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Abstract Let ϕ(τ) = η( 1
2 (τ + 1))2/

√
2π exp{ 1

4πi}η(τ + 1), where η(τ) is the Dedekind eta function.
We show that if τ0 is an imaginary quadratic argument and m is an odd integer, then

√
mϕ(mτ0)/ϕ(τ0)

is an algebraic integer dividing
√

m. This is a generalization of a result of Berndt, Chan and Zhang. On
the other hand, when K is an imaginary quadratic field and θK is an element of K with Im(θK) > 0
which generates the ring of integers of K over Z, we find a sufficient condition on m which ensures that√

mϕ(mθK)/ϕ(θK) is a unit.

Keywords: Dedekind eta function; modular functions; automorphic functions

2010 Mathematics subject classification: Primary 11F20
Secondary 11F03

1. Introduction

The Dedekind eta function η(τ) is defined to be the infinite product

η(τ) =
√

2πeπi/4q1/24
∞∏

n=1

(1 − qn), τ ∈ H, (1.1)

where q = e2πiτ with i =
√

−1 and H = {τ ∈ C : Im(τ) > 0}. Define a function

ϕ(τ) =
1√

2πeπi/4

η((τ + 1)/2)2

η(τ + 1)
=

∞∏
n=1

(1 + qn−1/2)2(1 − qn), τ ∈ H, (1.2)

which is identical to Jacobi’s θ(τ) =
∑∞

n=−∞ qn2/2, by Jacobi’s triple product identity [1,
p. 36]. Motivated by Ramanujan’s evaluation of ϕ(mi)/ϕ(i) for some positive integers
m [10] which are algebraic numbers, Berndt et al . proved the following theorem.

Theorem 1.1 (Berndt et al . [2, Theorem 4.4]). Let m and n be positive integers.
If m is odd, then

√
2mϕ(mni)/ϕ(ni) is an algebraic integer dividing 2

√
m, while if m is

even, then 2
√

mϕ(mni)/ϕ(ni) is an algebraic integer dividing 4
√

m.
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In this paper we shall first revisit the theorem and improve it when m is odd, as follows.

Theorem 1.2. Let m be a positive integer and let τ0 ∈ H be imaginary quadratic.
Then 2

√
mϕ(mτ0)/ϕ(τ0) is an algebraic integer dividing 4

√
m. In particular, if m is odd,

then
√

mϕ(mτ0)/ϕ(τ0) is an algebraic integer dividing
√

m.

For (r1, r2) ∈ Q2 − Z2, the Siegel function g(r1,r2)(τ) is defined by

g(r1,r2)(τ) = −qB2(r1)/2eπir2(r1−1)(1 − qz)
∞∏

n=1

(1 − qnqz)(1 − qnq−1
z ), τ ∈ H, (1.3)

where B2(x) = x2 − x + 1/6 is the second Bernoulli polynomial and qz = e2πiz with
z = r1τ + r2. We shall express the function ϕ(mτ)/ϕ(τ) as a product of certain eta-
quotient and Siegel functions (Lemma 2.6 (i)). Also, we shall prove Theorem 1.2 in § 3
by using integrality of Siegel functions over Z[j(τ)] [6, § 3], where

j(τ) =
(

η(τ)24 + 28η(2τ)24

η(τ)16η(2τ)8

)3

= q−1 + 744 + 196 884q + 21 493 760q2 + · · ·

is the well-known modular j-function [3, Theorem 12.17].
On the other hand, let K be an imaginary quadratic field with discriminant dK , and

define

θK =

⎧⎪⎪⎨
⎪⎪⎩

√
dK

2
for dK ≡ 0 (mod 4),

−1 +
√

dK

2
for dK ≡ 1 (mod 4),

(1.4)

which generates the ring of integers of K over Z. Ramachandra showed in [9, § 6] that if
N (N � 2) is an integer with more than one prime ideal factor in K, then g(0,1/N)(θK)12N

is a unit. This fact, together with Shimura’s Reciprocity Law (Proposition 4.6), enables
us to prove the following theorem in § 4.

Theorem 1.3. If m (m � 3) is an odd integer whose prime factors split in K, then√
mϕ(mθK)/ϕ(θK) is a unit.

2. Arithmetic properties of Siegel functions

In this section we shall examine some arithmetic properties of Siegel functions. For the
classical theory of modular functions, we refer the reader to [8,11].

For each positive integer N , let ζN = e2πi/N and let FN be the field of meromorphic
modular functions of level N whose Fourier coefficients belong to the Nth cyclotomic
field Q(ζN ).

Proposition 2.1. For each positive integer N , FN is a Galois extension of F1 =
Q(j(τ)) whose Galois group is isomorphic to

GL2(Z/NZ)/{±12} = GN · SL2(Z/NZ)/{±12},

https://doi.org/10.1017/S0013091510001094 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001094


Algebraic integers as special values of modular units 169

where

GN =

{(
1 0
0 d

)
: d ∈ (Z/NZ)∗

}
.

Here, the matrix (
1 0
0 d

)
∈ GN

acts on
∑∞

n=−∞ cnqn/N ∈ FN by

∞∑
n=−∞

cnqn/N �→
∞∑

n=−∞
cσd
n qn/N ,

where σd is the automorphism of Q(ζN ) induced by ζN �→ ζd
N . Also, for an element

γ ∈ SL2(Z/NZ)/{±12} let γ′ ∈ SL2(Z) be a preimage of γ via the natural surjection
SL2(Z) → SL2(Z/NZ)/{±12}. Then γ acts on h ∈ FN by composition

h �→ h ◦ γ′

as a fractional linear transformation.

Proof. See [8, Chapter 6, Theorem 3]. �

Proposition 2.2. Let (r1, r2) ∈ (1/N)Z2 − Z2 for some integer N � 2.

(i) g(r1,r2)(τ) is integral over Z[j(τ)]. Namely, g(r1,r2)(τ) is a zero of a monic polynomial
whose coefficients are in Z[j(τ)].

(ii) Suppose that (r1, r2) has the primitive denominator N (that is, N is the smallest
positive integer such that (Nr1, Nr2) ∈ Z2). If N is composite (that is, N has at
least two prime factors), then g(r1,r2)(τ)−1 is also integral over Z[j(τ)].

(iii) g(r1,r2)(τ) is holomorphic and has no zeros and poles on H. Furthermore, g(r1,r2)(τ)
(respectively, g(r1,r2)(τ)12N/ gcd(6,N)) belongs to F12N2 (respectively, FN ).

Proof.

(i) See [6, § 3].

(ii) See [7, Chapter 2, Theorems 2.2 (i)].

(iii) See [7, Chapter 2, Theorem 1.2, and Chapter 3, Theorem 5.2].

�

Remark 2.3. Let g(τ) be an element of FN for some positive integer N . If both g(τ)
and g(τ)−1 are integral over Q[j(τ)] (respectively, Z[j(τ)]), then g(τ) is called a modular
unit (respectively, modular unit over Z) of level N . As is well known, g(τ) is a modular
unit if and only if it has no zeros or poles on H (see [7, Chapter 2, § 2] or [6, § 2]). Hence,
g(r1,r2)(τ) is a modular unit for any (r1, r2) ∈ Q2 − Z2, by (iii). Moreover, if (r1, r2) has
a composite primitive denominator, then g(r1,r2)(τ) is a modular unit over Z, by (ii).
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We recall the necessary transformation formulae of Siegel functions.

Proposition 2.4. Let r = (r1, r2) ∈ Q2 − Z2.

(i) We have
g−r(τ) = g(−r1,−r2)(τ) = −gr(τ).

(ii) For

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
,

we get

gr(τ) ◦ S = ζ9
12grS(τ) = ζ9

12g(r2,−r1)(τ),

gr(τ) ◦ T = ζ12grT (τ) = ζ12g(r1,r1+r2)(τ).

Hence, we obtain that, for any γ ∈ SL2(Z),

gr(τ) ◦ γ = εgrγ(τ)

with ε a 12th root of unity (depending on γ).

(iii) For s = (s1, s2) ∈ Z2 we have

gr+s(τ) = g(r1+s1,r2+s2)(τ) = (−1)s1s2+s1+s2e−πi(s1r2−s2r1)gr(τ).

(iv) Let r ∈ (1/N)Z2 − Z2 for some integer N � 2. Each element

α =

(
a b

c d

)
in GL2(Z/NZ)/{±12} � Gal(FN/F1)

acts on gr(τ)12N/ gcd(6,N) by

(gr(τ)12N/ gcd(6,N))α = grα(τ)12N/ gcd(6,N) = g(r1a+r2c,r1b+r2d)(τ)12N/ gcd(6,N).

Proof. (i)–(iii) See [6, Proposition 2.4].

(iv) See [7, Chapter 2, Proposition 1.3]. �

Remark 2.5. The expression rα in (iv) is well defined by (i) and (iii).

Lemma 2.6.

(i) We can express ϕ(τ) as

ϕ(τ) = − 1√
2π

η(τ)g(1/2,1/2)(τ).

(ii) We get
g(0,1/2)(τ)g(1/2,0)(τ)g(1/2,1/2)(τ) = 2eπi/4.
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(iii) If m (m � 3) is an odd integer, then we have the relation

g(1/2,1/2)(mτ)
g(1/2,1/2)(τ)

= (−1)(m−1)/2
m−1∏
k=1

g(1/2,1/2+k/m)(τ).

Proof. (i) By the definition (1.3) we have

g(1/2,1/2)(τ) = −qB2(1/2)/2e−πi/4(1 + q1/2)
∞∏

n=1

(1 + qn+1/2)(1 + qn−1/2)

= −e−πi/4q−1/24
∞∏

n=1

(1 + qn−1/2)2.

One can then obtain the assertion by the definition (1.1) of η(τ) and the infinite product
expansion (1.2) of ϕ(τ).

(ii) It follows from the definition (1.3) that

g(0,1/2)(τ)g(1/2,0)(τ)g(1/2,1/2)(τ) = −2e−3πi/4
∞∏

n=1

(1 + qn)2(1 − qn−1/2)2(1 + qn−1/2)2

= 2eπi/4
∞∏

n=1

(1 + qn)2(1 − q2n−1)2

= 2eπi/4
∞∏

n=1

(1 − q2n)2

(1 − qn)2
· (1 − qn)2

(1 − q2n)2

= 2eπi/4.

(iii) By the definition (1.3) we obtain

g(1/2,1/2)(mτ)
g(1/2,1/2)(τ)

=
−qmB2(1/2)/2e−πi/4(1 + qm/2)

∏∞
n=1(1 + qmn+m/2)(1 + qmn−m/2)

−qB2(1/2)/2e−πi/4(1 + q1/2)
∏∞

n=1(1 + qn+1/2)(1 + qn−1/2)

= q(1−m)/24
∞∏

n=1

(
1 + qm(n−1/2)

1 + qn−1/2

)2

and

m−1∏
k=1

g(1/2,1/2+k/m)(τ)

=
m−1∏
k=1

(
−qB2(1/2)/2 exp

{
πi

(
1
2

+
k

m

)(
−1

2

)}

× (1 + q1/2ζk
m)

∞∏
n=1

(1 + qn+1/2ζk
m)(1 + qn−1/2ζ−k

m )
)
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= (−1)m−1eπi(1−m)/2q(1−m)/24
m−1∏
k=1

∞∏
n=1

(1 + qn−1/2ζk
m)(1 + qn−1/2ζ−k

m )

= (−1)(1−m)/2q(1−m)/24
∞∏

n=1

m−1∏
k=1

(1 + qn−1/2ζk
m)2 because m is odd

= (−1)(1−m)/2q(1−m)/24
∞∏

n=1

(
1 + qm(n−1/2)

1 + qn−1/2

)2

by the identity
1 + Xm

1 + X
=

1 − (−X)m

1 − (−X)
=

m−1∏
k=1

(1 − (−X)ζk
m).

This proves (iii). �

3. Proof of Theorem 1.2

Let

∆(τ) = η(τ)24 = (2π)12q
∞∏

n=1

(1 − qn)24, τ ∈ H,

be the modular discriminant function.

Proposition 3.1. Let τ0 ∈ H be imaginary quadratic.

(i) j(τ0) is an algebraic integer.

(ii) Let a, b and d be integers with ad > 0 and gcd(a, b, d) = 1. Then

a12∆((aτ0 + b)/d)
∆(τ0)

is an algebraic integer dividing (ad)12.

Proof.

(i) See [8, Chapter 5, Theorem 4].

(ii) See [8, Chapter 12, Theorem 4] or [4].

�

Remark 3.2. Case (ii) is the most important special case of the prime factorizations
of ∆(ατ0)/∆(τ0) (α ∈ M+

2 (Z)); this was proved by Hasse for all factorizations.

Proposition 3.3. Let m be a positive integer and τ0 ∈ H be imaginary quadratic.

(i)
√

mη(mτ0)/η(τ0) is an algebraic integer dividing
√

m.

(ii) 2g(1/2,1/2)(mτ0)/g(1/2,1/2)(τ0) is an algebraic integer dividing 4. In particular, if m

is odd, then g(1/2,1/2)(mτ0)/g(1/2,1/2)(τ0) is a unit.
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Proof. (i) Applying Proposition 3.1 (ii) with (a, b, d) = (m, 0, 1), we see that

m12 ∆(mτ0)
∆(τ0)

=
(√

m
η(mτ0)
η(τ0)

)24

is an algebraic integer dividing m12. We then get the assertion by taking the 24th root.

(ii) We obtain by Lemma 2.6 (ii) that

2
g(1/2,1/2)(mτ0)
g(1/2,1/2)(τ0)

= e−πi/4g(0,1/2)(τ0)g(1/2,0)(τ0)g(1/2,1/2)(τ0)
g(1/2,1/2)(mτ0)
g(1/2,1/2)(τ0)

= e−πi/4(g(0,1/2)(τ0)g(1/2,0)(τ0))g(1/2,1/2)(mτ0).

By Propositions 2.2 (i) and 3.1 (i) we know that the values g(0,1/2)(τ0)g(1/2,0)(τ0),
g(1/2,1/2)(τ0), g(0,1/2)(mτ0)g(1/2,0)(mτ0) and g(1/2,1/2)(mτ0) are algebraic integers. More-
over, since

(g(0,1/2)(τ0)g(1/2,0)(τ0))g(1/2,1/2)(τ0) = (g(0,1/2)(mτ0)g(1/2,0)(mτ0))g(1/2,1/2)(mτ0)

= 2eπi/4

by Lemma 2.6 (ii), both g(0,1/2)(τ0)g(1/2,0)(τ0) and g(1/2,1/2)(mτ0) are algebraic integers
dividing 2. Hence, the value 2g(1/2,1/2)(mτ0)/g(1/2,1/2)(τ0) is an algebraic integer dividing
2 · 2 = 4.

Next, suppose that m (m � 3) is odd. Recall the relation

g(1/2,1/2)(mτ)
g(1/2,1/2)(τ)

= (−1)(m−1)/2
m−1∏
k=1

g(1/2,1/2+k/m)(τ)

given in Lemma 2.6 (iii). Since each vector(
1
2
,
1
2

+
k

m

)

has a composite primitive denominator, g(1/2,1/2+k/m)(τ) is a modular unit over Z

by Proposition 2.2 (ii); hence, so is g(1/2,1/2)(mτ)/g(1/2,1/2)(τ). Therefore, the value
g(1/2,1/2)(mτ0)/g(1/2,1/2)(τ0) is a unit by Proposition 3.1 (i). �

Now we are ready to prove Theorem 1.2. Let m be a positive integer and let τ0 ∈ H

be imaginary quadratic. By Lemma 2.6 (i) we have

2
√

m
ϕ(mτ0)
ϕ(τ0)

=
√

m
η(mτ0)
η(τ0)

· 2
g(1/2,1/2)(mτ0)
g(1/2,1/2)(τ0)

.

Thus, it follows from Proposition 3.3 (i) and (ii) that 2
√

mϕ(mτ0)/ϕ(τ0) is an algebraic
integer dividing 4

√
m. Likewise, if m is odd, then

√
m

ϕ(mτ0)
ϕ(τ0)

=
√

m
η(mτ0)
η(τ0)

·
g(1/2,1/2)(mτ0)
g(1/2,1/2)(τ0)

(3.1)

is an algebraic integer dividing
√

m. This completes the proof of Theorem 1.2.
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On the other hand, when τ0 = ni we are able to improve Theorem 1.1 as a corollary.

Corollary 3.4. Let m and n be positive integers. If m is odd, then
√

mϕ(mni)/ϕ(ni)
is an algebraic integer dividing

√
m, while if m is even, then 2

√
mϕ(mni)/ϕ(ni) is an

algebraic integer dividing 4
√

m.

Remark 3.5. Berndt et al . [2] used only the argument of Proposition 3.1 (ii) in order
to achieve Theorem 1.1.

4. Proof of Theorem 1.3

Lemma 4.1. Let m (m � 2) be an integer. Then we have the following identities.

(i) ∏
a,b∈Z,

0�a,b<m, (a,b) �=(0,0)

g(a/m,b/m)(τ)12m = m12m.

(ii)
m−1∏
k=1

g(0,k/m)(τ) = im−1
(√

m
η(mτ)
η(τ)

)2

.

Proof. (i) See [7, Example, p. 45].

(ii) We deduce from the definition (1.3) that

m−1∏
k=1

g(0,k/m)(τ)

=
m−1∏
k=1

(−qB2(0)/2ζ−k
2m(1 − ζk

m)
∞∏

n=1

(1 − qnζk
m)(1 − qnζ−k

m ))

= im−1mq(m−1)/12
∞∏

n=1

(
1 − qmn

1 − qn

)2

by the identity
1 − Xm

1 − X
= 1 + X + · · · + Xm−1 =

m−1∏
k=1

(1 − Xζk
m)

= im−1
(√

m
η(mτ)
η(τ)

)2

by the definition (1.1).

�

Remark 4.2. Let τ0 ∈ H be imaginary quadratic. By Propositions 2.2 (i), 3.1 (i) and
Lemma 4.1 (i) we see that

∏m−1
k=1 g(0,k/m)(τ0) is an algebraic integer dividing m. It then

follows from Lemma 4.1 (ii) that
√

mη(mτ0)/η(τ0) is an algebraic integer dividing
√

m.
This gives another proof of Proposition 3.3 (i) without using the usual argument of Hasse
(namely, Proposition 3.1 (ii)).
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From now on, we let K be an imaginary quadratic field and θK be as in (1.4). We
denote by HK and K(N) the Hilbert class field and the ray class field modulo N (N � 1)
of K, respectively.

Proposition 4.3 (main theorem of complex multiplication).

K(N) = KFN (θK) = K(h(θK) : h ∈ FN is defined and finite at θK).

Proof. See [8, Chapter 10, Corollary to Theorem 2] or [11, Chapter 6]. �

Proposition 4.4.

(i) If N (N � 2) is an integer with more than one prime ideal factor in K, then
g(0,1/N)(θK)12N is a unit in K(N).

(ii) If m (m � 3) is an odd integer, then (
√

mϕ(mθK)/ϕ(θK))2 is an algebraic integer
in K(48m2).

Proof. (i) See [9, § 6].

(ii) We see that

(√
m

ϕ(mτ)
ϕ(τ)

)2

=
(√

m
η(mτ)
η(τ)

)2(g(1/2,1/2)(mτ)
g(1/2,1/2)(τ)

)2

by Lemma 2.6 (i)

= (−1)(1−m)/2
m−1∏
k=1

g(0,k/m)(τ)g(1/2,1/2+k/m)(τ)2

by Lemmas 4.1 (ii) and 2.6 (iii). (4.1)

And (
√

mϕ(mτ)/ϕ(τ))2 belongs to F48m2 by Proposition 2.2 (iii). Therefore,

(
√

mϕ(mθK)/ϕ(θK))2

lies in K(48m2) by Proposition 4.3, which is an algebraic integer by Theorem 1.2. �

Remark 4.5. In [5] Jung et al . showed that if K is an imaginary quadratic field other
than Q(

√
−1) and Q(

√
−3), then the singular value g(0,1/N)(θK)12N in Proposition 4.4 (i)

is in fact a primitive generator of K(N) over K, which is called a Siegel–Ramachandra
invariant (see [7, Chapter 11, § 1] or [9]).

On the other hand, we have the following explicit description of Shimura’s reciprocity
law, due to Stevenhagen [12], which connects the class field theory with the theory of
modular functions.

Proposition 4.6 (Shimura’s Reciprocity Law). Let min(θK , Q) = X2+BX+C ∈
Z[X]. For every positive integer N the matrix group

WK,N =

{(
t − Bs −Cs

s t

)
∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}
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gives rise to the surjection

WK,N → Gal(K(N)/HK),

α �→ (h(θK) �→ hα(θK)),

where h ∈ FN is defined and finite at θK . Its kernel is given by

KerK,N =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
±

(
1 0

0 1

)
,±

(
0 −1

1 0

)}
if K = Q(

√
−1),

{
±

(
1 0

0 1

)
,±

(
−1 −1

1 0

)
,±

(
0 −1

1 1

)}
if K = Q(

√
−3),

{
±

(
1 0

0 1

)}
otherwise.

Proof. See [12, § 3]. �

Proposition 4.7. If m (m � 2) is an integer whose prime factors split in K, then√
mη(mθK)/η(θK) is a unit.

Proof. We get from Lemma 4.1 (ii) that

(√
m

η(mθK)
η(θK)

)24m

=
m−1∏
k=1

g(0,k/m)(θK)12m. (4.2)

For each 1 � k � m − 1, let us write

k

m
=

a

b
with relatively prime positive integers a and b.

Note that b has more than one prime ideal factor in K, by the assumption on m. Thus,
g(0,1/b)(θK)12b is a unit in K(b), by Proposition 4.4 (i). On the other hand, since(

a 0
0 a

)
∈ WK,b/ KerK,b � Gal(K(b)/HK),

we deduce that

(g(0,1/b)(θK)12b)(
a 0
0 a

) = (g(0,1/b)(τ)12b)(
a 0
0 a

)(θK) by Proposition 4.6

=
(
g(0,1/b)( a 0

0 a
)(τ)12b

)
(θK) by Proposition 2.4 (iv)

= g(0,a/b)(θK)12b,

which is also a unit. Therefore,
√

mη(mθK)η(θK) becomes a unit, by the relation (4.2).
�
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Now, we can prove Theorem 1.3. Let m (m � 3) be an odd integer whose prime factors
split in K. Since both

√
mη(mθK)/η(θK) and g(1/2,1/2)(mθK)/g(1/2,1/2)(θK) are units by

Propositions 4.7 and 3.3 (ii), the conclusion follows from (3.1) with τ0 = θK .

Corollary 4.8. Let m (m � 3) be an odd integer whose prime factors p satisfy p ≡ 1
(mod 4). Then

√
mϕ(mi)/ϕ(i) is a unit.

Proof. If we take K = Q(
√

−1), then θK = i. For each prime factor p of m, the fact
that p ≡ 1 (mod 4) implies that p splits in K [3, Corollary 5.17]. Therefore, we get the
assertion by applying Theorem 1.3. �

We close this section by evaluating
√

mϕ(mi)/ϕ(i) when m = 3 and 5, explicitly.

Example 4.9. We shall first estimate
√

3ϕ(3i)/ϕ(i). If K = Q(
√

−1), then θK = i
and HK = K [3, Theorem 12.34]. By Proposition 4.6 we have

Gal(K(6)/K) � WK,6/ KerK,6

=

{
α1 =

(
1 0
0 1

)
, α2 =

(
1 −2
2 1

)
, α3 =

(
1 −4
4 1

)
, α4 =

(
3 −2
2 3

)}
.

Since

x =
(√

3
ϕ(3i)
ϕ(i)

)24

= g(0,1/3)(i)12g(0,2/3)(i)12g(1/2,5/6)(i)24g(1/2,7/6)(i)24 by (4.1)

= g(0,1/3)(i)24g(1/2,1/6)(i)48 by Proposition 2.4 (i) and (iii)

≈ 72 954,

x lies in K(6) by Propositions 2.2 (iii) and 4.3. Hence, its conjugates xk = xαk (1 � k � 4)
over K are

x1 = g(0,1/3)(i)24g(1/2,1/6)(i)48,

x2 = g(2/3,1/3)(i)24g(5/6,1/6)(i)48,

x3 = g(1/3,1/3)(i)24g(1/6,1/6)(i)48,

x4 = g(2/3,0)(i)24g(5/6,1/2)(i)48

with some multiplicity by Propositions 4.6 and 2.4 (iv). We claim that the minimal poly-
nomial of x over K has integer coefficients. Indeed, since x is a real algebraic integer by
definition (1.2) and Theorem 1.2, we have

[Q(x) : Q] =
[K(x) : K] · [K : Q]

[K(x) : Q(x)]
=

[K(x) : K] · 2
2

= [K(x) : K],

from which the claim follows. Thus, x is a zero of the polynomial

(X − x1)(X − x2)(X − x3)(X − x4) = (X2 − 72 954X + 729)2
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whose coefficients can be determined by numerical approximation with the aid of a com-
puter. Therefore, we obtain

√
3
ϕ(3i)
ϕ(i)

= 24
√

x =
24
√

36 477 + 21 060
√

3 =
4
√

3 + 2
√

3.

Example 4.10. Next, we consider
√

5ϕ(
√

5i)/ϕ(i). Let K = Q(
√

−1). By Proposi-
tion 4.6 we have

Gal(K(10)/K)

� WK,10/ KerK,10

=

{
α1 =

(
1 0
0 1

)
, α2 =

(
1 −4
4 1

)
, α3 =

(
1 −6
6 1

)
, α4 =

(
2 −3
3 2

)
,

α5 =

(
2 −5
5 2

)
, α6 =

(
2 −7
7 2

)
, α7 =

(
3 0
0 3

)
, α8 =

(
4 −5
5 4

)}
.

Since

x =
(√

5
ϕ(5i)
ϕ(i)

)120

= g(0,1/5)(i)120g(0,2/5)(i)120g(1/2,1/10)(i)240g(1/2,3/10)(i)240

by Proposition 2.4 (i) and (iii)

≈ 41 473 935 220 454 921 602 871 195 774 259 272 002,

x lies in K(10) by Propositions 2.2 (iii) and 4.3. Its conjugates xk = xαk (1 � k � 8) over
K are

x1 = x5 = x7 = x8 = g(0,1/5)(i)120g(0,2/5)(i)120g(1/2,1/10)(i)240g(1/2,3/10)(i)240,

x2 = g(4/5,1/5)(i)120g(3/5,2/5)(i)120g(9/10,1/10)(i)240g(7/10,3/10)(i)240,

x3 = x6 = g(1/5,1/5)(i)120g(2/5,2/5)(i)120g(1/10,1/10)(i)240g(3/10,3/10)(i)240,

x4 = g(3/5,2/5)(i)120g(1/5,4/5)(i)120g(3/10,7/10)(i)240g(9/10,1/10)(i)240

with some multiplicity by Propositions 4.6 and 2.4 (iv). So x is a zero of the polynomial

(X2 − 41 473 935 220 454 921 602 871 195 774 259 272 002X + 1)4,

which shows that x is a unit. Therefore, we get

√
5
ϕ(5i)
ϕ(i)

= 120
√

x

= 120

√
20 736 967 610 227 460 801 435 597 887 129 636 001

+9 273 853 844 735 993 106 095 069 260 699 853 880
√

5

=
10
√

682 + 305
√

5.
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