +O(r3)

where O(r3) is independent of y and where we have denoted by ui the partial
derivatives of u, by uij the second-order partial derivatives of u, and similarly for
w. Integrate with respect to y ∈ Br(x) and then divide by r2μ(Br(x)). Then, the
left-hand side becomes Δd

μ,ru(x). Due to antisymmetry, assumption (5.7) implies
that the first term on the right-hand side vanishes when integrating w.r.t. y over
Br(x). Then, we get

Δd
μ,ru(x) =

n∑
i,j=1

[wuij

2
+ wiuj

]
(x)

1
r2μ(Br(x))

×
ˆ

Br(x)

(y − x)i(y − x)j dy +
L n(Br(x))
μ(Br(x))

O(r)

=
L n(Br(x))
μ(Br(x))

n∑
i,j=1

[wuij

2
+ wiuj

]
(x)Mr

ij(x) +O(r)

=
L n(Br(x))
μ(Br(x))

(
w(x)

2
Tr
(
∇2u(x)Mr(x)

)
+ 〈Mr(x)∇u(x),∇w(x)〉) +O(r).

Step 2. Now we prove (5.11). Observe that

Δ̃d
μ,ru(x) =

1
2
(
Δd

μ,ru(x) + I(r)
)

(5.13)

where

I(r) :=
1
r2

ˆ
Br(x)

(u(y) − u(x))
w(y)

μ(Br(y))
dy.

We claim that

I(r) → Δd
L nu(x) =

1
2
Tr(M(x)∇2u(x)). (5.14)

Once this claim is proved, letting r ↓ 0 in (5.13) yields (5.11), since a direct
computation gives

1
2w(x)

Tr(M(x)∇(w∇u)(x)) =
1
2
Tr(M(x)∇2u(x)) +

1
2w(x)

〈M(x)∇u(x),∇w(x)〉.
(5.15)
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Thus, we prove (5.14). Thanks to (5.5) and (5.6), we get

I(r) =
1

r2(1 +O(r))

ˆ
Br(x)

(u(y) − u(x))
1

L n(Br(y))
dy

=
1

r2(1 +O(r))

[  
Br(x)

(u(y) − u(x)) dy

−
 

Br(x)

(u(y) − u(x))
(

1 − L n(Br(x))
L n(Br(y))

)
dy

]

=
1

1 +O(r)

[
Δd

L n,ru(x) −
1
r2

 
Br(x)

(u(y) − u(x))
(

1 − L n(Br(x))
L n(Br(y))

)
dy

]
.

(5.16)

Now using that u is Lipschitz, we get

1
r2

∣∣∣∣∣
 

Br(x)

(u(y) − u(x))
(

1 − L n(Br(x))
L n(Br(y))

)
dy

∣∣∣∣∣
� Lip(u)

r2

 
Br(x)

d(x, y)
∣∣∣∣1 − L n(Br(x))

L n(Br(y))

∣∣∣∣dy
� Lip(u)

r

 
Br(x)

∣∣∣∣1 − L n(Br(x))
L n(Br(y))

∣∣∣∣ dy
= Lip(u)

zL n

r (x)
r

→ 0 as r ↓ 0

by assumption (5.10). Then, (5.14) follows from letting r ↓ 0 in (5.16). �

Remark 5.4. It follows from the previous proof that

Δ̃d
μu(x) =

1
2
(
Δd

μu(x) + Δd
L nu(x)

)
. (5.17)

Remark 5.5. Let ‖ · ‖ denote the infinity matrix norm. By the Jensen inequality,

‖Mr(x)‖ �
 

Br(x)

∥∥∥∥∥
(

(y − x)i(y − x)j

r2

)
1�i�j�n

∥∥∥∥∥dy � 1

for any r > 0, so the sequence {Mr(x)}r>0 is bounded and therefore it admits a
set of accumulation points {Mα} as r ↓ 0. This set is a singleton if and only if the
limit M(x) := limr↓0Mr(x) exists. If this is not the case, then Δd

μu(x) and Δ̃d
μu(x)

may be understood as multivalued:

Δd
μu(x) =

{
1
2
Tr(Mα(x)∇2u(x)) +

1
w(x)

〈∇w(x),Mα(x)∇u(x)〉
}
,

Δ̃d
μu(x) =

{
1

2w(x)
Tr(Mα(x)∇(w∇u)(x))

}
.
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5.2. Vanishing weights

We are now interested in the pointwise AMV and SAMV Laplacians at a point
where the weight vanishes. With no loss of generality, we assume that this point is
the origin 0n. We let ‖ · ‖ be a norm on R

n.

Definition 5.6. Let w be a Lebesgue integrable function defined on a neighbourhood
Ω of 0n. We say that w is a vanishing weight at 0n if w(x) > 0 for L n-a.e. x ∈ Ω
and 0n ∈ Leb(w) with w∗(0n) = 0.

For any Radon measure ν on R
n, we define the second-moment matrix of ν as

Mν :=

(ˆ
B1(0n)

yiyj dν(y)

)
1�i,j�n

. (5.18)

5.2.1. Infinitesimally even weights

Definition 5.7. We say that a weight w is infinitesimally even at 0n if it is L n-
essentially bounded in a neighbourhood of 0n and such that

L n − ess sup
x∈Br(0n)

|w(x) − w(−x)| = o

(
r

 
Br(0n)

w dL n

)
as r ↓ 0.

Our first result is the following.

Proposition 5.8. Consider (Ω, ‖ · ‖, wL n) where w is a vanishing weight at 0n

of domain Ω which is infinitesimally even at 0n. Set μ := wL n. Assume that the
blow-up probability measures

νr :=
(

w(r ·)rn

μ(Br(0n))

)
L n ¬

B1(0n)

weakly converge to some Radon measure ν supported in B1(0n).1 Then, the point-
wise AMV Laplacian at 0n of any function u : Ω → R two times differentiable at
0n exists and satisfies

Δ‖·‖
μ u(0n) =

1
2
Tr(Mν∇2u)(0n). (5.19)

1Observe that
1

r2

 
Br(0n)

xixj dμ(x) =

ˆ
B1(0n)

yiyj dνr(y)
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Proof. From the Taylor theorem, there exist a neighbourhood Ω′ ⊂ Ω of 0n and
functions hij : Ω′ → R such that lim

x→0n

hij(x) = 0 and

u(x) − u(0n) =
n∑

i=1

∂u

∂xi
(0n)xi +

1
2

n∑
i,j=1

∂2u

∂xi∂xj
(0n)xixj +

n∑
i,j=1

hij(x)xixj

for any x ∈ Ω′. Then, for any r > 0 such that Br(0n) ⊂ Ω′,

Δ‖·‖
μ,ru(0n) =

n∑
i=1

∂u

∂xi
(0n)

1
r2

 
Br(0n)

xi dμ(x)

+
1
2

n∑
i,j=1

∂2u

∂xi∂xj
(0n)

1
r2

 
Br(0n)

xixj dμ(x)

+
n∑

i,j=1

1
r2

 
Br(0n)

hij(x)xixj dμ(x). (5.20)

Step 1. We fix i, j ∈ {1, . . . , n} and show that

lim
r↓0

1
r2

 
Br(0n)

hij(x)xixj dμ(x) = 0. (5.21)

Fix ε > 0. Then, there exists δ ∈ (0, r0) such that |hij(x)| < ε for any x ∈ Bδ(0n).
For any r ∈ (0, δ),∣∣∣∣∣ 1

r2

 
Br(0n)

hij(x)xixj dμ(x)

∣∣∣∣∣ � 1
r2

 
Br(0n)

|hij(x)||xi||xj |dμ(x) < ε,

where we have used that |xi| � r and |xj | � r to get the last inequality. This yields
(5.21).

Step 2. We fix i ∈ {1, . . . , n} and show that

lim
r↓0

1
r2

 
Br(0n)

xi dμ(x) = 0. (5.22)

Observe that  
Br(0n)

xi dμ(x) =
1´

Br(0n)
w(x) dx

ˆ
Br(0n)

xiw(x) dx (5.23)

and ˆ
Br(0n)

xiw(x) dx =
1
2

ˆ
Br(0n)

xiw(x) dx+
1
2

ˆ
Br(0n)

xiw(x) dx

=
1
2

ˆ
Br(0n)

xiw(x) dx+
1
2

ˆ
Br(0n)

−x′iw(−x′) dx′

=
1
2

ˆ
Br(0n)

xi[w(x) − w(−x)] dx, (5.24)
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where we have used the change of variable x′ = −x in the second integral to pass
from the first line to the second. Set Sw(r) := L n − ess supx∈Br(0n) |w(x) − w(−x)|.
Then,∣∣∣∣∣ 1

r2

 
Br(0n)

xi dμ(x)

∣∣∣∣∣ = 1
2r2|

´
Br(0n)

w(x) dx|

∣∣∣∣∣
ˆ

Br(0n)

xi[w(x) − w(−x)] dx
∣∣∣∣∣

� 1
2r2|

´
Br(0n)

w(x) dx|

(ˆ
Br(0n)

|xi||w(x) − w(−x)|dx
)

� Sw(r)
2r|

´
Br(0n)

w(y) dy|

ˆ
Br(0n)

1 dx

=
Sw(r)

2r|
ffl

Br(0n)
w(y) dy|

where we have used |xi| � r and |w(x) − w(−x)| � Sw(r) to get the second
inequality. Then, (5.22) follows from the infinitesimal evenness assumption on w.

Step 3. We fix i, j ∈ {1, . . . , n} and show that

lim
r↓0

1
r2

 
Br(0n)

xixj dμ(x) =
ˆ

B1(0n)

yiyj dν(y). (5.25)

Performing the change of variable y = x/r, we have

1
r2

 
Br(0n)

xixj dμ(x) =
1

r2μ(Br(0n))

ˆ
B1(0n)

(ryi)(ryj)w(ry)rn dy

=
ˆ

B1(0n)

yiyj dνr(y) →
ˆ

B1(0n)

yiyj dν(y) as r ↓ 0.

�

Remark 5.9. By the Prokhorov theorem, the probability measures {νr} always
admit accumulation points in the weak topology of measures as r ↓ 0. The assump-
tion made in the previous proposition demands that there is a unique limit. If this
is not satisfied, then Δ‖·‖

μ u(0n) may be understood as multivalued, namely we get

Δ‖·‖
μ u(0n) =

{
1
2
Tr(Mν̄α

∇2u)(0n)
}

where {ν̄α} are the limit points of {νr} as r ↓ 0.

A version of proposition 5.8 also holds in the case of the SAMV Laplacian, but
under slightly different assumptions.

Proposition 5.10. Consider (Ω, ‖ · ‖, wL n) where w is a vanishing weight at 0n

of domain Ω which is infinitesimally even at 0n. Assume that μ := wL n satisfies
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a comparability condition at 0n, that the weight

w̃(·) :=
w(·)
2

(
1 +

μ(Br(0n))
μ(Br(·))

)
(5.26)

is infinitesimally even at 0n, and that there exists a Radon measure ν̃ on B1(0n)
such that (

w̃(r ·)rn

μ(Br(0n))

)
L n ¬

B1(0n) =: ν̃r ⇀ ν̃ as r ↓ 0. (5.27)

Then, the pointwise SAMV Laplacian at 0n of any function u : Ω → R two times
differentiable at 0n exists and satisfies

Δ̃‖·‖
μ u(0n) =

1
2
Tr(Mν̃∇2u)(0n). (5.28)

Proof. Let u : Ω → R be two times differentiable at 0n. Using the Taylor theorem
like in the proof of proposition 5.8, we get that for any small enough r, it holds
that

Δ̃‖·‖
μ,ru(0n) =

n∑
i=1

∂u

∂xi
(0n)

1
r2μ(Br(0n))

ˆ
Br(0n)

xiw̃(x) dx

+
n∑

i,j=1

∂2u

∂xi∂xj
(0n)

1
r2μ(Br(0n))

ˆ
Br(0n)

xixjw̃(x) dx

+
n∑

i,j=1

1
r2μ(Br(0n))

ˆ
Br(0n)

hij(x)xixjw̃(x) dx. (5.29)

Fix i, j ∈ {1, . . . , n}. For any ε > 0 there exists δ ∈ (0, r0) such that |hij(x)| < ε
for any x ∈ Bδ(0n). For any r ∈ (0, δ),∣∣∣∣∣ 1

r2μ(Br(0n))

ˆ
Br(0n)

hij(x)xixjw̃(x) dx

∣∣∣∣∣
� 1
r2μ(Br(0n))

ˆ
Br(0n)

|hij(x)||xi||xj |w̃(x) dx

� ε

μ(Br(0n))

ˆ
Br(0n)

w̃(x) dx � (1 + C)ε/2,

where we have used the local comparability condition at 0n to get the last inequality.
This yields

lim
r↓0

1
r2μ(Br(0n))

ˆ
Br(0n)

hij(x)xixjw̃(x) dx = 0. (5.30)

Moreover, we have that

lim
r↓0

1
r2μ(Br(0n))

ˆ
Br(0n)

xiw̃(x) dx = 0. (5.31)
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Indeed, acting like in (5.24) we get
ˆ

Br(0n)

xiw̃(x) dx =
1
2

ˆ
Br(0n)

xi[w̃(x) − w̃(−x)] dx.

Set Sw̃(r) := L n − ess supx∈Br(0n) |w̃(x) − w̃(−x)|. Like in the previous proof, we
obtain∣∣∣∣∣ 1

r2μ(Br(0n))

ˆ
Br(0n)

xiw̃(x) dx

∣∣∣∣∣ � Sw̃(r)
2r|

ffl
Br(0n)

w(x) dx| � (1 + C)Sw̃(r)
4r|

ffl
Br(0n)

w̃(x) dx|

where we have used the local comparability condition at 0n to get the last inequality.
Then, (5.31) follows from the infinitesimal evenness assumption on w̃.

Lastly, acting as in the previous proof and using the definition of ν̃r, we obtain
that

lim
r↓0

1
r2μ(Br(0n))

ˆ
Br(0n)

xixjw̃(x) dx =
ˆ

B1(0n)

yiyj dν̃(y) (5.32)

for any i, j ∈ {1, . . . , n}.
The conclusion follows by letting r ↓ 0 in (5.29) and using (5.30), (5.31) and

(5.32). �

Remark 5.11. A simple computation shows that

ν̃r =
1
2

(
νr +

rn

μ(Br(·))
μ

¬
B1(0n)

)
. (5.33)

In this way, it clearly appears that there exists r0 > 0 such that the measures
{ν̃r}0<r<r0 are uniformly bounded, thanks to the local comparability condition at
0n of μ. Therefore, like in the non-symmetrized case (see remark 5.9), the Prokhorov
theorem implies that the measures {ν̃r}r>0 admit limit points in the weak topology
of measures as r ↓ 0. If these limit points are not unique then Δ̃‖·‖

μ u(0) may be
understood as multivalued, namely

Δ̃‖·‖
μ u(0n) =

{
1
2
Tr(Mν̂α

∇2u)(0n)
}

where {ν̂α} are the limit points of {ν̃r} as r ↓ 0.

Remark 5.12. If w is even, then so is w̃. Indeed, in this case, obvious changes of
variable show that

μ(Br(−x)) =
ˆ

Br(0n)

w(−x+ y) dy =
ˆ

Br(0n)

w(−x− y) dy

=
ˆ

Br(0n)

w(x+ y) dy = μ(Br(x))

from which evenness of w̃ follows from the definition in (5.26).
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5.2.2. Weights w(·) = | · |α Proposition 5.8 may be applied to the case of weights
w(·) = | · |α where | · | is the Euclidean norm and α > 0.

Corollary 5.13. Take α > 0 and set w(·) := | · |α where | · | denotes the Euclidean
norm. Consider (Rn, de, μ) where μ := wL n. Then, for any u : R

n → R two times
differentiable at 0n the pointwise AMV and SAMV Laplacians of u in 0n exist and
are given by

Δde
μ u(0n) =

n+ α

2n(n+ α+ 2)
Δu(0n), (5.34)

Δ̃de
μ u(0n) =

n2 + (2 + α)n+ α

2n(n+ α+ 2)(n+ 2)
Δu(0n), (5.35)

where Δ :=
∑

i ∂ii is the classical Laplacian.

Proof. The weight w is continuous, hence 0n is a Lebesgue point with w(0n) = 0.
Moreover, the infinitesimal evenness of w is trivially satisfied because w is even.
Finally the α-homogeneity of w implies that the measures {νr}r>0 are constantly
equal to the measure

ν =
n+ α

σn−1
| · |αL n ¬

B1(0n),

hence proposition 5.8 applies and yields

Δde
μ u(0n) =

1
2
Tr(Mν∇2u)(0n) (5.36)

where we recall that Mν is defined in (5.18). Let us compute Mν . If n = 1,
ˆ 1

−1

y2|y|α dν(y) =
1 + α

σ0

ˆ 1

−1

y2|y|α dν(y) =
1 + α

2 + α+ 1
·

Assume now n > 1. Consider i, j ∈ {1, . . . , n} such that i �= j. Then, the map
y �→ yiyj |y|α is odd, so ˆ

B1(0n)

yiyj |y|α dy = 0.

Moreover, the invariance of the Lebesgue measure under exchanging coordinates θi

and θn yields
ˆ

B1(0n)

y2
i |y|α dy =

ˆ
B1(0n)

y2
n|y|α dy =

ˆ 1

0

ˆ
Sn−1

rα+n+1θ2n dσ(θ) dr

=
1

n+ α+ 2

ˆ
Sn−1

θ2n dσ(θ)

where σ is the usual surface measure on S
n−1. Since∑

1���n

ˆ
Sn−1

θ2� dσ(θ) =
ˆ

Sn−1
|θ|2 dσ(θ) = σn−1
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we get ˆ
Sn−1

θ2n dσ(θ) =
σn−1

n
·

In the end, for any n � 1,

Mν =
n+ α

n(n+ α+ 2)
In

and the result follows.
For the SAMV Laplacian, consider w̃ as defined in (5.26). We want to apply

proposition 5.10. The weight w̃ is even by remark 5.12. Thanks to (5.33), in order
to prove (5.27), one is left with computing the limit as r ↓ 0 of

rn

μ(Br(x))

for any x �= 0. This follows from the Lebesgue differentiation theorem:

rn

μ(Br(x))
=

(
ωn

 
Br(x)

w(y) dy

)−1

→ 1
|x|αωn

·

Consequently,

ν̃ =
1
2

(
ν +

L n

ωn

)
.

Finally, computing the second order moments w.r.t. to ν̃, simplifying and putting
back into (5.28) gives (5.35). �

5.2.3. Separable weights After proposition 5.8 it is natural to consider the class of
separable weights, defined as follows.

Definition 5.14. We say that a vanishing weight w of domain Ω is separa-
ble in a neighbourhood of 0n if there exist r > 0 such that Br(0n) ⊂ Ω and
f ∈ L1([0, r], L 1), g ∈ L1(Sn−1, σ), such that w(x) = f(|x|)g(x/|x|) for L n-a.e.
x ∈ Ω\{0n}. We say that f (resp. g) is the radial (resp. angular) part of w.

Proposition 5.15. Consider (Ω, de, wL n) where w is a vanishing weight of
domain Ω which is separable in a neighbourhood of 0n. Let f and g be the radial
and angular parts of w, respectively. Set μ = wL n and

ν := (cf g)σ

where σ is the normalized surface measure on the sphere S
n−1 and

cf :=
ˆ 1

0

f(ρ)ρn+1 dρ ∈ (0,+∞).

Then, the following hold.
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(1) For any function u two-times differentiable at 0n, the AMV Laplacian
Δde

μ u(0n) exists and satisfies

Δde
μ u(0n) =

1
2
Tr(Mν∇2u)(0n) (5.37)

if and only if 〈
∇u(0n),

ˆ
Sn−1

θg(θ) dσ(θ)
〉

= 0. (5.38)

(2) For any function u two-times differentiable at 0n such that ∇u(0n) = 0, the
AMV Laplacian Δde

μ u(0n) exists and satisfies (5.37).

(3) If
´

Sn−1 θg(θ) dσ(θ) = 0n, then for any function u two-times differentiable at
0n, the AMV Laplacian Δde

μ u(0n) exists and satisfies (5.37).

Proof. We only prove the first assertion since the others are direct consequences.
Acting as in the proof of proposition 5.8, we get that Δde

μ u(0n) exists and satisfies
(5.37) if and only if

lim
r↓0

n∑
i=1

∂u

∂xi
(0n)

1
r2

 
Br(0n)

xi dμ(x) = 0.

Thanks to (5.23), we know that for any i ∈ {1, . . . , n},

1
r2

 
Br(0n)

xi dμ(x) =
1

r
´

B1(0n)
w(ry) dy

(ˆ
B1(0n)

yiw(ry) dy

)

from which the separation assumption yields

1
r2

 
Br(0n)

xi dμ(x) =

´ 1

0
f(rρ)ρn+1 dρ

r
´ 1

0
f(rρ)ρdρ

´
Sn−1 θi[g(θ) − g(−θ)] dσ(θ)´

Sn−1 g(θ) dσ(θ)
·

Now ˆ
Sn−1

θi[g(θ) − g(−θ)] dσ(θ) =
ˆ

Sn−1
θig(θ) dσ(θ) −

ˆ
Sn−1

θig(−θ) dσ(θ)

= 2
ˆ

Sn−1
θig(θ) dσ(θ)

where we have used the change of variable θ′ = −θ in the second integral to get the
last term. Thus,

n∑
i=1

∂u

∂xi
(0n)

1
r2

 
Br(0n)

xi dμ(x) =

´ 1

0
f(rρ)ρn+1 dρ

r
´ 1

0
f(rρ)ρdρ

n∑
i=1

∂u

∂xi
(0n)

2
´

Sn−1 θig(θ) dσ(θ)´
Sn−1 g(θ) dσ(θ)

=

´ 1

0
f(rρ)ρn+1 dρ

r
´ 1

0
f(rρ)ρdρ

〈
∇u(0n), 2

´
Sn−1 θg(θ) dσ(θ)

〉
´

Sn−1 g(θ) dσ(θ)
·

(5.39)
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This immediately shows that if (5.38) holds, then Δde
μ u(0n) exists and is given by

(5.19).
Assume now that (5.38) does not hold. Then,

c :=
∣∣∣∣
〈
∇u(0n), 2

ˆ
Sn−1

θg(θ) dσ(θ)
〉∣∣∣∣ > 0.

Let m ∈ (0, 1) be the median of the measure f(rρ) dρ on [0, 1], so that
ˆ m

0

f(rρ) dρ =
ˆ 1

m

f(rρ) dρ =
1
2

ˆ 1

0

f(rρ) dρ.

Since f is non-negative and
´ 1

m
f(rρ)ρn+1 dρ � mn+1

´ 1

m
f(rρ) dρ, we get

´ 1

0
f(rρ)ρn+1 dρ

r
´ 1

0
f(rρ)ρdρ

�
mn+1

´ 1

m
f(rρ) dρ

r
´ 1

0
f(rρ)ρdρ

=
mn+1

´ 1

m
f(rρ) dρ

2r
´ 1

m
f(rρ)ρdρ

� mn+1

2r
,

where we have used
´ 1

m
f(rρ)ρdρ �

´ 1

m
f(rρ) dρ to get the last inequality. Then,

from (5.39) we get∣∣∣∣∣
n∑

i=1

∂u

∂xi
(0n)

1
r2

 
Br(0n)

xi dμ(x)

∣∣∣∣∣ � mn+1

2r
c→ +∞

as r ↓ 0, so Δde
μ u(0n) does not converge. �

When n = 2, the Fourier theory easily yields a concrete equivalent form of the
sufficient condition given in (3 ).

Corollary 5.16. Assume n = 2 and consider (Ω, de, wL n) and u as in the previ-
ous proposition. If there exist c � 1 and ϕ(·) ∈ Span({cos(m ·), sin(m ·)}m�2) such
that

g(ei ·) = c+ ϕ(·),

then for any function u two times differentiable at 02, the AMV Laplacian Δde
μ u(02)

exists and is given by (5.37).

Proof. Let h ∈ L1(R) be 2π-periodic and such that g(eit) = h(t) for any t ∈ R. Since
ˆ

S1
θg(θ) dσ(θ) =

ˆ 2π

0

eitg(eit) dt =
ˆ 2π

0

eith(t) dt

then

ˆ
S1
θg(θ) dσ(θ) = 02 ⇐⇒ (∗) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ˆ 2π

0

cos(t)h(t) dt = 0,

ˆ 2π

0

sin(t)h(t) dt = 0.
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Since g is non-negative, so is h, hence (∗) is equivalent to

h = c+ ϕ

where c � 1 and ϕ ∈ Span({cos(m·), sin(m·)}m�2), thanks to the Fourier theory.
�
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