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Understanding the skin friction in an axisymmetric turbulent boundary layer (ATBL) flow
is a key to designing and optimising the flow past axisymmetric bodies, for example,
a rocket engine nozzle and a submarine hull. In this study, we propose a universal
law of the skin-friction coefficient in an ATBL flow. The flow is steady and fully
developed with a zero pressure gradient. The governing equation for the ATBL flow
is derived by methodically applying the boundary layer approximation. Subsequently,
the scaling law of the Reynolds shear stress, caused by turbulent eddies, at the surface
tangential to the wall roughness summits is derived by incorporating the role of transverse
curvature. The skin-friction coefficient in a smooth ATBL flow is found to depend on
two parameters, namely, the Reynolds number based on the cylinder radius, Rea, and the
ratio of boundary layer thickness to cylinder radius, δ/a. The analysis predicts a simple
form of the skin-friction coefficient as Cf = 4.56 × 10−2[Rea ln(1 + δ/a)]−1/4, which
agrees satisfactorily with the available experimental data and the numerical simulations
in all the axisymmetric flow regimes. The proposed law, in the limit of infinite radius,
is consistent with the classical law of the skin-friction coefficient in a plane turbulent
boundary layer flow as Cf 0 ∼ Re−1/4

δ , where Reδ is the Reynolds number based on the
boundary layer thickness. This study reveals that, for δ/a < 1, the relative skin-friction
coefficient, (Cf − Cf 0)/Cf 0, follows a linear law with δ/a.
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Figure 1. Flow past an axisymmetric body, say a rigid cylinder with a radius a, described with respect to a
cylindrical coordinate system (r, θ , z). Here, ūz is the time-averaged longitudinal velocity in the z direction,
U∞ = ūz|r = a + δ is the free stream velocity, δ is the boundary layer thickness, r = a defines the surface of the
cylinder and r = a + δ defines the edge of the ATBL.

1. Introduction

1.1. Problem statement
The main goal of this study is to obtain a universal law of the skin-friction coefficient in
a steady and fully developed axisymmetric turbulent boundary layer (ATBL) flow with
a zero pressure gradient. The surface drag experienced by an axisymmetric object, say
a rocket engine nozzle or a submarine hull, is of considerable importance because of its
tremendous impact on the overall system performance. Understanding the skin friction in
an ATBL flow is therefore crucial for designing and optimising the flow past axisymmetric
objects. By reducing the skin friction, the drag force can be minimised, resulting in an
enhanced system performance.

In an ATBL flow, the flow is rotationally symmetric around a central axis. The ATBL
develops along an axisymmetric body, say flow past a cylinder with its axis aligned along
the flow (figure 1). Let the cylinder radius be a, the boundary layer thickness be δ and
the free stream velocity be U∞. For a fully developed flow (δ no longer depends on the
longitudinal distance z) with a zero pressure gradient, the dimensional analysis allows us
to express the skin-friction coefficient Cf as follows:

Cf ≡ τ0
1
2ρU2∞

= f
(

Rea,
δ

a

)
, (1.1)

where τ0 is the wall shear stress, ρ is the mass density of fluid, f is the functional form,
Rea = U∞a/υ is the Reynolds number based on the cylinder radius and υ is the coefficient
of kinematic viscosity of fluid. The objective of this study is to find the functional form
(1.1) by means of a theoretical approach. Since an analytical formula is simpler and
computationally more efficient than the numerical techniques, the proposed formula would
be easier to use and more accessible to researchers.

1.2. The ATBL flow regimes
A plane turbulent boundary layer (TBL) flow is characterised by two length scales, namely,
the boundary layer thickness δ and the viscous length scale υ/u*, where u∗ = (τ0/ρ)1/2
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Universal law of skin-friction coefficient

is the friction velocity. However, an ATBL flow possesses an extra length scale, that is,
the radius of transverse curvature a. The role of transverse curvature in an ATBL flow
has long been studied experimentally (Richmond 1957; Yu 1958; Rao 1967; Chase 1972;
Rao & Keshavan 1972; Patel, Nakayama & Damian 1974; Willmarth et al. 1976; Luxton,
Bull & Rajagopalan 1984; Lueptow, Leehey & Stellinger 1985; Cipolla & Keith 2003;
Krane, Grega & Wei 2010). The additional length scale in an ATBL flow gives rise to three
different flow regimes depending on two dimensionless parameters. They are the ratio
of boundary layer thickness to radius of curvature, δ/a, and the dimensionless radius of
curvature (in wall units), a+ = au∗/υ. The classification of flow regimes can be found in
the work of Piquet & Patel (1999), Woods (2006) and Kumar & Mahesh (2018a). However,
for the convenience of the readers, the flow regimes are briefly summarised below.

(i) Regime I (δ/a ≤ 1 and a+ > 250): in this flow regime, the effect of the transverse
curvature on the flow is negligible. The flow behaves as if it were a plane TBL flow.
However, it offers an increased skin friction compared with a plane TBL flow having
the same Reynolds number based on the boundary layer thickness, Reδ = U∞δ/υ.
Using the matched asymptotic expansion method, Afzal & Narasimha (1976) showed
that, for δ/a = O(1) and large a+, the longitudinal velocity distribution ūz(y) in the
viscous sublayer is expressed as

u+
z = a+ ln

(
1 + y

a

)
, (1.2)

whereas that in the logarithmic layer follows the axisymmetric logarithmic law as

u+
z = 1

κ
ln
[
a+ ln

(
1 + y

a

)]
+ B. (1.3)

In (1.2) and (1.3), u+
z = ūz/u∗, y is the wall-normal distance measured from the surface

of the cylinder, κ is the von Kármán constant (that is, the slope of the axisymmetric
logarithmic law) and B is the intercept. Afzal & Narasimha (1976) found that B is a weak
function of the transverse curvature as B = 5 + 236/a+.

(ii) Regime II (δ/a > 1 and a+ > 250): in this flow regime, the effect of the curvature is
sensed only in the outer flow layer. The velocity distribution preserves a logarithmic
layer described by (1.3), having a decreasing slope (Lueptow et al. 1985).

(iii) Regime III (δ/a > 1 and a+ < 250): in this flow regime, the effect of the strong
curvature influences both the inner and outer flow layers. The logarithmic layer
decays and turns out to be negatively curved (Willmarth et al. 1976; Luxton et al.
1984).

Nearly all experimental studies paid attention to the last two flow regimes (regimes
II and III). However, the availability of the experimental data for these flow regimes
has been limited. This is because, to achieve a large δ/a, experiments were generally
conducted using either a long tube or a wire having a small diameter. Therefore, the
structural isolation of wires and the aeroelastic interaction between the wire and the
flow had caused major issues. Moreover, in a typical experimental set-up, it was rather
challenging to maintain the alignment of the cylinder with the flow and to prevent
the sagging of the cylinder due to the elastic deformation (Piquet & Patel 1999).
Furthermore, for a small a+, the measuring probe size with respect to the cylinder
radius has been a serious concern in taking measurements close to the wall. To avoid
such difficulties, researchers studied the problem extensively by means of numerical
simulations (Neves, Moin & Moser 1994; Tutty 2008; Jordan 2011, 2013, 2014a,b; Monte,
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Sagaut & Gomez 2011). The results of the direct numerical simulation (DNS) (Neves
et al. 1994; Woods 2006; Tutty 2008), large eddy simulation (LES) (Jordan 2011, 2013)
and axisymmetric Reynolds-averaged Navier–Stokes (RANS) (Monte et al. 2011) provided
deeper understanding of the skin-friction coefficient over a considerable range of the
parameter space.

1.3. Empirical formulae of skin-friction coefficient
The skin-friction coefficient can be obtained from (1.3) if the axisymmetric logarithmic
law is preserved throughout the boundary layer. Although there have been efforts to
identify the effect of the transverse curvature on the logarithmic law of the velocity
distribution, a generic consensus is still lacking in this regard. The logarithmic law,
involving the slope and intercept parameters κ and B, respectively, is expected to depend
on the radius of curvature (Willmarth et al. 1976; Luxton et al. 1984). For example, Rao
& Keshavan (1972) proposed that the slope parameter κ is a function of Rea only, whereas
the intercept parameter B is a function of both Rea and a+.

Woods (2006) found that (1.3), with κ = 0.4 and B = 5.1, captures the velocity
distribution in the ATBL flows. Using U∞ = ūz (y = δ), (1.3) gives

U∞
u∗

= 2.5 ln
[

a+ ln
(

1 + δ

a

)]
+ 5.1. (1.4)

Using Cf = 2u2∗/U2∞ and a+ = Rea
√

Cf /2, (1.4) is rearranged as√
2

Cf
+ 2.5 ln

√
2

Cf
= 2.5 ln

[
Rea ln

(
1 + δ

a

)]
+ 5.1, (1.5)

which can be solved for the given Rea and δ/a. Figure 2 shows the numerical solution of
(1.5), herein called the axisymmetric logarithmic solution, by plotting

√
2/Cf as a function

of Rea ln(1 + δ/a). As the analytical solution of (1.5) is not straightforward, Woods (2006)
neglected the slowly evolving function ln

√
2/Cf and proposed a reduced form of (1.5) as

follows: √
2

Cf
= A0 ln

[
Rea ln

(
1 + δ

a

)]
+ B0, (1.6)

where A0 and B0 are the fitting parameters. Using the available experimental data and
the DNS data, Woods (2006) found A0 = 2.97 and B0 =−5.82. Woods’ (2006) empirical
formula (1.6) is also plotted in figure 2. The axisymmetric logarithmic solution departs
from Woods’ (2006) empirical formula. The reason is that, in (1.5), the slope and the
intercept parameters of the axisymmetric logarithmic law are kept constant, although they
are expected to vary with the curvature (Rao & Keshavan 1972).

Monte et al. (2011) used an axisymmetric RANS formulation and adjusted the fitting
parameters of (1.6) as A0 = 2.56 and B0 =−2.53. They also performed the nonlinear fitting
of their simulation data and proposed the following empirical form:

Cf = exp[G(ln Rea; ln Reδ)], (1.7)

where G(β; γ ) is a third-order polynomial function. It is given by G(β; γ ) = a0 + a1β +
a2β

2 + a3β
3 + a4βγ + a5βγ 2 + a6β

2γ + a7γ
3 + a8γ

2 + a9γ , where a0 to a9 are the
coefficients.
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Figure 2. Comparison of the skin-friction coefficients obtained from the axisymmetric logarithmic solution
and Woods’ (2006) empirical formula.

Jordan (2013, 2014b) proposed models for the skin-friction coefficient in an ATBL flow.
The LES results of Jordan (2011, 2013) offered an enhanced understanding of the ATBL
flow properties over considerable ranges of Rea and δ/a.

Among recent studies, Kumar & Mahesh (2018a) performed an insightful analysis of a
developing ATBL flow using the momentum integral approach. The mathematical analysis
could capture the effects of the pressure gradient and the transverse curvature on the
skin-friction coefficient. The proposed analytical relations were in satisfactorily agreement
with the experimental data of the skin-friction coefficient for a developing ATBL flow.
Kumar & Mahesh (2018b) and Morse & Mahesh (2021) presented the LES results of flow
over an idealised submarine hull, providing enhanced understanding of the skin-friction
coefficient along the axisymmetric body. Balantrapu et al. (2021) experimentally studied
the highly decelerated ATBL flow over a body of revolution, focussing on the mean flow,
turbulence statistics and the skin-friction coefficient.

Despite magnificent advances on the ATBL flow, a universal law of the skin-friction
coefficient, even for a simplified flow configuration (steady and fully developed ATBL flow
with a zero pressure gradient), has remained unexplored from a theoretical perspective.
The empirical formulae of the skin-friction coefficient in an ATBL flow contain
free parameters, which were obtained from the regression analyses of the available
experimental and/or simulation data. The empirical formulae work satisfactorily over
a wide range of the parameter space. However, as these formulae were developed on
the empirical ground, they lack theoretical support. In this study, we seek a universal
scaling law of the skin-friction coefficient in an ATBL flow. The governing equation
for a steady and fully developed ATBL flow with a zero pressure gradient is derived
systematically starting from the axisymmetric equations followed by Reynolds averaging
and the boundary layer approximation. Then, the scaling law of the Reynolds shear stress
caused by near-wall turbulent eddies is derived. This allows us to obtain the wall shear
stress and subsequently provides an estimation of the skin-friction coefficient.

The rest of the paper is organised as follows. The theoretical analysis is described in
§ 2. In § 3, the theoretical results, including the compatibility of the proposed law with the
classical law of the skin-friction coefficient in a plane TBL flow, comparison with previous
work and some important scaling aspects, are thoroughly discussed. Finally, conclusions
are drawn in § 4.
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2. Theoretical analysis

2.1. Governing equations
In an axisymmetric flow (figure 1), the flow parameters with respect to a cylindrical
coordinate system (r, θ , z) are invariant with the azimuthal angle θ , that is, ∂(·)/∂θ = 0.
Therefore, on a given (r, θ ) plane, any flow parameter remains unchanged along a circle
of constant radius. For an incompressible ATBL flow, the continuity equation and the
steady-state Navier–Stokes equations devoid of the body force terms are expressed as (see,
for instance, Pope 2000)

1
r

∂rur

∂r
+ ∂uz

∂z
= 0, (2.1)

ur
∂uz

∂r
+ uz

∂uz

∂z
= − 1

ρ

∂p
∂z

+ υ∇2uz, (2.2)

ur
∂ur

∂r
− u2

θ

r
+ uz

∂ur

∂z
= − 1

ρ

∂p
∂r

+ υ
(
∇2ur − ur

r2

)
, (2.3)

where ur, uθ and uz are the velocity components in the radial (r), azimuthal (θ ) and
longitudinal (z) directions, respectively, and p is the pressure. In (2.2) and (2.3), the
operator ∇2 is given by

∇2 = 1
r

∂

∂r

(
r

∂

∂r

)
+ ∂2

∂z2 . (2.4)

Under the assumption of a statistically stationary flow with no swirl motion,
the instantaneous velocity components and pressure, according to the Reynolds
decomposition, are expressed as ur = ūr + u′

r, uθ = u′
θ , uz = ūz + u′

z and p = p̄ + p′.
Here, an overbar denotes a statistically time-averaged quantity and a prime denotes the
fluctuation of an instantaneous quantity with respect to its time-averaged value. Performing
the time averaging, the continuity and the momentum equations, (2.1)–(2.3), give the
time-averaged continuity and the RANS equations for an ATBL flow as follows:

1
r

∂rūr

∂r
+ ∂ ūz

∂z
= 0, (2.5)

ūr
∂ ūz

∂r
+ ūz

∂ ūz

∂z
= − 1

ρ

∂ p̄
∂z

+ υ

[
1
r

∂

∂r

(
r
∂ ūz

∂r

)
+ ∂2ūz

∂z2

]
− 1

r
∂ru′

ru′
z

∂r
− ∂u′

zu′
z

∂z
, (2.6)

ūr
∂ ūr

∂r
+ ūz

∂ ūr

∂z
= − 1

ρ

∂ p̄
∂r

+ υ

[
1
r

∂

∂r

(
r
∂ ūr

∂r

)
+ ∂2ūr

∂z2 − ūr

r2

]
− 1

r
∂ru′

ru′
r

∂r

−∂u′
ru′

z

∂z
+ u′

θu′
θ

r
. (2.7)

The expressions (2.6) and (2.7) show that, in a statistically stationary non-swirling
axisymmetric flow, only the term u′

ru′
z contributes to the Reynolds shear stress. Among the

Reynolds normal stresses, only the longitudinal Reynolds normal stress u′
zu′

z contributes
to the longitudinal momentum balance, whereas the radial and azimuthal Reynolds
normal stresses, u′

ru′
r and u′

θu′
θ , respectively, contribute to the radial momentum balance.

The quantity u′
θu′

θ in (2.7) remains finite because of the non-zero azimuthal velocity
fluctuations, although the time-averaged azimuthal velocity is zero (ūθ = 0).
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2.2. The ATBL approximation
Applying the ATBL approximation (for detailed derivation, see Appendix A), (2.6) and
(2.7) reduce to

ūr
∂ ūz

∂r
+ ūz

∂ ūz

∂z
= − 1

ρ

∂ p̄
∂z

+ υ
1
r

∂

∂r

(
r
∂ ūz

∂r

)
− 1

r
∂ru′

ru′
z

∂r
, (2.8)

0 = − 1
ρ

∂ p̄
∂r

− 1
r

∂ru′
ru′

r

∂r
+ u′

θu′
θ

r
. (2.9)

The integration of (2.9) gives the pressure distribution as

p̄ = p̄∞(z) + ρu′
ru′

r|δr + ρ

∫ δ

r

(
u′

ru′
r − u′

θu′
θ

r

)
dr, (2.10)

where p̄∞ is the time-averaged pressure at the edge of the boundary layer, that is,
the free stream pressure. In (2.10), the difference between the radial and azimuthal
Reynolds normal stresses, u′

ru′
r − u′

θu′
θ , remains finite if the turbulence is statistically

anisotropic (u′
ru′

r /= u′
θu′

θ ). Therefore, in an anisotropic turbulence, the quantity u′
ru′

r −
u′
θu′

θ contributes to the pressure distribution. However, in an isotropic turbulence, the last
term on the right-hand side of (2.10) vanishes.

Substituting (2.10) into (2.8) gives

ūr
∂ ūz

∂r
+ ūz

∂ ūz

∂z
= − 1

ρ

dp̄∞
dz

− ∂u′
ru′

r|δr
∂z

− ∂

∂z

∫ δ

r

(
u′

ru′
r − u′

θu′
θ

r

)
dr + 1

ρr
∂rτ
∂r

, (2.11)

where τ is the total shear stress (= τv + τt), that is, the sum of the viscous shear stress,
τv = ρυ∂ ūz/∂r and the Reynolds shear stress, τt = −ρu′

ru′
z.

2.3. Fully developed ATBL flow with a zero pressure gradient
In a fully developed ATBL flow, the flow parameters do not evolve in the longitudinal
direction, that is, ∂(·)/∂z = 0. Since ∂ ūz/∂z = 0 (that is, ūz is a function of r only) because
of the fully developed flow, the continuity demands rūr = F(z) + c1 (by virtue of (2.5)),
where c1 is a constant. However, the function F(z) must be a constant, because ūr should
also remain invariant with z to satisfy the fully developed flow. This can also be concluded
by setting ∂ ūr/∂z = 0, which gives F′(z) = 0 (that is, F(z) is a constant). Letting F(z) = c2
(c2 is a constant), we obtain ūr = c3/r with c3 = c1 + c2. As the radial velocity vanishes
at the wall due to the no-slip boundary condition, the condition ūr (r = a) = 0 predicts
c3 = 0, which eventually results in ūr = 0. Therefore, in a fully developed ATBL flow, the
convective acceleration in the longitudinal momentum equation vanishes (left-hand side
of (2.11)). In addition, the second and third terms on the right-hand side of (2.11) become
zero. However, the longitudinal pressure gradient and the radial gradient of the total shear
stress remain non-zero. This shows that the total shear stress varies radially to balance
the longitudinal free stream pressure gradient. For the zero pressure gradient flow, it gives
dp̄∞/dz = 0. Hence, in a fully developed ATBL flow with a zero pressure gradient, all
barring the last term on the right-hand side of (2.11) are zero. As a result, (2.11) recovers
the equilibrium model of, among others, Glauert & Lighthill (1955) and Rao (1967).
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This indicates the moment of the total shear stress to be a constant (rτ = constant). The
constant is obtained from the boundary condition τ (r = a) = τ0. Thus, (2.11) reduces to

rτ = aτ0. (2.12)

It is worth mentioning that the relationships (1.2) and (1.3) can be recovered from (2.12).
In this regard, we set the outward wall-normal distance as y = r − a. In the near-wall
flow region, τt vanishes within the thin viscous sublayer, resulting in τ = τv . Substituting
τv = ρυ dūz/dy into (2.12) and integrating the resultant equation by applying the no-slip
boundary condition ūz (r = a) = 0 yield (1.2). In fact, (1.2) resembles the linear law of
the wall in a plane TBL flow given by u+

z = y+ (where y+ = yu∗/υ) (see, for instance,
Ali & Dey 2020), if the term a ln(1 + y/a) is replaced by y. In the logarithmic layer,
τv becomes zero and τ = τt. Therefore, (2.12) suggests an inverse scaling of τt with y,
in conformity with the experimental measurements (Lueptow et al. 1985). Analogously
to the mixing length hypothesis in a plane TBL flow, τt in an ATBL flow can be
expressed as τt = ρl2p(dūz/dy)2, where lp is the mixing length. From (2.12), it follows
that dūz/dy = [a/(a + y)]1/2u∗l−1

p , which, upon integration, in association with lp =
κ[a(a + y)]1/2 ln(1 + y/a), produces (1.3). The present choice of lp in the limit of infinite
radius (a → ∞) is consistent with the classical expression lp = κy in the logarithmic layer
of a plane TBL flow (Schlichting 1979). The relation (1.3) is analogous to the logarithmic
law in a plane TBL flow, given the term a ln(1 + y/a) is exchanged with y.

2.4. Scaling law of Reynolds shear stress
It is pertinent to mention that the present analysis aims at deriving the skin-friction
coefficients for both the rough and smooth ATBL flows. However, due to the absence
of experimental data on the skin-friction coefficient, specifically in a rough ATBL flow,
the experimental verification of the proposed skin-friction coefficient is limited to the
smooth ATBL flow data only (see § 3.2). The mathematical analysis starts with a rough
wall configuration to establish a scaling law of the skin-friction coefficient. Subsequently,
the skin-friction coefficient in a smooth ATBL flow is derived using this scaling law. We
now intend to derive the scaling law of the Reynolds shear stress τt acting on the rough wall
of the cylinder. The wall roughness is of k-type, where the surface of the cylinder is covered
with a layer of closely packed identical particles of diameter ks, called the roughness height
(see the enlarged view shown in figure 3). At a microscopic level, an undulating surface is
formed above y = 0 (that is, r = a). The bulk flow Reynolds number is sufficiently large,
so that the viscous shear stress is negligible, and the total shear stress includes only the
Reynolds shear stress. The value of τt is sought at the hypothetical surface S tangential to
the roughness summits, given by y = ks/2 (that is, r = a + ks/2). Consequently, the wall
shear stress from (2.12) is obtained as

τ0 =
(

1 + ks

2a

)
τt. (2.13)

The Reynolds shear stress in a turbulent flow is caused by turbulent eddies of various
length scales. The largest eddy size is comparable to the external length scale of the
system. As discussed in the preceding section, the preservation of the law of the wall
in an ATBL flow requires the wall-normal distance y in a plane TBL flow to be replaced
by a ln(1 + y/a). For a given a, y is always larger than a ln(1 + y/a). This reveals that any
wall-normal length scale in a plane TBL flow experiences a length contraction in an ATBL
flow because of the transverse curvature. Let the boundary layer thickness be the same, say
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Universal law of skin-friction coefficient

S

y = 0

y = ks/2

Flow

ks

�

Figure 3. The Reynolds shear stress τt developed at the surface S (tangential to the roughness summits) caused
by a turbulent eddy of size � straddling the surface and exchanging the momentum across S. The turbulent eddy
carries high- and low-momentum fluid per unit volume inwards and outwards, respectively, across S. The value
of τt is obtained from the product of the momentum contrast per unit volume across S and the eddy turnover
velocity u� as τt = ρ(ūz|y = ks/2 + �/2 − ūz|y = ks/2 − �/2)u�.

δ, for both the ATBL and plane TBL flows. The external length scale L (that is, the largest
eddy size) in a plane TBL flow is thus L ∼ δ. However, due to the length contraction, L
in an ATBL flow becomes smaller than that in a plane TBL flow. Following the length
contraction in an ATBL flow, L takes the form of

L ∼ a ln
(

1 + δ

a

)
, (2.14)

which, for a given δ, is consistent with the classical expression L ∼ δ in a plane TBL flow
in the limit of infinite radius (a →∞).

The Reynolds shear stress τt at S is developed by turbulent eddies that straddle the
surface (eddies are bisected by the surface S) and exchange momentum across S. This
mechanism was first applied by Gioia & Bombardelli (2002) to analyse the scaling and
similarity in rough-channel flows (see, for instance, the review of Ali & Dey 2018).
Beneath S, the flow velocity is negligible, because of the protruding wall roughness
(figure 3). The momentum that the flow transmits tangential to S is thus insignificant. By
contrast, above S, the flow transmits a substantial momentum tangential to S. It follows that
a turbulent eddy of size � carries high-momentum fluid per unit volume inwards (towards
the cylinder) across S and low-momentum fluid per unit volume outwards (away from the
cylinder) across S. Therefore, across S, the momentum contrast per unit volume produced
by the turbulent eddy is ρ(ūz|y = ks/2 + �/2 − ūz|y = ks/2 − �/2) ≈ ρ�(dūz/dy)|y = ks/2. The rate
of momentum exchange across S is caused by the eddy turnover velocity u�. The value of
τt caused by a turbulent eddy of size � is obtained as a product of the net momentum
contrast per unit volume across S and u�. Therefore, τt is expressed as

τt = ρ
dūz

dy

∣∣∣∣
y = ks/2

�u�. (2.15)
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The velocity gradient in (2.15) is obtained from the differentiation of (1.3) as follows:

dūz

dy

∣∣∣∣
y = ks/2

= u∗

κa
(

1 + ks

2a

)
ln
(

1 + ks

2a

) . (2.16)

The value of u� is obtained from the second-order transverse structure function as u2
� =

S⊥
2 (�), where S⊥

2 (�) is expressed as

S⊥
2 (�) = [u′

r(z + �/2) − u′
r(z − �/2)]2. (2.17)

It has been evidenced that, analogously to the second-order longitudinal structure function,
given by

S‖
2(�) = [u′

z(z + �/2) − u′
z(z − �/2)]2, (2.18)

S⊥
2 (�) obeys Kolmogorov’s two-thirds law over a significant range (Frisch 1995).

Dimensional argument produces

u2
� ≡ (ε�)2/3H

(
�

L
; Re

)
, (2.19)

where ε is the turbulent kinetic energy (TKE) dissipation rate, Re is the Reynolds number
based on the external length scale and � is considered to lie in the inertial range. For
a complete similarity in the variables �/L and Re, the function H becomes constant
as �/L → 0 and Re →∞, recovering Kolmogorov’s two-thirds law, u2

� ∼ (ε�)2/3 for
the limiting state of fully developed turbulence. However, as �/L → 0, the complete
similarity breaks down because of the TKE dissipation rate fluctuations. Therefore, for
an incomplete similarity, H does not approach a finite limit as �/L → 0. Under such
circumstance, (2.19) takes the form of

u2
� ≡ (ε�)2/3H

(
�

L
; ln Re

)
, (2.20)

which is valid not only for a large Re but also for a large ln Re (Barenblatt & Goldenfeld
1995). For an incomplete similarity, as �/L → 0, (2.20) is expanded as

u2
� = (ε�)2/3C(ln Re)

(
�

L

)α

,

C(ln Re) = C0 + C1

ln Re
+ O

(
1

ln2 Re

)
,

α = α0 + α1

ln Re
+ O

(
1

ln2 Re

)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21)

where C0 and C1 are the coefficients, and α0 and α1 are the exponents.
The expression (2.21) shows that, as the eddy size � increases, its turnover velocity

u� also increases and, subsequently, �u� increases. Therefore, τt at S enhances with an
increase in �, in accord with (2.15). The gathering of near-wall eddies that exchange
momentum through S can be visualised as a set of circular fluid cells in two dimensions
(or spheroidal fluid cells in three dimensions) between two successive roughness summits
(figure 4a). The length scale � of such eddies can be divided into two groups, such as
� ≤ �m and � > �m (� still lies in the inertial range), where �m is the maximum size of an
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S

y = 0

y = ks/2

ks

ℓm

�

τt(b)(a)

Figure 4. (a) Near-wall eddies having length scales �< �m (green), � = �m (blue) and � > �m (red) exchanging
momentum across the surface S. Here, �m is the maximum size of an eddy, called the presiding eddy (in blue),
which is bisected by surface S. (b) Conceptual variation of τt with �. The value of τt at S enhances with an
increase in � attaining a maximum at � = �m and then decreases with a further increase in �.

eddy (that is, the presiding eddy) being bisected by the surface S. For � < �m, the eddies
are perfectly bisected by the surface S and, thereby, τt at S increases with � (figure 4b).
However, τt at S does not continue to increase persistently as � increases. There remains
an upper limit of � (= �m) for which the presiding eddy maximises τt at S. For � > �m, the
eddies are not bisected by the surface S, because of the geometrical constraint produced by
the wall roughness. These eddies contribute minimally to the shear stress generation due
to their insignificant momentum exchanges across S. This suggests that the maximum τt
at S is caused by the presiding eddy of size � = �m. From the two-dimensional geometry
(figure 4a), �m turns out to be �m = (

√
2 − 1)ks ≈ 0.414ks (that is, �m is of the order of

the roughness height). The maximum τt at S is obtained from (2.15) by setting �= 0.414ks.
After some algebra, τt is expressed as follows:

τt ∼ ρ
u∗

a
(

1 + ks

2a

)
ln
(

1 + ks

2a

)ks(εks)
1/3
(

C0 + C1

ln Re

)1/2

×
⎡
⎣ ks

a ln
(

1 + δ

a

)⎤⎦(α0 + α1/ ln Re)/2

. (2.22)

The value of ε in (2.22) can be inferred from the TKE budget equation, which defines
the rate of conservation of the TKE through the mechanisms of advection, diffusion,
dissipation and production. The diffusion rate comprises the TKE, pressure energy and
viscous diffusion rates. In the near-wall flow region, say, in the logarithmic layer, the
numerical simulations have evidenced that the key contributors to the TKE budget
equation are the TKE production and dissipation rates (Woods 2006). Considering various
ranges of a+ (= 21 to 1124.9) and δ/a (= 0.16 to 27.6), Woods (2006) found the following
ranges of the dimensionless TKE budget components (scaled by u4∗/υ) at y+ = 30: TKE
production rate (0.03 to 0.08), TKE dissipation rate (0.02 to 0.08), TKE diffusion rate
(0.012 to 0.016), pressure energy diffusion rate (0 to −1.3 × 10−3) and viscous diffusion
rate (≈0). Therefore, in the absence of the TKE advection rate, the TKE production
rate is balanced by the TKE dissipation rate. It follows that ε at S is obtained from the
energy balance, ε = P = (τt/ρ)(dūz/dy)|y = ks/2, where P is the TKE production rate.
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Using (2.13) and (2.16), ε is expressed as

ε = u3∗

κa
(

1 + ks

2a

)2

ln
(

1 + ks

2a

) . (2.23)

To relate the velocity and the TKE dissipation rate at the local scale with those at
the global scale, we introduce u∗ = CuU∞ and ε = Cεεb, where εb is the global TKE
dissipation rate, and Cu and Cε are the coefficients. The value of εb associated with the
scale L is defined as the bulk energy (∼U2∞) per unit turnover time (∼L /U∞). Thus,
εb ∼ U3∞/L ∼ U3∞/[a ln(1 + δ/a)]. Therefore, (2.22) takes the form of

τt

ρU2∞
∼ CuC1/3

ε

k4/3
s

a4/3
(

1 + ks

2a

)
ln
(

1 + ks

2a

)
ln1/3

(
1 + δ

a

)(C0 + C1

ln Re

)1/2

×
⎡
⎣ ks

a ln
(

1 + δ

a

)⎤⎦(α0 + α1/ ln Re)/2

. (2.24)

2.5. Scaling law of skin-friction coefficient
Substituting (2.24) into (2.13), the scaling law of τ0 is obtained. As Cf = 2τ0/(ρU2∞), it
follows

Cf ∼ CuC1/3
ε

k4/3
s

a4/3 ln
(

1 + ks

2a

)
ln1/3

(
1 + δ

a

)(C0 + C1

ln Re

)1/2

×
⎡
⎣ ks

a ln
(

1 + δ

a

)⎤⎦(α0 + α1/ ln Re)/2

. (2.25)

The term CuC1/3
ε in (2.25) can be expressed, using (2.23), as

CuC1/3
ε = u∗

U∞

(
ε

εb

)1/3

⇒ CuC1/3
ε ∼ Cf

ln1/3
(

1 + δ

a

)
(

1 + ks

2a

)2/3

ln1/3
(

1 + ks

2a

) . (2.26)

As (2.26) is applied to a plane TBL flow (a → ∞), we find CuC1/3
ε ∼ Cf 0(δ/ks)

1/3, where
Cf 0 = Cf (a →∞). However, in a rough plane TBL flow, Cf 0 satisfies Strickler’s scaling
law as Cf 0 ∼ (ks/δ)

1/3 (Strickler 1981). This concludes that CuC1/3
ε must be a constant.

Further, as the roughness height is much smaller than the cylinder diameter [ks/(2a) � 1],
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it follows that ln[1 + ks/(2a)] ≈ ks/(2a). Therefore, (2.25) takes the form of

Cf ∼
(

C0 + C1

ln Re

)1/2
⎡
⎣ ks

a ln
(

1 + δ

a

)⎤⎦1/3 + (α0 + α1/ ln Re)/2

. (2.27)

Now we shall prove that, for (2.27) to hold, C0 must be a non-zero and positive quantity.
For the given ks, a and δ, if C0 = 0, then the leading term of (2.27) is a function of Re.
This gives

Cf ∼
(

C1

ln Re

)1/2
⎡
⎣ ks

a ln
(

1 + δ

a

)⎤⎦1/3 + (α0 + α1/ ln Re)/2

. (2.28)

Thus, for C0 = 0, (2.28) shows that Cf vanishes for a large Re (also for a large ln Re),
which is not a rational conclusion. On the other hand, if C0 > 0, then (2.27) for a large Re
produces

Cf ∼
√

C0

⎡
⎣ ks

a ln
(

1 + δ

a

)⎤⎦1/3 + α0/2

, (2.29)

which is an acceptable result. Thus, we conclude that C0 in (2.27) is a positive constant.
The relation (2.29) represents the scaling law of the skin-friction coefficient in a rough
ATBL flow.

Let us now consider the situation when the roughness height approaches zero. We recall
that (2.27) is valid for a rough flow, where ks is quantitatively larger than the viscous length
scale η. The value of η as a function of the global TKE dissipation rate is defined as

η ∼
(

υ3

εb

)1/4

∼
(

υ3L

U3∞

)1/4

⇒ η

L
∼ Re−3/4

⇒ η

a
∼ Re−3/4

a ln1/4
(

1 + δ

a

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.30)

For the given ks and large Re, as long as the condition ks � η holds, (2.27) remains valid.
As Re keeps on increasing for a given L , η becomes smaller and smaller (see (2.30)).
Therefore, the smaller eddies crowd the flow. Nevertheless, the momentum exchange
mechanism continues to be governed by the eddy size of the order of ks, regardless of
the smallness of the roughness height. The scenario changes completely for ks = 0. In this
case, the applicability of (2.27) becomes questionable because, for ks = 0, the condition
ks � η can never be achieved even for tremendously large Re. In a smooth flow, the
wall roughness is completely protected by the viscous sublayer thickness. The momentum
exchange mechanism switches from turbulent to viscous and is governed by the smallest
possible eddies (in the inertial range), whose size scales with η. Replacing ks in (2.27)
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with η and using (2.30), the skin-friction coefficient becomes

Cf ∼
(

C0 + C1

ln Re

)1/2[
Rea ln

(
1 + δ

a

)]−[1/4 + 3(α0 + α1/ ln Re)/8]

. (2.31)

Noting that C0 is a positive constant (as concluded previously) and ln−1/2 Re is a slowly
varying function for large Re, the scaling law (2.31) for large Re gives

Cf ∼
√

C0

[
Rea ln

(
1 + δ

a

)]−(1/4 + 3α0/8)

⇒ Cf = Cs
√

C0

[
Rea ln

(
1 + δ

a

)]−(1/4 + 3α0/8)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.32)

where Cs is a proportionality constant. The relation (2.32) represents the scaling law of
the skin-friction coefficient in a smooth ATBL flow.

3. Discussion of results

3.1. Compatibility of the scaling law in the limit a →∞
It is readily confirmed that, for a rough flow, if we let a →∞ with α0 = 0 (no intermittency
correction) in (2.29), we find that it recovers Strickler’s scaling law in a plane TBL flow as
Cf 0 = Cf (a → ∞) ∼ (ks/δ)

1/3 (see, for instance, Ali & Dey 2022). Further, in a smooth
flow, if we let a → ∞ with α0 = 0 in (2.32), it recovers Blasius’ scaling law in a plane
TBL flow as Cf 0 ∼ Re−1/4

δ (Ali & Dey 2022). We recall Blasius’ empirical formula for a
smooth plane TBL flow as

Cf 0 = 4.56 × 10−2Re−1/4
δ . (3.1)

Comparing (2.32) (in the limit a → ∞ with α0 = 0) and (3.1), we obtain Cs
√

C0 = 4.56 ×
10−2. In the subsequent section, it is shown that (2.32) without having an intermittency
correction satisfactorily complies with the experimental data and numerical simulations.
Therefore, the skin-friction coefficient in a smooth ATBL flow is given by

Cf = 4.56 × 10−2
[

Rea ln
(

1 + δ

a

)]−1/4

. (3.2)

The relation (3.2) unveils the functional form given in (1.1). Although (1.1) shows that
Cf is a function of both Rea and δ/a, these parameters can be combined into a single
parameter as Rea ln(1 + δ/a) (see (3.2)). The above form shows that Cf follows the ‘−1/4’
power law scaling with Rea ln(1 + δ/a). In the subsequent section, the comparison of (3.2)
with the experimental data and numerical simulations is discussed.

We observe that (3.2) can be derived from (3.1) by substituting δ with a ln(1 + δ/a).
Consequently, one might assume that (3.2) could have been obtained easily, without
requiring an extensive mathematical analysis, by utilising the relationship Reδ = Rea(δ/a)
and then replacing δ with a ln(1 + δ/a), following the reasoning presented in (1.2) and
(1.3). However, this assumption may be misleading due to the following reasons:

(i) First and foremost, (3.2) is derived entirely through a theoretical analysis based
on the momentum balance. Blasius’ scaling law is not employed in the derivation
process. However, it is revealed that the proposed scaling law derived from the
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theoretical analysis corroborates Blasius’ scaling law in the limit a →∞. As a result,
Blasius’ scaling law serves as a boundary condition for obtaining the proportionality
constant in the limit a → ∞.

(ii) Additionally, this study does not consider Blasius’ scaling law as a benchmark and
subsequently modifies it for an ATBL flow by merely replacing δ with a ln(1 + δ/a).
Blasius’ scaling law was not the starting point for the derivation process in any way.

(iii) Moreover, it may be emphasised that the proposed scaling law (3.2) of this study
presents a precise functional form of (1.1). Afzal & Narasimha (1976) did not provide
an exact power law scaling behaviour similar to (3.2). Therefore, the scaling law (3.2)
has not been formerly known. While it was acknowledged that the axisymmetric
logarithmic law holds when y is replaced by a ln(1 + y/a), this replacement was not
specifically extended to the entire ATBL in the work of Afzal & Narasimha (1976).

(iv) Furthermore, even if one were to modify Blasius’ scaling law by replacing δ

with a ln(1 + δ/a), such a modification, while producing the correct result, would
lack scientific relevance. This replacement would give the impression that the
ATBL thickness becomes smaller than the plane TBL thickness. However, this is
inappropriate when the boundary layer thickness remains identical for both the
ATBL and plane TBL flows. The notable change occurs in the contraction of the
external length scale rather than a reduction in the boundary layer thickness.

(v) Finally, it is worth highlighting that the substitution of δ with a ln(1 + δ/a) in
Blasius’ scaling law would not offer any information regarding the intermittency
correction, as described in (2.32). Therefore, the proposed replacement cannot
anticipate the general scaling behaviour including the intermittency correction.

3.2. Comparison with experimental data and numerical simulations
To compare the proposed skin-friction coefficient (see (3.2)) with the experimental data
and numerical simulations, we consider the available experimental and numerical database
reported in the literature. The experimental data of Willmarth et al. (1976), Luxton et al.
(1984), Snarski & Lueptow (1995) and Berera (2004), and the numerical simulations of
Neves et al. (1994), Woods (2006), Tutty (2008), Jordan (2011, 2013) and Monte et al.
(2011) are used for this purpose. Table 1 shows the typical ranges of parameters Rea, δ/a,
Reδ , and a+ used in previous studies. The considered ranges of Rea, δ/a, Reδ and a+
can capture all the axisymmetric flow regimes (regimes I, II and III). Figure 5 shows the
experimental and numerical data points of the skin-friction coefficient, corresponding to
each author given in table 1, on an (Rea, δ/a) plane. The data points cover wide ranges of
Rea and δ/a of 140 ≤ Rea ≤ 92 310 and 0.16 ≤ δ/a ≤ 300.

Figure 6(a) shows the comparison of the skin-friction coefficient obtained from (3.2)
with the experimental data and numerical simulations. To make the comparison, the
experimental and numerical data are presented plotting Cf as a function of Rea ln(1 + δ/a)
on logarithmic scales. The ±20 % error band is also shown to understand the quantitative
departure of the data from the proposed law (3.2). Overall, the theoretical prediction
matches satisfactorily with the data without invoking any intermittency correction α0.
The value of α0 is usually small for a large Re. This suggests that |3α0/8| � 1/4 (see
(2.32)), and therefore, |α0| � 2/3, in conformity with the usual estimates of α0 (Frisch
1995). The data plots on logarithmic scales respect the ‘−1/4’ slope as predicted by
(3.2) (figure 6a). For a given Rea ln(1 + δ/a), the relative error in Cf is calculated as
[Cf ( predicted) − Cf (observed)]/Cf (observed). Figure 6(b) shows the relative error (in
percentage) as a function of Rea ln(1 + δ/a) on a semi-logarithmic plot. The absolute

974 A31-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.734


S.Z. Ali and S. Dey

Authors Rea δ/a Reδ a+

Willmarth et al. (1976) 482–92 310 1.76–42.5 20 485–173 543 33.4–3157.5
Luxton et al. (1984) 140–785 26–41.6 5824–20 410 12.9–47.4
Neves et al. (1994) 311, 674 5, 11 3421, 3370 21.8, 42.8
Snarski & Lueptow (1995) 3644 5.04 18 366 176.4
Berera (2004) 3164–3457 3.2–11.5 10 481–37 473 158.2–174.9
Woods (2006) 311–20 800 0.16–27.6 2432–16 236 21–1124.9
Tutty (2008) 482–92 310 1.76–42.5 20 485–173 543 27.9–3357.6
Jordan (2011) 620–37 375 1.2–25.7 10 168–54 818 36.4–1347.6
Monte et al. (2011) 311–10 000 1–300 10 000–300 000 19.3–484.1
Jordan (2013) 586–14 950 2.4–73 6446–48 588 36.7–608.2

Table 1. Typical ranges of parameters in experimental measurements and numerical simulations.
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Figure 5. Experimental and numerical database of Cf on a (Rea, δ/a) plane.

relative errors for most of the data plots lie within 20 %. However, for a very few data,
the absolute relative errors range from 25 % to 45 %.

The relative error in Cf results from various uncertainties associated with the
measurements. In experimental studies, the wall shear stress was usually obtained by using
a Preston tube or from a Clauser plot. These techniques depend on the existence of the law
of the wall in the near-wall flow region. For cylinders of larger radius, the wall shear
stress was measured by using a Preston tube (see, for example, Willmarth et al. 1976).
The calibration of the Preston tube relies on the assumption that the tube is completely
submerged within the wall region of a plane TBL flow, wherein the law of the wall is
preserved. To get an accurate estimate of the wall shear stress, it was necessary to ensure
that the Preston tube radius was smaller than the cylinder radius. Willmarth et al. (1976)
found that, for a ratio of Preston tube radius to cylinder radius smaller than 0.3, the wall
shear stress measured by all Preston tubes remained the same, corroborating the plane
TBL calibration data of Patel (1965). However, they kept the ratio smaller than 0.16 to
measure the wall shear stress accurately. The experimental data of Willmarth et al. (1976)
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Figure 6. (a) Comparison of the theoretical prediction of Cf (subject to ±20 % error band) with the
experimental data and numerical simulations. Woods’ (2006) empirical formula is also shown for the
comparison. (b) Relative error in Cf versus Rea ln(1 + δ/a).

for cylinders of larger radius, say Rea ln(1 + δ/a) > 104, match well with the theoretical
prediction (figure 6a), although the data slightly underestimate the theoretical prediction
(maximum absolute relative error obtained from figure 6(b) is 17 %). For cylinders of
smaller radius, the use of a Preston tube in measuring the wall shear stress remains a
problem. This is because, for cylinders of smaller radius, the flow region consistent with
the law of the wall in a plane TBL flow becomes significantly thin. To resolve this issue,
Willmarth et al. (1976) obtained the near-wall velocity gradient by fitting a curve to the
velocity measurements recorded by a hot-wire having a shorter length compared with the
cylinder radius. The method is based on the observation that, for a given a, the velocity
distribution in the near-wall flow region ( y � a) follows the law of the wall in a plane
TBL flow. This can be ascertained if we let y/a � 1 in (1.2) and (1.3), which subsequently
produce the classical expressions u+

z = y+ and u+
z = (1/κ) ln y+ + B, respectively.

As the accurate estimation of the near-wall velocity gradient is a challenging task,
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the experimental data of Willmarth et al. (1976) in figure 6(a) for cylinders of
smaller radius, say Rea ln(1 + δ/a) < 3000, match poorly with the theoretical prediction
(maximum absolute relative error obtained from figure 6(b) is 27 %). Lueptow &
Haritonidis (1987) also found that Cf was overestimated by Willmarth et al. (1976) for
Rea ln(1 + δ/a) < 3000.

To estimate Cf , Luxton et al. (1984) adopted a different approach. They considered the
skin-friction data of Willmarth et al. (1976) and found that Cf reduces with an increase
in Reθ ranging from 2.95 × 103 to 2.23 × 104, where Reθ is the Reynolds number based
on the momentum thickness. However, this variation was found to be independent of δ/a
for δ/a > 9.45. These experimental results were used by Luxton et al. (1984) to obtain Cf .
However, Luxton et al. (1984) acknowledged that such a procedure is susceptible to error.
This is also reflected in figure 6(a), where the experimental data of Luxton et al. (1984)
largely overestimate the theoretical prediction (maximum absolute relative error obtained
from figure 6(b) is almost 45 %). The skin-friction data of Snarski & Lueptow (1995) and
Berera (2004), obtained from wall shear stress measurements by a Preston tube, have an
excellent match with the theoretical prediction (figure 6a). The maximum absolute relative
errors corresponding to the data of Snarski & Lueptow (1995) and Berera (2004) are only
8 % and 6 %, respectively (figure 6b).

The uncertainty in the experimentally observed skin-friction data may also arise due to
the improper alignment of the cylinder with respect to the flow direction. As the boundary
layer flow is extremely sensitive to the cylinder misalignment, it is important to check not
only the geometric alignment of the cylinder producing an axisymmetric flow, but also the
boundary layer symmetry. Even an inclination of 1° with respect to the flow direction was
found to produce an asymmetric velocity distribution (see, for example, Rao & Keshavan
1972). Willmarth et al. (1976) observed that the sensitivity of flow past a cylinder to a small
misalignment is greater for cylinders of larger radius than for those of smaller radius.

High-fidelity skin-friction data obtained from numerical simulations support the
theoretical prediction reasonably well (figure 6a). Excepting a few data of Jordan (2011,
2013) subject to a maximum absolute relative error of 34 %, all the simulation data are
confined to the ±20 % error band. The maximum absolute relative errors corresponding
to the data of Neves et al. (1994), Woods (2006), Tutty (2008) and Monte et al. (2011)
are 12, 14, 9 and 9 %, respectively (figure 6b). For Rea ln(1 + δ/a) < 3000, the DNS data
of Neves et al. (1994), Woods (2006) and Tutty (2008), and the axisymmetric RANS
data of Monte et al. (2011) match satisfactorily with the theoretical prediction. This
suggests that, for Rea ln(1 + δ/a) < 3000, the experimentally observed skin-friction data
of Willmarth et al. (1976) and Luxton et al. (1984) were certainly overestimated. Woods’
(2006) empirical formula (1.6) is also plotted in figure 6(a). For Rea ln(1 + δ/a) > 3000,
there is not much significant difference in Cf obtained from the theoretical prediction and
Woods’ (2006) empirical formula. However, for Rea ln(1 + δ/a) < 3000, Woods’ (2006)
empirical formula departs from the theoretical prediction. This is because of the fact
that, for Rea ln(1 + δ/a) < 3000, Woods’ (2006) empirical formula was affected by the
overestimated skin-friction data of Willmarth et al. (1976) and Luxton et al. (1984).

The error and correlation between the theoretically predicted and the observed
(experimentally or numerically) skin-friction coefficients can be quantified by introducing
the root-mean-square error ||Cf ||2 and the correlation coefficient r. For each dataset,
table 2 summarises the ||Cf ||2 and r obtained from Woods’ (2006) empirical formula and
the present study. The statistical results suggest that both Woods’ (2006) empirical formula
and the present theoretical prediction capture the observed skin-friction coefficient
satisfactorily. The comparative study shows that the computed correlation coefficients do
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Root-mean-square error Correlation coefficient
||Cf ||2 (×10−3) r

Woods Present Woods Present
Authors (2006) study (2006) study

Willmarth et al. (1976) 3.15 3.62 0.993 0.983
Luxton et al. (1984) 5.91 8.76 0.999 0.998
Neves et al. (1994) 0.681 1.27 1 1
Snarski & Lueptow (1995) 0.178 0.383 — —
Berera (2004) 0.667 0.501 0.749 0.741
Woods (2006) 2.53 2.56 0.979 0.972
Tutty (2008) 1.02 0.776 0.997 0.998
Jordan (2011) 1.44 1.93 0.991 0.994
Monte et al. (2011) 1.51 1.22 0.985 0.990
Jordan (2013) 3.92 4.68 0.952 0.957

Table 2. Comparison of root-mean-square error ||Cf ||2 and correlation coefficient r obtained from Woods’
(2006) empirical formula and those obtained from the present study. Here, ||Cf ||2 is calculated as ||Cf ||2 =√

N∑
i = 1

(Cobserved
f i − Cpredicted

f i )
2
, where N is the total number of data points, Cobserved

f i is the observed

skin-friction coefficient of the ith data and Cpredicted
f i is the corresponding theoretical prediction. The correlation

coefficient r is obtained as r =
N∑

i = 1
(Cobserved

fi − C̄observed
f )(Cpredicted

fi − C̄predicted
f )√

N∑
i = 1

(Cobserved
fi − C̄observed

f )
2 N∑

i = 1
(Cpredicted

fi − C̄predicted
f )

2
, where C̄observed

f and C̄predicted
f

are the mean values of observed and predicted skin-friction coefficients, respectively.

not vary significantly. However, compared with Woods’ (2006) empirical formula, the
present study has a better performance in capturing the experimental data of Berera (2004)
and the numerical simulations of Tutty (2008) and Monte et al. (2011).

3.3. How does a mild pressure gradient affect the proposed scaling law?
The proposed scaling law (3.2) is applicable for a zero pressure gradient ATBL flow.
Indeed, the presence of a mild pressure gradient in experimental and numerical settings
can introduce an error between the theoretically predicted and observed skin-friction
coefficients. Establishing a zero pressure gradient in typical experimental set-ups can be
challenging. Even numerical simulations enforce a mild pressure gradient to suppress the
spatial growth of the ATBL (see, for instance, Neves et al. 1994). Therefore, it is important
to identify how the pressure gradient might affect (3.2) to better understand these
discrepancies. Although we do not intend to modify the entire analysis by incorporating the
effects of the pressure gradient, it is still valuable to present simple calculations to explore
the potential amendments that could be made to the scaling law (3.2) in consideration of
the pressure gradient.

As discussed in § 2.3, the total shear stress in a fully developed ATBL flow changes
radially to balance the longitudinal free stream pressure gradient. Hence, the longitudinal
momentum balance produces

1
r

∂rτ
∂r

= dp̄∞
dz

. (3.3)

In general, (3.3) shows that the left-hand side might be a function of r, whereas the
right-hand side might be a function of z. This is possible if both sides of (3.3) are equal
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to a constant. Thus, for a constant free stream pressure gradient, (3.3) is integrated with
limits from r = r to r = a. Subsequently, applying the boundary condition τ (r = a) = τ0
produces

τ0 = r
a
τ − r2 − a2

2a
dp̄∞
dz

. (3.4)

Considering the viscous shear stress to be insignificant, (3.4) is sought at the surface
r = a + ks/2. This gives

τ0 =
(

1 + ks

2a

)
τt − ks

2

(
1 + ks

4a

)
dp̄∞
dz

. (3.5)

Introducing the pressure gradient parameter

Θ = δ

ρu2∗

dp̄∞
dz

, (3.6)

and using Cf = 2τ0/(ρU2∞), (3.5) takes the following form:

Cf =
2
(

1 + ks

2a

)
τt

ρU2∞

1 + ks

2δ

(
1 + ks

4a

)
Θ

. (3.7)

For a smooth ATBL flow with a zero pressure gradient, the numerator of (3.7) becomes
identical to (3.2) as derived previously (also see (2.13)). However, for a mild pressure
gradient, Cf can be derived from (3.7) by applying the limit ks = η. Using the relationship
η/δ = cηRe−1/4

δ (evident from (2.30)), where cη is a constant of order one, and after some
algebra, we obtain

Cf =
4.56 × 10−2

[
Rea ln

(
1 + δ

a

)]−1/4

1 + cη

2
Re−1/4

δ Θ
, (3.8)

which reveals that (3.2) needs to be corrected by a factor (1 + cηRe−1/4
δ Θ/2)−1. In fact,

(3.8) shows that Cf follows an inverse relationship with Θ . This conclusion is in qualitative
agreement with the detailed analysis of Kumar & Mahesh (2018b). Importantly, for a zero
pressure gradient (Θ = 0), (3.8) recovers the derived scaling law (3.2). It is worth noting
that (3.8) remains valid as long as the pressure gradient is mild. In other words, the pressure
gradient does not significantly affect the flow structure and the velocity distribution within
the boundary layer, so that the axisymmetric logarithmic law is preserved. Importantly,
for a favourable pressure gradient (that is, Θ is negative), the correction factor in (3.8) is
larger than unity, resulting in an increased skin-friction coefficient. This observation is in
conformity with earlier studies of Patel et al. (1974) and Afzal & Narasimha (1976), who
reported that the effects of a favourable pressure gradient are qualitatively similar to those
of transverse curvature. However, in the absence of a pressure gradient, (3.2) enables us to
isolate the effects of transverse curvature on the skin-friction coefficient.
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3.4. Sources of uncertainties
It is crucial to discuss the potential sources of uncertainties stemming from various
assumptions made during the derivation. These are listed below.

(i) The assumption that the momentum transfer is solely governed by turbulent eddies
lying in the inertial range may overlook other factors that could contribute to the
overall momentum transfer process. Additionally, the determination of u� relies
on the second-order transverse structure function, which obeys Kolmogorov’s
two-thirds law (2.21). This law is valid for an idealised scenario, particularly
when the turbulence is homogeneous and isotropic. Although the literature has
demonstrated the applicability of Kolmogorov’s laws to the non-homogeneous and
anisotropic TBL flows (Saddoughi & Veeravalli 1994), their suitability for the ATBL
flows needs to be scrutinised further to identify any possible errors that might arise
in the derived scaling law.

(ii) While the axisymmetric logarithmic law (1.3) is assumed to hold in the ATBL flows,
experimental evidence suggests that it may not be strictly valid in regime III, where
the logarithmic layer can decay and exhibit negative curvature. The determination
of Reynolds shear stress requires an estimation of the near-wall velocity gradient
(see (2.15)). However, the velocity gradient (2.16) derived from the differentiation of
(1.3) might not be equally valid for all the ATBL flow regimes. Using this estimation
without considering potential variations in the velocity distribution among different
regimes is expected to affect the final scaling law (see (2.32) or (3.2)). Indeed, it is
unknown how this consideration might affect the scaling law. This is because the
precise impact of the transverse curvature on the velocity distribution in the ATBL
flows is not yet well understood, as there is currently no consensus on how it affects
the various ATBL flow regimes.

(iii) The analysis successfully recovers Strickler’s scaling law, which is valid for a rough
plane TBL flow. In the derivation, it is assumed that CuC1/3

ε is independent of ks/δ
and remains constant in (2.26). While the former assumption is valid, it should be
acknowledged that the latter assumption may not always hold true. For an ATBL
flow, CuC1/3

ε might be a weak function of the transverse curvature, say a+. In this
case, as a → ∞, CuC1/3

ε would no longer depend on a+ and becomes a constant.
However, the specific form of this unknown function and its impact on the derived
scaling law are not known. Consequently, this introduces some uncertainty into the
derived scaling law due to the presence of this unknown function.

(iv) For a smooth plane TBL flow, the present formulation successfully recovers Blasius’
empirical formula. In the derivation, it is assumed that the quantity Cs

√
C0 remains

constant. However, for an ATBL flow, this quantity may be a weak function of a+.
As a →∞, Cs

√
C0 may become independent of a+ attaining a constant value. This

weak dependency on a+ is neglected in the derivation for the sake of simplicity. The
specific form relating Cs

√
C0 to a+ is unknown and its impact on the derived scaling

law is uncertain. Therefore, the uncertainty arising from this unknown function
should be taken into account when interpreting and applying the derived scaling
law.

It is crucial to recognise that all the abovementioned factors, including assumptions,
limitations and unknown functions, can contribute to uncertainties in the derived scaling
law. Each source of error introduces its own level of uncertainty and these uncertainties
can propagate to the final formula. Indeed, quantifying uncertainties in the final formula
remains a challenging task. It often requires detailed sensitivity analyses and rigorous
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Cf (× 10−3) Cf (× 10−3) Cf (× 10−3) Cf (× 10−3) Cf (× 10−3)
Rea δ/a (Berera 2004) (Integral equation) (Clauser fit) (Woods 2006) (Present study)

3164 4.8 5 (−5.3 %) 7.2 (36.4 %) 5.3 (0.4 %) 5.11 (−3.3 %) 5.28
3259 11.5 5.1 (6.5 %) 2.9 (−39.4 %) 5.1 (6.5 %) 4.55 (−4.9 %) 4.79
3275 3.2 5.7 (3.5 %) 8.4 (52.5 %) 5.6 (1.7 %) 5.37 (−2.4 %) 5.51
3307 9.4 4.8 (−1.3 %) 4.3 (−11.5 %) 4.8 (−1.3 %) 4.63 (−4.7 %) 4.86
3457 6.6 4.8 (−3.7 %) 5.7 (14.4 %) 4.9 (−1.7 %) 4.77 (−4.3 %) 4.98

Table 3. Comparison of the skin-friction coefficients obtained using different methods for five experimental
conditions of Berera (2004). The errors, expressed in percentage, are calculated as (Cobserved

f −
Cpredicted

f )/Cpredicted
f .

validation against experimental or numerical data to assess the magnitude and impact of
each source of uncertainty.

3.5. Comparison of Cf obtained from various methods
Berera (2004) reported comparison of the skin-friction coefficient obtained from
experimental measurements with those obtained from the integral equation and the
Clauser fit. Table 3 provides the five experimental conditions of Berera (2004). The
skin-friction coefficients, corresponding to each experimental condition, obtained from
the experimental measurements of Berera (2004), the integral equation and the Clauser
fit are tabulated. Furthermore, for the given Rea and δ/a, the skin-friction coefficients
obtained from Woods’ (2006) empirical formula (see (1.6)) and the present study (see
(3.2)) are shown. The comparison shows that the skin-friction coefficients obtained from
the present study are in satisfactory agreement with those obtained from the experimental
measurements, the Clauser fit and Woods’ (2006) empirical formula. However, the
skin-friction coefficients obtained from the integral equation significantly differ from
those estimated using other methods.

It is interesting to identify the trend of the data plots obtained from various methods
with Rea ln(1 + δ/a). The relationship (3.2) predicts that Cf [Rea ln(1 + δ/a)]1/4 remains
independent of Rea ln(1 + δ/a) and attains a constant value (= 0.0456). Figure 7 shows
the data plots of Cf [Rea ln(1 + δ/a)]1/4 obtained from various methods as a function of
Rea ln(1 + δ/a). Except for the data plots obtained from the integral equation, the other
data plots respect the ‘−1/4’ power law scaling behaviour by following the horizontal line
anticipated from this study. The data plots obtained from the experimental measurements
of Berera (2004), the Clauser fit and Woods’ (2006) empirical formula are in satisfactory
agreement with the prediction of the present study (subject to the ±5 % error band),
whereas those obtained from the integral equation are prone to errors.

3.6. Scaling of Cf with a+ and δ/a
The functional form (1.1) or (3.2) shows that Cf is a function of two fundamental
parameters, namely Rea and δ/a. Now, we recall various axisymmetric flow regimes (see
§ 1.2), which were classified based on a+ and δ/a. In order to express Cf as a function of
a+ and δ/a, we use the relation Rea = a+√2/Cf . Subsequently, (3.2) is transformed into
the following expression:

Cf = 2.66 × 10−2
[

a+ ln
(

1 + δ

a

)]−2/7

, (3.9)
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Figure 7. Cf [Rea ln(1 + δ/a)]1/4 versus Rea ln(1 + δ/a) obtained using different methods.

which shows that the parameters a+ and δ/a can be combined into a single parameter
as a+ ln(1 + δ/a). The above form shows that Cf follows the ‘−2/7’ power law scaling
with a+ ln(1 + δ/a). In fact, (3.9) is not straightforward to use, because a+ is in wall units.
Therefore, the wall shear stress remains implicit in the parameter a+ ln(1 + δ/a). As a
result, a trial-and-error method is required to obtain Cf for the given U∞, a and δ. By
contrast, (3.2) is more convenient to use, as Cf is directly related to Rea and δ/a.

To check the performance of the predicted skin-friction coefficient (see (3.2) or (3.9))
in various axisymmetric flow regimes, the entire dataset (both experimental data and
numerical simulations as considered in figure 5) is divided into three categories following
the definitions of the axisymmetric flow regimes (§ 1.2). Figure 8 shows the comparison
of the predicted and observed skin-friction coefficients in regimes I, II and III. The
overall match between the predicted and observed skin-friction coefficients is satisfactory
subject to the ±20 % error band. In this context, we remark that the proposed law of the
skin-friction coefficient is capable of capturing all the axisymmetric flow regimes without
making any assumption for an individual flow regime. However, it is worth noting that
regime III displays the maximum error, primarily because certain data points in regime
III deviate from the line of perfect agreement. This discrepancy can be attributed to
the lower values of a+. The ATBL laws employed in the present analysis rely on the
similarity assumption and overlap argument in the inertial range, which are applicable
for large Reynolds numbers. Moreover, large Reynolds numbers create a wide separation
between large and small scales of motion, enabling a prolonged inertial range in the energy
spectrum of turbulent eddies. Incorporating the effects of low Reynolds numbers into the
proposed scaling law is beyond the scope of this work.

3.7. Behaviour of Cf for δ/a < 1
Combining (3.1) and (3.2) yields the relative skin-friction coefficient, (Cf − Cf 0)/Cf 0 as

Cf − Cf 0

Cf 0
=
[

a
δ

ln
(

1 + δ

a

)]−1/4

− 1, (3.10)
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Figure 8. Predicted versus observed Cf in various axisymmetric flow regimes. The line of perfect agreement
and the ±20 % error band are also shown.

which represents the difference between the skin-friction coefficients in the ATBL and
plane TBL flows with respect to the skin-friction coefficient in a plane TBL flow.
Especially, for δ/a < 1 (axisymmetric flow regime I), (3.2) can be approximated using
the Taylor expansion as

Cf = 4.56 × 10−2
[

Rea

(
δ

a
− 1

2
δ2

a2 + 1
3

δ3

a3 − · · ·
)]−1/4

⇒ Cf = 4.56 × 10−2
[

Reδ

(
1 − 1

2
δ

a
+ 1

3
δ2

a2 − · · ·
)]−1/4

⇒ Cf ≈ 4.56 × 10−2Re−1/4
δ

(
1 + 1

8
δ

a

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

Combining (3.1) and (3.11) produces the relative skin-friction coefficient for δ/a < 1 as
follows:

Cf

Cf 0
= 1 + 1

8
δ

a

⇒ Cf − Cf 0

Cf 0
= 1

8
δ

a
.

⎫⎪⎪⎬
⎪⎪⎭ (3.12)

The relation (3.12) shows that (Cf − Cf 0)/Cf 0 varies linearly with δ/a, which can be
called the linear law of the relative skin-friction coefficient for δ/a < 1. The existence of
the linear law is shown in figure 9, where (Cf − Cf 0)/Cf 0 obtained from (3.10) is plotted
as a function of δ/a on logarithmic scales. In addition, (3.12) is plotted for δ/a < 1. For
δ/a = 1, the difference between the relative skin-friction coefficients obtained from (3.10)
and (3.12) is only 2.9 %. The linear law appears to strictly hold in the range δ/a < 0.2
(figure 9), for which the behaviour of (3.10) becomes identical to (3.12). Figure 9 shows
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(3.10)

Linear law, (3.12)

Kumar & Mahesh (2018a)

δ/a
10210110010–110–2

10–2

10–1

100

101

102

10–3

δ > aδ < a

C
f –

 C
f0

C
f0

(%
)

Figure 9. Plot of (Cf − Cf 0)/Cf 0 versus δ/a showing the existence of the linear law
[(Cf − Cf 0)/Cf 0 ∼ δ/a] for δ < a.

that, for δ/a = 0.2, (Cf − Cf 0)/Cf 0 obtained from (3.10) and (3.12) are 2.34 % and 2.5 %,
respectively. The emergence of the linear law divides the axisymmetric flow regime I into
two sub-regimes. The first sub-regime corresponds to δ/a < 0.2, where the linear law is
preserved. The second sub-regime is the transition from δ/a < 0.2 to δ/a > 1 regions. It
is important to mention that Kumar & Mahesh (2018a) obtained the relative skin-friction
coefficient as

Cf − Cf 0

Cf 0
= θ

a
, (3.13)

where θ is the momentum thickness. Using numerous experimental data compiled by
Jordan (2014a) along with the simulation database, Kumar & Mahesh (2018a) considered
δ/θ ≈ 7.2. Therefore, (3.13) becomes

Cf − Cf 0

Cf 0
= 1

7.2
δ

a
. (3.14)

The relation (3.14) also shows that (Cf − Cf 0)/Cf 0 varies linearly with δ/a with a
data-driven proportionality constant being different from (3.12). The relationship (3.14)
of Kumar & Mahesh (2018a), also plotted in figure 9, corresponds closely with (3.12) for
δ/a < 1. However, for δ/a > 1, (Cf − Cf 0)/Cf 0 obtained from (3.14) substantially departs
from that obtained from (3.10). The reason is that (3.13) is legitimate for a developing
ATBL flow, unlike the present study, where the boundary layer is fully developed.
Moreover, while deriving (3.13), it was assumed that the boundary layer growth dδ/dx
is identical for both the plane TBL and ATBL flows. This assumption does not always
hold true, as identified by Kumar & Mahesh (2018a).

The relative skin-friction coefficients given in (3.10) and (3.12) can also be expressed in
terms of the Reynolds numbers as

Cf − Cf 0

Cf 0
=
[

Rea

Reδ

ln
(

1 + Reδ

Rea

)]−1/4

− 1, (3.15)
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Inverse scaling law

Rea
106105104103

10–2

10–1

100

101

102

δ > a δ > a

δ < a δ < a
δ = a

δ = a

C
f –

 C
f0

C
f0

(%
)

Figure 10. Plot of (Cf − Cf 0)/Cf 0 versus Rea for Reδ = 5000 to 105 at an interval of 5000 (bottom to top
lines) showing the existence of the inverse scaling law ((Cf − Cf 0)/Cf 0 ∼ 1/Rea for a given Reδ) for δ < a.

and
Cf − Cf 0

Cf 0
= 1

8
Reδ

Rea
, (3.16)

respectively. The relation (3.12) or (3.16) can also be discussed from a different
perspective. Consider a thought experiment of an ATBL flow having a fixed Reδ . If
the cylinder radius a (or Rea) keeps on increasing by maintaining Reδ constant, the
skin-friction coefficient eventually approaches the plane TBL limit as a → ∞. This
poses a question: For a fixed Reδ (< Rea), how does the skin-friction coefficient in an
ATBL flow scale with Rea to attain the plane TBL limit? In other words, how does
the relative skin-friction coefficient vary with Rea to approach the vanishing limit? This
can be answered from (3.16), which suggests that, for a given Reδ (< Rea), the relative
skin-friction coefficient obeys an inverse scaling law with Rea. The result of this thought
experiment is shown in figure 10. The value of (Cf − Cf 0)/Cf 0 obtained from (3.15) is
plotted as a function of Rea on logarithmic scales for different values of Reδ (5000 to
105). For each value of Reδ , the inverse scaling law is preserved in the range δ/a < 1.
For δ/a = 1 (that is, Reδ = Rea), (Cf − Cf 0)/Cf 0 obtained from either (3.16) or (3.15) is
ln−1/4 2 − 1 = 9.6 % (figure 10).
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4. Conclusions

In this study, we propose a universal law of the skin-friction coefficient in a steady and
fully developed ATBL flow with a zero pressure gradient. Starting from the axisymmetric
equations with respect to a cylindrical coordinate system, we assume a statistically
stationary flow with no swirling motion and perform the time averaging of the governing
equations by applying the Reynolds decomposition. Subsequently, we apply the boundary
layer approximation and find that the longitudinal momentum balance produces the
equilibrium model of, among others, Glauert & Lighthill (1955) and Rao (1967).

In the theoretical analysis, the external length scale in an ATBL flow is inferred from
the length contraction because of the transverse curvature. The Reynolds shear stress at
the surface tangential to the wall roughness summits, caused by a turbulent eddy that
exchanges momentum by straddling the surface, is obtained from the product of the
momentum contrast per unit volume across the surface and the eddy turnover velocity.
The eddy turnover velocity is linked to the second-order structure function, which obeys
Kolmogorov’s two-thirds law from the perspective of an incomplete similarity and the
principle of asymptotic covariance. The TKE dissipation rate in the near-wall flow region
is obtained from the TKE budget equation, in which the TKE production rate balances the
TKE dissipation rate.

The results reveal that in a rough ATBL flow, Cf follows the ‘1/3 + α0/2’ power
law scaling behaviour with ks/[a ln(1 + δ/a)]. On the other hand, in a smooth ATBL
flow, Cf follows the ‘−(1/4 + 3α0/8)’ power law scaling behaviour with Rea ln(1 + δ/a).
The proposed law of the skin-friction coefficient in a smooth ATBL flow complies with
the experimental data and numerical simulations even when no intermittency correction is
applied. The underlying theoretical framework captures all the axisymmetric flow regimes
devoid of any additional assumption for the individual flow regime. In the limit of infinite
radius (that is, a plane TBL flow), the skin-friction coefficients in the rough and smooth
ATBL flows recover the classical laws of Strickler and Blasius, respectively. The relative
skin-friction coefficient obeys a linear law with δ/a for δ/a < 1. This indicates that, for a
given Reδ (< Rea), the relative skin-friction coefficient varies inversely with Rea, achieving
the vanishing limit.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Sk Zeeshan Ali https://orcid.org/0000-0003-0763-7437;
Subhasish Dey https://orcid.org/0000-0001-9764-1346.

Appendix A. The ATBL equations subject to the boundary layer approximation

The time-averaged continuity and the RANS equations can be simplified by applying
the boundary layer approximation. We consider the cylinder length L to be much larger
than its radius a and the boundary layer thickness δ (L � a and L � δ). To write the
dimensionless equations, the radial and longitudinal distances are scaled by the cylinder
length L, whereas the velocity components (both the time-averaged and fluctuating
components) are scaled by the free stream velocity U∞. In addition, the pressure is scaled
by ρU2∞, an estimate of twice the dynamic pressure. We set (r̂, ẑ) ≡ (r, z)/L, (ûr, ûz) ≡
(ūr, ūz)/U∞, (û′

r, û′
θ , û′

z) ≡ (u′
r, u′

θ , u′
z)/U∞ and p̂ ≡ p̄/(ρU2∞). Further, we introduce the

Reynolds number based on the cylinder length, ReL = U∞L/υ, which is sufficiently large.
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The dimensionless forms of (2.5)–(2.7) are as follows:

1
r̂

∂ r̂ûr

∂ r̂︸ ︷︷ ︸
ûrξ−1

+ ∂ ûz

∂ ẑ︸︷︷︸
1

= 0, (A1)

ûr
∂ ûz

∂ r̂︸ ︷︷ ︸
1

+ ûz
∂ ûz

∂ ẑ︸ ︷︷ ︸
1

= − ∂ p̂
∂ ẑ︸︷︷︸
1

+ 1
ReL

⎡
⎢⎢⎢⎣1

r̂
∂

∂ r̂

(
r̂
∂ ûz

∂ r̂

)
︸ ︷︷ ︸

ξ−2

+ ∂2ûz

∂ ẑ2︸︷︷︸
1

⎤
⎥⎥⎥⎦− 1

r̂
∂ r̂û′

rû′
z

∂ r̂︸ ︷︷ ︸
û′

rû′
zξ

−1

− ∂ û′
zû′

z

∂ ẑ︸ ︷︷ ︸
û′

zû′
z

, (A2)

ûr
∂ ûr

∂ r̂︸ ︷︷ ︸
ξ

+ ûz
∂ ûr

∂ ẑ︸ ︷︷ ︸
ξ

= − ∂ p̂
∂ r̂︸︷︷︸
ξ−1

+ 1
ReL

⎡
⎢⎢⎢⎣1

r̂
∂

∂ r̂

(
r̂
∂ ûr

∂ r̂

)
︸ ︷︷ ︸

ξ−1

+ ∂2ûr

∂ ẑ2︸︷︷︸
ξ

− ûr

r̂2︸︷︷︸
ξ−1

⎤
⎥⎥⎥⎦− 1

r̂
∂ r̂û′

rû′
r

∂ r̂︸ ︷︷ ︸
û′

rû′
rξ

−1

− ∂ û′
rû′

z

∂ ẑ︸ ︷︷ ︸
û′

rû′
z

+ û′
θ û′

θ

r̂︸ ︷︷ ︸
û′
θ û′

θ ξ−1

. (A3)

Since z is of the order of L (z ∼ L), ẑ ∼ O(1). Further, as r ∼ a + δ, the order of r̂ is
the sum of O(a/L) and O(δ/L). Therefore, irrespective of δ ≥ a or δ < a, the order of r̂
follows r̂ ∼ O(ξ), where ξ ≡ max(a, δ)/L � 1. Moreover, as ūz ∼ U∞ and p̄ ∼ ρU2∞, we
write ûz ∼ O(1) and p̂ ∼ O(1). From (A1), the order of ûr is found to be ûr ∼ O(ξ). Since
the spatial evolution of the flow field in the longitudinal direction is considerably slower
than that in the radial direction, it follows that ∂/∂ ẑ ∼ O(1) and ∂/∂ r̂ ∼ O(ξ−1). In (A2),
the convective acceleration and the longitudinal pressure gradient terms are of order of
unity. However, among the viscous terms, ∂2ûz/∂ ẑ2 is smaller than r−1∂(r̂∂ ûz/∂ r̂)/∂ r̂ by
an order of ξ2 and thus, it can be eliminated. From (A2), the ReL turns out to be of the order
of O(ξ−2), so that the inertia, viscous and longitudinal pressure gradient terms carry the
same order of magnitude. This produces ξ ∼ O(1/

√
ReL). Furthermore, the contribution

from the radial gradient of u′
ru′

z to the longitudinal RANS equation is quite a bit larger
than that from the longitudinal gradient of u′

zu′
z. Thus, the former term should be retained

in (A2). In (A3), the convective acceleration and the viscous terms contribute minimally
to the radial RANS equation (recall ReL ∼ O(ξ−2)), because they are much smaller than
the radial pressure gradient term (∼O(ξ−1)) by an order of ξ2. Hence, the inertia and
viscous terms become insignificant in the radial RANS equation. Among the Reynolds
stresses, the contributions from the radial gradient of u′

ru′
r and u′

θu′
θ are larger compared

with the radial gradient of u′
ru′

z by an order of ξ−1. Therefore, u′
ru′

z can be dropped out
from the radial momentum equation. These considerations finally produce the boundary
layer equations given in (2.8) and (2.9).
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