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A NOTE ON CYCLE TIMES IN TREE-LIKE QUEUEING NETWORKS

P. G. HARRISON,* Imperial College, London

Abstract

Cycle-time distribution is shown to take the form of a linear combination of
M Erlang-N density functions in a cyclic queueing network of M servers and
N customers. For paths of m servers in tree-like networks, the components in
the more complex linear combination are convolutions of Erlang-N with at
most m — 1 negative exponentials.

1. Introduction

Some progress has been made recently in the derivation of cycle-time distributions in
networks of queues, but so far only the Laplace-Stieltjes transform (rsT) has been
derived for cyclic networks [2], [7], tree-like networks [5], and overtake-free paths [3],
[6]. Moreover, the expressions derived have not been simplified fully except in very
special cases, e.g. 2-cycles [2]. It is shown here that the LsT of cycle-time distributions in
Markovian cyclic networks of M first-come—first-served (FCFs) exponential servers with
population N, is a linear combination of M terms, and the result is then generalised to
networks which are tree-like, essentially those in which all paths are overtake-free. The
simplicity of the new formulae permits immediate inversion in the cyclic case, giving a
weighted sum of M FErlang-N distributions, corresponding to each server in the
network. The corresponding weights are more complex in the case of tree-like net-
works, and each component distribution is the convolution of the Erlang-N and at most
m — 1 negative exponentials for a path of length m.

2. Definitions and notation

We consider closed tree-like queueing networks of the Gordon-Newell type [4], in
which all servers have negative exponential service-time distributions with constant
rates, and Fcrs queueing discipline. A formal definition of a tree-like network is given in
[5]. Informally, it is one with a single head server at the top of a linear root segment,
which has one or more servers, connected to a number of subtrees, such that there are
no loops nor paths between different branches: i.e. subtrees are disjoint. The leaf
centres of the tree are those which, after completing service, a customer next visits the
head in a closed network, or departs from an open one. Thus cyclic networks are the
special case of no branches, i.e. a root segment only. Cycle time is defined as the time
elapsed between successive arrivals by some customer at the head.

Tree-like networks with FcFs queueing discipline therefore possess the non-
overtaking property [8], and, if paths must all start at the same server, are the most
general class for which it holds.
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Given a closed tree-like network, A, consisting of M servers with head server
numbered 1, and having a population of N customers, define the following notation.

s={n

S"={n|neS;n,;>0}: subset of initial states in which some special
customer has just arrived at the head server.

M
Z nm=N;n=0, 1§i§M}: state space of A.

i=1

w;: constant service rate of server i (1=i,j=M).
p;i: routing probability between servers i, j (1=i,j=M).
e;: visitation rate of server i A=i=M).

M
G(N)= Z H (e/w;)™: normalising constant for S.

neSi=1

3. Main results
Proposition 1. For distinct {x; | 1=i=M},

WEEDR | EED RN R

neSi=1 i

The proof is by induction on M.

If {x;} is generate, say Xy _; = Xu, @ similar result is easily derived, for example via
I’Hopital’s rule.

It can be shown, e.g. [7], that for a cyclic network, A, in stochastic equilbrium, the
cycle-time distribution has Laplace—Stieltjes transform

LO=6N-1 % utru,

Sm=N-1i=1

If the service rates w; (1=i=M) are distinct, we have, by direct application of
Proposition 1, the following result.

Lemma 1.

i=1

L(s)={G(N- 1)}‘1{11:‘[ I-Li} ]-\24: {H (i — uj)}ﬁl(s + )

i=1 i)

Degeneracy may be accommodated by coalescing degenerate servers and analysing
the resulting smaller network with a few minor complications, cf. Proposition 1.

Since {M/(s+A)}" is the LsT of the Erlang-N distribution with parameter A, we have
the following theorem.

Theorem 1. The probability density function of cycle time in the cyclic network
defined above is

GN-0r {1 i vov-1m ¥ T Ga-w) e
i1 i=1 Gij
Example (Chow [2]). For M =2, the result is
{12/ G(N — HHNTY(IN—1) e ™ — e (o~ pa)
= (L) VTN = DIKe ™ — e}/ (ns — ).
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Now let Z denote the set of all paths, i.e. sequences of centres entered in passage
through the network A. Then if z =(z;, 25, - -+, z)€ Z, z;=1, 2z, is a leaf centre, and
the order of Z is the number of leaf centres. Let p(z) be the probability of choosing
path z, equal to the product of the routing probabilities between successive component
centres.

For the tree-like network A, the Lst of cycle-time distribution, conditional on choice
of path z € Z, is easily seen, by generalising the argument for the cyclic case, to be

1z}

L(s|2)={G(N-1)}" Zrl(e/wl'l{uz./(sw,,)

neS’i=1

where |z| is the number of centres in path z, and S’ is the state space of A when its
population is N—1.

Now let G*(n) be the normalising constant corresponding to all servers not in path z,
and population n; a function only of {e, w; | 3j such that z; =i} and n. G* is simply
computed, as a by-product of G, by the algorithm in [1].

Corollary 1. If the centres in path z € Z have distinct visitation: service-rate ratios,
elw 1=i=M)

Lelo=6w-11 T ev-mfllu} 3 eflla) e

i= A=

i#j
where

C. = {Ms Ty if e=¢ (#0 by hypothesis)
ij (e—e)s+Ay;) if eFe
and

N = (we —ep;)/(e,—e)  (#0 by hypothesis).

Proof. We partition the sum over S’ according to the total number of customers,
h+1, at servers in the path z. Assume without loss of generality that z=(1,2,- - -, k).
Then

GIN-DL(s|2)=Y Y {l'l(e/u, } Z H{u./(8+u.)}l-[{e/(8+u.

h=1Yn=N—h li>k —1isk
i>i

|§y

Let x; = ¢/(s+y;) in Proposition 1, so that x; —x; = Cy/{(s +u;)(s + p;)} # 0. The result
then follows by definition of G*.
Corollary 2. The unconditional 1st is L(s)=Y,.zp(z)L(s|z) where p(z)=

k—1
i=1 Pzzo
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