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CONTRIBUTIONS TO THE MATHEMATICAL
THEORY OF EPIDEMICS

V. ANALYSIS OF EXPERIMENTAL EPIDEMICS OF MOUSE-
TYPHOID; A BACTERIAL DISEASE CONFERRING

INCOMPLETE IMMUNITY

BY W. 0. KEEMACK AND A. G. McKENDRICK

From the Laboratory of the Royal College of Physicians, Edinburgh

(With 5 Figures in the Text)

IN a recently published paper (Kermack & McKendrick, 1937) the observa-
tional data relating to epidemics of ectromelia in populations of mice maintained
under experimental conditions (Greenwood et al. 1936) has been analysed in
the light of a mathematical theory of epidemics developed by us during recent
years (Kermack & McKendrick, 1927, 1932, 1933, 1936). It was shown that
the life table giving the chance of mice surviving for various lengths of time
in infected communities is very closely represented by a formula calculated
on the assumption that the various rates—infection rate, recovery rate, death
rate, etc.—are constants. It is, of course, realized that this simplifying
assumption can only be regarded as approximately true. It renders the
application of the general theory practicable, and the result of the investigation
justifies its use, in so far as the theory so simplified does actually conform to
the experimental results.

The ectromelia epidemics, however, are of rather special type in that they
refer to a disease in which the immunity conferred by an attack is almost,
if not quite, complete. The disease is also peculiar in having a very short
incubation period. In the simplified theory with constant coefficients no
allowance at all was made for an incubation period, and it was to be expected
that in the case of a disease with a longer incubation period, some special
method would have to be devised to accommodate it.

It was therefore especially desirable that an attempt should be made to
extend the work already done in relation to the virus disease ectromelia to
the case of a typical bacterial disease, in which immunity was not so complete,
and the incubation period was somewhat longer. It was suggested by Prof.
Greenwood that, in view of the relatively large numbers of mice involved, the
epidemic denoted by the symbol B6 (Greenwood et al. 1930), or by A6 (Green-
wood et al. 1936) would be a suitable experiment to analyse. The epidemic in
question was one caused by Bad. aertrycke, in which observations were con-
tinued for 365 days, six fresh mice being added to the cage each day, a total
of 2226 mice being employed.
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272 Mathematical theory of epidemics

We find from the laboratory graph, kindly placed at our disposal by Prof.
Greenwood, that, at the beginning of the experiment, the cage contained
forty-two mice; after 40 days the number had increased to about 250, and it
remained approximately at this level (the highest value being 310) until the
end of the experiment. A slight complication arises from the fact that towards
the end of the experiment twenty mice were withdrawn at intervals of about
a month. This would doubtless tend to cause the average population to be
somewhat below the steady state level. Unfortunately the life table given for
this epidemic (Greenwood et al. 1936) has been calculated over the whole
experiment. For the purpose of present analysis it would have been better
if it had referred only to the period from the 90th day onward, when an
approximately steady state had evidently been established. However, in the
absence of such data it is necessary to apply the theory to the available tables,
it being remembered that the theory is at best only approximate, and that
the chief interest is to see how far it accounts for the main features of the
observed facts. It is not likely that the relatively short initial period of
population increase would profoundly affect the figures given in the life tables.

It is first of all necessary to develop expressions for the lx and the dx

of the life table in the case of a disease which confers only a partial immunity,
corresponding to the expressions given in the previous paper for a disease
which confers complete immunity. We shall next examine to what extent the
figures for the epidemic B6 conform to these formulae. It will be found that
special allowance has to be made for the somewhat extended incubation
period (reckoned by Greenwood et al. at 9-14 days), but that when this is
taken into account, the theoretical expressions can be fitted to the figures,
the agreement being perhaps as satisfactory as might reasonably be expected.

MATHEMATICAL THEORY OF EPIDEMIC OF DISEASE, WITHOUT COMPLETE

IMMUNITY, BUT WITH CONSTANT INFECTION, DEATH AND RECOVERY RATES

We shall first consider a system similar to that discussed in our previous
paper (1937) except that in this case those who have recovered x are now liable
to become reinfected. The sick y are recruited both from the entirely uninfected
(virgin) mice x and from the recovered x. As before, the specific death and
recovery rates are assumed to be constant and equal to d and I, so that the
number who die or recover in unit time are dy and ly respectively. Also the
numbers of the virgin and of the recovered which become infected in unit
time are assumed to be kxy and hxy respectively. As will be seen later, the
observations in the experiment under review are consistent with the assumption
that the non-specific death rate p is constant; in the ectromelia epidemic,
it will be remembered, this rate was approximately proportional to the cage
age. The situation is in fact that represented as case (4) on p. 110 of a previous
communication (Kermack & McKendrick, 1933) with the modification that
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Reference to Fig. 1 will make clear the various stages through which the

mice can pass. The arrows indicate the possible movements of the animals, and
the symbols attached to them represent the amount of movement per unit time.
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Fig. 1.

We are now in a position to write down the equations which must hold
if a steady state condition is to exist, that is to say if the numbers of virgin,
sick and recovered are to remain constant. We have simply to equate the
number of mice entering a compartment per unit time to the number leaving
it. Thus for the virgin compartment we have

m = kXY+PX,

for the recovered IY = kX Y + pX,

for the sick kXY + kXY=dY + lY+PY,

where capital letters indicate that the values in question refer to the steady
state. It follows from these equations that

TO

y =

x=

kY+p'

kXY + kXY
d+l+p '

IY

•(1)
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274 Mathematical theory of epidemics

It is necessary to determine p, d, I, k, k and Y from the life table. With the
same nomenclature as that used in the previous paper (1937) we have the
following equations, where 77 is the cage age.

dr)
dYn

d-q

Writing

(2)

(3)

a n d

the above equations become

dJl=_
dr)

(4)

The quantities Xv', Yv' and Xv' are obviously those obtained when the life
table is calculated from specific deaths alone, that is, from animals which
have died from the disease.

If we make use of the facts that Xo' = 1, Yo' = 0, and Xo' - 0, we find that the
solution of (4) is given by

Y ,=
v

and

x ,_M

)

(

where & and jS2 are the roots of the quadratic

i82-(
It follows that

(5)

(6)

. - A ) oe2-A"2) r
(It is to be noted that the expression for N ' is symmetrical in &, j82 and Â .)
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Further, the expectation

NJdr,
' _ J 0

ivo
which after considerable reduction gives the simple and symmetrical expression

In the case in which /?i=A2,

-H (9)

where W= *»&(&-*«)—, (10)

( A ^ . (11)

The problem is now to obtain values for /?2, ;82, A2, A2 and Aj which on substitu-
tion into equation (7) give a series of values approximating to those in the
life table as calculated by Greenwood et al. from the specific deaths.

Calculation of p, Eo', W and f32

From the equation JV — Nv' e~f"i it follows that

p-q =\o% N^-log Nrj,

whence p=- (logiV^'-log N-q). (12)

In the life tables as published we are given life tables calculated (1) from
specific deaths and (2) from total deaths. In the following table are given
values of p calculated by equation (12) corresponding to different values of rj.

ri= 100 p = 0-001236 ^=160 p = 0-001147
110 0-001128 170 0-001193
120 0-001089 180 0-001250
130 0-001158 190 0-001184
140 0-001131 200 0-001124
150 0-001105

Although the values vary considerably they seem to be arranged at random
about the mean, which is therefore chosen as the best value of p. Thus
/> = 0-00116.

J Nv'&n
In order to find the value of Eo' = ° A7,—, we may replace the integral

by the sum 5N0'+10 ( # ' „ + # ' „ + . . . ) ;

The difficulty arises that the life table as given in the paper does not extend
beyond TJ = 200. As in the previous paper, we must therefore make allowance
for the continuance of the curve. We observe that if ]8a be the smallest of the
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276 Mathematical theory of epidemics

three values Aa, ft and /?2, then for large values of rj, 2V ' is approximately equal
to We-Pw. We therefore find the values of W and ft which best represent
the curve for values of tj between 100 and 200. By applying the method of
least squares to the curve

for values of 77 = 100, 110, 120, etc. the following constants are found,

W = 0-2293 and ft = 0-0062684.

We may now replace the actual tail of the curve by the theoretical tail as
calculated from We~P27>, and thus we have

E0' = 5N0' + 10(N'iD + N'1D+...+N'm)+r Werto dy, (13)
J205

w
= 5tf0' +10 (2V'1O+N'm +... + N'm)+£ e-"»/»..

P

Substitution of the appropriate values gives

Eo' = 46-17360 + 10-13847

= 56-31207.

As there are four unknown parameters, ft, Ax, A2 and \ , and three determined
values, ft, Eo' and W, one of the unknown parameters (e.g. ft) may be selected
arbitrarily. It must, however, be chosen so that the fit of the curve is the best
possible. On trying a few values for &, it is soon found that all the calculated
curves deviate markedly from the observed, for they fall too rapidly initially,
and compensate for this by being too high later on.

It is not difficult to show that the minimum rate of initial fall is obtained
when j3l=Xi. When this condition is satisfied the values of all the constants
are fixed by the three equations already obtained (8, 10, 11), and we find that
ft = ̂ 2 = 0-079. Substituting this in equation (9) we obtain

Nv' = 0-2293 e-°-0062684') + 0-7707 (l + O-lOl&rj)

On evaluating Nv' for t] = 10, 20, 30, etc., the fit is found to be unsatisfactory.
The trouble arises evidently as a consequence of the existence of a latent
period.

Modification necessitated by latent period

In order to take a latent period into account, the most straightforward
way would be to assume that d^ had the value zero from the time of infection
until the ath day of the disease, and that it thereafter assumed a constant
value d. The mathematics which results however from this assumption is
complicated and intractable.

The following scheme results in an easier method of treatment and brings
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the case of the latent period into simple relation with that already treated.
We assume that animals when they are infected enter a category yt from which
they may either recover or become moribund. The chances of recovery and
of entering the moribund condition are supposed to be constant and to be
I and d respectively. The moribund animals belong to a category y2, and the
assumption is made that they remain for a definite period of time a in this
group, if they do not die previously from natural causes. It will be seen that
this system gives a latent period in the sense that no animal dies of the specific
disease in less than a days after it has been infected. The animals can recover
only during the earlier period of their illness, and they have no chance of
overcoming the infection after they have entered the moribund category.
In the case of mouse aertrycka the existence of a moribund period of this
type is not perhaps entirely at variance with the facts of experience, though
of course the system proposed is admittedly a somewhat artificial one. All
the animals which are ill, both those in category y1 and in category y2, are
regarded as being infective.

We shall now consider the modification which the assumption of this
moribund group of animals necessitates in our theory. It is easy to see that
the effect on the life table for specific deaths of the existence of this category
of moribund animals is merely to post date each death by a period a, that is
to say, the whole curve is displaced to the right by this amount. We have
therefore to fit the theoretical curve to the actual curve obtained by taking
the origin at the point t}—a, at which point we assume that JVO' = 1, as the
theory implies that Nv' remains at this value between r\ = 0 and rj — a. The
modification which must be introduced into the steady state conditions,
results from the fact that the number of infecting animals is not Yx but
Y,+ Y2.

We readily find _ _
m = {P + k(Y1+Y2)}X,

(kX + kX) (Y1+Y2) = (d + l+P) Ylt\ (14)
lY1-kX(Y1+Y2)=PX. J

Now the number who enter the moribund category each day is d Yx. If there
were no deaths from non-specific causes in this category, then each animal
remains in it for a days, and the number on any day would be adY^. Hence

It is not difficult to show that the effect of non-specific deaths is to reduce the
average duration of stay in the moribund category from a to a, where

* = - ^ ~ , (15)

so that Y2 = MYl. (16)

It is easy to see that as p -*• 0, a -> a.
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278 Mathematical theory of epidemics

Eeturning to the life-table, it is not difficult to see that although the process
is the same as in the previous case, apart from the change of origin, the
interpretations of \ and ^ are slightly different. As the mice in both categories
are infective we have

and

(17)

(18)

where a is known and d=\cl.
Equations 14, 16, 17 and 18, give six equations from which the values of

X, Y1, Y2 and X, k and Jc may be found. We thus find,

X=

and N =

(Pl+P)
(20)

Vallies of constants and fitting of Life Table
(Greenwood et al. 1930, Table F B )

In fitting the curve to the life table it is found by trial and error that the
best results are given by taking a = 13.

From equations (8) and (10) we obtain

l l + E * G

where

and

G=W (l-^j, (22)

Pi Pa
(23)

Now, as we are considering the curve as commencing at the point TJ = 13,
we have to replace Eo' by E'^. According to the model which we have in
mind we must assume that no deaths take place before the 13th day. Thus
in the calculation of E'n it must be assumed that iV'13 has the value unity.
For convenience we may group the deaths which occur after ij = 15 in 10-day
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periods centred round the 20th, 30th, 40th, ... days. We have then approxi-
mately

E'13 = 2N'a

= 2+E0'-5N0'-l0N\0

(since by equation (13), Eo' = 5N0' + 10N'10 + l0N'io+...)

= 2+E0'-5-10N'10

= E0'-l0N'w-3

= 43-921.

At the same time W must be replaced by W13=We~lsP* = 0-2106. Thus
^ = 0-007736.Also i-k+£>> (24)

whence \ = 0-3289.
By trial and error it is found that 0-1 is a reasonable value for j ^ . Hence

by equation (6)

= 0-098533,

and c1 = r1f2 = 0-8225,

also c2 = 1—^ = 0-1775.

Also Z=cA = 0-01749,

and d = c2Xl = 0-08104.

These values give the equation

N' +13 = 0-2106 e-°-0062684') +1-147 e~°-^ - 0-3526 e-°-
32891?.

(25)
(The 13 is inserted because of the change of origin to 77 = 13; thus putting
77 = 7 in the above gives N'%,.)

Table I shows the calculated values of Nv' (or lx)—i.e. for specific deaths—
as well as the figures given in the record of the experiment (Greenwood et al.
1930). Table II shows the corresponding values for "all deaths", calculated
by the equation Nv = Nv' e~P7i. Both tables give also the dx's, i.e. the number
of deaths in each period. A slight difficulty arises in relation to the deaths
which occurred earlier than the 20th day. In the theoretical model, all these
deaths necessarily take place between the 13th and the 20th day, whilst in
the actual experiment there is no sharp onset of deaths at the 13th day, but
the deaths are scattered throughout the whole of the initial period. It seems
reasonable to compare the deaths observed up to the 20th day with the
theoretical number up to the same date, and in Figs. 3 and 5 these values of
dx have been somewhat arbitrarily centred at the 15th day. A change of
position would not materially affect the comparison.
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Table I. B% experiment

Specific deaths (Greenwood et al. 1930, Table V B )

K. d.
Cage age
in days

20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

Calculated

7358
3976
2549
1954
1673
1511
1396
1304
1220
1147
1077
1011
950
892
838
787
739
694
652

Observed

7217
3778
2403
1955
1763
1615
1457
1372
1261
1170
1086
1016
980
929
842
801
764
699
670

Calculated

2642
3382
1427
595
281
162
115
92
84
73
70
66
61
58
54
51
48
45
42

Observed

2783
3439
1375
448
192
148
158
85
111
91
84
70
36
51
87
41
36
66
29

Table II. B6 experiment

All deaths (Greenwood et al. 1930, Table V)

I,

in days

20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

Calculated

7189
3837
2433
1844
1561
1393
1272
1175
1086
1010
937
869
808
750
696
646
600
557
517

Observed

6930
3544
2224
1805
1618
1460
1301
1226
1115
1034
953
873
837
787
702
654
611
559
535

Calculated

2811
3352
1404
589
283
168
121
97
89
76
73
68
61
58
54
50
46
43
40

Observed

3070
3386
1320
419
187
158
159
75
111
81
81
80
36
50
75
48
43
52
24

for convenience the dx value corresponding to the interval 0 to 20 is inserted opposite the

cage age 20, that for the interval 20 to 30, opposite the cage age 30, and so on.
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In order to compare the calculated with the observed, both sets are
multiplied by the total number of deaths, namely 1766 and 2226 for "specific"
and "all deaths" respectively, and the ^2 test has been applied to the numbers
so obtained. For " specific deaths " (Table I), x2 = 28-9, n = 19 - 6 = 13, whence
P = 0-009. For "total deaths" (Table II) x2 = 38-2, w = 13, P = 0-0002. This
shows that whilst the specific deaths show deviations such as might possibly
occur by chance (1 in 100), the total deaths appear to show very significant
deviations from the expected. The somewhat irregular distribution of the
observed numbers of deaths suggests that the effect of disturbing factors
is not entirely negligible, and that part of the discrepancy at least is due to
such cause. It must be remembered that the theory is definitely only an
approximate one, and that no claim is made that all deviations observed are
due to sampling error alone.

The constants already obtained, and the values deduced by equations
(19), (17), (18) and (3) are given in the first column of the accompanying table.

1st interpretation 2nd interpretation

K

X
Yl
X
Y*
N
I
k
I
d

009853
0-8225
0-1775

1818
70-77

13906
7400

30201
0002271
000005342
001749
0-08104

0-3274
0-8139
0-1861

59-31
21-51

147-39
73-99

302-20
0-001047
0-00008099
0-06095
0-2666

Second interpretation

As the expression for Nv' (7) is symmetrical in ft, ft and A2 it follows that
we may interchange the numerical values of these three constants without
altering the values of Nv'. The equation for Eo' (8) shows that A2 will also remain
unchanged, and it then follows from the quadratic (6), that, as ft+ ft=A1+A2,
Ax will remain unchanged when ft and ft are interchanged, A2 remaining fixed.
This means that of the six possible permutations of ft, ft and A2 there are

only three sets which are distinct from each other. Furthermore as ^ = y >
A 2 fc

and this fraction must be greater than unity because recovered mice are less
easily infected than virgin mice, it follows that \ > \ . This reduces the number
of possible sets to two, namely ft = 0-1, ft = 0-0062684 and Â  = 0-3289 (as found
above) and ft = 0-0062684, ft = 0-3289 and A\, = 0-l.

The second allocation of values is given in the second column of the above
table.

By the symmetry of the equations (19) (no. 4) and (20), Y2 and N remain
unchanged. Evidently it is impossible to distinguish between the two inter-
pretations, from observations on the total numbers of mice in the steady state.

19-2
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In order to effect an identification, it would be necessary to have special
information about the relative numbers of infected and uninfected, or, for
example, some estimate of the average period of time which elapsed between
entry into the cage and the first signs of infection. However, we have not
been able from the published papers to obtain any information on this point,
which is sufficiently definite and precise to enable us to draw conclusions as
to which interpretation is the more likely.

It is perhaps of some interest to find that in this case of a disease with
incomplete immunity as well as in the simpler case previously treated
(Kermack & McKendrick, 1937) of a disease with complete immunity, it is
possible to give two distinct interpretations, both completely consistent with
the facts as revealed by the cage-age life table. According to the first inter-
pretation the disease is relatively highly infectious to the new entrants into
the cage, but the course of the malady in the animals, once they have become
infected, is slower. The ratio of the chances of death and recovery (djl) is approxi-
mately the same for both cases, but if recovery takes place the animals according
to the first interpretation will have attained a higher degree of immunity.
In the first case the population in the steady state condition contains a relatively
smaller number of virgins, but a correspondingly larger number of diseased,
the number of recovered being nearly equal in the two cases.

Effect of variation of rate of immigration

It is of interest to work out the effect on the course of the epidemic of
variation in the rate at which animals are introduced into the cage, and to
employ the numerical values obtained from experiment Bt to calculate the
course of experiments Bz and B1 in which the daily additions to the cage were
three mice and one mouse respectively. If the cage area were the same in each
experiment, all that would be necessary would be to substitute the already
calculated values of k, k, Xlt cl, etc., in the quadratic for Y1; obtained from
equations (14), i.e. in

kY(l + dd)+P l + dd' ^ ;
=

kY1(l + dd)+P kY1(l + dd)+P l + dd'
and thence find Yt, and from it X, X, Y2, etc.

However, the situation is rather more complicated because, as stated on
p. 11 of the memoir (Greenwood et al. 1936), cage units were added as the
population increased, so as to provide one cage for every group of twenty-five
mice or fraction thereof. As the total populations in each experiment under-
went fluctuations it would appear that the number of cage units altered slightly
even during the approximately steady state period. It seems justifiable to
assume that the numbers of cage units in the different experiments were in
the ratio of the average total populations during the course of each experiment.
As these averages were in the ratios 237-2 : 103-1 : 32-7 in experiments B6, B3

and B1 respectively, it is assumed that the cage areas on the average were in
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the ratios 7-25 : 3-15 : 1. Now in the mathematical theory the constants k and k
depend upon the unit of area chosen in measuring X, X, Yj and Y2, which,
it will be remembered, refer to numbers per unit area. If the total area available
is altered, then, if we take X, X, Yx and Y2 as the actual numbers, it is necessary
to make corresponding alterations in the constants k and k. If the area is
reduced in the ratio of a to 1, then the net effect is to increase k and k to oJc
and txk respectively. Thus for m = l, Y1 is given as the solution of the quadratic
(26) where d and I have their previous values, and k and k have their former
values multiplied by 7-25.

If we consider case 1 this gives

Yj2 -10-3706 Yx -17-7703 = 0

whence Y1 = ll-87, X = 2-50, X = 19-57 and Y2 = 12-41.
The fact that the expression for N is symmetrical in /3X, /?2, and A2 suggests

at first sight that the effect of alteration of m, which occurs explicitly as
a factor of N, will be the same in both interpretations. It is to be remembered
however that &, /32, and A2 are different functions of the fundamental constants
k, k, I, d, p and m, so that they are altered in different ways when m is changed.

By employing the alternative interpretation of the constants (case 2) we
obtain another set of values. Two analogous sets of values are likewise obtained
for m = 3. These values are collected in Table III.

X
Y,
X
Yt
N
k
k
d
I

TO=I

Case 1
18-2
70-8

1391
740

302-1
0002271
000005342
008104
0-01749

3

Case 2
59-3
21-5

147-4
74-0

302-2
0001047
000008099
0-2666
0-06095

Table III

A

Case 1
8-0

35-2
61-5
36-8

141-5
0005226
0-0001229
008104
0-01749

Case 2
25-7
10-8
65-2
37-2

138-9
0-002409
00001864
0-2666
0-06095

TO

Case 1
2-5

11-9
19-6
12-4
46-4

001646
00003873
008104
001749

1

Case 2
8-2
3-6

20-8
12-4
45-0

0007591
00005873
0-2666
006095

It is evident that as far as the total steady state populations go the two
interpretations lead to almost exactly the same values. The differences are
too small to allow of conclusions being drawn as to which hypothesis is the
correct one. According to the above theory the steady state levels for the
three experiments 56 , Bs and Bx should have been 302-2, 141-3 and 46-4 in
the case of the first interpretation, and 302-2, 138-8 and 45-0 in the case of
the second. Unfortunately the values of the observed steady state levels are
not available, so that direct comparison of theory and experiment is impossible.1

However, the average numbers of mice present throughout the experiments
are available. These numbers are of course lower than the corresponding

1 Even in the case of B6, the daily records of which were at our disposal, the ascertainment of
the steady state level was complicated by the fact that batches of mice were withdrawn at intervals
from the cages.
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steady state levels, but it might be anticipated that they are approximately
proportional to the latter. They are in fact in the ratios 7-25 : 3-15 : 1, whilst
the steady state levels are in the ratios 6-71 : 3-04 : 1 for the first interpretation,
and 6-71 : 3-08 : 1 according to the second. It must be remembered of course
that the observed ratios of the average numbers of mice present throughout
the experiments were employed in calculating the steady state levels, a fact
which perhaps renders the comparison less convincing, but the result does
at least show that the theory does not lead to conclusions inconsistent with
the facts. A comparison of the observed and calculated expectations of life
in the three experiments gives results in harmony with those obtained from
the steady state levels.

DISCUSSION

As remarked in our previous paper, attempts such as the present to inter-
pret the course of experimental epidemics in terms of constant infectivity,
death, and recovery rates must be looked on merely as a first approximation
to the truth. Any agreement between theory and experiment which may be
achieved only shows that of the vast number of factors which influence such
an epidemic, the relatively important ones have been singled out, and their
effect adequately allowed for. This does not necessarily mean that an accurate
mathematical description of these effects has been presented. Too great an
insistence on accuracy in the fundamental assumptions may result in a mathe-
matical model which proves of little practical use because of the technical
difficulties involved. The mathematical model we have postulated in the fore-
going analysis is, then, to be looked upon as a first approximation, capable
of refinements when applied to more perfect data, but adequate for the
interpretation of the principal characteristics of the experimental epidemics
here examined, and capable perhaps of extension to more complex cases in
which the experimental method becomes difficult or impossible.

The chief result which emerges from the above analysis of the mouse
typhoid epidemics is that the simple constant rate theory does not, as in the
case of the ectromelia experiment, provide an adequate interpretation of the
life tables. It is necessary to introduce a modification to allow for the existence
of a latent period. The modification proposed is perhaps somewhat artificial,
but it has the advantage of permitting the problem to be treated in a com-
paratively simple manner which does not involve undue mathematical compli-
cation. This simple theoretical model, as we have seen, permits the cage-age
life table to be interpreted quantitatively in terms of five constants, k, k, d, I
and p.

Some of the characteristics of this life table remarked upon by Greenwood
et al. in their paper (1930) follow at once from the form of the curve. They
point out, for example, that qx for specific deaths rises to a maximum, and then

falls to a constant level. In our notation -^~, v is equivalent to qx, and it is
•"ij drj
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not difficult to show that after its initial maximum this function falls and
dN '

approaches a constant value /32 = 0-0062684 in B6. On the other hand, 5_
d )

also reaches a maximum and then falls approximately following an exponential
curve for values of 77 above 100, as remarked upon by Greenwood et al. with
regard to their equivalent function dx.

Another semi-quantitative point of agreement between theory and experi-
ment is that in both the steady state level is approximately proportional to
the immigration rate, as shown by the comparison of experiments B6, B3

and B1, whilst the expectation of life at entry in terms of cage age remains
approximately constant even though the immigration rate is varied. However,
as explained above, the limitations of the experimental data preclude exact
comparisons being made between theory and experiment in regard to these
values.

CONCLUSIONS

1. An analysis has been made of the progress of an epidemic of mouse
typhoid (previously described by Greenwood et al.) in a relatively large herd
of mice. This epidemic differs from that of ectromelia analysed in our previous
paper, in that it is caused by a bacterium (Bact. aertrycke), and not by a virus.
In this case the immunity resulting from an attack of the disease is only partial,
and the incubation period is somewhat longer, being about 13 days as com-
pared with 3 or 4 in the case of ectromelia.

2. Although the existence of partial instead of complete immunity leads
to more complicated mathematical expressions involving an extra constant,
it does not introduce any essential difficulty. It is found however that the
longer incubation period requires special treatment.

3. The life tables which have been calculated by Greenwood et al. for the
epidemic B6, have been fitted on the basis of the present theory. Reasonably
good agreement between theoretical and observed values is obtained, provided
that the theory is suitably modified so as to accommodate the incubation
period. As a result of the symmetry of the equations involved, two alternative
interpretations of the parameters, in terms of the constants which characterize
the disease, are admissible. From the available data we have not been able
to determine which of the two interpretations is the correct one.

4. When the immigration rate is three mice or one mouse per day, the
steady state levels, according to the published data, appear to be approximately
one-half, or one-sixth respectively of that found in the case where the immigra-
tion rate is six mice per day. This result is in agreement with the present theory.

5. The above results indicate that the present theory using constant
coefficients is adequate to explain the main features of the mouse typhoid
epidemics, provided that allowance be made for the somewhat prolonged
incubation period.
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In this and in previous work, we are much indebted to Prof. M. Greenwood
and to Dr Irwin for helpful criticism and suggestions. Prof. Greenwood has
also supplied us with certain facts relating to the experimental data, which
were not available in the published papers.
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