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Abstract

In this study, the U-net with ResNet-34, i.e. a residual neural network with 34 layers, backbone
semantic segmentation network is applied to C-band sea-ice SAR imagery over the Baltic Sea.
Sentinel-1 Extra Wide Swath mode HH/HV-polarized SAR data acquired during the winter sea-
son 2018–2019, and corresponding segments derived from the daily Baltic Sea ice charts were
used for training the segmentation algorithm. C-band SAR image mosaics of the winter season
2020–2021 were then used to evaluate the segmentation. The major objective was to study the
suitability of semantic segmentation of SAR imagery for automated SAR segmentation and
also to find a potential replacement for the outdated iterated conditional modes (ICM) algorithm
currently in operational use. The results compared to the daily Baltic Sea ice charts and the oper-
ational ICM segmentation and visual interpretation were encouraging from the operational point
of view. Open water areas were located very well and the oversegmentation produced by ICM was
significantly reduced. The correspondence between the ice chart polygons and the segmentation
results was also reasonably good. Based on the results, the studied method is a potential candidate
to replace the operational ICM SAR segmentation used in the Copernicus Marine Service auto-
mated sea-ice products at Finnish Meteorological Institute.

1. Introduction

Sea ice is a crucial component of the global climate system, and its extent and distribution play
an important role in the exchange of energy, momentum and mass between the ocean and the
atmosphere. Sea-ice information is also important and necessary for navigation and other off-
shore activities in sea ice. Synthetic Aperture Radar (SAR) is a powerful tool for monitoring
sea ice due to its ability to operate in all weather conditions and its sensitivity to the different
physical properties of the ice. SAR images can be used to derive information on the extent,
concentration and type of sea ice, for example. However, the interpretation of SAR images
is often challenging due to the noisy nature of SAR imagery, complexity of the ice cover
and the presence of other types of targets, such as open water, waves in open water, icebergs
and vessels in SAR scenes. Therefore, image segmentation techniques are important for the
analysis of SAR images of sea ice. Finnish Meteorological Institute (FMI) is involved in the
Copernicus Marine Service (CMS) sea-ice thematic assembly center (SITAC) as the Baltic
Sea processing unit. CMS is a European Commission funded operational service coordinated
by Mercator Ocean International (MOI), located in Toulouse, France. The role of FMI in CMS
SITAC is to provide timely sea-ice information over the Baltic Sea, based on SAR data and
other available information on sea ice. The FMI sea-ice concentration (SIC) (Karvonen,
2017) and sea-ice thickness (SIT) (Karvonen and others, 2003) CMS SITAC products provide
operational segmentwise near-real-time (NRT) estimates for SIC and SIT. SAR segmentation is
an essential step of making these products.

Image segmentation is the process of dividing an image into meaningful uniform regions,
each of which corresponds to a different object or a uniform part of the scene. In the context of
sea-ice SAR images, segmentation can be used to separate different types of ice, such as first-
year ice, multi-year ice and icebergs. Several segmentation techniques have been applied to
sea-ice SAR images, ranging from classical approaches, such as thresholding and clustering,
to more advanced methods, such as neural networks and deep learning. In general, segmen-
tation just divides an image into separate uniform areas. Semantic segmentation, in addition to
this, assigns a class or category, such as sea ice and open water in the case of sea-ice imagery, to
each segment.

Thresholding is a simple yet efficient technique for segmenting images. It involves selecting
one or more threshold values that separate the pixels belonging to different classes based on
their intensity or other local image features. For example, the threshold can be set to separate
ice pixels from open water pixels based on their SAR backscatter values. Several studies have
applied thresholding to sea-ice SAR images using different threshold selection approaches, a
short overview of thresholding techniques for SAR segmentation is given, e.g. in Al Bayati
and El Zaart (2013). The drawback of direct simple thresholding is that it is sensitive to speckle
and thermal noise present in SAR images. The different backscattering due to incidence angle
variation affects the thresholding, also depending on the scattering surface (ice or open water)
structure (Makynen and Karvonen, 2017). Efficient segmentation based on thresholding would
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require filtering of both speckle and thermal noise before apply-
ing. In Lee and Jurkevich (1988) thresholding based on histo-
grams applied to SAR images with different numbers of looks
was studied, also with speckle filtering applied before segmenta-
tion. The study was performed using synthetic SAR data and inci-
dence angle was not taken into account. The results apply only for
a narrow incidence angle ranges and indicate that thresholding
based on grayscale histogram is applicable for SAR segmentation.
However, in the case of a wide incidence angle range, the histo-
gram calculation and segmentation should be performed for mul-
tiple incidence angle sub-ranges. For sea ice it is possible to apply
incidence angle dependence correction (Makynen and Karvonen,
2017) before thresholding but for open water correction it is not
possible because backscattering from open water is dependent on
the instantaneous local wave spectrum and it is in practice
unknown.

Clustering is another commonly used traditional technique for
segmenting SAR images. Clustering algorithms group pixels based
on their similarity in terms of intensity, texture or other local fea-
tures. The K-means algorithm (MacQueen, 1967) is a simple and
popular clustering technique that can be applied to SAR imagery
also. K-means has been applied to sea-ice SAR, e.g. in Yu and
others (2013); Ren and others (2015); Zhang and Skjetne
(2015). An obvious problem with K-means is that it requires
the number of clusters, K, in advance as its input. K-means impli-
citly assumes that clusters are roughly spherical (isotropic, uni-
form in all directions) and equally sized, but this may not
exactly be true, depending on the data points. To reduce the effect
of this property of K-means, multiple clusters can be used for a
class. Also to overcome this restriction of K-means, K-means
can be modified to take a mixture of Gaussian classes (with dif-
ferent covariances) into account by using the Mahalanobis dis-
tance instead of the Euclidean distance (Brown and others,
2022). Also unsupervised K-means versions to overcome this
requirement have been proposed, e.g. in Sinaga and Yang
(2020). Many more advanced clustering techniques have been
developed and applied to different types of image data, e.g.
Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH) (Zhang and others, 2006) and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Ester and
others, 2006). Clustering based on the meanshift (MS) algorithm
(Cheng, 1995) is used at FMI as an operational SAR processing
step to provide an initial clustering and a suitable number of clus-
ters before applying a contextual segmentation.

Contextual segmentation methods take into account the neigh-
borhood (context) of each pixel and perform better for noisy
images when compared to straightforward pixel-wise thresholding
or clustering approaches. Examples of contextual methods are the
Iterated Conditional Modes (ICM) algorithm Besag (1986),
Markov Random Field (MRF) based methods, applied to sea-ice
SAR, e.g. in Deng and Clausi (2005); Maillard and others (2006)
and Pulse-Coupled Neural Network (PCNN), applied to sea-ice
SAR, e.g. in Karvonen (2004). The current operational SAR seg-
mentation applied at FMI uses the ICM algorithm (Karvonen,
2017). ICM was originally selected at FMI because the segmenta-
tion result was at an acceptable level for FMI operational purposes
and ICM performed significantly faster than considered MRF
models that also produced acceptable segmentation results.

There exist a wide variety of different image segmentation
techniques, also applicable to SAR data. An overview of general
image segmentation techniques with references can be found,
e.g. in Jeevitha and others (2020) and Yu and others (2023).
Many different kinds of segmentation methods have also been
applied to SAR imagery. Just to mention a few examples of differ-
ent methods applied to SAR imagery segmentation: such exam-
ples are edge-based segmentation (Oliver, 1994), watershed

segmentation (Li and others, 1989), and segmentation based on
active contours (Ayed and others, 2004).

More advanced and complex segmentation techniques, such as
neural networks and deep learning, have also been applied to
sea-ice SAR images during the recent years. These techniques
are based on the use of artificial intelligence algorithms that
learn to identify different features of the images by training
with a large dataset of labeled images. For example, convolutional
neural networks to segment SAR images and specifically sea-ice
SAR images have been applied in Malmgren-Hansen and
Nobel-Jorgensen (2015); Dowden and others (2020); Boulze and
others (2020); Zhang and Chen (2022); Wang and Li (2021);
Karvonen (2021); Wan and others (2023). Typically these deep
learning approaches provide a semantic segmentation, i.e. also
include a categorization of the segments. A general overview of
deep learning applied to SAR has been published in 2021 (Zhu
and others, 2021). The U-net (Ronneberger and others, 2015)
and its variants have gained popularity in image segmentation
during the recent years, and it has also been applied to sea-ice
SAR imagery, e.g. in Stokholm and others (2022) and Huang
and others (2021).

Transformer networks were originally proposed by Vaswani
and others (2017). The idea of a transformer network, or shortly
just transformer, is based on parallel multi-head attention.
Attention mechanism is a kind of neural network layer that can
be included in deep learning models. Attention allows the
model to focus on specific parts of the input by assigning different
weights to different parts of the input. This weighting is typically
based on the relevance of each part of the input to a specific task.
The attention mechanism allows to include large-scale context
into a neural network in an efficient way. Transformers were ori-
ginally developed for linguistic tasks. For image data, vision trans-
formers were later developed (Dosovitskiy and others, 2021).
There also exits a recently published survey on using transformers
in remote sensing (Aleissaee and others, 2021). Ren and others
(2023) applied dual-attention mechanism incorporated into the
U-net architecture to SAR data. Sea-ice SAR segmentation
based on transformer networks has been applied, e.g. in Ristea
and others (2023); Li and others (2023).

In conclusion, image segmentation is a significant step for the
analysis of SAR images of sea ice and there exists a wide variety of
different segmentation methods applicable to SAR data. Actually,
manual ice charting typically uses a similar approach as SAR seg-
mentation: in the manual ice analysis the area of interest is first
divided into areas representing uniform ice regions presented as
polygons. After this step, attributes describing the ice within
these areas are assigned to these defined regions. Applying auto-
mated SAR segmentation techniques also provides a good basis
for efficient segment-wise analysis of sea ice either by machine
or by human ice analysts.

The aim of this study was to find a suitable algorithm for
sea-ice SAR segmentation to be used as the segmentation step
to produce automated SAR based sea-ice information products
and be applicable in the operational CMS SITAC product process-
ing. The SAR segmentation step also roughly corresponds to the
defining and drawing of the polygons in the daily manual Baltic
Sea ice charting process. The ice charts are presented in a vector
graphics format (JCOMM, 2014) and the uniform areas are pre-
sented there as polygons, defined by sets of coordinate (x, y) pairs.
After the segmentation (or polygonalization) phase there exists a
set of regions each representing approximately uniform ice condi-
tions. The attributes describing the segment content will then be
assigned to the segments in a later phase of the automated pro-
cessing chain. The intended context of the SAR segmentation at
FMI as part of the automated sea-ice information production
chain is demonstrated in Fig. 1.
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ResNet (He and others, 2016), or residual neural network, is
actually a family of residual neural networks with different archi-
tectures and numbers of layers, indicated by their names, e.g.
ResNet-34, ResNet-50, ResNet-101, ResNet-152, getting computa-
tionally more complex with an increasing number of layers. It was
found that the U-net with ResNet-34 backbone (denoted in this
paper by U-net/ResNet-34), applied e.g. in Ren and others
(2023), provided visually reasonable segmentation results in pre-
liminary tests when applied to the FMI dual-polarized C-band
sea-ice SAR imagery. ResNet with more convolution layers
would probably have provided slightly more accurate results but
ResNet-34 provides a good compromise between computational
complexity and segmentation performance. Based on the prelim-
inary small-scale tests, U-net/ResNet-34 was selected for further
tests with the FMI operational SAR data. The computational com-
plexity of the selected method is still suitable for a standard desk-
top computer used for computations in this particular study. This
study is based on tests performed with Sentinel-1 (training data)
and combined Sentinel-1 and Radarsat-2 imagery (test data).

One obvious advantage of applying a segmentation and then
using segment-wise sea-ice information is the ability to compress
the information grid efficiently, e.g. compared to SAR imagery
with poorly compressive speckle noise and many spatially and
temporally local features caused by the instantaneous rapidly
changing wave conditions over open water. A good compression
is important, e.g. when delivering ice information to ships via a
satellite connection. Another advantage is that automated meth-
ods perform systematically. Ice charts made by ice analysts are
dependent on the varying interpretations of different ice analysts.
Large variation between ice analyses made by different ice analysts
have been demonstrated and reported, e.g. in Karvonen and
others (2015).

2. Study area and datasets

The study area, Baltic Sea (see Fig. 2), is a semi-enclosed brackish
water basin with a seasonal ice cover located in northern Europe,
approximately between latitudes 53 N and 65 N and longitudes 9E
and 30E. The area of Baltic Sea is 422 000 km2, and average
annual maximum ice cover extent is 170 000 km2. Many of the
harbors in the Baltic Sea are ice-surrounded every winter and pre-
cise and timely ice information is necessary for navigation in the
ice-covered areas. The winter ship traffic is maintained with the
aid of ice breakers. A typical Baltic Sea ice season lasts from
November to December until late May in the northern parts
(Gulf of Bothnia). The thermodynamically grown ice in the fast
ice zone is at maximum around 1 m thick, on average 72 cm
(Ronkainen, 2013), in the northern Gulf of Bothnia. In deformed
ice areas, ice thickness can be several meters, in ice ridges even 25
m (Kankaanpaa, 1997; Granskog and others, 2006). The max-
imum ice extent in Baltic Sea is typically reached in
February–March.

The digitized FMI ice charts have been used in this study to
derive training data for the proposed SAR segmentation algo-
rithms and also as reference data for evaluation of the segmenta-
tion algorithm. In ice charts, ice parameters are estimated by ice
analysts for polygons they draw on a map base according to their
interpretation of the ice conditions. Each polygon represents an
ice type or multiple ice types which can uniquely be described
in terms of the ice charting guidelines provided by the World
Meteorological Organization (WMO) (JCOMM, 2014). SIC is
also assigned to each of these polygons. In ice charting based
on the WMO guidelines, one polygon can involve more than
one ice type and thus also multiple concentrations of these mul-
tiple ice types. In ice charts, polygon-wise sea-ice information is

Figure 1. Simplified diagram of the context in which SAR segmentation (gray box) will be used at FMI operational SAR production chain. The SAR data are used for
segmentation and for estimating sea-ice parameters together with some complementary auxiliary data, e.g. from microwave radiometer. IC in the figure refers to
the digitized ice chart, CC to the HH/HV SAR channel cross-correlation. Necessary sea-ice parameters are, e.g. ice concentration (SIC), sea-ice thickness (SIT) and its
distribution, degree of ice deformation (DoD). Uncertainties (unc.) of the parameter estimation are also important. These values are then assigned to each single
segment as segment medians or segmentwise parameter value distributions and the final output will be an integrated product with multiple layers corresponding
to estimated sea-ice parameters.
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typically indicated by the egg code assigned to each polygon
(Canadian Ice Service, 2005). The FMI ice charts over the Baltic
Sea are made daily by ice analysts during the winter period.
The input data for making the FMI ice charts are satellite data
from multiple instruments, including SAR (C band: Sentinel-1,
RADARSAT-2, Radarsat Constellation Mission, and X band:
COSMO-SkyMed, TerraSAR-X, PAZ) and optical/infrared data
(MODIS, VIIRS), and observation data from coastal observers,
observations from the Finnish and Swedish ice breakers and the
FMI operational sea-ice forecast model results. The most import-
ant data source is the Sentinel-1 C-band SAR images provided in
near-real-time by the European Space Agency (ESA). In the FMI
ice charts, the ice analyst first locates the areas with homogeneous
ice conditions which are presented by polygons. Then, for each ice
chart polygon five attributes (ice concentration, ice minimum
thickness, ice average thickness, ice maximum thickness, degree
of ice deformation) are assigned by the ice analyst. In the FMI
Baltic Sea ice charts, the given SIC is the total SIC of the polygon
given in percents, not in tenths as in the ice charts according to
the standard WMO guidelines (provided in ice chart egg code
diagrams). In the FMI Baltic Sea ice charts, neither partial SIC
nor stage of ice development is given. Instead the five attributes
listed above are assigned to each polygon; for open water areas

(polygons), the sea surface temperature (SST) attribute is
assigned. The SIT values are level ice thicknesses, i.e. values for
thermodynamically grown ice, possibly drifted from their original
locations. Sea-ice deformation (SID) is given as a five-stage scale
in which one represents smooth level ice and five highly deformed
ice. The thickness of deformed ice can roughly be estimated by
multiplying the level ice thickness by the degree of deformation.
For example, rafted ice, with two overlying level ice layers
would then correspond to SID value of two. The ice classes
used in this study were derived from the SIC, SIT and SID fields
of the ice charts; the derivation is described in more detail in
Section 3. In practice, there appeared ten major sea-ice classes
in the training data covering the whole ice season 2018–2019.
These classes are described in Table 1. The numbers of the classes
in the table and used later in this paper are just order numbers
resulting from the quantization of three independent digitized
ice chart parameters (sea-ice concentration, sea-ice thickness,
degree of deformation) available for each ice chart polygon.
These class numbers do not have any other specific meaning,
except that in general the class number increases as a function
of decreasing ice navigability. It should be noted that these classes
are the ice classes used for training the U-net/ResNet-34 algo-
rithm. Other possible classes based on this quantization were

Figure 2. Study area, the Baltic Sea.
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very rare or did not exist at all in the training data and they were
excluded from the training and classification.

The SAR training data used in this study were Sentinel-1 extra
wide swath (EW) Ground Range Detected Medium resolution
(GRDM) dual polarization mode level 1B (L1B) data (Bourbigot
and others, 2016). The two channels of the images represent
the HH and HV polarization combinations, where the first letter
indicates the transmitted polarization and the second letter
received polarization and H is horizontal polarization and V is
vertical polarization. The swath width of the used acquisition
mode was about 400 km. The training SAR data of this study con-
sisted of 234 Sentinel-1 images. This number of imagery experi-
mentally proved to be large enough for training the network
and also suitable for the computing resources in use, i.e. a desktop
computer without any specific hardware for neural computing.
With a dataset consisting of about half of this training dataset
used in this study, the segmentation test results were still too
poor for any practical use. The number of monthly scenes in
the training imagery of the 2028–2019 winter season training
imagery is shown in Figure 3. The final training data were
cropped to 256 × 256 pixel windows and they were used as inputs
to the U-net/ResNet-34. The training dataset was augmented by
applying vertical and horizontal flip and rotation in 90 degree
steps, i.e. four rotations (0, 90, 180 and 270 degrees) of each
256 × 256 pixel training window were used. To test the segmenta-
tion an independent dataset consisting of daily SAR mosaics of
the winter 2020–2021 was used. Actually, during this test winter,
the ice formation in Baltic Sea started quite late and significant
amounts of sea ice in the Baltic appeared only in January 2021,
so mosaics over a period from January to May 2021 were used

in the tests. The daily SAR mosaics were made by always overlay-
ing the most recent SAR image and thus the most recent available
SAR measurement was available at each mosaic grid point.
Separate mosaics were generated for HH and HV channels and
their resolution was 500 m. Both Radarsat-2 ScanSAR HH/HV
polarized (MDA, 2018) and Sentinel-1 EW GRDM HH/HV
mode L1B images were used to generate the SAR mosaics.

The training images were selected randomly from all the win-
ter season 2018–2019 data of about 650 Sentinel-1 EW GRDM
mode HH/HV images and they represent both cold conditions
and ice melt conditions. The reference dataset for all the experi-
ments were the daily digitized FMI ice charts of the same day
with the SAR acquisitions and their polygons originally assigned
to 32 classes based on the sea-ice properties provided by the ice
analysts. The FMI ice charts were used to generate the training
datasets and as reference data in the comparisons evaluating the
performance of the segmentation algorithm.

The SAR data were calibrated, georectified into Mercator pro-
jection with WGS84 datum and 61 degrees 40 min reference (cor-
rect scale) latitude, the logarithmic SAR backscattering coefficient
values, denoted by σ0, were quantized to eight bits per pixel
(8 bpp), such that for the HH channel σ0 of −30 dB or less cor-
responds to pixel value of one and 0 dB to the pixel value of 255.
For the HV band, mostly with a lower σ0, the corresponding
values were −40 and 0 dB. The pixel value zero was reserved for
background (no data and land mask). This quantization has
proved to be a good solution for sea-ice SAR classification and
sea-ice parameter estimation from SAR imagery and been in
use at FMI for a long time. According to tests made at FMI in
2016 there was in practice no difference between this 8 bpp pres-
entation and 16 bpp presentation of the images in sea-ice param-
eter estimation and the 8 bpp presentation was selected, e.g. for
the SIC estimation (Karvonen, 2017). Before the quantization, a
linear incidence angle correction based on the slopes provided
in Makynen and Karvonen (2017) was performed. The land
masking was performed based on a land mask derived from the
Global Self-consistent, Hierarchical, High-resolution Geography
Database (GSHHG) coastline dataset (Wessel and Smith, 1996)
applied to the georectified SAR images. Based on earlier experi-
ence, this quantization preserves the SAR texture well and with
sufficient accuracy for automated classification. And with the
channel-wise quantization ranges defined as above there will
not appear large areas of pixels saturated to the upper (0 dB) or
lower boundaries (−30/−40 dB). Similar quantization scheme
applied to dual-polarized (HH/HV) C-band SAR data has earlier
been used for example in Karvonen (2015) (for Radarsat-2 data)
and in Karvonen (2017) (Sentinel-1) in the context of SAR
texture-based SIC estimation. The 8 bpp data were then down-
sampled to the resolution of 500 m. Also the HH/HV channel
cross-correlation (CC) in the same 500 m resolution was com-
puted. In this study, CC was computed using the quantized and
downsampled (500 m resolution) SAR imagery. CC was used as
a third channel of the images used in this study. The 8 bpp HH
and HV channels and the HH/HV CC, computed in a round-
shaped windows with a radius of three pixels and scaled from
the range of [0,1] to [1,255] and rounded to the nearest integer,
are the three image channels used as inputs to the segmentation.
The image channels are similar as in Karvonen (2021).

3. Methodology

The U-net (Ronneberger and others, 2015) is a convolutional
neural network based on the fully convolutional network
(Shelhamer and others, 2017). In the U-net, the usual contracting
network layers are supplemented by successive layers where pool-
ing is replaced by upsampling. These layers increase the resolution

Table 1. Sea-ice classes

Class number properties

1 Open water
8 Thin ice (SIT 1–20 cm) , SIC 20–40%
9 Thin ice, SIC 50–60%
10 Thin ice, SIC 70–90%
11 Thin ice, SIC 100%
18 SIT 20–40 cm, SIC 90–100%
24 SIT 40–60 cm, SIC 90–100%
26 SIT 20–40 cm, SIC 80–90%, deformed
28 SIT 20–40 cm, SIC 90–100%, deformed
32 SIT 40–60 cm, SIC 90–100%, deformed

The class numbers correspond to the class numbers used throughout this study.

Figure 3. Monthly distribution of the amount of winter 2018–2019 SAR images used
in this study.
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of the output. A successive convolutional layer is then able to
learn a precise output based on its input. The U-net can be pre-
sented in the shape of letter U consisting of decoder and encoder
blocks that are connected via so-called bridges or skip connec-
tions. A simplified schematic diagram of the U-net is presented
in Figure 4.

In this study, the U-net with the convolutional backbone of a
ResNet-34 (He and others, 2016) is applied. The term backbone
refers to the feature extraction network processing the input
data into a feature presentation (encoder). The structure of the
encoder then determines the basic structure of the decoder part
of the network. The idea of this combination is to integrate the
use of a proven image classification architecture into the U-net.
ResNet-34 is a convolutional neural network architecture pro-
posed by Microsoft Research Asia in 2016. The architecture is
based on the idea of residual learning, which allows training of
much deeper neural networks with improved accuracy, compared
to networks not utilizing residual learning. As indicated by its
name, ResNet-34 has totally 34 convolution layers. In
ResNet-34, the input image is first passed through a convolutional
layer followed by a batch normalization layer and a rectified linear
unit (ReLU) activation function. This is followed by a series of
residual blocks, each of which consists of two convolutional
layers, each followed by batch normalization and ReLU activation.
Resnet-34 consists of five convolution (resolution) layers with
multiple convolution filters at each layer. The output size after
each convolution layer is downsampled by two in the two
image window dimensions. The U-net with Resnet-34 backbone
has an U-net skip connection after each ResNet-34 convolution
layer. These layers form the encoder part of the network. Each
block of the decoder part starts with an upsampling layer to
increase the spatial resolution. The feature maps provided by
the upsampling are then concatenated with the feature maps of
the corresponding layer from the encoder side through the
U-net skip connections. Following the concatenation, two convo-
lutional layers. are applied to refine the feature maps. The two
consecutive convolutional layers are followed by batch normaliza-
tion and ReLU activation steps. The structure for the U-net with
the ResNet-50 backbone has been described in Manos and others
(2022). This structure is similar to U-net/RssNet-34 applied here,
except for the number of applied convolution kernels.

The ResNet-34 residual blocks also contain a shortcut connec-
tion that allows the input to bypass the convolutional layers and
be added to the output of the residual block. This shortcut con-
nection helps to alleviate the so-called vanishing gradient problem

causing degradation of the learning process when increasing the
number of layers of the network. Using residual blocks in the
neural network enables training of deeper networks. In gradient-
based learning algorithms, gradients are used to learn the weights
of a neural network. It works like a chain reaction as the gradients
closer to the output layers are multiplied with the gradients of the
layers closer to the input layers. These gradients are used to
update the weights of the neural network. If the gradients are
small, the multiplication of these gradients will become so small
that it will be close to zero. This results in the model being unable
to learn, and its behavior becomes unstable. This problem is
called the vanishing gradient problem (Hochreiter, 1991).

The input to a residual (or skip) ReLU layer from the previous
layer is here denoted by x and the layer output by F(x), and the
expected output of the layer by H(x). In a residual ReLU block
sum of x and F(x) is fed to the next layer. This means that
H(x) = F(x) + x and F(x) =H(x)− x = R(x). R(x) is the residual.
This indicates that the residual layers are actually trying to learn
the residual R(x). A simplified residual layer structure is shown
in Figure 5.

The classes were defined based on the FMI daily ice chart SIC
(Cice), ice thickness (Hice) and deformation (Dice) by quantizing
these three independent quantities as follows.

C1 = (Cice + 4)/10+ 1
C2 = Min(Hice/20+ 1, 5)
C3 = H(Dice − 2− e)+ 1

(1)

H(x) = (sign(x) + 1)/2 is the Heaviside function, i.e. one for posi-
tive x and zero for negative x, e is a small positive value, here just
less than one. The theoretical ranges of the sub-categories C1, C2

and C3 are (1,11), (1,5) and (1,2), respectively; this would result to
a maximum number of 110 possible classes, but in practice for a
typical Baltic Sea ice winter much less classes according to the ice
charts appear. In practice, there appeared ten of these classes in
the training data. The number of other classes was neglectably
small or they did not appear at all.

The processing of the training input data is already explained
in the previous section and the training phase is shown in
Figure 6. The images are cropped into 256 × 256 pixel windows,

Figure 4. A schematic diagram of the U-net structure. Essential for the U-net are the
skip connections between different encoder (on the left) and decoder (on the right)
levels representing different resolutions decreasing downwards.

Figure 5. A residual ReLU block. Residual neural networks use this kind of block to
allow robust learning of deeper networks. Weight layer in the figure indicates a con-
volution layer.
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the corresponding ice chart grids are cropped the same way (same
location). For the cropped SAR images HH/HV cross-correlation
(CC) channel is computed and HH, HV and CC are combined to
a false color RGB image (R = HH, G =HV, B = CC). For the ice
chart 256 × 256 pixel blocks the classes are derived based on the
ice chart quantities assigned to the ice chart polygons and the
classes of Table 1 defined by the quantification of Eqn (1). Data
augmentation (flips and rotations) is applied to each 256 × 256
RGB image block and ice chart class block. In the estimation
phase, a 256 × 256 sliding window with a step of 200 pixels is
used in segmentation and at the overlapping boundaries 28 pixels
of both the overlapping 256 × 256 windows are not included in
the segmentation. Splitting with an overlap is done to avoid pos-
sible artifacts near the cropped image boundaries. Some undesired
artifacts (fake segments) seemed to appear near the window
boundaries. Using overlapping windows and ignoring the window
boundary areas seemed to remove these artifacts in the training
and validation datasets. This also worked for the independent
test dataset consisting of season 2020–2021 SAR mosaics. The
segmentation block diagram in Figure 7 contains similar process-
ing steps as in the training phase: CC channel is computed and
HH, HV and CC are combined to an RGB image, cropped to
256 × 256 windows and fed to the U-net/ResNet-34, and finally
the cropped images are combined to a full size image again.

The software library used to implement the algorithm was the
python3 segmentation_models library (Iakubovskii, 2019), and its
U-net with ResNet-34 backbone module. The pre-trained weights
available in the package were not applied in this study because

SAR imagery has different properties than the optical imagery
used for the pre-training. Several loss functions were tested. The
results with different loss functions were rather similar. For
example, categorical cross-entropy, Jaccard loss (1 – intersection
over union) and Kullback–Leibler divergence and their weighted
combinations were tested. Because the segmentation results
were similar for the tested loss functions, only the results for
the categorical cross-entropy loss function are presented in this
paper. Customized loss functions including terms to maximize
the peakiness of a single prediction, and on the other hand to
maximize the spread of the classes over each training batch
were also studied shortly. These additional loss terms were com-
bined with the above-mentioned semantic segmentation loss
functions. To achieve useful results with spread maximization
included, a rather large batch size is required. This results to
long training times with the current hardware setup. The
approach using a combination of loss functions as its loss func-
tion will still require adjustment, i.e. finding the most suitable
fractions for the loss terms. The Adam optimizer (Kingma and
Ba, 2014) was applied in all the training variations. The initial
learning rate applied was 0.0001. In total, 150 epochs were run
and the weights were selected to represent the epoch with the
minimum validation loss. Typically this minimum was achieved
after 20–40 epochs.

The hardware used in the study was a common desktop com-
puter with Ubuntu 20.4 Linux operating system. The Central
Processing Unit (CPU) was an AMD Ryzen 5 2400G with eight
cores and with AMD Radeon Vega Graphics and 16 GB of

Figure 6. Diagram of the training phase. L1B SAR data are first preprocessed, including calibration, thermal noise filtering, georectification to Mercator projection
and resampling to 500 m resolution.

Figure 7. Diagram of the segmentation phase. L1B SAR data preprocessing is similar as in training phase.
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RAM. The training time for the whole training dataset was a few
hours using CPU. The AMD Graphics Processing Unit (GPU)
was not supported by the python library used. Segmentation exe-
cution times for a daily mosaic in the 500 m resolution are 1–2
min on the same CPU, thus making this segmentation approach
suitable for operational purposes. In the future also higher resolu-
tions will be considered in operational use, e.g. for a 100 m reso-
lution mosaic the execution time required for segmentation would
increase to ∼0.5–1 h in this particular hardware setup (execution
time increase can be estimated to be linear because the images are
processed as cropped smaller windows sequentially) but utilizing
more efficient hardware, e.g. with multiple better suitable
(NVIDIA) GPUs or updated libraries for AMD GPUs, would
decrease the training and segmentation execution times signifi-
cantly, and the method will then be suitable for operational use
also in a higher resolution than the resolution used in this study.

4. Results

As already mentioned in Section 2, in practice the segmentation
produced only ten classes containing a reasonable amount of
data. The other classes, based on quantization of Eqn (1), were
very rare or non-existent in the actual training and test datasets.
Only a few pixels of some of these theoretical classes in the test
dataset were detected, so only the actually occurring ten classes
have been used and reported in the following results.

If we make a direct inter-class comparison between the classes
in the FMI ice charts and the U-net/ResNet-34 segmentation, the
correspondence is not good, only open water class has a good cor-
respondence. However, as the major objective is to perform seg-
mentation, not classification, a confusion matrix, for example, is
not a suitable measure to measure the performance for this non-
semantic segmentation.

If the classes are reduced to two classes of open water and sea
ice, then 94% of the water is correctly classified and 73% of the sea
ice is correctly classified by the U-net/ResNet-34 algorithm. For
the melt period the statistics was even better: 98% of the open
water were correctly classified and 90% of the sea ice were cor-
rectly classified. During the freeze-up period (late December—
mid-January) some thin level ice areas were incorrectly classified
to open water by the algorithm, decreasing the sea-ice classifica-
tion performance to 70% during freeze-up. Also later during the
ice season some new ice zones (according to the ice charts) were
misclassified to open water. However, these numbers just describe
the performance of classification into these two classes but they
are not a good measure of the segmentation as a whole. For
example, if there appear small open water segments within an
area that actually is sea ice, these segments can be classified to
sea ice in the separate classification phase after the segmentation,
thus correcting the possible preliminary misclassification made by
the segmentation algorithm.

Segment sizes of the different segmentation methods were
compared. The results are shown in Table 2.

The numbers clearly indicate that the segment sizes for U-net/
ResNet-34 are significantly larger than for the operational ICM

segmentation. Especially for open water, the average segment
sizes are larger, indicating that the ICM segment fragmentation
over open water is significantly reduced. The average segment
sizes over sea ice are also larger for U-net/ResNet-34 than for
ICM, but they still are smaller than ice chart polygons.

To compare the correspondence of segments between the FMI
ice charts (polygons) and both the operational ICM segmentation
and the U-net/ResNet-34 segmentation, the intersection over
union (IoU) metric was used. The IoU to compare two segments
or classes is defined as:

IoU = |A> B|
|A< B| , (2)

where A and B are the segmentation results, or in this case of FMI
ice charts polygons and segmentation results, to be compared. By
|X| the area of X is denoted, here the areas correspond to the pixel
counts of the segment or polygon area. In this study IoU was
computed between the ice chart polygon classes and classes pro-
duced by the segmentation and also between individual ice chart
polygons and segments. IoU between ice chart polygons and seg-
ments is denoted by IoUs and IoU between ice chart and polygon
classes by IoUc in the following. In IoUc the numerator part also
counts the matching pixels (same class) of a certain class in two
images, and the denominator part counts the pixels that belong
to the certain class in either of the two images. This computation
is performed for all the existing classes. In IoUs the numerator
part is the number of pixels belonging to both the ice chart poly-
gon and segment to be compared and the denominator part is the
number of pixels belonging to either the ice chart polygon or the
segment. IoU is a number between zero and one, and the value of
one indicates perfect correspondence between the two segments
in comparison. Here, IoU is given in percents, i.e. the IoU
range here is 0–100. The IoUc values were computed after map-
ping the ICM and U-net/ResNet-34 segments to the ice chart seg-
ment classes by applying a majority voting for each segment. This
approach enables comparison of the segmentation results with
respect to the rasterized ice chart polygons. The results of this
comparison are shown in Table 3.

The IoUc for open water was 94% for the U-net and 53% for
sea-ice classes (average weighted by frequency of occurrence).
The corresponding values for ICM were 94 and 54%, respectively.
The accuracy based on IoUc is actually very similar for ICM and
U-net/ResNet-34. The results indicate that the correspondence of
the segments using ICM is slightly better than for U-net/
ResNet-34. This difference can be explained by the significantly
smaller segment size provided by ICM. These many small segments
are able to cover the ice chart polygons in more detail than the lar-
ger segments produced by U-net/ResNet-34. However, in many

Table 2. Average segment size for open water (OW) and sea-ice (SI) areas for ice
charts (average polygon size), ICM segmentation and U-net/ResNet-34
segmentation

Source OW SI

Ice chart 39 083 698
ICM 274 132
U-net 4692 397

The areas are given in km2.

Table 3. U-net/ResNet-34 and ICM segmentation class-wise IoUc scores for the
used sea-ice classes compared to the ice chart polygons

Class U-net/ResNet-34 IoUc ICM IoUc Proportion (all) Proportion (SI)

1 93.7 94.2 73.9 –
8 47.6 52.2 3.6 13.8
9 40.0 37.9 2.1 8.0
10 25.7 30.1 1.1 4.2
11 54.1 51.5 2.5 9.6
18 41.3 48.5 1.0 3.8
24 59.2 64.1 3.3 12.6
26 75.7 85.0 3.1 11.9
28 63.7 77.7 5.0 19.2
32 39.6 11.2 4.4 16.9
All 87.8 89.7 100.0 100.0

Also the proportions of the classes, based on the ice chart segments, are given both for the
whole area (all) and sea-ice (SI) areas separately.
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cases, assigning ice parameters to small segments is in practice dif-
ficult for both human and machine because of limited available
contextual information within the small segments. U-net/
ResNet-34 provides a more general view with larger segments but
still a good correspondence between ice chart segments. The total
correspondence was almost 90% for both the segmentation meth-
ods. This is because the match for classes covering most of the
area (1, 8, 24, 26, 28 and 32) was higher. For the classes covering
less area (pixels) the matches were not that good.

The other measure, IoUs, to compare the segmentation meth-
ods and the ice chart polygons was to locate the best matching
segment, i.e. the segment with the largest IoU, corresponding to
each ice chart polygon and to compute the average IoUs of the
best matched for all the ice chart polygons. This measure is com-
pletely independent of the class of the segments, only segments
are compared with respect to each other. The measure was com-
puted for the sea-ice segments and open water areas separately.
The values were also computed for the melting period and for
the winter with the melting period excluded separately. These
results are shown in Table 4. The results were rather similar to
the other way around, i.e. IoUs for ice chart polygons best match-
ing each segment produced by a segmentation algorithm.

Based on these statistics it is evident that the correspondence
between the ice chart polygons and the segments is better for
the U-net/ResNet-34 than for ICM, for both sea ice and for
open water. Especially, for open water areas U-Net/ResNet-34
seems to perform very well. These measures for U-net/
ResNet-34 can possibly be improved by using a larger training
dataset and by balancing the class proportions in the training.
However, complete correspondence between ice chart polygons
and SAR segments using these classes provided by the U-net/
ResNet-34 is not actually possible because, in ice charting, com-
plementary information from other EO sources and in situ

observations are utilized. Ice analysts also have the knowledge
of the ice development in the past. To include the past ice devel-
opment information in the form of a SAR mosaic time series,
instead of single daily SAR mosaics, in the segmentation is also
possible in future algorithm development.

In Figure 8, the current operational FMI segmentation results,
using a combination of MS clustering and ICM contextual seg-
mentation, for the 15th day of January–April 2021 SAR mosaics
are shown. In the figure, the number of clusters varies from one
image to another, the scale just identifies the increase in the

total σ0 magnitude |s0| =
�������������������
(s0

HH)
2 + (s0

HV )
2

√
. It can be seen

that ICM segmentation produces quite many separate segments
in areas that actually represent the same kind of target.
Especially, this can be seen in the open water areas where many
irrelevant segments are produced. In the areas of σ0 varying as
a function of the range (incidence angle) this can be seen as a
ramp-like behavior with many jagged segment boundaries in
the direction perpendicular to the range direction. This kind of
oversegmentation sometimes also happens over the smooth
level ice. However, this phenomenon is less prominent over sea
ice than over open water.

Compared to ICM segmentation, the U-net/ResNet-34 seg-
mentation in Figures 9E–H behaves locally in a different way: uni-
form areas, especially open water appears as single segments and
the segment boundaries correspond well to visual interpretation
of the imagery. This was the major objective of this study and
the U-net/ResNet-34 segmentation model seems to provide useful
results from this point of view.

It should be noted that the segment color coding in Figures 8
and 9 cannot be directly compared. Instead, one should pay atten-
tion to the segment boundaries and differences in them. This kind
of a visual comparison reveals many clear differences: the ICM
segmentation produces many more segments and the segment
boundaries are not always natural because of varying σ0 over
the image due to different scattering conditions (different local
SAR viewing angles) from similar target surfaces. In the studied
U-net/ResNet-34 segmentation, this effect is typically not present,
making further visual and automated interpretation of the local
ice conditions significantly easier.

In Figures 10–12 the U-net/ResNet-34 segments are pre-
sented with classes mapped to those of the same day ice chart
grid. This makes visual comparison of the segments and their
boundaries easy. Some details of the segmentation results are

Table 4. U-net/ResNet-34 and ICM segmentation IoUs scores for the best
matching single segments, winter refers to the whole winter with the melting
period excluded and melt refers to the melting period

Class U-net/ResNet-34 IoUs ICM IoUs

winter SI 30.3 16.5
winter OW 92.6 9.6
melt SI 29.3 18.5
melt OW 90.7 3.1

SI, sea ice; OW, open water.

Figure 8. Segmentation results of the 15 January (A), February (B), March (C) and April (D) 2021 image mosaics by the FMI operational method, based on MS and
ICM. Different mosaics have different number of classes produced by the MS clustering.
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shown in Figures 10–12. The ice chart polygons are also shown
in the figures. For visual reference, also the cropped daily SAR
image mosaic images for HH and HV channels have been
included in the figures. In Figure 10 an eastern Gulf of

Finland segmentation corresponding to a mid-winter SAR
mosaic is shown. It can be seen that the ice chart polygons
and segments correspond to each other rather well. In
Figure 11 a Gulf of Bothnia, the northernmost part of the

Figure 9. Classes of the 15 January, February, March and April 2021 FMI ice charts (a–d) and the corresponding U-net/ResNet34 segmentation results (e–h).

Figure 10. A detail over eastern Gulf of Finland, 15 March 2021, SAR mosaic HH channel (a), SAR mosaic HV channel, ice chart polygons (c) and U-net/ResNet-34
segments mapped to ice chart classes (d).
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Baltic Sea, segmentation corresponding to the same mid-winter
SAR mosaic is shown. In this case there exist some more differ-
ences between the ice chart polygons and segments. However,
still for example the land fast ice (representing class 28 in the
figure) is well distinguished in the segmentation result. It is
noticeable that a computation block boundary is visible in the
northwestern part of the large class 32 area in this figure.
This kind of artifacts were rare in the classification results but
still exist in some cases in the daily test data classification
results, covering the whole winter 2020–2021. The third detail
example of Figure 12 is over the Gulf of Bothnia during the
melting period and with wet snow on the sea ice. Due to the
wet surface the SAR backscattering from the sea ice was reduced
and contrast between sea ice and open water was also reduced.

Still, the sea ice and open water segments were well distin-
guished from each other by the U-net/ResNet-34 segmentation.

5. Discussion and conclusions

In this study, U-net/ResNet-34 segmentation was applied to Baltic
Sea SAR imagery. According to the experiments performed, it was
evident that the U-net/ResNet-34 segmentation is a suitable can-
didate for automated sea-ice segmentation and capable of produ-
cing sea-ice information over wide areas of the Baltic Sea in a
compact form. In the following also some possible future research
directions will be discussed. The focus of the proposed future
research will be in further development of the proposed method
and fine-tuning it for operational use. One important objective

Figure 11. A detail over Gulf of Bothnia, 15 March 2021, SAR mosaic HH channel (a), SAR mosaic HV channel (b), ice chart polygons (c) and U-net/ResNet-34 seg-
ments mapped to ice chart classes (d). A processing artifact can be seen in the northwestern part of the large class 32, the class boundary seems to follow the
processing block boundary.
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will be integration of the new segmentation method in to the FMI
operational sea-ice production chain providing segment-wise
sea-ice products for FMI internal use and the Copernicus
Marine Service. Another objective will be to provide supporting
information for ice charting at the Baltic Sea ice service.

Visual inspection indicated reasonable results regarding the
segmentation only, not the segment classes. This was supported
by the IoU metrics (IoUc and IoUs) providing information on
the correspondence of the segments and ice chart polygons.
Because the objective of this study was to use the result for seg-
mentation only, the classification, provided by semantic segmen-
tation in addition to the segmentation, is not essential in the
context of this study. The ability to provide reasonable segments
to be used in segment-wise ice characterization is the most
important result.

One objective of the study was to reduce the oversegmentation
provided by the current FMI operational ICM segmentation,
especially over open water areas. For successful segment-wise ice
parameter estimation, a segment should contain a sufficient
amount of pixels for estimating the sea-ice properties (distribu-
tion if the segment is not homogeneous) within the segment.
Based on the computed segment size statistics, the U-net/
ResNet-34 approach seems to produce significantly larger seg-
ments than the ICM segmentation and also the segment

boundaries rather well correspond to the boundaries of the differ-
ent ice fields and the ice chart polygons.

The performed study also indicated that approximately ten
classes are a suitable number of classes for Baltic Sea ice SAR seg-
mentation. This estimate is based on the performed tests: the
number of classes originally trained (based on the quantization
of the three independent ice chart parameters) was larger but
after the training the neural network provided only this reduced
set of classes and the remaining classes did not appear in the
semantic segmentation outputs. Also, the segmentation results
using this number of classes were reasonable and the major ice
and open water areas were separated. The ice classes used were
generated based on quantization of three polygon-wise quantities
of the digitized FMI ice charts. The basic idea was to produce
sea-ice classes describing the navigability in ice. Also other selec-
tion of classes can be considered in the future research. One pos-
sibility is to cluster the ice chart polygons based on the
polygon-wise SAR properties (σ0 and texture) and use the cluster-
ing result as classes for the training, possibly in a semi-supervised
manner. Also, a two-stage classification could be used: first distin-
guish sea ice and open water segments, and then perform a sep-
arate segmentation for sea-ice areas by another neural network.
The advantage of this two-stage approach would be to exclude
the open water areas with a large variety of σ0 from the second

Figure 12. A late melting period detail over Gulf of Bothnia, 28 April 2021, SAR mosaic HH channel (a), SAR mosaic HV channel (b), ice chart polygons (c) and U-net/
ResNet-34 segments mapped to ice chart classes (d).
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stage to make the clustering more robust. U-net/ResNet-34 seg-
mentation, with the training dataset used in this study, seems to
take into account the SAR σ0 variation caused by different inci-
dent angles. The effect of incidence angle is visible more promin-
ently over open water areas and the segmentation seems to
distinguish these areas well and also map them to the same
semantic class. An obvious reason for this are the texture patterns
of the open water class in the training dataset learned by the algo-
rithm, not only σ0 magnitude.

It is also quite straightforward to include local incidence angle
as one additional channel in the segmentation but in the light of
the obtained results this does not seem to be necessary. The open
water areas with the strongest incidence angle dependency were
well detected by the algorithm without the incidence angle infor-
mation and over sea ice incidence angle dependence was not sig-
nificant after the linear incidence angle correction, based on the
incidence dependencies defined in Makynen and Karvonen
(2017), performed.

The training dataset used in this study was randomly sampled
and was not balanced between the classes, i.e. in the training data-
set the proportions of the classes corresponded to their propor-
tions in the Baltic Sea during the season 2018–2019. The open
water class had the largest proportion of the classes for the season.
One topic for future research is to test training with a balanced
dataset. Also use of other class proportions different from their
true seasonal occurrence could be tested to find an optimal train-
ing dataset. The U-net/ResNet-34 segmentation trained with the
current training dataset, even with its limitations, indicated that
it has potential in segmentation of the operational FMI SAR
imagery over the Baltic Sea.

The segmentation provided by the U-net/ResNet-34 segmenta-
tion is clearly able to distinguish between different ice and open
water or very low ice concentration areas. For example, land-fast
ice areas, level ice areas and drift ice areas can be distinguished to
separate segments by the method. At this point (segmentation with-
out tightly fixed segment classes) of the automated sea-ice informa-
tion processing chain, the segment labels are not essential. Only the
ability of the algorithm to generate segments corresponding to uni-
form sea-ice areas is essential. The more detailed ice information
will be assigned to the segments in a later analysis phase. The ana-
lysis phase can be automated or manually performed by ice analysts.
Examples of applying a segmentation first and assigning SIC to the
segments were proposed, e.g. in Karvonen (2017, 2021). The next
processing phase after the segmentation will be to perform a thor-
ough automated sea-ice analysis over each segment using EO data
from multiple sources, including SAR, microwave radiometer
(AMSR2) and radar altimeter (CryoSat-2 SIRAL or Sentinel-3
SRAL) data. One useful piece of information for navigation is the
Risk Index Outcome (RIO) (IMO, 2016). RIO is dependent on
the ship ice class and thus different for different vessels. RIO pro-
vides a ship the information about which areas it is safe to sail
with the particular ship. Segmentwise RIO estimates based on ice
information derived from remote-sensing data is one potential par-
ameter to be provided to aid navigation.

It is also noteworthy that the image mosaics used for testing the
segmentation algorithm consisted of both calibrated Sentinel-1 and
Radarsat-2 images acquired approximately at the same frequency
and polarization combination. The segmentation seemed to work
well for these mosaics even though only Sentinel-1 imagery were
used in the training phase. Compatibility between Sentinel-1 and
Radarsat-2 data has also been observed in Guo and others
(2022), with some exceptions due to the different noise floors of
the two instruments. Radarsat Constellation Mission (RCM) data
are acquired at the same frequency and training data compatibility
between Sentinel-1 and RCM data will be one interesting topic for
future studies.

This kind of segmentation can also be used as an initial state of
manual ice charting. The segments can be converted into poly-
gons in a vector graphics format, such as ESRI shape files
(ESRI, 1998), used by many ice services. The ice analysts can
then edit the segments converted to polygons in their ice charting
software and assign detailed ice information to them.

The input segmentation for daily ice charting should not
include too many details because the ice analysts must have the
ice charts ready by a fixed time every afternoon. Too detailed
inputs would require too much manual work to get completed
within the strict time limit.

In the latemelting period even distinguishing between openwater
and level icewith liquidwater or very wet snow on itmay become dif-
ficult by SAR and this kind of ice condition may provide misinter-
pretation by both automated algorithms and visual inspection if
the segmentation or polygonalization is based on SAR data alone.
One topic of future research is to study whether including data
from microwave radiometer (e.g. as additional image channels)
would improve the segmentation in melting period ice conditions
with a wet or refrozen ice surface. For the test dataset of the
2020–2021 season mosaics, the U-net/ResNet-34 algorithm seemed
to perform well during the melt period. The melt period started
already in early April 2021. Some areas classified as thin level ice in
ice charts wasmapped to open water by the segmentation algorithm.
The SAR backscattering from these areas is very similar to backscat-
tering from open water, i.e. speckle noise without any features, and
distinguishing is very difficult. The ice analysts typically have some
additional information (optical/infrared image data,microwave radi-
ometer data, X-band SARdata andknowledgeof the ice development
history) at their disposal, compared to the segmentation algorithm.
The ice development history could be taken into account in an
automated algorithm by including a time series of SAR mosaics of
the days before the segmentation mosaic date in the segmentation
algorithm as additional image channels. This will be one topic for
future research. To be able to confirm and optimize the algorithm
performance of distinguishing between level ice and open water in
freeze-up andmelt conditions, a largemulti-year representative data-
set covering different freeze-up and melt period situations will be
required. This will also be one topic of future research.

The future work will also include research of applying machine
learning methods to extract sea-ice information from multiple
data sources available in near-real-time, including ice modeling
to complement information obtained from EO data, and assign-
ing these information to each segment produced by the segmen-
tation algorithm. One interesting topic for future research would
also be to apply explainable AI (XAI) (Arrieta and others, 2013)
to analyze dependencies between the inputs, neural network
internals (feature learning/extraction) and outputs to get a better
insight of the neural network functioning.

More detailed information on sea ice within segments can be
included in a final sea-ice product as separate layers. For example,
leads, cracks and large pressure ridges distinguishable in SAR imagery
or their segment-wise statistics can be included. For this purpose, spe-
cific approaches to get detailed fine-scale information should be used;
one alternative is to utilize weakly supervised deep learning (Wang
and others, 2020) to extract details from SAR imagery.

One possible way to improve the segmentation performance
would be to utilize an adversarial network (Goodfellow and others,
2014) in optimizing the segmentation. If more detailed segments
would be required, then one way to enable more details would be
requiring in the training phase that, e.g. polygon/segment class
modes, instead of pixel-wise polygon class values, agree with the ice
chart polygon class. Another factor effecting the segmentation and
classification is the selection of the loss function. In this study,
some common semantic segmentation loss functions were tested.
They had very similar segmentation performance for the test dataset.
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Also tests with a customized loss functionwere performed. According
to preliminary tests, it seems possible to adjust the level of segmenta-
tiondetail, at least to some extent, by using such customized loss func-
tion. A thorough comparison of loss functions, including loss
functions that are combinations of more than one loss function,
and estimation of optimal weights for different combinations of
loss functions for the segmentation taskwill be a laborous but import-
ant part of the future development. Also, use of novel loss functions
especially tuned for the segmentation task should be studied more.

Also, using a constant image grid without data augmentation
is an interesting topic of future research. It can be assumed that
the neural network will learn the typical local ice patterns, espe-
cially near coastline because coastline is similar in each image
block of the same location. This approach will require SAR
mosaics in the fixed grid over multiple ice seasons to be able to
train the typical local ice characteristics.

At FMI there are also plans to test the application of the pro-
posed U-net/ResNet-34 segmentation algorithm to Arctic Ocean
SAR data, first using the SAR mosaics produced over a test area
in Barents and Kara Seas. These data have been archived at FMI
for a time period of several years. The Arctic segmentation may
require additional training data. For example, the Russian
Arctic-Antarctic Research Institute (AARI) ice charts (http://wdc.
aari.ru/datasets/) could be used for training over the Arctic test
area. Unfortunately, the Arctic ice charts are less accurate then
the Baltic Sea ice charts. They only contain information of SIC
and stage of ice development and the polygons in them are rather
large, providing only coarse scale sea-ice information, i.e. they con-
tain significantly less details compared to the gridded Baltic Sea ice
charts. One approach at least partially to overcome this deficiency
and to be tested will be to use Baltic Sea data for training and after
that applying the algorithm trained using the Baltic Sea data to the
Arctic SAR data. This approach may require some additional
adjustment because in the Arctic there occur ice types not existing
in the Baltic Sea. For example, detection of multi-year ice segments
should be based on Arctic training data. One possibility is to apply
a two-stage segmentation, one based on an Arctic training and the
other based on a Baltic Sea training if the Baltic Sea training is seen
to provide any added value.

In conclusion, the studied algorithm is a good candidate for
operational SAR segmentation at FMI, also as part of the
Copernicus Marine Service production chain. It produced useful
results for an independent test dataset, even with a rather limited
training dataset and the execution time is not too long for oper-
ational use. However, before replacing the operational FMI SAR
segmentation algorithm by U-net/ResNet-34 training with a large
representative training dataset, covering multiple winter seasons
and fine tuning of the algorithm parameters based on the large
and representative dataset will be needed. This dataset can be com-
posed of the Baltic Sea Sentinel-1 and Radarsat-2 images and daily
ice charts archived at FMI since the winter season 2014–2015.

Data. The Sentinel-1 SAR data are available through ESA Copernicus data
hub https://scihub.copernicus.eu, other data are not available without charge.
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