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A NOTE ON CYCLE TIMES IN TREE-LIKE QUEUEING NETWORKS

P. G. HARRISON,* Imperial College, London

Abstract

Cycle- time distribution is shown to take the form of a linear combination of
M Erlang-N density functions in a cyclic queueing network of M servers and
N customers. For paths of m servers in tree-like networks, the components in
the more complex linear combination are convolutions of Erlang-N with at
most m - 1 negative exponentials.

1. Introduction

Some progress has been made recently in the derivation of cycle-time distributions in
networks of queues, but so far only the Laplace-Stieltjes transform (LST) has been
derived for cyclic networks [2], [7], tree-like networks [5], and overtake-free paths [3],
[6]. Moreover, the expressions derived have not been simplified fully except in very
special cases, e.g. 2-cycles [2]. It is shown here that the LST of cycle-time distributions in
Markovian cyclic networks of M first-come-first-served (FCFS) exponential servers with
population N, is a linear combination of M terms, and the result is then generalised to
networks which are tree-like, essentially those in which all paths are overtake-free. The
simplicity of the new formulae permits immediate inversion in the cyclic case, giving a
weighted sum of M Erlang-N distributions, corresponding to each server in the
network. The corresponding weights are more complex in the case of tree-like net­
works, and each component distribution is the convolution of the Erlang-N and at most
m - 1 negative exponentials for a path of length m.

2. Definitions and notation

We consider closed tree-like queueing networks of the Gordon-Newell type [4], in
which all servers have negative exponential service-time distributions with constant
rates, and FCFS queueing discipline. A formal definition of a tree-like network is given in
[5]. Informally, it is one with a single head server at the top of a linear root segment,
which has one or more servers, connected to a number of subtrees, such that there are
no loops nor paths between different branches: i.e. subtrees are disjoint. The leaf
centres of the tree are those which, after completing service, a customer next visits the
head in a closed network, or departs from an open one. Thus cyclic networks are the
special case of no branches, i.e. a root segment only. Cycle time is defined as the time
elapsed between successive arrivals by some customer at the head.

Tree-like networks with FCFS queueing discipline therefore possess the non­
overtaking property [8], and, if paths must all start at the same server, are the most
general class for which it holds.

Received 25 February 1983; revision received 13 December 1983.
Postal address: Department of Computing, Imperial College of Science and Technology, 180

Queen's Gate, London SW7 2BZ, U.K.

216

https://doi.org/10.2307/1427233 Published online by Cambridge University Press

https://doi.org/10.2307/1427233


Letters to the editor 217

Given a closed tree-like network, A, consisting of M servers with head server
numbered 1, and having a population of N customers, define the following notation.

S = {n Ii~ n, =N; n, ~O, l~i~M}: state space of A.

SI = {n In E S; nl > O}: subset of initial states in which some special
customer has just arrived at the head server.

lLi : constant service rate of server i

Pii: routing probability between servers i, j

e.: visitation rate of server i

(1~i,j~M).

(1~i,j~M).

(1~i~M).

M

G(N) = L IT (eJ ILJni: normalising constant for S.
nESi=l

3. Main results

Proposition 1. For distinct {~11~i~M},

!W(x) = n~sf{ x~,= j~ Xr'+M-l/{U (x, -x,)l
The proof is by induction on M.
If {~} is generate, say XM-l = XM, a similar result is easily derived, for example via

I'Hopital's rule.
It can be shown, e.g. [7], that for a cyclic network, A, in stochastic equilbrium, the

cycle-time distribution has Laplace-Stieltjes transform
M

L(s) = {G(N -1)}-1 L IT lLi (s + lLi)-ni-l.
L tli=N-l i=l

If the service rates lLi (1 ~ i ~M) are distinct, we have, by direct application of
Proposition 1, the following result.

Lemma 1.

Degeneracy may be accommodated by coalescing degenerate servers and analysing
the resulting smaller network with a few minor complications, cf. Proposition 1.

Since {A/(S + A)}N is the LST of the Erlang-N distribution with parameter A, we have
the following theorem.

Theorem 1. The probability density function of cycle time in the cyclic network
defined above is

{G(N _1)}-1{f{ I-LirtN-1/(N -I)!} i~ {U (I-Li - I-Ly1e- lL
(

Example (Chow [2]). For M = 2, the result is

{lLlIL2/G (N -1)}{tN- l /(N -1)!}{e-~lt - e-~2t}/(1L2 -ILl)

= (lLlIL2)N{t N- l/(N -1) !}{e-~lt - e -~2t}/(IL~ -IL~).
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Now let Z denote the set of all paths, i.e. sequences of centres entered in passage
through the network A. Then if z = (Zb Z2, ••. , Zk) E Z, Z1 = 1, Zk is a leaf centre, and
the order of Z is the number of leaf centres. Let p(z) be the probability of choosing
path z, equal to the product of the routing probabilities between successive component
centres.

For the tree-like network A, the LST of cycle-time distribution, conditional on choice
of path Z E Z, is easily seen, by generalising the argument for the cyclic case, to be

M [z ]

L(s Iz) = {G(N -1)}-1 L IT (eJ~Jni IT {~z/(s + ~zJ}nZi+1
nES'i=1 j=1

where IZ I is the number of centres in path z, and S' is the state space of A when its
population is N - 1.

Now let G Z (n) be the normalising constant corresponding to all servers not in path z,
and population n; a function only of [e., ~i 13j such that z, = i} and n. G Z is simply
computed, as a by-product of G, by the algorithm in [1].

Corollary 1. If the centres in path Z E Z have distinct visitation: service-rate ratios,
efu; (1 ~ i ~M)

L(s Iz)={G(N-l)}-l Jl GZ(N-h){g fLi1it er{g Gl\s+ fLi)-h

i=Fj

where

( =1= 0 by hypothesis)

and
( =1= 0 by hypothesis).

Proof. We partition the sum over S' according to the total number of customers,
h + 1, at servers in the path z. Assume without loss of generality that Z = (1,2, ... , k).
Then

G(N -l)L(s Iz ) = htl Ln;~-h {n (eJfLit'Ln;~H U{fLJ(S + fLi)} II {eJ(s + fLit'.
i>j i:;;j

Let Xj = e/(s + ~j) in Proposition 1, so that Xj - ~ = Cij/{(s+ ~J(s + ~J} =1= o. The result
then follows by definition of G Z

•

Corollary 2. The unconditional LST is L(s) = LZEZ p(z)L(s Iz) where p(z) =

fI~==-i PZiZi+l·
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