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POLYNOMIAL EQUATIONS FOR MATRICES OVER FINITE FIELDS
Jiuzuao Hua

Let E(z) be a monic polynomial over the finite field F, of ¢ elements. A formula
for the number of n x n matrices 8 over F, satisfying E(#) = 0 is obtained
by counting the representations of the algebra Fgy[z]/(E(z)) of degree n. This
simplifies a formula of Hodges.

1. INTRODUCTION AND NOTATION

Let F, denote the finite field of ¢ elements, where ¢ is a prime power. If E = E(x)
is a monic polynomial over Fy, let N(#,n) be the number of matrices § of order n
with entries in F, such that E(6) = 0. In his paper [2], Hodges obtained a formula for
N(E,n), but this is not easy to handle in practice. The purpose of this note is to give
a simplification of Hodges’ formula. This was achieved by counting the representations
of a finite dimensional algebra A; here A = Fy[z]/(E(z)).

A matrix representation of the algebra A of degree n is a homomorphism from A
to the full matrix algebra M (F,), which consists of all n x n matrices over Fy. Since
A is generated by a single element z, every matrix representation of A is specified by a
single matrix, that is, the image of z. It is clear that a square matrix 6 over F, satisfies
the equation F(f) = 0 if and only if the map = — @ defines a matrix representation of
A. Thus the number N(FE,n) is exactly the number of representations of A of degree
n. In what follows, a representation always means a matrix representation.

Suppose that £ can be factorised into the following form:

(1.1) E=Phph2 phs

where the P; are distinct monic irreducible polynomials over g, h; > 1 and deg P; = d;
for i=1,...,s. Thus, the Chinese Remainder Theorem for F,[z] implies that

(12) A= Fofal/(P") @ Folsl/(P}?) © - @ Fola]/ (Pi+).

So, the representations of A are determined by the representations of the algebra of
the form Fylz]/ (P(x)h) with P(z) being monic irreducible over F,.
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2. REPRESENTATIONS OF F[z]/ (P(:c)")

Let P(z) = z¢ + ag—12%' 4 --- + a;z + a¢ be a monic irreducible polynomial of
degree d over F,, and let h be a positive integer. Let B = Fy[z]/ (P(z)h).
Let J(P) be the companion matrix of P, that is

0 1 0o ... 0
0 0 1 0
J(P) = E
0 0 0 1
—Qp —ay —az ... —Q4-1

This has characteristic polynomial P(A). For any positive integer m > 1, let J,,(P)
denote the following block matrix:

J(P) I 0 ... 0
0 JP) I ... 0
Jm(P) = !
0 0 0 ... I
0 0 0 ... J(P)

which has m blocks of J(P) in the diagonal, where I; denotes the identity matrix of
order d.

The structure theorem for modules over principal ideal domains implies that every
indecomposable representation of B is isomorphic to some Ji(P) with 1 < k < h.
This is a modified Jordan canonical form theorem.

A partition A = (A1, A2,...) is a finite sequence A; > Az > --- of non-negative
integers. The \;’s are called the parts of A. The largest part of A is denote by I(}),
and the integer |A| = A1 + Ay + - - is called the weight of A. Let P denote the set of
all partitions including the unique partition of 0. Every partition A can be written in
the form (1%12%23%3 ...}, which means that there are k; parts equal to 7 in A.

If p= (1%12F2...7%) is a partition, then we define

J“(P) = dlag(:]l(P)a )JI(P)) J2(P)a aJZ(Pla """ 1JT(P))"' ’Jr(Pl)

n

~~ ~~
k) copies ko copies kr copies

Thus, J,(P) is a diagonal block matrix with k; copies of J;(P) in the diagonal. It is
clear that J,(P) has degree |puld.

It follows from the Krull-Schmidt theorem that every representation of B is iso-
morphic to some J,(P) with some unique p € P such that I(u) < h.
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3. THE NUMBER N(E,n)

The result in the last section and isomorphism (1.2) show that the isomorphism
classes of representations of A of degree n are in one-to-one correspondence with the
s-tuples (u1,...,us) € P? such that {(y;) < h; for 2 = 1,...,s and i | wildi = n;

=1
here (p1,... ,ps) corresponds to the matrix Jy, (Py) @ Ju, (P2) @ - -+ @ J,, (Ps), where
we use M @ N to mean the diagonal block matrix diag (M, N).

If M is a representation of A of degree n, then the general linear group GL(n,q),
which consists of all non-singular n x n matrices over Fg, acts transitively on the set
of representations of A which are isomorphic to M. The stabiliser of M, which is
denote by Aut (M), consists of all invertible matrices commuting with M. And so,
the number of elements in this orbit is equal to |GL(n,q)|/|Aut (M)|. As J(P;) and
J(P;) have no common eigenvalues for all i # j, an easy exercise shows that

(3.1) Aut(J,, (P) @ - @ Jpu, (Ps)) = Aut(J,, (P1)) @ -+ @ Aut(J,, (Py)).

For A= (Ay,Ag,---) € P, we let A = (A}, \},---) denote the partition conjugate
to A, that is, A} is equal to the number of parts no less than ¢ in A, and we define

(M A = Y (M)%. For example if A = (3,2,2,1) then X' = (4,3,1) and (), )A) =
i>1
424+32+12=26. If A= (A1, A2,---) € P with A; > A2 > - -+, following Macdonald [3]

we define n(A) = Y (i — 1)A;. It is a routine exercise to show that (A, A) = | A|+2n(})
i>1

for all A € P. Again following Macdonald, for A = (1¥12%2...) € P we define bx(q) =
[11-9(-¢) - (1-q%).
i>1

Notice that for any p € P, Aut(J,(P)) is the centraliser of J,(P) in the group
GL(m,q), where m = |u|degP. Formula (2.6) of Macdonald [3, p.139] shows that
| Aut(J,(P)) | = qdUsl+2nNp, (g=¢), where d = deg P. Thus, with notations intro-
duced as above, we have | Aut(J,(P))| = ¢*##b,(¢~%). And so, the above isomor-
phism (3.1) implies that

8
|Aut(J (P) @@ J,, (P)) | = qui(#inl‘i)b“i (a7%).

=1
As (u1,...,4s) runs through all s-tuples of partitions which satisfy I(p;) < h;
5
fori=1,...,s and Y | pild; = n, the matrix Jy,,(P1) @ Ju, (P2) ® - - ® J,,,(P;) runs

i=1

through all isomorphism classes of representations of A of degree n. The number of
representations of A which are isomorphic to a single representation J,,, (P,)®J,, (P2)®
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8
-+ @ Ju,(Ps) is found to be | GL(n,q)| divided by [] q%{#i#dp, (g=%). It is well-
i=1

known that the group GL(n,q) has order (¢" —1)(¢" —¢q)---(¢" —¢™~'). Thus we
have proved the following theorem.

THEOREM 3.1. If E = E(z) is a monic polynomial over F, with factorisation
given by (1.1), then the number of matrices 6 of order n over F, such that E(6) =0

I (¢"-4)
N(E,TL) - Z ogign-1

di{pipi)p, (g—di
("11... 1”5) lsllsq ' ' “'(q z)

IS

where the summation is over all s-tuples of partitions (u1,...,ps) € P°® such that

8
Wu) < hi fori=1,2,... s and 3 |pildi=n.

i=1

4. THE NUMBERS N(z°—-1,n) AND N(z% - 1,n)

The numbers N(z2 — 1,n) and N(z3 — 1,n) were obtained by Hodges [1] and [2]
respectively. Here we deduce N(z®—1,n) and N(z* —1,n) by using Theorem 3.1,
and compare our results with those of Hodges.

For k > 1 we define ¢x(q) = (1 — ¢71)(1 = ¢72) --- (1 ~ g~*), with the convention
that 1o(q) = 1. Then the order of GL(n,q) can be written as q"zwn(q). If p =
(1%12k2...) € P, then b,(g™") = [T v, (q)-

i>1

Let us recall Hodges’ results about N(z3 — 1,n). The factorisation of z* — 1 into
irreducible polynomials over F, depends on the residue of ¢ modulo 3.

CASE 1. ¢=0 mod 3. Then z3 — 1 = (z — 1)®. Formula (6.1) of Hodges (2] implies
that

(41) ]V(-'E3 -1, n) =Gn Z q_a(")(gklgkzgka)_l’
ki +2k2+3k3=n

where a(n) = 2ki(kz + k3) + k3 + 4kaks + 2k3 and gr = g(k,1) with g(k,d) =
k . 2

¢®” T] (1 — ¢g~%). Note that if p = (1%12%2...) then (u,p) = 3 (Z kj) - Now,
i=1

i21 Vi3
Theorem 3.1 implies that

42) NE-1Ln)= > 4" ¥n(9)

2 2 .2 .
ky+2ky+3k3=n q(k1+k2+k3) +(ka+ks) +k3¢k1 (‘1)1/%2 (‘1)¢k3(11)

Note that g(k,d) = 7% oy, (¢%) and thus gy = q"zt,/)k(q). A simple transformation
shows that (4.1) and (4.2) are equivalent.
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CaSE 2. ¢ =1 mod 3. Then z3 -1 = (z - 1)(z — @)(z — B) with &, € F, and
a#B, a#1, f#1. Formula (6.2) of Hodges [2] shows that

(4.3) N —1,n)=g0 D (9k9k0x) "
ky+kz+k3=n

Theorem 3.1 implies that

A C) .
ky+ka+kz=n qk%+kg+k§ ¢k1 (Q)¢k2 (Q)1/)k3 (Q)

(4.4) N(z®-1,n) =

It is easy to see that (4.3) and (4.4) are equivalent.

Case 3. ¢=2 mod 3. Then z3—1= (z - 1)(z® + z + 1) and 22+z+1 is irreducible
over F,. Formula (6.3) in Hodges [2] shows that

NE-1n)=gn Y. (9(ka,)g(k2,2))"".

k1+2ka=n

The above Theorem 3.1 implies that

g Yn(q)

2 2 .
k1 +2ko=n qkl +2k2 'wk] (Q)d}kz (q2)

N(z®-1,n) =

It is clear that the above two formulae are equivalent.
The factorisation of z* ~ 1 into irreducible polynomials over F; depends on the
residue of ¢ modulo 4. There are three cases to be considered.

Case 1. ¢ =0or 2 mod4. Then charF, = 2, and so z¢ — 1 = (z —1)*. Thus
Theorem 3.1 implies that

2
q" ¥n (Q)
iRk k3. k) g (q) Pk, (@) Vs (@)W, ()

N(:n:4 - l,n) =
ky+2ko+43k3+4kg=n
where t(k1, ka, k3, ka) = (k1 + k2 + k3 + ka)” + (k2 + ka + kq)® + (k3 + ka)® + K2,

CASE 2. ¢ =1 mod 4. Then z%+1 is reducible over Fg, and z? +1 = (z — a)(z - )
with o, 8 € F; and a # 8, a # £1, B # £1. Thus z*—1 = (z - 1)(z + 1)(z — a)(z — B)
in Fg[z], and hence Theorem 3.1 implies that

7" ¥ (q)

k2 4k2 k2 4k2 :
ky+kot+kz+ks=n q R A 41/)131 (q)¢k2(q)¢k3 (q)¢k4 (q)

N(:C4 - l,n) =
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Q
>
0
=

@«

o
I

= 3mod 4. Then z? + 1 is irreducible over F,. Thus in Fy[z] we have
z4 — 1= (z —1)(z +1)(z® + 1), and Theorem 3.1 implies that

2

n
N(:z4 _ l,n) — k2+k2+2k2q ¥nlq) —.
k1 +ko+2kz=n g2 31/11:1 (Q)¢k2(4)¢k3(q )
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