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A pedagogical review of the vacuum retarded dipole model of pulsar
spin down
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Abstract
Pulsars are rapidly spinning highly magnetised neutron stars. Their spin period is observed to decrease with time. An early analytical model
for this process was the vacuum retarded dipole (VRD) by Deutsch (1955, AnAp, 18). This model assumes an idealised star and it finds that
the rotational energy is radiated away by the electromagnetic fields. This model has been superseded by more realistic numerical simulations
that account for the non-vacuum like surroundings of the neutron star. However, the VRD still provides a reasonable approximation and
is a useful limiting case that can provide some qualitative understanding. We provide detailed derivations of the spin down and related
electromagnetic field equations of the VRD solution. We also correct typographical errors in the general field equations and boundary
conditions used by Deutsch (1955, AnAp, 18).
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1. Introduction

Pulsars are highly magnetised rapidly rotating neutron stars that
emit electromagnetic radiation across almost the entire spectrum,
from radio to γ -rays (Travelle 2011). Because of the extreme mag-
netic and electric fields, the environment around a pulsar proves
to be interesting and is believed to be the main cause of a pul-
sar’s energy emission. This energy emission results in a decreasing
spin-rate for the neutron star. An analytical approximation for this
process is given by the Vacuum Retarded Dipole (VRD) model
which was originally derived by Deutsch (1955).

The derivations of the results in Deutsch (1955) are very
concise, with many details missing. The purpose of this review
article is to rederive the main results of Deutsch (1955) and in
doing so provide details on how this derivation takes place math-
ematically and physically. We also uncover three typographical
errors in Deutsch (1955), the most important of which is in our
Equation (31), the polar component of the electric field. It is
worth noting the first papers we found that mentioned the error
in the general field equations are Melatos (1997) and Michel &
Li (1999). However, they do not show the derivations for the
general field equations and how the typographical error is found.
A reasonably detailed derivation of the VRD solution, without the
typos, is shown in the textbook by Michel (1991). However, the
method used by Michel is different from Deutsch (1955). While
Deutsch (1955) uses methods outlined by Stratton (1941), Michel
just considers multipole expansions at an inclination and does not
derive the normalisations. Also the following working carried out
by us goes into greater detail for the derivations. In this review we
use methods outlined in Stratton (1941). In particular, we refer
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frequently to Chapters VII and VIII, which consider spherical
waves and radiation respectively. We use Griffiths (2017) as a
reference for standard electrodynamics theory.

In Section 2, we begin by outlying the definition of an ide-
alised star, along with fundamental equations that apply due to
this assumption, which include Maxwell’s equations. We also note
down the Alfvén theorem and a brief description of a vector field.
In Section 3, we define the magnetic field symmetry axis and its
associated coordinate system. The magnetic field is assumed to
take the form of a dipole about this axis. The transformation
between the two coordinate systems is shown and used to derive
the electromagnetic field boundary conditions in the rotation sym-
metry axis coordinates. In Section 4, we show the derivations for
the time-dependent and static components of the electromagnetic
fields using series expansions and matching coefficients to the
boundary conditions. In Section 5, we simplify the form of the
electromagnetic fields for a large radius, then the power and spin
down equations are derived.

2. The internal fields of an idealised star

For the VRD solution, we consider the electric and magnetic
fields of an idealised star. An idealised star is a star that is a
sharply bounded sphere, is isotropic, is perfectly conducting, and
has permittivity and permeability of a vacuum everywhere inside.
The boundary is not continuous but rather an immediate change
between the star’s medium and the surrounding vacuum. Which,
in the case of a real star is not true. However, it greatly simplifies
the situation.

2.1. Maxwell’s equation

The Maxwell equations in SI units are,

∇ · E= ρ

ε0
, (1)
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∇ ·H = 0, (2)

∇ × E= −μ0
∂H
∂t

, (3)

∇ ×H = J + ε0
∂E
∂t

, (4)

where E is the electric field,H is the magnetic field (related to B by
B=μ0H), ε0 is the permittivity of free space, and μ0 the perme-
ability of free space. H will typically be referred to as the H field.
In Deutsch (1955), there is a missing minus sign in his equivalent
of Equation (3). This is clearly a typo as he takes into account the
minus sign in later parts of his article.

2.2. The H field

Firstly, Deutsch (1955) describes the typical spherical polar coor-
dinates around the star’s axis of rotation, (r, θ , ϕ), with rotation
axis ω aligned with the z-axis and origin at the centre of the star.
Here r is the radius from the origin, θ is the angle from the pole
and ϕ is the azimuth angle measured counterclockwise from the
x-axis.

Let H(r, θ , ϕ, t) be an arbitrary solenoidal function within the
star. A solenoidal function is one for which the divergence is zero
at all points in the field (∇ ·H = 0). Deutsch (1955) states that a
necessary and sufficient condition that H be ‘frozen into’ the star
is that

H(r, θ , ϕ, t)= r0Hr(r, θ , λ)+ θ0Hθ (r, θ , λ)+ ϕ0Hϕ(r, θ , λ), (5)

where λ is an azimuthal coordinate measured from a meridian
fixed in the star, and r0, θ0 and φ0 are the unit vectors in the respec-
tive coordinate directions. That is the time and azimuthal angle ϕ
can be replaced by λ as the H field and the meridian move with
the star. The variable λ is defined more clearly in Equation (6) and
Figure 2b. Hr , Hθ and Hϕ give the magnitude of the field in each
basis vector’s direction. The concept of the magnetic field being
‘frozen into’ a medium comes from Alfvén’s Theorem (Roberts
2007).

2.2.1. Vector fields

As H is a vector field, at a particular point (r, θ , ϕ) in space, the
field can be represented as a vector with some magnitude in each
unit vector’s direction. In Deutsch (1955), the directions are given
by the subscript 0 terms, and themagnitudes are given by the func-
tions proceeding the unit vector terms. In polar coordinates, r0 is
the radial component, pointing away from the centre of the sphere.
The polar component is θ0, its direction is tangent to the polar
angle. Lastly, ϕ0 is the azimuthal component which has a direction
tangent to the azimuthal angle. This notation continues through-
out D55. However, we will here on forth elect to use r̂, θ̂ and ϕ̂ to
represent these components of the vector field. A visual represen-
tation of the unit vectors of a field in polar coordinates is shown
in Figure 1a. Hence, (5) in the notation used for the rest of this
review becomes,

H(r, θ , ϕ, t)=Hr(r, θ , λ) r̂+Hθ (r, θ , λ) θ̂ +Hϕ(r, θ , λ) ϕ̂.

3. The external field in vacuum

It is convenient to define a new set of polar coordinates (r,ψ , ν)
with axis e such that the magnetic field is symmetrical about e

(a)

(b)

Figure 1. (a) The unit vectors of a vector field at a point on a sphere in (r, θ , ϕ). (b) The
unit vectors of a vector field at a point on a sphere in (r,ψ , ν).

(known as the magnetic field symmetry axis). The axis e will be
in fixed rotation with the star due to Alfvén’s theorem. This new
coordinate system is shown in Figure 2a. The magnetic field sym-
metry here refers to, for a fixed r and ψ , the magnitude of the field
does not change as ν is changed and the direction does not change
relative to the local unit vectors. The angle between the rotation
axisω and e isχ . This relationship is shown in Figure 2b. The axis e
has polar angle χ and azimuthal angleωt in (r, θ , ϕ), e= (r, χ ,ωt),
at some time t during the rotation of the star. The azimuthal angle
λmentioned earlier is measured from e along ϕ, so that

λ= ϕ −ωt. (6)

We shall now consider a magnetic field which within the star
has the form,

H = R1(r)S1(ψ) r̂+ R2(r)S2(ψ) ψ̂ + R3(r)S3(ψ) ν̂, (7)

where Ri and Si are arbitrary functions of r and ψ respectively,
with i= 1, 2, or 3. Note that H has no dependence on ν for the
magnitude of the vectors and hence the magnitude is symmetri-
cal about axis e as stated earlier. In this situation Deutsch (1955)
assumes the interior magnetic field to be a dipole about e by taking
S1(ψ)= cosψ .
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(a)

(b)

Figure 2. The relation between the two coordinate systems (r, θ , ϕ) and (r,ψ , ν). x, y,
and z are the Cartesian coordinates. (a) The coordinate system (r,ψ , ν) portrayed on a
sphere. (b) The star’s rotation axis ω and the magnetic field’s symmetry axis e. χ is the
angle of inclination between ω and e, and λ is measured from the projection of e onto
the xy-plane.

3.1. Matrix transformation between vector field basis vectors

A vector transformation between the two coordinate systemsmen-
tioned is required whilst working out the boundary conditions for
the fields in both coordinate systems. It is convenient to figure out
the transformation now, then approach the boundary conditions.
Define the transformation matrix R:( r̂, θ̂ , ϕ̂)→ ( r̂, ψ̂ , ν̂) which
rotates between the two unit vector systems at a point in space.
Figure 1a and b show the two sets of basis vectors at the same
point. It is clear that r̂ points radially out, normal to the sphere’s
surface, in both figures. Hence, at the same point in space r̂ is the
same in both coordinate systems. However, the angular compo-
nents undergo a rotation as θ̂ , ϕ̂, ψ̂ and ν̂ all lie in a plane tangent
to the sphere. The rotation between these unit vectors will be a two
dimensional rotation about r̂. Let the angle of this rotation be ξ ,
the transformation matrix R is then

R=

⎛
⎜⎜⎜⎜⎝
1 0 0

0 cos ξ − sin ξ

0 sin ξ cos ξ

⎞
⎟⎟⎟⎟⎠ . (8)

This matrix transformation takes a basis of vectors at some point
in space from ( r̂, θ̂ , ϕ̂) and rotates them anticlockwise by an angle
ξ with r̂ as axis to the unit vectors ( r̂, ψ̂ , ν̂). To reverse this
transformation the angle of rotation is replaced by −ξ .

The angle ξ can be found in terms of already defined coordinate
parameters and values. This is done by considering triangles on
the surface of a sphere. The spherical triangle for this situation can
be found in Figure F.1b in Appendix F. Then from solutions of
spherical triangles (F2) and (F3) the following relationships can be
found,

sin ξ = sin χ sin λ
sinψ

,

cos ξ = cos χ − cosψ cos θ
sinψ sin θ

.
(9)

An interesting relationship that is obtained from the standard
spherical triangle relation (F1) is

cosψ = cos χ cos θ + sin χ sin θ cos λ, (10)

which will be required momentarily.

3.2. Boundary conditions of the fields

As the surface of the star is a rigid boundary between the interior
of the star and free space, the necessary components of the exter-
nal electromagnetic fields must satisfy the boundary conditions at
r = a (see Griffiths 2017). These boundary conditions are set by the
internal electromagnetic fields. From Equations (7.61) and (7.62)
of Griffiths (2017), the magnetic fields orthogonal to the surface
must be equal and the electric fields tangent to the surface must be
equal. Hence, using (7), the first condition at the surface of the star
that must be satisfied is,

Hext
r =Hint

r = R1(a)S1(ψ).

Next we look at the internal electric field. To do this we use
Ohm’s law from Griffiths (2017), Equation (7.2), that relates the
electric field and current density, J and is given by,

E+μ0V ×H = J
σ

(11)

where σ is the conductivity and V is the local velocity of rotation
of the star. Assuming σ → ∞ gives

E= −μ0V ×H. (12)

The velocity in ( r̂, θ̂ , ϕ̂) is

V =ω× r = rω sin θ ϕ̂. (13)

However, the vector field (7) must be converted from ( r̂, ψ̂ , ν̂)
to ( r̂, θ̂ , ϕ̂) so that V and H are defined on the same basis.
This is done by rotating (7) using (8). However, as the reverse
transformation is needed, the signs of R2,3 and R3,2 elements are
switched.

R(− ξ )H = R1(r)S1(ψ) r̂

+ [R2(r)S2(ψ) cos ξ + R3(r)S3(ψ) sin ξ ] θ̂

+ [−R2(r)S2(ψ) sin ξ + R3(r)S3(ψ) cos ξ ] ϕ̂.
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Applying the previous result to (12) with (13) and using
Figure F.1b of Appendix F we can find the E field inside the star,

E= −μ0V × (R(− ξ )H)

=μ0rω sin θ (R2(r)S2(ψ) cos ξ + R3(r)S3(ψ) sin ξ) r̂

−ωμ0rR1(r)S1(ψ) sin θ θ̂

+ 0 ϕ̂,

and evaluating this at r = a gives the tangential components as

Eθ = −ωμ0aR1(a)S1(ψ) sin θ ,

Eϕ = 0.

All but the third boundary condition match what Deutsch
(1955) obtained. There is a typographical error in Deutsch
(1955)’s boundary conditions (Deutsch’s Equation (10)), the
third condition should be written as Eext

ϕ = Eint
ϕ = 0 rather than

Eext
r = Eint

ϕ = 0.
A more useful form of the boundary conditions can be found.

In particular, the field equations are solved for when S1 = cosψ .
So by recalling (10), the boundary conditions are then

Hext
r =H int

r = R1(a)( cos χ cos θ + sin χ sin θ cos λ),
Eext
θ

= Eint
θ

= −ωμ0aR1(a)( cos χ cos θ + sin χ sin θ cos λ) sin θ

= −1
2
ωμ0aR1(a)( sin 2θ cos χ + (1− cos 2θ) sin χ cos λ),

Eext
ϕ

= Eint
ϕ

= 0. (14)

From the boundary conditions in the (r, θ , φ) coordinate sys-
tem, there is a static (time-independent) component and a time-
dependent component for the fields. The terms in (14) which
relate to the time-dependent component have a dependency on
λ, which depends on time from (6).

4. Derivation of general field equations

The general field equations for the VRD solution external to the
star are provided in the Appendix of Deutsch (1955). However,
with minimal explanation given in Deutsch (1955) about the
derivation of the field equations, we wish to show how they are
found. We use results found in Chapters VII and VIII of Stratton
(1941) for this section. Chapter VII proves beneficial in supply-
ing general solutions to the vector wave equation, which must be
satisfied by the time evolving electromagnetic fields around the
neutron star. We apply these solutions to the neutron star situ-
ation by firstly considering the propagation factor of the waves
outside the star. In Stratton (1941), on p. 392, the propagation
factor (complex wavenumber) is given as,

k2 = εμω2 + iσμω, (15)

and as we are now considering the fields external of the star, in a
vacuum, ε = ε0, μ=μ0, σ = 0 and c= 1/√μ0ε0. Hence,

k=ω/c. (16)

Then for convenience define,
ρ = kr = (ω/c)r,

α = ka= (ω/c)a,
(17)

where ω is the rotational velocity of the star, c the speed of light,
and a is the radius of the star. Here ρ and α are unitless numbers.
A trivial relationship that will be required is

∂

∂ρ
= ω

c
∂

∂r
.

Next consider the EM fields surrounding the star in two parts,
a static time-independent component and a time-dependent com-
ponent, where the complete field will be the linear combination of
the two components (Griffiths 2017). The time-independent com-
ponent will be axially symmetric about the axis ω and hence have
no ϕ dependence (m= 0,mwill be defined clearer shortly). Whilst
the time-dependent component will be non-axially symmetric and
hence have a dependence on ϕ (m �= 0). This can be expressed as

H =Hstatic(r, θ)+Htime-dependent(r, θ , λ),

E= Estatic(r, θ)+ Etime-dependent(r, θ , λ).
We first consider the time-dependent component in the follow-

ing section on the wave solution. Then use a multipole expansion
to provide the static component.

4.1. Wave solution

Due to the rotating nature of the magnetic field symmetry axis
around the star’s axis of rotation, the vector fields E and H satisfy
the same vector differential wave equation from Stratton (1941),
Section 7.1, Equation (1), which is given as

∇2C −με
∂2C
∂t2

−μσ
∂C
∂t

= 0, (18)

where C represents either vector E or H. We can express E and H
as a series of solutions Mn and Nn which satisfy the vector differ-
ential wave Equation (18) for C. From Stratton (1941), Section 7.1,
Equation (12) this representation is,

E= −
∑
n

(
anMn + bnNn

)
,

H = − k
iωμ0

∑
n

(
anNn + bnMn

) (19)

where Mn and Nn have more recently been referred to as the
Magnetic and Electric harmonics respectfully. In particular, the
functions are expressed asMn = ∇ × aψ and Nn = (1/k)∇ ×Mn,
where a is a constant vector and ψ is a scalar function satisfy-
ing ∇2ψ + k2ψ = 0, which is known as the Helmholtz equation.
The derivation for the general solutions of Mn and Nn is pro-
vided in Stratton (1941) and the results are quoted below. These
solutions will also contain a time dependence. Due to the linear-
ity of the wave equation, the time dependency can be split off
such that M=me−iωt and N= ne−iωt without loss of generality.
Then from Stratton (1941), Section 7.11, Equations (11) and (12),
and rewriting them in a slightly more useful form with ρ instead
of kr,

m e
o m n = ∓ m

sin θ
h(1)n (ρ)Pm

n ( cos θ)
sin
cos

(mϕ) θ̂

− h(1)n (ρ)
∂Pm

n
∂θ

cos
sin

(mϕ) ϕ̂,
(20)

n e
o m n =n(n+ 1)

ρ
h(1)n (ρ)Pm

n ( cos θ)
cos
sin

(mϕ) r̂

+ 1
ρ

∂

∂ρ

[
ρ h(1)n (ρ)

] ∂
∂θ

Pm
n ( cos θ)

cos
sin

(mϕ) θ̂

∓ m
ρ sin θ

∂

∂ρ

[
ρ h(1)n (ρ)

]
Pm
n ( cos θ)

sin
cos

(mϕ) ϕ̂,

(21)
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where h(1)n is the spherical Bessel function of the third kind (refer to
Appendix C), Pm

n ( cos θ) are the associated Legendre polynomials
(refer to Appendix D), and m and n are associated to a particular
solution to the Helmholtz equation. In particular, m defines the
azimuthal dependence of the E and H fields. Whilst n controls the
polar dependence. These functions (20) and (21) are now known
as vector spherical harmonics. The subscript e or o define the even
and odd solution, this chooses the sign of some terms and whether
the trigonometric function for ϕ is sin or cos. From here on h(1)n
will be referred to as hn. However, Deutsch (1955) does not use
the even-odd notation from Stratton (1941) but rather Deutsch
(1955)multiplies the function by a complex exponential then takes
the real part of the result to give the wave solutions. This can be
expressed as an operator that first multiplies a function f (x) by
eimϕ , then takes the real part of the result,

f (x)
cos
sin

(mϕ)= 	(f (x)eimϕ),

∓f (x)
sin
cos

(mϕ)= −	(f (x)ieimϕ),
(22)

where f (x) may be complex-valued function and 	 denotes the
operator which returns the real part of an expression. The opera-
tion (22) essentially selects cos (mϕ) or sin (mϕ) depending on the
complex-valued nature of f (x).

We wish to solve for the field equations in polar coordinates
around the rotation axis ω. Due to the dependence of ϕ in our
electromagnetic boundary conditions (14) only being cos (ϕ) and
sin (ϕ), we are limited to m= 1 for our Equations (20) and (21).
Otherwise terms which contain cos (mϕ) and sin (mϕ), where
m �= 1, will appear in the solutions of (19) and cause disagreement
of the external and internal electromagnetic fields at the surface
of the star. By also comparing the series expression (19) and the
boundary conditions (14) we see that if a trigonometric function of
θ does not appear in the boundary conditions, its weighting coef-
ficient will be zero (as will be noticed in the derivations shortly).
Hence, it is apparent from inspection of the boundary conditions
and the Associated Legendre Polynomials that only n= 1 and
n= 2 are required. So evaluating (20) and (21) for m= 1, n= 1
and n= 2 and including the new notation from (22) gives,

m1,1 = ih1(ρ)eiϕ θ̂ − h1(ρ) cos θeiϕ ϕ̂,

m1,2 = 3ih2(ρ) cos θeiϕ θ̂ − 3h2(ρ) cos 2θeiϕ ϕ̂,

n1,1 = 2
h1(ρ)
ρ

sin θeiϕ r̂+ 1
ρ
(ρh′

1(ρ)+ h1(ρ)) cos θeiϕ θ̂

+ i
ρ
(ρh′

1(ρ)+ h1(ρ))eiϕ ϕ̂,

n1,2 = 9
h2(ρ)
ρ

sin 2θeiϕ r̂+ 3
ρ
(ρh′

2(ρ)+ h2(ρ)) cos 2θeiϕ θ̂

+ 3i
ρ
(ρh′

2(ρ)+ h2(ρ)) cos θeiϕ ϕ̂, (23)

where we have neglected the operator that extracts the real part
of the result. This will be added during the calculation for the
coefficients in (19).

4.2. Multipole expansion

A static field symmetric about the rotation axis can be expressed
using a multipole expansion. Upon inspection of the static terms
in the boundary conditions (14) and the multipole expansions

given in Griffiths (2017) it can be seen, with some working, that
only a magnetic dipole and electric quadrupole are present in this
situation based on the conditions that multipole terms are lin-
early independent of each other and that the boundary conditions
will uniquely determine the fields (electromagnetism uniqueness
theorem, see Griffiths 2017).

4.2.1. Magnetic dipole

We can begin by taking a magnetic dipole and check whether it
satisfies theH field boundary condition from (14). From Equation
(5.88) of Griffiths (2017), a magnetic dipole is given as,

Hdip(r)= m
4πr3

(
2 cos θ r̂+ sin θ θ̂

)
, (24)

wherem is the magnetic dipole moment of the field. Now compare
the radial component of (24) to the static term of the radialH field
boundary condition from (14).

m
4πa3

2 cos θ = R1(a) cos χ cos θ .

We see that the function depending on θ in the boundary condi-
tion is satisfied fully by the dipole term. Hence, a magnetic dipole
is the only static term present due to the boundary conditions. This
implies the ratiom/(4π) will satisfy,

m
4π

= 1
2
a3R1(a) cos χ .

Therefore, the static component of the magnetic field will be

Hstatic(r)= 1
2
a3

r3
R1(a) cos χ

(
2 cos θ r̂+ sin θ θ̂

)
. (25)

4.2.2. Electric quadrupole

We begin by assuming the solution for the static electric field to
be a quadrupole, after which we show that it is the only com-
ponent required to satisfy the boundary conditions due to the
dependency on θ . From Griffiths (2017), Equation (3.65), the
quadrupole potential term is

Vquad(r)= B2

r3
1
2
(
3 cos2 θ − 1

)
.

where B2 is the weighting coefficient from the series expansion in
Griffiths (2017).

From Equation (2.23) of Griffiths (2017), the electric field is the
negative gradient of the potential. Hence, the polar component of
the E field is

Equad, θ = −1
r
∂V
∂θ

= B2

r4
3 cos θ sin θ .

The functions depending on the variable θ match those of
the boundary condition (14). Therefore, the boundary condition
only requires the static component of the electric field to be a
quadrupole. Comparing the above result to (14) we can uniquely
determine B2 for the situation,

B2

a4
3 cos θ sin θ = −ωμ0aR1(a) cos χ cos θ sin θ ,

=⇒ B2 = −1
3
ωμ0a5R1(a) cos χ .
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and on applying the gradient function to the potential in spherical
coordinates (see Appendix E),

Equad, r = −∂V
∂r

= −1
2
ωμ0a

a4

r4
R1(a) cos χ

(
3 cos2 θ − 1

)
,

Equad, θ = −1
r
∂V
∂θ

= −ωμ0aR1(a)
a4

r4
cos χ cos θ sin θ ,

Equad, ϕ = − 1
r sin θ

∂V
∂ϕ

= 0.

The trigonometric identities 3 cos2 θ − 1= 1
2 (3 cos 2θ + 1) and

cos θ sin θ = 1
2 sin 2θ , can be used to write the quadrupole terms

in a similar form as Deutsch (1955),

Equad, r = −1
4
ωμ0a

a4

r4
R1(a) cos χ (3 cos 2θ + 1) ,

Equad, θ = −1
2
ωμ0aR1(a)

a4

r4
cos χ sin 2θ ,

Equad, ϕ = 0.

(26)

4.3. Derivation of general field equations

We are now in a position to derive the equations in the Appendix
of Deutsch (1955). The general field equations will be the sum
of the multipoles derivations (25) and (26), and the series
expressions (19),

H =Hdip − 1
icμ0

(a1n1,1 + a2n1,2 + b1m1,1 + b2m1,2)e−iωt ,

E= Equad − (a1m1,1 + a2m1,2 + b1n1,1 + b2n1,2)e−iωt ,
(27)

where a1, a2, b1 and b2 are constants to be determined by the
boundary conditions (14). These constants may not necessarily be
real valued.

4.3.1. H field radial component

By substituting the radial components from (23) and (25) into (27)
we have,

Hr =a3

r3
R1(a) cos χ cos θ

− 1
icμ0

(
2a1

h1(ρ)
ρ

sin θeiϕ + 9a2
h2(ρ)
ρ

sin 2θeiϕ
)
e−iωt ,

which, when r = a (ρ = α), will be equal to the boundary con-
dition on Hr from (14). We can use eiϕe−iωt = ei(ϕ−ωt) = eiλ to
write the exponent in terms of λ and that eiλ = cos λ+ i sin λ.
The constants can then be determined by matching trigonometric
functions. For sin θ ,

	
(

− 1
icμ0

a1
h1(α)
α

eiλ
)

= R1(a) sin χ cos λ,

where the 	 operator has come from (22). Hence, a1 must be
purely imaginary to cancel out i in the bottom of the fraction so
that cos λ is obtained instead of sin λ.

− 2
icμ0

a1
h1(α)
α

cos λ= R1(a) sin χ cos λ,

=⇒ a1 = −R1(a)icμ0 sin χ
2

α

h1(α)
. (28)

As there is no sin 2θ term in the boundary condition, we will
have a2 = 0. The gives the radial component of the H field as the
real part of

Hr = R1(a)
(
a3

r3
cos χ cos θ + α

h1(α)
h1(ρ)
ρ

sin χ sin θeiλ
)
.

4.3.2. E field polar component

Now considering the Eθ component which can be found by comb-
ing the θ̂ components of results (23) and (26) into (27),

Eθ = − 1
2
ωμ0aR1(a)

a4

r4
cos χ sin 2θ − a1ih1(ρ)eiϕe−iωt

− b1
1
ρ
(ρh′

1(ρ)+ h1(ρ)) cos θeiϕe−iωt

− b2
3
ρ
(ρh′

2(ρ)+ h2(ρ)) cos 2θeiϕe−iωt ,

and when r = a this is equal to the Eθ component from (14). Once
again, matching functions of θ and using eiϕe−iωt = eiλ, we find
that for the term excluding any function of θ ,

	
(

− cμ0R1(a)
2

α

h1(α)
h1(α) sin χeiλ

)

= −1
2
ωμ0aR1(a) sin χ cos λ,

then it is convenient to change α to (ω/c)a,

−ωμ0aR1(a)
2

sin χ cos λ= −1
2
ωμ0aR1(a) sin χ cos λ,

the LHS and RHSmatch, which validates the result for a1 found in
(28). As the boundary condition does not contain any cos θ terms,

−b1
1
ρ
(ρh′

1(ρ)+ h1(ρ)) cos θeiλ = 0,

=⇒ b1 = 0.
(29)

Lastly, the cos 2θ terms,

	
(

−b2
3
α
(αh′

2(α)+ h2(α)) cos 2θeiλ
)

= −1
2
ωμ0aR1(a) cos 2θ sin χ cos λ,

again we want cos λ instead of sin λ so b2 must be purely real.
Hence,

−b2
3
α
(αh′

2(α)+ h2(α)) cos 2θ cos λ

= 1
2
ωμ0aR1(a) cos 2θ sin χ cos λ,

=⇒ b2 = −1
2
ωμ0aR1(a)

1
3

α

αh′
2(α)+ h2(α)

sin χ . (30)

All the results for the constants thus far lead to,

Eθ =1
2
ωμ0aR1(a)

[
−a4

r4
cos χ sin 2θ

+
(

α

αh′
2(α)+ h2(α)

ρh′
2(ρ)+ h2(ρ)

ρ
cos 2θ − h1(ρ)

h1(α)

)
sin χeiλ

]
.

(31)
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Deutsch (1955) has a typographical error in his Appendix for
Equation (31). The α

αh′
2(α)+h2(α)

ρh′
2(ρ)+h2(ρ)

ρ
term is instead written

as αh
′
2(α)+h2(α)

α

ρ

ρh′
2(ρ)+h2(ρ) .

4.3.3. E field azimuthal component

The final boundary condition is on the Eϕ component. We com-
bine the results from above with azimuthal component of (27),
which yields

Eϕ = −
(

−a1h1(ρ) cos θ + b2
3i
ρ
(ρh′

2(ρ)+ h2(ρ)) cos θ
)
eiλ

=1
2
ωμ0aR1(a)

(
α

αh′
2(α)+ h2(α)

ρh′
2(ρ)+ h2(ρ)

ρ
− h1(ρ)

h1(α)

)
i sin χ cos θeiλ,

and clearly at r = a (ρ = α) this reduces to zero and matches
the required boundary condition Eϕ(a, θ , ϕ)= 0, implying that
the values for the constants are consist with all the boundary
conditions in this situation.

4.3.4. Remaining vector field components

Noting that the expressions for the constants a1 and b2 can be
rewritten using α = (ω/c)a, the field components are given by the
real part of the following,

Hθ = 1
2
a3

r3
R1(a) cos χ sin θ − 1

icμ0

(
a1
ρh′

1(ρ)+ h1(ρ)
ρ

cos θ + b2(3ih2(ρ) cos θ)
)
eiλ

= 1
2
R1(a)

[
a3

r3
cos χ sin θ +

(
α

h1(α)
ρh′

1(ρ)+ h1(ρ)
ρ

+ 1
c
ωa

α

αh′
2(α)+ h2(α)

h2(ρ)
)
sin χ cos θeiλ

]

= 1
2
R1(a)

[
a3

r3
cos χ sin θ +

(
α

h1(α)
ρh′

1(ρ)+ h1(ρ)
ρ

+ α2h2(ρ)
αh′

2(α)+ h2(α)

)
sin χ cos θeiλ

]
,

Hϕ = − 1
icμ0

(
a1

i
ρ
(ρh′

1(ρ)+ h1(ρ))− 3b2h2(ρ) cos 2θ
)
eiλ

= 1
2
R1(a)

(
i
α

h1(α)
ρh′

1(ρ)+ h1(ρ)
ρ

sin χ − 1
i

α2

αh′
2(α)+ h2(α)

h2(ρ) sin χ cos 2θ
)
eiλ

= 1
2
R1(a)

(
α

h1(α)
ρh′

1(ρ)+ h1(ρ)
ρ

+ α2

αh′
2(α)+ h2(α)

h2(ρ) cos 2θ
)
i sin χeiλ ,

Er = − 1
4
ωμ0a

a4

r4
R1(a) cos χ (3 cos 2θ + 1)− 9b2

h2(ρ)
ρ

sin 2θeiλ

= 1
2
ωμ0aR1(a)

(
− 1
2
a4

r4
cos χ(3 cos 2θ + 1)+ 3

α

αh′
2(α)+ h2(α)

h2(ρ)
ρ

sin χ sin 2θeiλ
)
.

The components of the general field equations are gathered in
Appendix A for easier reference. A plota of the magnetic field is
shown in Figure 3.

5. The radiation fields of the star

Far from a star, the electromagnetic fields take on their radiation
form, allowing us to find the fields which ‘leak’ out of the magne-
tosphere and propagate away from the electromagnetic source. To
find the radiation form of the electromagnetic fields we consider
the limit in which r � c/ω (Griffiths 2017). Hence, from (17) if
r � c/ω then ρ� 1. Then the limit of the spherical Bessel func-
tions when ρ is large (C4) can be substituted into (A1). However,
we find that α = (ω/c)a 1, which means h1(α) can be approx-
imated using (C3). Using c� 3× 108ms−1 and the typical star
values given by Deutsch (1955),

a� 109m, ω� 10−5rad s−1,
aFor animations of the solution see https://github.com/jsa113/General_Field_

Equation_gifs.

Figure 3. The magnetic field from (A1) using typical star parameters is plotted as
streamlines showing the direction and the log magnitude of the magnetic field
strength represented by the colour. Directly vertical is the star’s rotation axis, and the
magnetic field axis is set as χ = π/4. Note the dashed red circle is the light cylinder,
where ρ = 1 or r= c/ω.

we get α � 3× 10−5  1. While a typical neutron star has

a� 104m, ω� 2π rad s−1,

which gives α � 2× 10−4  1. We can also express this as a scaled
equation,

α = 2× 10−4
( a
104m

) ( ω

2π rad s−1

)

The fastest recorded neutron star has a� 1.6× 104m and ω�
4.5× 103rad s−1 (Hessels et al. 2006). We see from these values
that α � 0.2< 1. Though this limit is not as strong as slower neu-
tron stars, it shows an appreciable upper limit that is still less than
one. Suggesting that taking the approximation α 1 in the fol-
lowing derivations is valid for slower stars but can still apply to
faster stars, but with some error.

5.1. Radiation form derivation

To derive the radiation form we take the limit in which r � c/ω.
In taking this limit, we only consider terms that will be of the
largest magnitude for each electromagnetic field component,
neglecting terms containing high powers of r in their denom-
inator. Recall 	 denotes the real part of an expression from
(22) and λ= ϕ −ωt from (6). Working firstly on the H field’s
radial component, after neglecting smaller magnitude terms and
substituting the limit forms of h1(ρ) and h1(α) in, Hr becomes

Hr � 	
(
R1(a)

eiρ

ρ2
α3

i
sin χ sin θeiλ

)

= 	
(
R1(a)

ω

c
a3

r2
1
i
sin χ sin θei(λ+ρ)

)

= 	
(
R1(a)

ω

c
a3

r2
1
i
sin χ sin θ [cos (λ+ ρ)+ i sin (λ+ ρ)]

)

= ω

c
a3R1(a)

1
r2

sin χ sin θ sin
[
ω
( r
c

− t
)

+ ϕ
]
,

where λ+ ρ = ϕ −ωt +ωr/c=ω(r/c− t)+ ϕ. Repeating the
same limit and substituting the approximations in for the polar
component yields,
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Hθ � 	
(
1
2
R1(a)

[(
α2

α 9i
α4

− 3i
α3

)
ieiρ

ρ
+ α3

−i

(−ieiρ

ρ
− eiρ

ρ2

)]
sin χ cos θeiλ

)

= 	
(
1
2
R1(a)

[
α5

6ρ
+ α3

ρ
+ α3

iρ2

]
sin χ cos θei(λ+ρ)

)
.

The term with the largest magnitude in the line above is the α3/ρ

term as α 1 and ρ� 1. So,

Hθ � 	
(
1
2
R1(a)

α3

ρ
sin χ cos θei(λ+ρ)

)

= 	
(
1
2
R1(a)

α3

ρ
sin χ cos θ [cos (λ+ ρ)+ i sin (λ+ ρ)]

)

= 1
2
ω2

c2
a3R1(a)

1
r
sin χ cos θ cos

[
ω
( r
c

− t
)

+ ϕ
]
.

The azimuthal component has similar intermediate steps as above.
Hence skipping intermediate working gives,

Hϕ � 	
(
1
2
R1(a)

[(
α2

9i
α4

− 3i
α3

)
ieiρ

ρ
cos 2θ − α3

i

(−ieiρ

ρ
+ −eiρ

ρ2

)]
i sin χeiλ

)

= 	
(
1
2
R1(a)

[(
α6

9− 3α

)
1
ρ
cos 2θ + α3

ρ
+ α3

iρ2

]
i sin χei(λ+ρ)

)
.

The largest term in the line above is the α3/ρ term. Removing all
smaller magnitude terms yields,

Hϕ � 	
(
1
2
R1(a)

α3

ρ
i sin χei(λ+ρ)

)

= 1
2
ω2

c2
a3R1(a)

1
r
sin χ sin

[
ω
( r
c

− t
)

+ ϕ
]
.

Now consider the E field. Using similar intermediate steps and
the same principle as before where the largest order term is the
only term considered and the limit forms of h1(ρ) and h1(α) are
used. The E field’s radial component will be,

Er � 	
(
1
2
ωμ0aR1(a)3

(
α

α 9i
α4 − 3i

α3

)
ieiρ

ρ2 sin χ sin 2θeiλ
)

= 	
(
3
2
ωμ0aR1(a)

α4

6
1
ρ2 sin χ sin 2θei(λ+ρ)

)

however, due to the α4/ρ2 term, the radial component is equiva-
lently equal to zero when compared to the other E field compo-
nents, this implies that Er ≈ 0. The polar component is,

Eθ � 	
⎛
⎝ 1
2
ωμ0aR1(a)

⎡
⎣α4

6i

⎛
⎝−eiρ + ieiρ

ρ

ρ

⎞
⎠ cos 2θ − α2

iρ
eiρ

⎤
⎦ sin χeiλ

⎞
⎠

= 	
(
1
2
ωμ0aR1(a)

[
α4

6i

(−1
ρ

+ i
ρ2

)
cos 2θ − α2

iρ

]
sin χei(λ+ρ)

)

� − 1
2
ω2μ0
c

a3R1(a)
1
r
sin χ sin

[
ω
( r
c

− t
)

+ ϕ
]
.

By using some of the previous intermediate steps from above, the
azimuthal component is,

Eϕ � 	
(
1
2
ωμ0aR1(a)

[
α4

6i

(−1
ρ

+ i
ρ2

)
− α2

iρ

]
i sin χ cos θei(λ+ρ)

)

� −1
2
ω2μ0
c

a3R1(a)
1
r
sin χ cos θ cos

[
ω
( r
c

− t
)

+ ϕ
]
.

The results of the radiation field equations are gathered in
Appendix B as Equations (B1) and (B2). The results obtained here
match the results obtained by Deutsch (1955).

These results are interesting as we can see the retarded time
affect, ( rc − t), on the magnetic field in the radiation zone. That

is we would not expect an instantaneous change to the electro-
magnetic fields when it is far from the surface from the star as
electromagnetic ‘news’ travels at the speed of light (Griffiths 2017).
Instead we have a delayed affect which depends on the distance
from the star.

5.2. Power equation—Deutsch (1955) Equation (15)

The power P passing through a surface is the integral of the
Poynting vector (S= E×H) over said surface. From Griffiths
(2017), Equation (11.1),

P(r, t)=
∮

S · da. (32)

This is the power passing through the surface, so a negative must
be introduced to give the rate at which energy is radiated away
from the system,

−dW
dt

=
∮

S · da. (33)

For the E and H fields Griffiths (2017) advocates taking the
fields when r is very large, when they are in radiation form.
Therefore, by taking the field Equations (B1) and (B2) (which
apply when r � c/ω) leads to the Poynting vector,

S=

⎛
⎜⎜⎝

0

Eθ
Eϕ

⎞
⎟⎟⎠×

⎛
⎜⎜⎝
Hr

Hθ

Hϕ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
EθHϕ − EϕHθ

EϕHr

EθHr

⎞
⎟⎟⎠

and by also taking the surface to be a sphere of radius r, this implies
that Sr ‖ a, Sθ ⊥ a and Sϕ ⊥ a, as a is the normal of the surface (see
Figure 1a). So (33) becomes,

−dW
dt

=
∫ 2π

0

∫ π

0
(EθHϕ − EϕHθ )r2 sin (θ) dθ dϕ.

Upon applying expressions for the H and E fields from (B1) and
(B2) we get,

−dW
dt

=
∫ 2π

0

∫ π

0

1
4
ω4μ0

c3
a6R2

1(a) sin
2 (χ)

{
sin2

[
ω
( r
c

− t
)

+ ϕ
]

+ cos2 (θ) cos2
[
ω
( r
c

− t
)

+ ϕ
]}

sin (θ) dθ dϕ.
(34)

Now we evaluate the integrals over the functions that depend
on θ and ϕ. The double integral can firstly be expressed as,∫ 2π

0

∫ π

0
sin (θ) sin2

[
ω
( r
c

− t
)

+ ϕ
]

+ sin (θ) cos2 (θ) cos2
[
ω
( r
c

− t
)

+ ϕ
]
dθ dϕ,

(35)

and using the integration identities,∫ 2π

0
sin (θ) dθ = 2,∫ 2π

0
sin (θ) cos2 (θ) dθ = 2

3
,∫ π

0
sin2

[
ω
( r
c

− t
)

+ ϕ
]
dϕ

=
∫ π

0
cos2

[
ω
( r
c

− t
)

+ ϕ
]
dϕ = π ,
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which leads to the integral (35) yielding 8π/3. On combining this
result with (34) we get

−dW
dt

= 2πω4μ0

3c3
a6R2

1(a) sin
2 (χ). (36)

This is the same result obtained by Deutsch (1955) in his Equation
(15). The RHS is always positive. Hence, dW/dt must always be
negative. That is, energy is always being radiated away from the
star. The energy that is radiated comes from the rotational kinetic
energy causing the star’s spin down.

5.2.1. Spin down rate—Deutsch (1955) Equation (16)

To derive the spin down rate of a star in the VRD solution, we
require two standard relationships (see for example Moebs, Ling,
& Sanny 2016, Equations (10.31) and (11.8)),

τ = dL
dt

,
dW
dt

= P = τ ·ω, =⇒ dW
dt

= dL
dt

·ω,
where L is the angular momentum and τ is the torque. As the
angular velocity and the angular momentum are in the same
direction, we can rearrange the equation above to become,

dL
dt

= ω

‖ω‖2
dW
dt

,

which is the result obtained by Deutsch (1955).
However, another typo is present in Deutsch (1955). It is not

obviously shown that his ω is actually a vector and that the ω in
the bottom of the fraction is the norm of ω. Explaining why he has
ω/ω2 rather than just 1/ω. Lastly, Deutsch (1955) displays it with
a negative so it can be compared easier with (36),

−dL
dt

= ω

‖ω‖2
(

−dW
dt

)
. (37)

It can be seen from this equation that the angular momentum also
decreases with time. The star will be brought to rest by its own
radiation as Deutsch (1955) states.

6. Conclusion

By considering an idealised star and assuming a dipolar form
for the internal magnetic field, the general field equations of the
electromagnetic fields external of the star were found analytically.
These general field equations were then able to be reduced to
their radiation limit (r � c/ω). From the radiation form, the
relationship for the power radiated by the rotating magnetic field
was found.

It was found that the power equation matches the equation
found in Deutsch (1955) and the derivation for which is shown in
this review article for scrutiny. However, a typo appears in Deutsch
(1955)’s general field equations. In particular, the Eθ (31) com-
ponent appears to evaluate the wrong fraction at α. This error
in Deutsch (1955) causes trouble when reducing the general field
equations to their radiation form. When using the Eθ compo-
nent found in this review article the reduction to radiation form
matches Deutsch (1955).

A plot of the magnetic field using the general field equations
was also produced, showing the summation of the magnetic dipole
and the wave solution. This generalises a similar plot given in
Deutsch (1955) which was zoomed in around the r  c/ω region.

A 1969 paper by Goldreich and Julian argues that a pulsar
cannot be surrounded by a vacuum but rather a magnetosphere
containing plasma (Goldreich & Julian 1969). A related approach
can be taken when estimating the power equation. The Force-Free

(FF) magnetosphere, which is the solution to Maxwell’s Equations
for a rotating star with a dipole field. It ignores the plasma pres-
sure and requires that the electric field parallel to the magnetic
field is zero everywhere (Contopoulos, Kazanas, & Fendt 1999).
This solution requires approximations just like the VRD solution.
The most realistic way is to use numerical simulations. The results
fromKalapotharakos et al. (2018) find their power equations rang-
ing from the near FF solution to near the VRD solution given
in Equation (36). The VRD solution proves to be an interesting
limiting case of numerical simulations.

The VRD solution discussed in this review article has been
extended in a number of ways. For example, general relativistic
corrections to the Deustch solution can be added (Rezzolla et al.
2001; Pétri 2013). Also, considering an electromagnetic field that
consists of more multipole terms than just a dipole adds extra cor-
rection terms that are potentially required to match reality (Pétri
2015; Bonazzola, Mottez, & Heyvaerts 2020).
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Appendix A. General Field Equations
The results of the general field equations found in Section 4 are
gathered here for reference. The fields external a star for the VRD
solution is the real part of the following,

Hr = R1(a)
(
a3

r3
cos χ cos θ + α

h1(α)
h1(ρ)
ρ

sin χ sin θeiλ
)
,

Hθ = 1
2
R1(a)

[
a3

r3
cos χ sin θ +

(
α

h1(α)
ρh′

1(ρ)+ h1(ρ)
ρ

+ α2

αh′
2(α)+ h2(α)

h2(ρ)
)
sin χ cos θeiλ

]
,

Hϕ = 1
2
R1(a)

(
α

h1(α)
ρh′

1(ρ)+ h1(ρ)
ρ

+ α2

αh′
2(α)+ h2(α)

h2(ρ) cos 2θ
)
i sin χeiλ ,

Er = 1
2
ωμ0aR1(a)

(
− 1
2
a4

r4
cos χ(3 cos 2θ + 1)+ 3

α

αh′
2(α)+ h2(α)

h2(ρ)
ρ

sin χ sin 2θeiλ
)
,

Eθ = 1
2
ωμ0aR1(a)

[
− a4

r4
cos χ sin 2θ +

(
α

αh′
2(α)+ h2(α)

ρh′
2(ρ)+ h2(ρ)

ρ
cos 2θ − h1(ρ)

h1(α)

)
sin χeiλ

]
,

Eϕ = 1
2
ωμ0aR1(a)

(
α

αh′
2(α)+ h2(α)

ρh′
2(ρ)+ h2(ρ)

ρ
− h1(ρ)

h1(α)

)
i sin χ cos θeiλ .

(A1)
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Appendix B. Radiation Field Equations

The results of the radiation field equations found in Section 5 are
gathered here for reference. The magnetic field when r � c/ω is,

Hr = ω

c
a3R1(a)

1
r2

sin χ sin θ sin
[
ω
( r
c

− t
)

+ ϕ
]
,

Hθ = 1
2
ω2

c2
a3R1(a)

1
r
sin χ cos θ cos

[
ω
( r
c

− t
)

+ ϕ
]
,

Hϕ = 1
2
ω2

c2
a3R1(a)

1
r
sin χ sin

[
ω
( r
c

− t
)

+ ϕ
]
.

(B1)

The electric field when r � c/ω is,

Er = 0,

Eθ = −1
2
ω2μ0

c
a3R1(a)

1
r
sin χ sin

[
ω
( r
c

− t
)

+ ϕ
]
,

Eϕ = −1
2
ω2μ0

c
a3R1(a)

1
r
sin χ cos θ cos

[
ω
( r
c

− t
)

+ ϕ
]
.

(B2)

Appendix C. Analysis of Spherical Bessel Functions

The general solution for the fields includes spherical Bessel func-
tions of the third kind (first kind Hankel functions). This appendix
highlights what these functions look like and what they are
approximately equal to when considered at the limits ρ 1 and
ρ� 1. From Stratton (1941) p. 405,

h(1)1 (ρ)= −eiρ
(
ρ + i
ρ2

)
,

h(1)2 (ρ)= ieiρ
(
ρ2 + 3iρ − 3

ρ3

)
.

(C1)

We will omit the superscript denoting the functions as the third
kind for convenience. Differentiating these functions with respect
to ρ yields,

h′
1 = −eiρ

(
iρ2 − 2ρ − 2i

ρ3

)
,

h′
2 = −eiρ

(
ρ3 + 4iρ2 − 9ρ − 9i

ρ4

)
.

(C2)

In the limit ρ 1 Equations (C1) and (C2) become,

h1 ≈−i
ρ2 , h2 ≈−3i

ρ3 ,

h′
1 ≈ 2i

ρ3 , h′
2 ≈ 9i

ρ4 .
(C3)

In the limit ρ� 1 Equations (C1) and (C2) become,

h1 ≈−eiρ

ρ
, h2 ≈ ieiρ

ρ
,

h′
1 ≈−ieiρ

ρ
, h′

2 ≈−eiρ

ρ
.

(C4)

The form these Bessel functions take at these limits are rela-
tively simple and are required in the derivation of a eqns. (13),
(14), (18) and (19) from Deutsch (1955) (Equations (B1) and (B2)
in this review article).

(a)

(b)

Figure F.1. Spherical triangles with general notation and the labels according to
parameters defined in this review. (a) Spherical Triangle with side lengths and angles
labelled according to the notation in this appendix. Note that sides and angles labelled
with the same letter are opposite each other. (b) Description according to coordinate
parameters and inclination of e axis. Note that ν is an angle which is 2π periodic so
−ν ≡ 2π − ν (note angles increase though anticlockwise).

Appendix D. Associated Legendre Functions

In Appendix IV of Stratton (1941), the associated Legendre func-
tions are given as,

P0(cos θ)= 1,
P1(cos θ)= cos θ ,
P1
1(cos θ)= sin θ ,

P2(cos θ)= 1
2
(3 cos2 θ − 1)= 1

4
(3 cos 2θ + 1),

P1
2(cos θ)= 3 cos θ sin θ = 3

2
sin 2θ ,

(D1)

where θ ∈ [0, π], the subscript denotes the degree of the polyno-
mial, and the superscript denotes the order of the derivative.

Appendix E. Vector Calculus in Spherical Coordinates

Let f (r, θ , ϕ) be a scalar function and A(r, θ , ϕ)= (Ar ,Aθ ,Aϕ) be
a vector-valued function in spherical coordinates (r, θ , ϕ). From
Appendix A of Griffiths (2017), the gradient of a scalar function
is,

∇f = ∂f
∂r

r̂+ 1
r
∂f
∂θ
θ̂ + 1

r sin θ
∂f
∂ϕ

ϕ̂. (E1)

The divergence of a vector field is,

∇ ·A= 1
r2
∂

∂r
(
r2Ar

)+ 1
r sin θ

∂

∂θ
(Aθ sin θ)+ 1

r sin θ
∂Aϕ
∂ϕ

.

(E2)

https://doi.org/10.1017/pasa.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2022.35


Publications of the Astronomical Society of Australia 11

The curl of a vector field is,

∇ ×A= 1
r sin θ

(
∂

∂θ

(
Aϕ sin θ

)− ∂Aθ
∂ϕ

)
r̂

+ 1
r

(
1

sin θ
∂Ar

∂ϕ
− ∂

∂r
(
rAϕ

))
θ̂

+ 1
r

(
∂

∂r
(rAθ )− ∂Ar

∂θ

)
ϕ̂.

(E3)

Appendix F. Solutions of Spherical Triangles

From Van Brummelen (2012) on page 98 the spherical Law of
Cosines is given as,

cos c= cos a cos b+ sin a sin b cos C, (F1)

and on page 63 the spherical Law of Sines is given as,
sin a
sinA

= sin b
sin B

. (F2)

Upon rearranging the spherical Law of Cosines for cos C we get,

cos C = cos c− cos a cos b
sin a sin b

. (F3)
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