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Abstract 

The sulfur microbial diet (SMD), a dietary pattern associated with 43 sulfur-metabolizing bacteria, 

may influence gut microbiota composition and contribute to aging process through gut-produced 

hydrogen sulfide (H2S). We aimed to explore the association between SMD and biological age 

acceleration, using the cross-sectional study included 71,579 individuals from the UK Biobank. 

The SMD score was calculated by multiplying β-coefficients by corresponding serving sizes and 

summing them, based on dietary data collected using the Oxford WebQ, a 24-hour dietary 

assessment tool. Biological age (BA) was assessed using Klemerae-Doubal (KDM) and 

PhenoAge methods. The difference between BA and chronological age refers to the age 

acceleration (AgeAccel), termed “KDMAccel” and “PhenoAgeAccel”. Generalized linear 

regression was performed. Mediation analyses were used to investigate underlying mediators 

including body mass index (BMI) and serum aspartate aminotransferase/alanine aminotransferase 

(AST/ALT) ratio. Following adjustment for multiple variables, a positive association was 

observed between consuming a dietary pattern with a higher SMD score and both KDMAccel 

(βQ4vsQ1 = 0.35, 95%CI = 0.27 to 0.44, P<0.001) and PhenoAgeAccel (βQ4vsQ1 = 0.32, 95%CI = 

0.23 to 0.41, P<0.001). Each 1-standard deviation increase in SMD score was positively 

associated with the acceleration of biological age by 7.90% for KDMAccel (P<0.001) and 7.80% 

for PhenoAgeAccel (P<0.001). BMI and AST/ALT mediated the association. The stratified 

analysis revealed stronger accelerated aging impacts in males and smokers. Our study indicated a 

higher SMD score is associated with elevated markers of biological aging, supporting the 

potential utility of gut microbiota-targeted dietary interventions in attenuating the aging process. 

 

Keywords: Sulfur microbial diet; biological age; Klemerae Doubal method; PhenoAge. 

Abbreviation list: 

SMD, the sulfur microbial diet; H2S, hydrogen sulfide; BA, biological age; KDM, Klemerae-Doubal 

method; AgeAccel, age acceleration; BMI, body mass index; AST, aspartate aminotransferase; ALT, 

alanine aminotransferase; CA, chronological age; FEV1, forced expiratory volume in one second; 

SBP, systolic blood pressure; TDI, townsend deprivation index; CHD, coronary heart disease; ISCED, 

International Standard Classification of Education; SE, standard error; RCS, restricted cubic spline; 

CI, confidence interval. 
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1. Introduction 

Aging represents an irreversible and intricate process, a primary risk factor for many 

significant human diseases
(1)

. As the population ages, health care costs increase
(2)

. However, 

individuals with the same chronological age (CA) exhibit variations in the rate of aging and 

various susceptibilities to many age-related diseases, indicating that CA is not a perfect 

measurement
(3)

. Therefore, there is a need for a better understanding of the aging process and 

identification of the determinants of biological aging. 

The dysbiosis of the microbiota related to aging contributes to the reshaping of immune 

responses during the aging process
(4)

. It is accompanied by numerous age-related diseases 

both within and outside the gastrointestinal tract. The modifiable regulation of the gut 

microbiota suggests it is a potential target for interventions in aging
(4)

. Meanwhile, nutrition 

is considered an effective regulatory factor influencing health and aging, and a new discipline 

has been established: “Nutrigerontology”, which combines insights from biogerontology, 

nutrition, and medicine to understand the impact of diet and nutrition on the aging process 

and age-related diseases
(5)

. Diet is also a key modifiable factor influencing gut microbiota 

composition
(6)

.  

Researchers utilized dietary data from the Nurses' Health Study II (NHSII) to construct a 

gut microbiota-derived dietary pattern: the sulfur microbial dietary pattern (SMD), which is 

characterized by a low intake of fruits, vegetables, legumes, whole grains, and nuts, along 

with a high intake of red meat, processed meat, high-fat dairy products, sugary beverages, 

and coffee. Among them, processed meat, liquor, and low-calorie drinks were found to be 

positively associated with the enrichment of sulfur-metabolizing microbes, while the 

remaining five components showed an inverse association
(7)

. Sulfur-metabolizing microbiota 

can convert dietary sulfur into genetically toxic hydrogen sulfide (H2S), which can cause 

DNA damage
(8)

 and promote alterations in immune cells associated with inflammation and 

cancer
(9)

. The association between SMD and various diseases such as non-alcoholic fatty 

liver disease
(10)

 and obesity
(11)

 has been studied in the UK Biobank. However, little is known 

about its association with aging. 
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“Biological age (BA)”
(12)

 is crucial in understanding aging, providing a comprehensive 

evaluation of aging across multiple bodily systems
(13)

, and measuring the accumulation of 

damage over time in individuals
(14)

. Markers of BA exhibit significant predictive power for 

mortality, age-related ailments, and declines in bodily function
(15)

. Various BA methodologies 

such as the Klemera-Doubal (KDM) and the PhenoAge methods were devised to delineate 

the heterogeneity of aging based on respiratory, metabolic, renal, immune, and cardiovascular 

functions
(16)

. Numerous studies on BA have emerged, including its association with dietary 

inflammatory index 
(17)

, macronutrients
(18)

, and dietary oxidative balance
(19)

. However, no 

research has yet explored the association between SMD and BA. 

The liver plays an important role in the aging process through metabolism
(20)

. Abnormal 

levels of two common enzymes in the liver, aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT) may induce hepatocellular damage and consequently lead to DNA 

damage, which is considered one of the important factors in cellular aging
(21)

. Additionally, 

evidence suggests a positive association between obesity-related indicators-BMI and SMD
(11)

, 

with obesity also being regarded as a disease that accelerates biological aging
(22)

. Therefore, 

BMI and AST/ALT were considered as possible mediators of the association between SMD 

and biological age in our study. 

To fill this gap, we performed a cross-sectional investigation in a well-established cohort 

of 71,579 adults in the United Kingdom to examine the association of SMD with two forms 

of AgeAccel, including KDMAccel and PhenoAgeAccel. 

2. Methods and materials 

2.1 Study population 

Data from 500K individuals in the UK Biobank were available in our dataset. The UK 

Biobank, a large-scale biomedical cohort study, collected comprehensive health information 

from nearly 0.5 million participants aged 37 to 73 years across the United Kingdom
(23)

. From 

2006 to 2010, participants completed a face-to-face interview with professionals, a touch 

screen questionnaire, and a whole-body physical examination and donated biological samples, 

including blood, urine, and saliva at the nearest one of 22 assessment centers. All participants 

provided written informed consent. Participants who met certain criteria were excluded from 
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this study. These criteria included missing dietary information (n=293,373), missing BA 

information (n=65,784), non-white and genetically related participants (n=31,615), and 

missing values of covariates (n=40,188). After exclusion, the final analyses included 71,579 

individuals (Supplemental Figure S1). The UK Biobank study had been approved by the 

North West Multi-Centre Research Ethics Committee (reference number 06/MRE09/65).  

2.2 Assessment of the Sulfur Microbial Diet score 

The Oxford WebQ utilized in the UK Biobank is an online 24-hour diet recall tool comprising 

questions on the consumption of nearly 200 foods and drinks. Its validity has been 

established through biomarker validation studies conducted elsewhere
(24)

. Participants were 

asked to complete the questionnaire on five separate occasions between 2009 and 2012, 

considering the seasonal variation in diet. Subsequently, an average measure was calculated 

for each participant across all five occasions to mitigate measurement error bias. These 

occasions included the baseline assessment (April 2009–September 2010, 70,684 

participants), online cycle 1 (February 2011–April 2011, 100,574 participants), online cycle 2 

(June 2011–September 2011, 83,239 participants), online cycle 3 (October 2011–December 

2011, 103,761 participants), and online cycle 4 (April 2012–June 2012, 100,219 participants). 

In our study, 209,166 participants with complete dietary information were included after 

excluding those with missing data. For each participant, the average intake of each food item 

was calculated based on up to five dietary recall surveys. 

Previous studies have specifically described the calculation methodology of SMD 

score
(7)

. In brief, prior investigations identified 43 sulfur-metabolizing bacterial species 

carrying genes coding for at least two well-known sulfur-metabolizing enzymes. A reduced 

rank regression was performed to link food intake with the log-transformed abundance of 

these microbes in stool. The analysis identified eight food groups significantly associated 

with sulfur-metabolizing bacteria. The finding was further validated in subsequent research 

and was found to explain 2% of the variation in Bray‒Curtis distances
(25; 26)

. Specifically, 

certain food groups such as processed meats, liquor, and low-calorie drinks were positively 

associated with these bacteria, while others like beer, fruit juice, legumes, vegetables, and 

sweets/desserts were negatively associated. Based on the intake of these foods, the SMD 
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score was calculated by summing the product of beta-coefficients and corresponding serving 

sizes (Supplement Table S1). A higher SMD score reflects closer adherence to this dietary 

pattern, and is considered ‘unhealthy’. 

2.3 Assessment of the Biological Age 

In this study, BA values were calculated using KDM and PhenoAge methods based on 

participants from the UK Biobank. The two methods had different purposes. KDM was 

calculated by performing a series of regressions on the biomarkers of CA, to quantify the 

decline in system integrity
(27)

. PhenoAge was calculated based on biomarkers and mortality 

prediction scores and CA and is used to predict the risk of death
(27)

. 

In brief, KDM was calculated from forced expiratory volume in one second (FEV1), 

systolic blood pressure, and seven blood chemistry parameters (albumin, alkaline 

phosphatase, blood urea nitrogen, creatinine, C-reactive protein, glycated hemoglobin, and 

total cholesterol); PhenoAge was calculated based on nine blood chemistries (albumin, 

alkaline phosphatase, creatinine, C-reactive protein, glucose, mean cell volume, red cell 

distribution width, white blood cell count, and lymphocyte proportion), four of which were 

the same as KDM. The BA values were calculated using the R package “BioAge” for KDM 

and PhenoAge. The residual of the regression of BA on chronological age is used to reflect 

the age acceleration (AgeAccel), referred to as “KDMAccel” and “PhenoAgeAccel”
(28)

. 

AgeAccel serves as the target outcome in our analysis. Participants with AgeAccel values 

greater than 0 were considered to have accelerated biological aging
(19)

. And based on whether 

AgeAccel was greater than 0, participants were classified into a binary variable, termed 

biological age indicators. More information was shown in the Supplement information. 

2.4 Assessment of covariates 

To control for potential confounding variables, we included covariates such as age, sex, body 

mass index (BMI), townsend deprivation index (TDI), education, income, smoke frequency 

per day, alcohol frequency per week, hypertension, diabetes, and coronary heart disease 

(CHD), which may be associated with aging, as well as dietary factors. At the baseline 

assessment center visit, a trained nurse measured the participants' height and weight, and 

BMI was calculated by dividing weight in kilograms by the square of height in meters. TDI 
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was an indicator of material deprivation that was calculated based on non-home ownership, 

non-car ownership, unemployment, and household overcrowding. A higher TDI score 

indicates higher levels of deprivation. Smoke frequency was defined as the maximum number 

of reported past or current cigarettes (or pipes/cigars) consumed per day. Alcohol frequency 

per week was determined as the average amount of various types of alcohol consumed per 

week. Education was defined by the UK Biobank and converted to the International Standard 

Classification of Education (ISCED). Income was categorized into five groups (≤ £18,000, 

18,000-30,999, 31,000-51,999, 52,000-100,000, and ≥ 100,000). Self-reported information 

and medical records were used to determine the history of hypertension, CHD, and diabetes. 

Observations with missing values for any covariate were excluded from this study. 

Supplement information provides detailed measurements of covariates. 

2.5 Statistical analyses 

In the present analysis, the SMD score was categorized into quartiles, and the lowest quartile 

was considered as the reference category. Values of baseline characteristics across the 

quartiles of the SMD score were indicated as the means ± SD for continuous variables or 

percentages (%) for categorical variables, respectively. We initially used generalized linear 

regression models to investigate the associations between the SMD score quartiles and two 

forms of AgeAccel and estimate β-coefficient and standard error (SE), where AgeAccel 

served as the outcome variable. The regression analysis was conducted by three models: 

Model 1 adjusted for age and sex; Model 2 included additional adjustments for BMI, TDI, 

education, income, smoke frequency per day, and alcohol frequency per week; Model 3 

further incorporated hypertension, diabetes, and CHD. Multiple stratified analyses were 

applied to evaluate the possible modifying effects of the following factors: age (≥ 60 / < 60 

years), sex (male/female), smoke status (yes/no), and BMI (≤ 24.9 / 24.9 to 29.9 / ≥ 30 

kg/m
2
). Interaction analysis between the stratifying variables and SMD score was tested. The 

dose-response curves between the SMD score with AgeAccel and biological age indicators 

were analyzed by restricted cubic spline (RCS) regression. Mediation effect analyses were 

used to assess associations of SMD score with AgeAccel mediated by BMI and serum 

AST/ALT ratio.  
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All statistical analyses were completed through the software R 4.2.1, and statistical 

significance was determined by a two-sided P-value threshold of less than 0.05. 

3. Results 

3.1 Baseline characteristics 

The descriptive statistics of participants are presented in Table 1. Among the 71,579 

participants from the UK Biobank, the mean age was 56.04 ± 7.81 years, with 51.32% being 

women at baseline. Participants with a higher SMD score tended to be younger, have a higher 

household income and BMI, a higher frequency of smoke and alcohol consumption, a higher 

proportion of major diseases, and a higher degree of AgeAccel compared to those with lower 

adherence. 

3.2 Associations between SMD score quartiles and AgeAccel 

As shown in Figure 1 and Table 2, adherence to SMD was significantly associated with the 

two forms of AgeAccel (P-trend < 0.05). After adjusting for all covariates, compared with the 

first quartile of SMD score, β (95%CI) of KDMAccel was 0.16 (0.07, 0.24; P<0.001) for the 

second quartile, 0.21 (0.13, 0.29; P<0.001) for the third quartile, and 0.35 (0.27, 0.44; 

P<0.001) for the highest quartile. Meanwhile, β (95%CI) of PhenoAgeAccel was 0.07 (-0.01, 

0.16; P = 0.100) for the second quartile, 0.18 (0.09, 0.27; P<0.001) for the third quartile, and 

0.32 (0.23, 0.41; P<0.001) for the highest quartile.  

3.3 Association of SMD score quartiles with AgeAccel stratified by baseline 

characteristics 

Similar associations were detected while conducting extensive stratified analyses based on 

the variables of age, sex, smoke status, and BMI levels. Notably, in Model 3, compared to 

females (KDMAccel: βQ4vsQ1 = 0.21, 95%CI: 0.13-0.30, P<0.001; PhenoAgeAccel: βQ4vsQ1 = 

0.31, 95%CI: 0.19-0.44, P<0.001) and non-smokers (KDMAccel: βQ4vsQ1 = 0.31, 95%CI: 

0.21-0.41, P<0.001; PhenoAgeAccel: βQ4vsQ1 = 0.19, 95%CI: 0.08-0.30, P<0.001), the 

association between SMD quartiles and AgeAccel exhibited greater strength among males 

(KDMAccel: βQ4vsQ1 =0.51, 95%CI: 0.37-0.65, P<0.001; PhenoAgeAccel: βQ4vsQ1 = 0.37, 

95%CI: 0.25-0.49, P<0.001) and smokers (KDMAccel: βQ4vsQ1 = 0.46, 95%CI: 0.32-0.61, 

P<0.001; PhenoAgeAccel: βQ4vsQ1 = 0.58, 95%CI: 0.42-0.73, P<0.001). More detailed 
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information is shown in Figure 1. 

3.4 Best-fitting dose-response curves of the associations of SMD score with AgeAccel 

and biological age indicators 

For SMD score, the linearities and dose-response associations with AgeAccel and age 

indicators were flexibly modeled by conducting RCS regression models (Figure 2). After 

multivariable adjustment, monotonic and linear associations were observed between SMD 

and KDMAccel (Poverall < 0.001, Pnonlinearity = 0.821), SMD and KDM biological age indicator 

(Poverall = 0.001, Pnonlinearity = 0.951), SMD and PhenoAgeAccel (Poverall < 0.001, Pnonlinearity = 

0.265), and SMD and PhenoAge biological age indicator (Poverall =0.021, Pnonlinearity = 0.550). 

3.5 Mediation effects of BMI and AST/ALT ratio on the associations of SMD score with 

AgeAccel 

Mediation statistical models were performed to ascertain whether BMI and serum AST/ALT 

ratio had mediation effects on the associations. After adjustment for all the covariables in the 

linear regression model, the total effect of SMD score on KDMAccel and PhenoAgeAccel 

were 0.079 (P = 9.10×10
-21

) and 0.078 (P = 1.05×10
-17

) (Table 2). For the SMD score, the 

indirect effects on KDMAccel and PhenoAgeAccel were mediated by BMI measured at 0.049 

(38.02%) and 0.040 (34.17%). The indirect effects on KDMAccel and PhenoAgeAccel 

mediated by AST/ALT measured at 0.004 (5.49%) and -0.005 (6.29%). More information is 

shown in Figure 3. 

4. Discussion 

In this cross-sectional study involving 71,579 participants, we observed a significant positive 

association between a dietary pattern linked to a higher SMD score and an elevation of 

AgeAccel, as assessed by multiple markers using two widely accepted algorithms. 

Furthermore, a higher score of SMD was associated with an increase in AgeAccel among 

males and smokers. Both BMI and serum AST/ALT ratio mediated the association between 

SMD and two forms of AgeAccel. These findings support the hypothesis that dietary 

variations with lower detrimental microbiome configurations related to sulfur metabolism 

may be associated with lower biological aging. 
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The SMD is characterized by a low intake of fruits, vegetables, legumes, whole grains, 

and nuts, along with a high intake of red meat, processed meat products, high-fat dairy 

products, sugary beverages, and coffee
(29)

. However, Wang et al. indicated that the relative 

abundance of sulfur-metabolizing bacteria may be determined by dietary sources of sulfur 

and specific sulfur-containing compounds, rather than total sulfur content
(25)

. As for food 

components, red and processed meats are rich in both sulfur-containing amino acids and 

inorganic sulfur from preservatives
(25)

, and also can significantly worsen age-related diseases, 

such as cardiovascular disease, sarcopenia, cognitive dysfunction, and cancer
(30)

. In addition, 

a study utilizing plasma protein profiles to identify accelerated and decelerated aging 

discovered that the consumption of sugar-sweetened beverages increased the predicted 

chronological age by 2-6 years
(31)

. On the contrary, a high intake of whole grains, vegetables, 

fruits, and nuts is associated with a reduced risk for all-cause mortality
(32)

. Cruciferous 

vegetables are rich in sulfur-containing glucosinolates, which can be hydrolyzed to 

isothiocyanates by gut microbiota that express myrosinase. Isothiocyanates and their 

downstream products have anticarcinogenic effects
(33)

. What’s more, healthy dietary patterns 

such as Mediterranean, Japanese, Okinawan, and Nordic diets have been associated with 

long-term survival and a reduced incidence of non-communicable diseases
(34)

. These dietary 

patterns share common features that may explain the mechanisms of healthy aging. For 

example, increase the intake of vegetables and whole grain foods, consume unsaturated fatty 

acids, have a moderate intake of protein, primarily plant-based, avoid or limit alcohol 

consumption, avoid red meat and processed meats, and limit sugar intake
(34)

.  

Our results were biologically possible via microbial H2S generation and extended 

previous findings demonstrating the role of diet-induced microbial changes in the aging 

process. Current evidence indicates that persistent low-grade inflammation and oxidative 

stress accelerate cellular and tissue aging, which has adverse effects on biological age
(35)

. 

Inflammation and oxidative stress are vital physiological processes influenced by various 

factors such as age, diet, and lifestyle
(19)

. H2S is produced within the gastrointestinal tract by 

resident gut bacteria metabolizing sulfates, sulfites, and various proteins
(36)

. H2S exhibits 

genotoxicity, promoting inflammation and causing DNA damage in epithelial cells. Elevated 

https://doi.org/10.1017/S0007114525000534  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114525000534


Accepted manuscript 
 

 

concentrations of H2S disrupt intestinal permeability, facilitating the absorption of 

lipopolysaccharides into the bloodstream, further exacerbating inflammation
(37)

, which is 

associated with increased risks of obesity
(11)

, non-alcoholic fatty liver disease
(10)

, and 

gastrointestinal cancers
(38)

, thereby increasing the risk of aging. 

In our study, we found that the association between SMD and AgeAccel is partially 

mediated by BMI and AST/ALT ratio, which are biomarkers of obesity status and liver 

function. Atypical elevation of AST/ALT is used to assess liver function and the severity of 

liver disease, suggesting the presence of underlying liver issues
(39)

. Liver dysfunction can 

impact aging, primarily manifested as declining liver function, malnutrition, hormonal 

imbalance, and immune dysregulation
(40)

. Obesity leads to many adverse health outcomes, 

including cardiovascular diseases, diabetes, and cancer, which are considered age-related 

diseases
(41)

. Meanwhile, it is significantly positively associated with epigenetic AgeAccel
(42)

. 

Therefore, these two indicators are considered potential risk factors for the association. 

Moreover, the mediation results suggest that reducing body weight and supporting liver 

health by adherence to dietary pattern with lower SMD score may help slow down the aging 

process. 

It is worth noting that a more significant association between SMD quartiles and 

AgeAccel in males and smoking populations was observed. There are several possible 

explanations for this observation. Firstly, adherence to the SMD diet is positively associated 

with the risk of obesity, with sex stratification revealing a more significant positive 

association in males than females
(11)

. Secondly, there is a higher proportion of males among 

smokers in our study. Smoking is associated with increased levels of inflammatory oxidative 

stress
(19)

. Specifically, smoking damages intestinal barrier function, promotes inflammatory 

responses in the process of intestinal disease occurrence, and enhances carcinogenic 

MAPK/ERK signaling
(43)

, as evidenced by a study finding a positive correlation between 

SMD and the risk of colorectal adenomas, particularly notable in males and smokers
(38)

. 

The present study contains some strengths. Firstly, our study includes a relatively large 

sample size and rich information on dietary pattern. Secondly, previous studies have rarely 

examined the effect of the sulfur-metabolism microbial diet on biological aging. We were the 
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first to assess the effect of BMI and AST/ALT ratio as a mediator on biological aging. 

Nonetheless, limitations should be acknowledged. Firstly, a substantial number of 

participants were excluded due to missing dietary or BA information, which may introduce 

selection bias and limit generalizability. However, the large sample size and rigorous 

methodology help mitigate these concerns. Secondly, it is worth noting that the sulfur 

microbial diet was initially constructed based on a US cohort of older men. However, the UK 

Biobank does not provide information on the microbiomes of the participants, which prevents 

us from evaluating the effect estimates for specific food types. Thirdly, limited by the 

cross-sectional study design, we are unable to assume causality of the observed association. 

Fourthly, although the 24-hour diet was retrospectively assessed several times at baseline, this 

may have allowed participants to change their dietary patterns. Finally, as our study was 

conducted with a predominantly White sample of 37-73 years participants, caution is needed 

when generalizing our findings to other populations. Future analyses comparing SMD with 

other dietary patterns in terms of shared components and health outcomes, as well as 

exploring the potential interactions between systemic inflammation or metabolic pathways 

and sulfur-metabolizing bacteria would be valuable. 

In conclusion, this study is the first to discover the accelerated effects of a gut 

microbiota-derived dietary pattern, the sulfur microbial dietary pattern, on biological aging. 

The monotonic and linear association between them emphasized the change beyond the 

threshold in the sulfur bacterial diet score dramatically increasing the risk of AgeAccel. BMI 

and serum AST/ALT mediate the association between SMD and two AgeAccel. These 

findings support not only the role of diet in the aging process but also the possibility of using 

a gut microbiota-targeted dietary modification to slow down the aging process.  
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Table 1. Basic characteristics of participants from UK Biobank according to the sulfur 

microbial diet score. 

Characteristics 
Quartile of sulfur microbial diet score

 c
 

Q1 Q2 Q3 Q4 

N 17,890 17,894 17,819 17,976 

Male (%) 
8,583 

(47.98%) 

8,497 

(47.49%) 

8,464 

(47.50%) 

9,299 

(51.73%) 

Age (year) 56.5 (7.64) 56.46 (7.74) 56.08 (7.82) 55.13 (7.95) 

BMI (kg/m
2
) 26.37 (4.30) 26.56 (4.28) 26.73 (4.30) 27.54 (4.64) 

TDI -1.81 (2.67) -1.92 (2.65) -1.90 (2.66) -1.76 (2.76) 

Smoke frequency per day 5.95 (9.97) 5.55 (9.59) 5.63 (9.75) 6.39 (10.38) 

Alcohol frequency per week 9.89 (9.25) 9.77 (8.92) 9.76 (9.33) 10.51 (10.39) 

Household income (£) (%)     

<18,000 
2,516 

(14.06%) 

2,365 

(13.22%) 

2,418 

(13.57%) 

2,441 

(13.58%) 

18,000 to 30,999 
4,496 

(25.13%) 

4,295 

(24.00%) 

4,213 

(23.64%) 

4,096 

(22.79%) 

31,000 to 51,999 
5,177 

(28.94%) 

5,260 

(29.40%) 

5,169 

(29.01%) 

5,243 

(29.17%) 

52,000 to 100,000 
4,423 

(24.72%) 

4,603 

(25.72%) 

4,626 

(25.96%) 

4,781 

(26.60%) 

>100,000 
1,278 

(7.14%) 

1,371 

(7.66%) 

1,393 

(7.82%) 

1,415 

(7.87%) 

Major diseases     

Diabetes (%) 911 (5.09%) 930 (5.20%) 984 (5.52%) 
1,327 

(7.38%) 

Hypertension (%) 
4,684 

(26.18%) 

4,642 

(25.94%) 

4,655 

(26.12%) 

5,000 

(27.81%) 

Coronary heart disease (%) 
1,600 

(8.94%) 

1,595 

(8.91%) 

1,637 

(9.19%) 

1,788 

(9.95%) 

Sulfur microbial diet score -4.41 (1.14) -2.50 (0.35) -1.43 (0.28) -0.01 (0.85) 

Biological age     

KDM biological age (year) 50.25 (9.12) 50.45 (9.19) 50.20 (9.24) 49.41 (9.30) 

KDMAccel -6.24 (5.37) -6.01 (5.33) -5.88 (5.29) -5.71 (5.29) 

PhenoAge (year) 47.40 (9.00) 47.45 (9.06) 47.23 (9.17) 46.70 (9.41) 

PhenoAgeAccel -9.10 (4.47) -9.01 (4.41) -8.85 (4.45) -8.43 (4.63) 

Components of biological ages     
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FEV1(L)
 a
 2.89 (0.76) 2.86 (0.76) 2.86 (0.77) 2.90 (0.77) 

SBP (mm Hg) 
a
 

137.66 

(18.25) 

137.38 

(18.22) 

136.85 

(17.93) 

136.88 

(17.78) 

Total cholesterol (mg/dL)
 a
 

222.34 

(42.59) 

222.50 

(42.57) 

222.61 

(42.92) 

221.24 

(43.49) 

Glycated hemoglobin (%)
 a
 3.51 (0.51) 3.52 (0.53) 3.52 (0.54) 3.55 (0.62) 

Blood urea nitrogen (mg/dL) 
a
 14.83 (3.58) 14.98 (3.50) 15.02 (3.54) 15.18 (3.66) 

Lymphocyte (%) 
b
 28.92 (7.33) 29.01 (7.27) 28.89 (7.20) 28.81 (7.21) 

Mean cell volume (fL) 
b
 83.22 (5.20) 83.11 (5.18) 83.08 (5.21) 83.01 (5.26) 

Serum glucose (mg/dL) 
b
 91.26 (17.28) 91.44 (18.00) 91.44 (18.00) 91.98 (20.16) 

Red cell distribution width (%) 
b
 

13.41 (0.87) 13.41 (0.89) 13.42 (0.89) 13.43 (0.90) 

White blood cell count (1000 

cells/μl) 
b
 

6.66 (2.01) 6.69 (1.71) 6.73 (1.83) 6.84 (1.73) 

Albumin (g/dL) 
a,b

 4.56 (0.26) 4.55 (0.26) 4.55 (0.26) 4.55 (0.26) 

Creatinine (mg/dL) 
a,b

 0.79 (0.16) 0.79 (0.16) 0.80 (0.16) 0.81 (0.18) 

C-reactive protein (mg/dL) 
a,b

 0.43 (0.22) 0.43 (0.22) 0.44 (0.23) 0.46 (0.24) 

Alkaline phosphatase (U/L)
 a,b

 80.20 (22.57) 80.41 (24.93) 80.83 (24.47) 80.85 (24.41) 

Note: Data are either percentage or mean ± SD unless indicated otherwise. BMI, body mass 

index; TDI, Townsend deprivation index; KDM, Klemera-Doubal method; KDMAccel, 

KDM biological age acceleration; PhenoAgeAccel, PhenoAge acceleration.
 a
 Components of 

KDM biological age. 
b
 Components of PhenoAge. 

c 
The sulfur microbial diet score was 

calculated by summing the intake of foods (processed meats, liquor, low-calorie drinks, beer, 

fruit juice, legumes, other vegetables, sweets, and desserts) weighted by their regression 

coefficients (β). 
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Table 2. Multivariable-adjusted associations between the sulfur microbial diet score and AgeAccel. 

 
Quartiles of the sulfur microbial diet score 

P-trend 
a
 

Per 1-SD 

Q1 Q2 P Q3 P Q4 P β (SE) P 

KDMAccel           

Model 1 Reference 
0.196 

(0.045) 
1.21×10

-5
 

0.327 

(0.045) 
3.01×10

-13
 

0.763 

(0.045) 
8.88×10

-65
 

4.21×10
-65

 0.165 

(0.009) 

2.25×10
-75

 

Model 2 Reference 
0.151 

(0.042) 
3.70×10

-4
 

0.212 

(0.042) 
5.63×10

-7
 

0.370 

(0.043) 
4.28×10

-18
 

4.09×10
-18

 0.083 

(0.009) 

4.07×10
-22

 

Model 3 Reference 
0.156 

(0.042) 
2.00×10

-4
 

0.212 

(0.042) 
4.42×10

-7
 

0.353 

(0.042) 
7.41×10

-17
 

8.09×10
-17

 0.079 

(0.008) 

9.10×10
-21

 

PhenoAgeAccel           

Model 1 Reference 
0.096 

(0.047) 
0.040 

0.265 

(0.047) 
1.69×10

-8
 

0.647 

(0.047) 
3.73×10

-43
 

1.01×10
-45

 0.146 

(0.009) 

8.99×10
-55

 

Model 2 Reference 
0.073 

(0.045) 
0.109 

0.186 

(0.045) 
4.04×10

-5
 

0.343 

(0.046) 
4.93×10

-14
 

2.26×10
-15

 0.083 

(0.009) 

7.35×10
-20

 

Model 3 Reference 
0.074 

(0.045) 
0.101 

0.181 

(0.045) 
5.69×10

-5
 

0.317 

(0.045) 
2.87×10

-12
 

1.71×10
-13

 0.078 

(0.009) 

1.05×10
-17

 

Note: For KDMAccel and PhenoAgeAccel, the effect was shown by coefficient (β) and standard error (SE). 

a 
Tests for trend were conducted using the quartile category as a continuous variable. 

Model 1 was adjusted for age and sex. 

Model 2 was further adjusted for BMI, TDI, education, income, smoke frequency per day, and alcohol frequency per week. 

Model 3 was further adjusted for hypertension, diabetes, and coronary heart diseases.
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Figure 1. Forest plot of the association of the sulfur microbial diet score quartiles with two 

forms of age acceleration and its subgroup analyses. The adjustments involved the 

covariables selected in the full regression model. Q, quartiles; CI, confidence intervals; BMI, 

body mass index. 
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Figure 2. Association of the sulfur microbial diet score with age acceleration and biological 

age indicators evaluated by linear and binomial logistic regression models and RCS after 

adjusted for all covariates. The solid blue lines correspond to the central estimate, and the 

blue -shaded regions indicate the 95% confidence intervals. 
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Figure 3. Effects mediated by BMI and serum AST/ALT ratio on the associations of the 

sulfur microbial diet score with two forms of AgeAccel. IE, indirect effect; DE, direct effect. 

***P < 0.001. 
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