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Abstract
Let (X1, . . . , Xn) be a random vector distributed according to a time-transformed exponential model. This is a
special class of exchangeable models, which, in particular, includes multivariate distributions with Schur-constant
survival functions. Let for 1 ≤ i ≤ n, Xi:n denote the corresponding ith-order statistic. We consider the problem of
comparing the strength of dependence between any pair of Xi’s with that of the corresponding order statistics. It is
in particular proved that for m = 2, . . . , n, the dependence of X2:m on X1:m is more than that of X2 on X1 according
to more stochastic increasingness (positive monotone regression) order, which in turn implies that (X1:m, X2:m) is
more concordant than (X1, X2). It will be interesting to examine whether these results can be extended to other
exchangeable models.

1. Introduction

Let {X1, . . . , Xn} be a set of n random variables, and let for 1 ≤ i ≤ n, Xi:n denote the corresponding ith-
order statistic. The problem of dependence among order statistics has been well studied in the literature
when the random variables Xi’s are independent and identically distributed. It is well known that in this
case, any pair of order statistics is positively dependent according to the likelihood ratio dependence,
a very strong notion of positive dependence. Averous et al. [3] studied the problem of comparing the
relative degree of dependence among two pairs of order statistics based on independent and identically
distributed continuous random variables. Besides other results, they proved that for any 1 ≤ i < j ≤ n,
the dependence of Xj:n on Xi:n decreases in the sense of more stochastic increasingness (SI) (also known
as more monotone regression dependence) as i and j draw further apart. Genest et al. [13] and Kochar
[16] extended some of these results relatively to the case when the parent observations are independent
with proportional hazard rates. See Boland et al. [6] and Chapter 8 of Kochar [15] for more details and
other related results on this topic.

However, this problem of dependence among order statistics has not been fully studied when the
Xi’s are dependent. It is well known that when the Xi’s are associated, so are the order statistics based
on them (cf. [4], which implies in turn that Xi:n and Xj:n are positively quadrant dependent as well as
cov(Xi:n, Xj:n) ≥ 0 for any 1 ≤ i ≤ j ≤ n. Navarro and Balakrishnan [19] obtained expressions for
the Pearson’s coefficient of correlation, Kendall’s g, and Spearman’s d coefficient between the first two
order statistics for some exchangeable bivariate distributions. Fuchs and Schmidt [12] have shown that
the dependence among order statistics is more than the one existing among the parent observations,
when the Kendall’s tau is taken as a measure of dependence.

In this paper, we consider the analogous problem of more dependence according to more Stochastic
Increasing (SI) order. While the general solution is still elusive, we solve the case when the joint
distribution of the observations has a Schur-constant survival function or, more generally, when
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time-transformed exponential (TTE) models are considered. Besides allowing for clear solutions, these
models are of interest in view of some specific aspects emerging in the analysis of dependence proper-
ties for Archimedean copulas. It will be proved that, for m = 2, . . . , n, the dependence of X2:m on X1:m
is more than that of X2 on X1 according to more SI order. Since the concept of more SI order is copula
based, it follows that ^(X1, Xi) ≤ ^(X1:m, X2:m), for i = 1, . . . , m and for any margin-free measure of
concordance ^ satisfying the axioms of Scarsini [25], of which Kendall’s tau or Spearman’s rho are
special cases.

As further results, we will also prove that the dependence of X2:2 on X1:2 is more than that of X2 on
X1 according to more right tail increasing (RTI) and more positive quadrant dependent (PQD) orders.
We also give necessary and sufficient conditions for the dependence of (X1:2, X2:2) according to SI, RTI,
and PQD concepts, respectively.

The plan of the paper is as follows. In Section 2, we review some concepts of positive dependence
and dependence orders which are used in this paper. In Section 3, some basic definitions and properties
of the multivariate distributions of the type TTE models are recalled. A special case of the latter class
is described by the condition that the joint survival function is Schur-constant. For this case, we give
some basic results that will be used for the analysis of the general case of TTE models. The main results
of this paper are presented in the last section.

2. Some dependence concepts and dependence orders

In the literature, there exist several notions of monotone dependence between random variables.
Researchers have also developed the corresponding dependence (partial) orders, which compare the
strength of (monotone) dependence within the components of different random vectors of the same
length. For details, see, for example, the pioneering paper of Lehmann [17] and Chapter 5 of Barlow
and Proschan [4] for different notions of positive dependence and Chapter 5 of Kochar [15] for stochastic
orders for comparing the strength of dependence among the components of random vectors.

Let us first review some of the notions of monotone dependence for a bivariate vector (X, Y) with
joint c.d.f. H (x, y), joint survival function H, and with marginal c.d.f.’s F and G, respectively. Remind
that the joint survival function of (X, Y) is defined by

H (x, y) = P[X > x, Y > y] = 1 − F (x) − G(y) + H (x, y).

In the case when the distributions F and G are absolutely continuous with unique inverses, F−1 and G−1,
the connecting copula associated with H is defined as

C(u, v) = H (F−1(u), G−1(v)), (u, v) ∈ (0, 1)2.

In other words, C is the distribution of the pair (U, V) ≡ (F (X), G(Y)) whose margins are uniform on
the interval (0, 1). The survival copula is defined by

Ĉ (u, v) = H (F−1(u), G−1(v)).

Perhaps the most widely used and understood notion of positive dependence is that of positive
quadrant dependence as defined below.

Definition 2.1. Let (X, Y) be a bivariate random vector with joint distribution function H. X and Y are
said to be positively quadrant dependent (PQD) if

H (x, y) ≥ F (x)G(y) for all (x, y) ∈ R2

or equivalently if C(u, v) ≥ uv for all (u, v) ∈ [0, 1]2 in case the random variables are continuous with
unique inverses.
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Notice that C(u, v) ≥ uv if and only if Ĉ(u, v) ≥ uv.
A well-known partial order to compare dependence between two pairs of random variables is that of

more positive quadrant dependence order as defined below.

Definition 2.2. (X2, Y2) is said to be more PQD than (X1, Y1), denoted by (X1, Y1) ≺PQD (X2, Y2), if
and only if,

C1(u, v) ≤ C2(u, v) for all u, v ∈ (0, 1),

or equivalently if Ĉ1(u, v) ≤ Ĉ2(u, v), where Ĉ1, Ĉ2 are the survival copulas of (Xi, Yi), i = 1, 2,
respectively.

In the literature, the more PQD order is also known as the more concordance order. It is also well
known that (X1, Y1) ≺PQD (X2, Y2) ⇒ ^(X1, Y1) ≤ ^(X2, Y2), where ^(S, T) represents Spearman’s rho,
Kendall’s tau, Gini’s coefficient, or indeed any other copula-based measure of concordance satisfying
the axioms of Scarsini [25].

Lehmann [17] in his seminal work introduced the notion of monotone regression dependence, which
is also known in the literature as SI.

Definition 2.3. For a bivariate random vector (X, Y), Y is said to be stochastically increasing in X if

x < x′ ⇒ P(Y ≥ y| X = x′) ≥ P(Y ≥ y| X = x), for all y ∈ R. (2.1)

If we denote by Hx the survival function of the conditional distribution of Y given X = x, then Eq. (2.1)
can be rewritten as

x < x′ ⇒ Hx′ ◦ H−1
x (u) ≥ u, for 0 ≤ u ≤ 1. (2.2)

Note that in case X and Y are independent, Hx′ ◦ H−1
x (u) = u, for 0 ≤ u ≤ 1 and for all (x, x′). The

SI property is a very strong notion of positive dependence, and many of the other notions of positive
dependence follow from it. In particular, it implies association (and hence positive correlation) between
X and Y. Also note that the SI property, in general, is not symmetric in X and Y ; however, it obviously
is symmetric in the case of exchangeability.

Denoting by Xp = FX
−1(p) the pth quantile of the marginal distribution of X, we see that Eq. (2.2)

will hold if and only if for all 0 ≤ u ≤ 1,

0 ≤ p < q ≤ 1 ⇒ H Xq ◦ H−1
Xp (u) ≥ u.

Suppose we have two pairs of continuous random variables (Xi, Yi) with joint cumulative distribution
functions Hi and marginals Fi and Gi for i = 1, 2. We would like to compare these two pairs according
to the strength of SI (monotone regression dependence) between them.

Definition 2.4. Y2 is said to be more stochastically increasing in X2 than Y1 is in X1, denoted by
(Y1 |X1) ≺SI (Y2 |X2) or H1 ≺SI H2, if

0 < p ≤ q < 1 =⇒ H1,X1q ◦ H−1
1,X1p

(u) ≤ H2,X2q ◦ H−1
2,X2p

(u), (2.3)

for all u ∈ (0, 1), where for i = 1, 2, H i,s denotes the conditional survival function of Yi given Xi = s,
and Xip = F−1

i (p) stands for the pth quantile of the marginal distribution of Xi.
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Note that Eq. (2.3) implies that if Y1 is SI in X1, then so is Y2 in X2.

Remark 2.1. It can be checked that the definition of “more SI” as given above is equivalent to the one
given by Capéraà and Genest [7] as applied to the copulas. This is also equivalent to the one given by
Avérous, Genest and Kochar [3] who define “more SI” in terms of conditional distribution functions
instead of conditional survival functions as defined above.

Definition 2.5. For a bivariate random vector (X, Y), Y is said to be RTI in X if for all (x, x′)s ∈ R2,

x < x′ ⇒ P(Y ≥ y| X ≥ x′) ≥ P(Y ≥ y| X ≥ x) for all y ∈ R. (2.4)

By conditioning on the quantiles in the definition of more RTI as proposed by Avérous and
Dortet-Bernadet [1] and Dolati, Genest and Kochar [10], a dependence order for comparing two
bivariate random vectors based on RTI considerations was proposed.

Definition 2.6. Y2 is said to be more RTI in X2 than Y1 is in X1, denoted by (Y1 |X1) �RTI (Y2 |X2), if
and only if, for 0 ≤ u ≤ 1,

0 < p < q < 1 ⇒ H∗
2,[2q

◦ H∗−1
2,[2p

(u) ≤ H∗
1,[1q

◦ H∗−1
1,[1p

(u), (2.5)

where [ip = F−1
i (p) stands for the pth quantile of the marginal distribution of Xi and H∗

i,s denotes the
conditional distribution function of Yi given Xi > s, for i = 1, 2.

Likewise, Y is said to be left tail decreasing (LTD) in X if for all (x, x′)s ∈ R2,

x < x′ ⇒ P(Y ≤ y|X ≤ x′) ≤ P(Y ≤ y|X ≤ x) for all y ∈ R.

Averous and Dortet-Bernadet [1] analogously defined the concept of more LTD (after conditioning on
the quantiles instead) and noted the following chains of implications

(Y1 |X1) �SI (Y2 |X2) ⇒ (Y1 |X1) �RTI (Y2 |X2) ⇒ (X1, Y1) �PQD (X2, Y2), (2.6)

(Y1 |X1) �SI (Y2 |X2) ⇒ (Y1 |X1) �LTD (Y2 |X2) ⇒ (X1, Y1) �PQD (X2, Y2). (2.7)

An interesting feature of more SI, more RTI, and more LTD orders as defined in this section is
that, though they are copula based, one does not need the expressions for the copulas in explicit
forms.

3. Dependence properties of Schur-constant models and Archimedean copulas

Let X = (X1, X2, . . . , Xn) be an n-dimensional random vector with absolutely continuous joint distribu-
tion. We fix attention on the case when X1, X2, . . . , Xn are non-negative random variables and describe
their joint distribution in terms of their joint survival function S(x1, . . . , xn) = P[X > x] = P[X1 >

x1, . . . , Xn > xn].
In particular, we start by considering the special case of Schur-constant survival function:

S(x1, . . . , xn) = G(x1 + · · · + xn), (3.8)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964823000190
Downloaded from https://www.cambridge.org/core. IP address: 52.14.43.173, on 21 Jul 2024 at 08:18:01, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964823000190
https://www.cambridge.org/core


Probability in the Engineering and Informational Sciences 391

for any x = (x1, . . . , xn) in [0,∞)n and for an appropriate univariate survival function G over [0,∞).
First of all, we assume that G is strictly decreasing all over the interval [0,∞). Moreover, we assume
that G is n times differentiable and n-monotonic:

g(m) (x) = (−1)m dm

dxm G(x) > 0, m = 1, . . . , n.

Then the joint probability density of X exists and is given by

f (x1, . . . , xn) = g(n) (∑n
j=1xj).

In particular, we will use the symbol g = g(1) for the probability density function associated with G.
For any m = 2, . . . , n, G and g, respectively, are the common one-dimensional survival function and the
common density function of the random variables X1, . . . , Xm. For more details about basic properties of
Schur-constant models and for discussions about their original motivations, see in particular [5, 24, 27]
and papers cited therein.

It is obvious that if X has a Schur-constant joint survival function, then the components of X are
exchangeable and all lower dimensional marginal joint survival functions are also Schur-constant.

There is a strict relation between Schur-constant survival models and Archimedean copulas (see also,
e.g., Nelsen [24] and Durante and Sempi [11]). In fact, the survival copula ĈG of the model in Eq. (3.8)
is the Archimedean copula with the inverse of G as a generator. This property is immediately checked
by observing that, by the very definition of survival copula, one can write:

ĈG (u1, . . . , un) = S(G−1(u1), . . . , G
−1(un)) = G(G−1(u1) + · · · + G

−1(un)).

Note that the survival copula (and hence the stochastic dependence properties thereof) is uniquely
determined by the univariate survival function G. In particular, the components of X are independent
if and only if they are exponentially distributed.

One main reason of interest for Schur-constant models dwells in the following property: for any i≠ j
in {1, 2, . . . , n}, and x ∈ [0,∞)n, and any t ≥ 0,

P[Xi − xi > t |X > x] = G(x1 + · · · + xn + t)
G(x1 + · · · + xn)

= P[Xj − xj > t |X > x],

that is, the residual lifetimes of Xi − xi and Xj − xj of two components of two different ages, xi and xj,
respectively, have the same conditional distributions, conditional on the observed survival data (X > x).
More generally, conditional on (X > x), the joint survival function of all the residual lifetimes Xi − xi
(for i = 1, . . . , n) is still exchangeable and Schur-constant. In fact, we can write

P[X − x > t|X > x] = G(x1 + · · · + xn + t1 + · · · + tn)
G(x1 + · · · + xn)

.

This is thus one way to extend the no-aging concept and the memory-less property of the univariate
exponential distribution to the multivariate case. See the above references for more details about this
aspect of Schur-constant survival functions.

Two important families of bivariate distributions with Schur-constant survival functions are as
follows:

1. Bivariate Pareto distribution with survival function S1(x, y) = (1 + ax + ay)−c, where x, y ≥ 0 and
a> 0 and c ≥ 1. The corresponding copula is the Clayton’s copula C1(u, v) = (u−1/c + v−1/c − 1)−c.
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2. Bivariate Weibull distribution with survival function S2(x, y) = exp[−(x + y)c], where x, y ≥ 0 and
c ∈ (0, 1]. Here G(x) = exp{−xc} and, for p ∈ (0, 1), G

−1(p) = (− log p)
1
c , so that

Ĉ(u, v) = exp−
{[
(− log u)

1
c + (− log u)

1
c

]c}
.

Notice that the condition c ∈ (0, 1] is required in order to satisfy the requirement that G is convex.

Some important properties of Schur-constant models are summarized in the next theorem.

Theorem 3.1. Let X be a random vector with a Schur-constant survival function given by Eq. (3.8).
Then for m = 2, . . . , n − 1,

(a)

P (X2 > x2, . . . , Xm > xm |X1 = x) =
g(x +∑m

j=2 xj)
g(x) . (3.9)

(b) For t> x, one has

P (X2:m > t |X1:m = x) = g(x + (m − 1)t)
g(mx) . (3.10)

(c)

P (X2 > x2, . . . , Xm > xm |X1 > x) =
G(x +∑m

j=2xj)

G (x)
. (3.11)

Proof. (a)

P (x ≤ X1 ≤ x + Δx, X2 > x2, . . . , Xm > xm)

=

∫ x+Δx

x

∫ ∞

x2

· · ·
∫ ∞

xm

f (m) (b1, . . . , bm) db1 · · · dbm

=

∫ x+Δx

x

∫ ∞

x2

· · ·
∫ ∞

xm

g(m) ©«b1 +
m∑

j=2
bj
ª®¬ db1 · · · dbm.

By progressively integrating with respect to the variables bm, bm−1, . . . , b2, we arrive to the identity

∫ x+Δx

x

∫ ∞

x2

· · ·
∫ ∞

xm

g(m) ©«b1 +
m∑

j=2
bj
ª®¬ db1 · · · dbm =

∫ x+Δx

x
g ©«b1 +

m∑
j=2

xj
ª®¬ db1.

Whence Eq. (3.9) follows immediately.
(b) By using the exchangeability of X, it follows that

P (X2:m > t |X1:m = x) = P (X2 > t, . . . , Xm > t |X1 = x, X2 > x, . . . , Xm > x)

=
P (X2 > t, . . . , Xm > t |X1 = x)
P (X2 > x, . . . , Xm > x |X1 = x) .
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Thus, the required result is obtained by rewriting in terms of formula (3.9) both the numerator and the
denominator in the above r.h.s.:

P (X2:m > t |X1:m = x) = g (x + (m − 1)t)
g(x) · g (x)

g (x + (m − 1)x) .

(c) This is an immediate consequence of Eq. (3.8). �

Now, in the rest of this section, we concentrate our attention on the simple case of n= 2. Let us then
consider two non-negative random variables X1 and X2 with joint survival function

S(x1, x2) = G (x1 + x2) .

X1 and X2 are then identically distributed with marginal survival function G and Archimedean
survival copula given by

ĈG (u, v) = G
(
G

−1 (u) + G
−1(v)

)
, u, v ∈ [0, 1] × [0, 1] . (3.12)

By specializing the claims on Theorem 3.1, we first obtain two simple formulas for the conditional
probabilities P[X2 > y|X1>x] and P[X2 > y|X1=x]:

P[X2 > y|X1>x] = G(x + y)
G(x)

and P[X2 > y|X1=x] = g(x + y)
g(x) .

These formulas can in particular be applied to show that the positive dependence properties of PQD,
RTI, and SI are, respectively, characterized by simple properties of negative aging for the univari-
ate distribution of (X1, X2). In fact, the following result can be easily obtained in terms of the above
formulas.

Theorem 3.2 Let (X1, X2) be jointly distributed according to a Schur-constant survival model,
characterized by the univariate survival function G. Then

(a) (X1, X2) PQD ⇔ G new worse than used
(b) (X1, X2) RTI ⇔ G decreasing failure rate
(c) (X1, X2) SI ⇔ g log-convex.

See Averous and Dortet-Bernadet [2], Caramellino and Spizzichino [8] and [9], Spizzichino [27],
Bassan and Spizzichino [5], and Nelsen [24] for details. The condition that a probability distribution
over [0,∞) admits a log-convex density function is also said to have a decreasing likelihood ratio
(DLR); see, e.g., Shaked and Shantikumar [26].

It is not surprising that positive dependence properties of (X1, X2) are related to conditions on the
survival function G, since there is a one-to-one correspondence between G and the survival copula, ĈG.
It is remarkable, however, that the conditions on G, involved in such correspondence, have precisely the
form of negative aging of G. In this vein, one can see that X1 and X2 are independent if and only if they
are exponentially distributed.

Let now i : R+ → R+ be a strictly increasing function with i(0) = 0, i(∞) = ∞ and con-
sider the non-negative random variables X′

1 = i (X1) and X′
2 = i (X2). Obviously, also X′

1 and X′
2 are

exchangeable but
(
X′

1, X′
2
)

may not be Schur-constant. Their joint survival function is given by
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S′ (x1, x2) = P[i (X1) > x1, i (X2) > x2]
= S

(
i−1(x1), i−1(x2)

)
= G(i−1(x1) + i−1(x2)). (3.13)

X′
1 and X′

2 are identically distributed with survival function G(i−1(x)), and their survival copula
is still ĈG.

The term TTE model has been used in some papers to designate the survival model in Eq. (3.13) (see,
e.g., [27] and references cited therein). In conclusion, a bivariate TTE model is a survival model char-
acterized by the following two conditions: identical univariate distributions and Archimedean survival
copula as in Eq. (3.12).

Consider now a bivariate TTE model with survival function given by

S(x1, x2) = W (R(x1) + R(x2)) , (3.14)

with W : [0,∞) → [0, 1] strictly decreasing and R : [0,∞) → [0,∞) strictly increasing. The
corresponding univariate survival function H (x) is given by H (x) = W (R(x)). So that one has
H−1(u) = R−1(W−1(u)) for u ∈ (0, 1), and the survival copula is then

ĈW (u, v) = W
(
W−1(u) + W−1(v)

)
. (3.15)

One can thus immediately obtain the following result.

Proposition 3.1. The TTE model (3.14) shares the same survival copula with the Schur-constant model
with univariate survival function W.

Let us now take into account that the properties PQD, RTI, and SI hold for a bivariate random vector
(X1, X2) if and only if they, respectively, hold for the survival copula of (X1, X2). As a first consequence
of the above Proposition, one can retrieve the following result by Averous and Dortet-Bernadet [3]. See
also the results by Mosler and Scarsini [18].

Theorem 3.3. For an Archimedean copula ĈW as in Eq. (3.15), the following equivalences hold:

(a) ĈW PQD ⇔ W new worse than used
(b) ĈW RTI ⇔ W decreasing failure rate
(c) ĈW SI ⇔ W DRL.

More generally, we can conclude with the following principle concerning copula-based properties of
dependence for bivariate survival models: an arbitrary copula-based property of dependence holds for
a TTE model in Eq. (3.14) if and only if it holds for the Schur-constant model with univariate survival
function W.

This principle have inspired the developments that will be presented in the next section and that are
initially formulated with reference to Schur-constant models.

4. Positive dependence between order statistics

In the previous section, we have reviewed the positive dependence properties of PQD, LTD, RTI, SI,
and related characterizations in the case of Schur-constant models and, slightly more generally, in the
case of TTE models. This section is devoted to describing sufficient conditions and characterizations of
the same dependence properties for corresponding cases of pairs of order statistics.
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We will essentially concentrate attention on a pair of lifetimes (X1, X2) following a Schur-constant
model, where the joint survival function has then the form

S(x1, x2) = G(x1 + x2), (4.16)

with G decreasing and convex. We will also assume that G is differentiable two times and use the
notation g(x) = −G

′ (x), W(x) = −g′ (x) so that g(x) is the marginal density of X1, X2, and the joint
density of (X1, X2) exists and has the form s(x1, x2) = W(x1 + x2).

The obtained results can be reformulated for the TTE case by simply applying Proposition 3.1.
See Section 4.3 for more details.

Let us start by preliminarily recalling attention to the following properties and simple results,
concerning the pair (X1:2, X2:2) under the model (4.16).

F1,2:2(s, t) = P(X1:2 > s, X2:2 > t) =
{

2G(s + t) − G(2t), for s < t,
G(2s), for s > t.

F1:2(s) = P(X1:2 > s) = G(2s), F2:2(t) = P(X2:2 > t) = 2G(t) − G(2t).

Thus, denoting L̂[s] (t) = P(X2:2 > t |X1:2 > s), for t > s, one has

L̂[s] (t) =
2G(s + t) − G(2t)

G(2s)
. (4.17)

We also remind that for the case n= 2, Theorem 3.1 in particular gives for t > s

Ĥ[s] (t) = P(X2:2 > t |X1:2 = s) = g(s + t)
g(2s) . (4.18)

The survival copula Ĉ(u, v) of (X1:2, X2:2) is given by

Ĉ(u, v) = F1,2:2

(
F−1

1:2(u), F
−1
2:2(v)

)
=

{
2G

(
F−1

1:2(u) + F−1
2:2(v)

)
− G

(
2F−1

2:2(v)
)

, for F−1
1:2(u) < F−1

2:2(v),

u, for F−1
1:2(u) > F−1

2:2(v)
. (4.19)

In the following subsections, we separately analyze the different dependence properties. We notice
that, for the Schur-constant model of the parent variables, the two properties of RTI and LTD of (X1, X2)
are equivalent (they are both equivalent to the decreasing failure rate property of G). In the ensuing
analysis of (X1:2, X2:2), we concentrate on RTI and omit the analysis of the LTD property.

4.1. SI Property

As a main goal of the paper, we first aim to show that, for a pair (X1, X2) following a bivariate Schur-
constant model, one has that (X2:m |X1:m) is more SI than (X2 |X1). A more general and related result, for
a random vector X following an n-dimensional Schur-constant model (n> 2), will be presented at the
end of this subsection. We will need the following notation.

For z ∈ (0, 1), let bz = G
−1 (z), Zz = F−1

1:2 (z) = 1
2G

−1 (z).
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Recalling from Eq. (3.9) that H [s] (t) = P(X2 > t |X1 = s) = g(s+t)
g(s) , we have for s< t

H [ bz ] (t) =
g(G−1 (z) + t)

g(G−1(z))
. (4.20)

Using Eq. (4.18), we have for Zz < t

Ĥ[Zz ] (t) = P(X2:2 > t |X1:2 = Zz) =
g( 1

2G
−1 (z) + t)

g(G−1 (z))
. (4.21)

Theorem 4.1. Let (X1, X2) be a random vector with a Schur-constant survival function given by
Eq. (4.16). Then

(X2 |X1) ≺SI (X2:2 |X1:2) (4.22)

Proof. From the identity Eq. (4.20), we can obtain that

H−1[
bp
] (u) = g−1

(
u · g(G−1 (p))

)
− G

−1 (p)

by reminding that g is invertible since it is strictly decreasing.
From this, we can in turn write

Kp,q (u) = H [
bq
] (H−1[

bp
] (u))

= H [
bq
] (g−1

(
u · g

(
G

−1 (p)
))

− G
−1 (p)

)
=

g
(
G

−1 (q) − G
−1 (p) + g−1

(
u · g

(
G

−1 (p)
)))

g
(
G

−1 (q)
) . (4.23)

We now consider the identity Eq. (4.21), whence we obtain

Ĥ−1
[Zp ] (u) = g−1

(
u · g

(
G

−1 (p)
))

− 1
2

G
−1 (p)

and

K̂p,q (u) = Ĥ[Zq ]
(
Ĥ−1

[Zp ] (u)
)

=

g
(

1
2G

−1 (q) + g−1
(
u · g

(
G

−1 (p)
))

− 1
2G

−1 (p)
)

g(G−1 (q))

=

g
(

1
2

{
G

−1 (q) − G
−1 (p)

}
+ g−1

(
u · g

(
G

−1 (p)
)))

g
(
G

−1 (q)
) . (4.24)
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We are now ready to conclude our proof. Since g and G
−1

are decreasing and G
−1 (q) − G

−1 (p) is
non-negative for 0 ≤ q < p ≤ 1, it follows that for 0 ≤ q < p ≤ 1 and u ∈ (0, 1),

Kp,q (u) ≤ K̂p,q (u),

proving thereby that (X2 |X1) ≺SI (X2:2 |X1:2), since the obtained inequality is equivalent to the definition
of ≺SI as given in Section 2. �

Also recalling from Sections 2 and 3 that the condition (X2 |X1) SI is equivalent to g being log-convex
and that it means Kp,q (u) ≥ u (for 0 ≤ q < p ≤ 1, u ∈ (0, 1)), we get the following sufficient condition
for (X2:2 |X1:2) SI

Corollary 4.1. If g is log-convex, then X2:2 is stochastically increasing in X1:2.

We also point out that a sufficient and necessary condition for (X2:2 |X1:2) SI is easily obtained. In
view of the identity Eq. (4.18), we have in fact the following characterization.

Proposition 4.1. The condition (X2:2 |X1:2) SI holds if and only if the function g(s+t)
g(2s) is increasing in s,

for any t> s.

Remark 4.1. As it can be checked, the condition that the function g(s+t)
g(s) is increasing in s implies

that g(s+t)
g(2s) is increasing in s as well. Thus, Corollary 4.1 can be alternatively obtained by means of

Proposition 4.1.

Along the same lines as followed in the proof of Theorem 4.1, one can obtain the following result
about a random vector (X1, X2, . . . , Xn) with n> 2 and with a Schur-constant survival function.

Theorem 4.2. Let X be a random vector with a Schur-constant survival function given by Eq. (3.8).
Then for m = 2, . . . , n − 1,

(a)

(X2 |X1) ≺SI (X2:m |X1:m) , (4.25)

(b)

(X2:m |X1:m) ≺SI (X2:m+1 |X1:m+1) . (4.26)

Proof. For the pair (X1, X2), the identity

Kp,q (u) =
g
(
G

−1 (q) − G
−1 (p) + g−1

(
u · g

(
G

−1 (p)
)))

g
(
G

−1 (q)
)

has been shown in the proof of Theorem 4.1. In place of the pair (X1:2, X2:2), that has been moreover
considered therein, we here consider the pairs (X1:m, X2:m). In this respect, we now set

F1:m (x) = P(X1:m > x) = G(mx),
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whence

Zm,z = F−1
1:m (z) =

1
m

G
−1 (z) (4.27)

From Eqs. (3.10) and (4.27), we get,

Ĥm,
[
Zm,z

] (t) = P(X2:m > t |X1:m = Zm,z) =
g
(

1
mG

−1 (z) + (m − 1) t
)

g
(
G

−1 (z)
) .

and (
Ĥm,

[
Zm,z

] )−1
(u) = 1

m − 1

[
g−1

(
u · g

(
G

−1 (z)
))

− 1
m

G
−1 (z)

]
.

Whence

K̂ (m)
p,q (u) = Ĥm,

[
Zm,q

] ((Ĥm,
[
Zm,p

] )−1
(u)

)
=

g
(

1
mG

−1 (q) + g−1
(
u · g

(
G

−1 (p)
))

− 1
mG

−1 (p)
)

g
(
G

−1 (q)
)

=

g
(

1
m

{
G

−1 (q) − G
−1 (p)

}
+ g−1

(
u · g

(
G

−1 (p)
)))

g
(
G

−1 (q)
) .

Since G
−1 (q) − G

−1 (p) is non-negative for 0 ≤ q < p ≤ 1, one has

1
m

{
G

−1 (q) − G
−1 (p)

}
≤
{
G

−1 (q) − G
−1 (p)

}
and

1
m + 1

{
G

−1 (q) − G
−1 (p)

}
≤ 1

m

{
G

−1 (q) − G
−1 (p)

}
.

Using the fact that g is decreasing, we obtain

Kp,q (u) ≤ K̂ (m)
p,q (u)

K̂ (m)
p,q (u) ≤ K̂ (m+1)

p,q (u),

for 0 ≤ q < p ≤ 1, u ∈ (0, 1), m = 2, . . . , n − 1, proving thereby Eqs. (4.25) and (4.26), respectively. �

4.2. RTI and PQD properties

By combining Theorem 4.1 with the chains of implications (2.6) and (2.7), one immediately obtains the
following result.
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Corollary 4.2. Let (X1, X2) be a random vector with a Schur-constant survival function given by
Eq. (4.16). Then

(X2 |X1) ≺RTI(PQD) (X2:2 |X1:2) , (4.28)

and as a result,

^(X1, X2) ≤ ^(X1:m, X2:2), (4.29)

where ^(S, T) represents Spearman’s rho, Kendall’s tau, Gini’s coefficient, or indeed any other copula-
based measure of concordance satisfying the axioms of Scarcini [25].

By recalling from Section 3 that the condition (X2 |X1) RTI (PQD) is equivalent to G being decreasing
failure rate (new worse than used) and the fact that (X2 |X1) RTI (PQD) if and only if it is more RTI
(PQD) than a pair of independent random variables (X′

1, X′
2), we get the following sufficient condition

for (X2:m |X1:m) to be RTI (PQD).

Corollary 4.3. If G is decreasing failure rate (new worse than used), then the condition (X2:m |X1:m)
RTI (PQD) holds.

We can easily write down necessary and sufficient condition for the property (X2:m |X1:m) RTI to hold.
Using the formula (4.17), one can then obtain

Proposition 4.2. The condition (X2:2 |X1:2) RTI holds if and only if, for any t, the function L̂[s] (t) =

2G (s+t)−G (2t)
G (2s)

is increasing for s ∈ (0, t].

Remark 4.2. By computing the derivative of the function L̂[s] (t) and after some manipulations, the
implication G decreasing failure rate ⇒ (X2:2 |X1:2) RTI can also be proven directly, without using the
above Theorem 4.1 and the general implication SI ⇒ RTI.

Using the formula (4.19) and that being PQD means that the survival copula is greater then the copula
of independence Π(u, v) = u · v, we can easily write down a necessary and sufficient condition for the
property (X2:2 |X1:2) PQD to hold.

Proposition 4.3. The condition (X1:2, X2:2) PQD holds if and only if

2G
(
1
2

G
−1(u) + F−1

2:2(v)
)
− G

(
2F−1

2:2(v)
)
≥ uv, for F−1

1:2(u) =
1
2

G
−1(u) < F−1

2:2(v).

A different characterization of PQD for (X1:2, X2:2), which can of course be obtained by directly
applying the definition of PQD, is

2G(s + t) − G(2t) ≥ G(2s) ·
(
2G(t) − G(2t)

)
, for s < t.

4.3. Conclusions

For pairs of lifetimes X1, X2, jointly distributed according to TTE models characterized by survival
functions of the form (3.14), we present here a short discussion and, in particular, detail the implications
of results that have been obtained in the previous subsections. The function W is assumed to be twice
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differentiable, strictly decreasing, and convex, whereas R(x) is assumed to be increasing. Here, we use
the notation w(x) = W ′ (x).

As already observed in Section 3, X1 and X2 are identically distributed with a marginal survival
function P (X1 > x) = W (R(x)) and their survival copula is the Archimedean copula Ĉ(u, v) =

W
(
W−1 (u) + W−1(v)

)
.

We first remind that the dependence properties of PQD, RTI, and SI are copula-based and that, for
exchangeable variables, the copula of the order statistics is determined by the one of parent variables
(see, e.g., [21]). Thus, one can extend to (X1, X2) all the above dependence-type results valid for the
Schur-constant model characterized by a marginal survival function G(x) = W (x).

More explicitly, we can list the following claims about the pair (X1:m, X2:m)

1. For m = 2, . . . n, (X1:m, X2:m) �D (X1, X2) , where D stands for SI, RTI, and PQD.
2. If W(x) is DLR (decreasing failure rate, new worse than used), then (X1:m, X2:m) is SI (RTI, PQD).
3. (X1:2, X2:2) is SI if and only if the function w(s + t)/w(2s) is increasing for s ∈ (0, t].
4. (X1:2, X2:2) is RTI if and only if the function 2W (s+t)−W (2t)

W (2s) is increasing for s ∈ (0, t]
5. (X1:2, X2:2) is PQD if and only if

2W (s + t) − W (2t) ≥ W (2s) · (2W (t) − W (2t)) for s < t.

Related to PQD, Huang et al. [14] proved that if (X1, Y1), . . . , (Xn, Yn) is a random sample from
a bivariate distribution, which is PQD, then so are the pairs (Xi:n, Yj:n) built with the order statistics
X1:n ≤ · · · ≤ Xn:n, Y1:n ≤ · · · ≤ Yn:n, and 1 ≤ i < j ≤ n. Notice, however, that (Xi:n, Yj:n) cannot be
considered itself as a pair of order statistics from some parent variables. The latter result is thus different
from ours in item 1 above.

We furthermore observe that the conditions considered in the above items 3–5 could also be studied
as special properties of dependence, still for the pair (X1, X2). In this respect, it might be interest-
ing to combine those characterizations with the more general comparison results presented in [22].
It might also be interesting to check if the condition in item 5, it being weaker than PQD, could
be seen as a special property of weak dependence for (X1, X2) according to the theory developed by
Navarro et al. [23].

Very important and very well-known special models of the form (3.14), where the SI property obvi-
ously holds, are the frailty models. In this case, X1, X2 are conditionally independent given a positive
quantity Θ and Eq. (3.14) specifically becomes

S(x1, x2) =
∫ ∞

0
exp{−\ (R(x1) + R(x2)}Π(d\). (4.30)

Here, Θ can be considered as an unobservable quantity and Π can be seen as a prior distribution for it.
The remarkable case of R(x) = x and of Gamma distributions for Π gives rise to the bivariate Pareto
models.

The form (4.30) generally corresponds to the case when the survival function W : [0,∞) → (0, 1]
becomes the Laplace transform of the probability distribution Π:

W (x) =
∫ ∞

0
exp{−\ · x}Π(d\). (4.31)

In view of the well-known Bernstein Theorem, the formula (4.31) can hold true if and only if the
function W is completely monotonic, namely if and only if it is n-monotonic for any n = 1, 2, . . .. This
result has been analyzed several times, from several points of view. In particular, it can be looked at
from the viewpoint of the de Finetti-type theorems.
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In this paper, we essentially focused attention on dependence properties for pairs of variables and for
the pairs of their order statistics. For the multivariate case with n> 2, we observe that, when Eq. (4.31)
holds, the function

S(x1, . . . , xn) = W (R(x1) + · · · + R(xn) (4.32)

turns out to be the joint survival function of n lifetimes X1, . . . , Xn, conditionally independent given Θ

and with conditional survival function F (x |\) = exp{−\ · R(x)}. It is well known that this multivariate
model is very relevant for many applications.

Concerning in particular with the reliability field, where Θ takes the meaning of a common risk
parameter, this model permits to find explicit and clear formulas for the solution of several problems of
interest. See, in particular, the recent paper by Navarro and Mulero [20] and the references cited therein.

Notice that, in our paper, we used the term TTE model in a sense which is wider with respect to the
one commonly used in many other papers in the same field and in the paper Navarro and Mulero [20]
in particular.
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