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1. Beniofffs Ideas on Physical Implications for Mathematics

In previous technical work ([1] and [2]) on which his present paper
[3] draws, Benioff has presented results conforming with the follow-

ing argument-scheme:

First, if we construe Quantum Mechanics as making claims to the
effect that infinite outcome sequences (generated.by repeated
measurements on a system for a given observable in a given
state) be random; and second, if a strong definition of
"random" is adopted in this construal, then certain models
of Zermelo-Fraenkel set theory (ZF) cannot be "carriers for
the mathematics of physics".

How interesting is this? One can approach the matter on two levels,
the level of the specific technical results, and the level of more gen-
eral implications of this pattern of argument for understanding
connections between mathematics and physics. The second more general
level should be our primary focus, but it will pay at the outset to
look briefly at the technical level.

As he indicated, Benioff takes a random outcome sequence, for the
purposes of the first premiss, to be one that avoids every Borel set
(of sequences or reals) of measure zero (on a fixed probability measure)
that is definable in the language of ZF (with one fixed parameter,
interpreted as the probability measure). (Equivalently, a Benioff-
random sequence must belong to every such Borel set of measure 1.)
Below I will have more to say concerning this definition. For now, let
us note the motivation: a measure 0 Borel set is very special, its
members are highly improbable. Intuitively, we would like to say that
a random sequence avoids any such special set, or, equivalently, that
it possesses every measure 1 property, often called a "property of
randomness". The trouble with this, however, is that no sequence could
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be random on this definition, since the singleton of any sequence is
itself a measure 0 set (for standard probability measures)- including
various sequences fitting his definition schema for "D-random
sequences." Here, "D" is to be filled by a requirement restricting the
measure 0 Borel sets that a random sequence must avoid. Benioff's
choice, for his technical results, takes D to be :ldefinable in ZF' .
The next step is to focus on certain models of ZF about which a good
deal is known. In particular he considers MQ, the minimal model of ZF.
This is the, smallest model in which all sets are constructible (in the
sense of GSdel); it is countable. Moreover, it can readily be proved
that every set in this model is the extension of a formula of ZF with
one free variable, i.e., is ZF-definable. Thus, so is every measure 0
Borel set of reals. But a random sequence must avoid every such set.
But it can't avoid its own singleton. Therefore, the minimal model
cannot contain any random sequences.

Such a result is, of course, not surprising. The combination of a
strong definition of randomness, together with choice of a very small
model in which everything is specifiable, straight-forwardly yields the
conclusion. Furthermore, no one who believes in ZF set theory will be
surprised to learn that the mathematical universe must embrace more
than the minimal model. A set-theoretic realist believes there are
uncountable sets and unconstructible sets. From that perspective,
appeal to what physics may say about random sequences surely must
appear esoteric, since physics already quantifies over uncountable sets,
such as the reals.•*•

Now I don't take Benioff to be disputing any of this. Rather, I
understand him to be using this result, however unsurprising in its own
right, as an illustration of a way of making a new kind of connection
between mathematics and physics. Let us consider this.

What is striking and potentially interesting about the argument
scheme in question is the suggestion that physics could help decide
the nature of the mathematical universe. From the standpoint of time-
honored philosophical positions, this is heresy, since mathematical
truth has traditionally been supposed a priori and not subject to the
claims of empirical science. Note that it is not that some statements
of applied mathematics are being said to depend on physics, but rather
that statements of pure mathematics are: very pure indeed, perhaps the
purest of the pure: what sets exist!

Such a position has been defended in a general way —by pragmatism,
for example. Rational belief, at least, in' set existence statements
has been argued to depend on what we find we must postulate in order to
do physics or natural science generally. (I allude here to views of
W.V.Quine, and related views of Hilary Putnam. See, e.g., [16]).

Benioff's proposal could be assimilated to this mould: quantum
mechanics requires us to postulate the existence of certain infinite
sequences of natural numbers (certain reals, that is). This, at any
rate, according to the first premiss. The question of just which

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192463 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192463


81

sequences are thus required is the question, which definition of ran-
domness should we fix upon. Having decided on one in particular, we
can then argue that the mathematical universe must be rich enough to
contain such random sequences.

Now from the mathematical point of view, this may seem somewhat
strange. After all, these definitions of randomness come from mathe-
matics. Weren't the mathematicians who thought them up already
committed to the existence of sequences fulfilling their definitions?
Surely they didn't suppose they were writing down a formula coexten-
sive with 'x / x'i Of course, the careful mathematician provides a
proof of this. But in what system? Well, let's say in ZF. Then the
next question is, can one prove in ZF that there exist Benioff-random
sequences? First we have to check that we can state the definition
(of "Benioff-random") in the language of ZF. But this is not possible!
The definition employs the notion of 'arbitrary set definable in ZF'
(a semantic notion, relative to some fixed standard transitive model of
ZF), and it is well-known that this notion is not translatable into ZF,
on pain of contradiction, (in terms of 'definability in ZF', one can
define satisfaction and truth in ZF, contra a theorem of Tarski.)

So Benioff's definition of randomness takes us beyond the resources
of ZF set theory. In fact, the technical results mentioned above estab-
lish the independence of the existence of Benioff-random sequences,
by pointing out that the minimal model contains none. Therefore, no
theorem of ZF, properly interpreted, can say that there exist such
sequences. ZF is a very incomplete theory, and we cannot appeal to it
on this score.

In this respect, Benioff-randomness differs from most mathematical
definitions of randomness. Suppose, in fact, we modify the definition
only slightly: instead of speaking of ZF-definable Borel sets of
measure 1, let us instead speak of such sets definable by a formula of
ZF with quantifiers restricted to sets of rank of some countable
ordinal level, in fact ranks of an ordinal level nameable in ZF. (One
can readily define a hierarchy of such languages with restricted quan-
tifiers and prove that there is a "minimal fixed point" in this
hierarchy, beyond which no new sets get defined. Further remarks on
"restricted-Benioff-randomness" can be understood in terms of this mini-
mal fixed-point level.) Now this modified definition of randomness,
"restricted-Benioff-randomness", can be given in the language of ZF;
further, it is straightforward to prove that random sequences in this
sense exist.3

Thus, by the slight change of introducing restricted quantifiers, the
whole question of the existence of random sequences is resolvable in
the affirmative in ZF. If we believe in ZF, there is nothing left for
physics to say.

At this point, it is worth mentioning a connection with the early
parts of Benioff's paper. There he posed the question of finding
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"the correct definition of randomness", and further suggested that this
should be the "weakest allowable" in a certain sense. Now there are a
number of serious problems raised here, not least of which is the fact
that, as Benioff concedes, his proposal on "correctness"'—which is
fundamentally nothing but a consistency requirement—requires that
randomness be relative to a physical theory plus interpretive rules
(connecting theory and observation). The mathematical definitions
relevant to the main issue we've been considering thus far are, of
course, free of any such relativity. Perhaps there are particular
physical theories of interest such that the sets of random sequences
on definitions "correct" for those theories coincide with those deter-
mined by some of the mathematical definitions. Far greater precision
in formulating the theory-relative notion would be needed before one
could begin to investigate this. In any case, notice that my
suggested "restricted-Benioff-random" is weaker than "Benioff random",
though it is still quite strong, in allowing talk of sets of very
large transfinite rank. Still, it is weak enough so that ZF can settle
the question of existence. If this modified definition or any weaker
one is conceded to be "allowable", then, on Benioff's view too, there
should be nothing left for physics to say.

The crucial point is this: if we believe that quantum mechanics
does have something new to say about set existence, via a notion of
randomness, then we must be prepared to believe that QM distinguishes
between Benioff-random sequences on the one hand and restricted-
Benioff-random sequences on the other. Is this credible? It seems to
me not. " ' •

At this point let me raise a related but more elementary objection,
one whose solution would seem to be a precondition for meeting the main
objection just raised. Note that QM as usually formulated doesn't
directly speak of random sequences at all/' Rather it makes probabilis-
tic assertions about measurements on individual systems. Of course,
there are deep questions concerning the interpretation of such proba-
bilistic statements. For example, the most common limit-of-relative- -
frequency interpretation confronts the problem of ordering the outcomes
of hypothetical infinite sequences, since limits depend crucially on
order. Furthermore, there is the thorny problem of how we can confirm
probabilistic statements so interpreted on any finite data basis. The
point to be made here, however, is that if one builds into QM claims
about'the randomness of infinite.outcome sequences, in.accordance.with
Benioff's-first premiss, one is.incorporating claims.that raise serious
problems of confirmation over and above those., already present in
ordinary quantum mechanics. The reason is this: in the case of an
ordinary probabilistic statement^ one can observe a quasi-asymptotic
approach to a limit by observing actual relative frequencies in longer
and longer finite:outcome sequences. This at least provides a rational
basis for evaluating counterfactuals to the effect that, were the
sequence extended to infinity, the relative frequency would have such
and such a limiting value. No comparable situation exists with
respect to claims of randomness of infinite sequences. All finite
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sequences, on the definitions under consideration, are non-random.
There Is no asymptotic approach to randomness. One could meet this
objection, perhaps, toy switching to a definition of randomness which
applies to finite sequences or is such that asymptotic approach to
randomness makes sense. (For instance, definitions based on statis-
tical tests or a measure of complexity, ef.,[lUl) But. such a switch
would not be in the interest of Benioff"s approach, since such
definitions raise no problems at all concerning set existence. One
may be apprehensive that by building claims of Benioff-randomness into
quantum mechanics, one is making the theory untestable in principle.

Even if this objection can be met, Benioff's approach is far from
home. For as already indicated, in order for QM to have something new
to say about set existence by the route proposed, it would have to
provide a basis for making distinctions such as that between Benioff-
randomness and what we have called restricted-Benioff-randomness.
Clearly, no finite body of data could make such a distinction; and I
see no theoretical consideration in physics — at least, in the laws
of QM of the sort that I am acquainted with — that would do so either.

But there is a still more fundamental point that must be raised.
Many interpreters of quantum mechanics have wanted to see in the theory
and its success confirmation of some claim about the absence of cau-
sality at the micro-level. This is the real source of talk of physical
randomness. Is such talk—if we want to take it seriously—properly
represented by construing physical randomness as mathematic random-
ness, on any of the known definitions?

2. Mathematical and "Ultimate" Physical Randomness

My view is that there is at best an epistemic connection between
mathematical notions of randomness and the physical notion, which I
take to be roughly interchangeable with "indeterministic". I do not
believe that mathematical definitions can be taken as explicating
physical randomness. In brief, this is because mathematical defini-
tions attempt to capture a notion of orderlessness, something that
must be relativized to a language or some other framework for
classifying and detecting or predicting outcomes. Like simplicity and
like similarity, what is orderly varies radically as we shift from one
framework to another. This need for relativization is one factor that
has generated so many different definitions of mathematical random-
ness; this was especially evident in Benioff's nice codification
scheme for 'D - randomness1'. However, whether a physical process is
"fundamentally random" in the sense of its outcome being not causally
determined should not depend on the predilections of one peculiar
species of hairless ape for certain kinds of order. Indeterminism,
if a relative matter at all, is not relative to the same degree or in
the same ways as mathematical randomness.

These points can be brought out by looking at notions of mathe-
matical randomness that do apply to finite sequences, such as those of
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Kolmogorov, Chaitin, and Martin-Lof based on a measure of complexity.
(See [6], [11], [12] and [lk].)

The basic idea behind these definitions is simply this: non-
random sequences (say, of O's and l's) may be compactly described;
instructions to a machine to print out, say, a hundred repetitions
of '01' can be compressed into a short formula compared with the
length of the sequence whereas instructions to print out a disorderly,
"random" sequence will require nearly as many bits as the sequence
itself. More precisely, following Kolmogorov ([11] and [12]), the
notion of "the complexity of a sequence relative to an algorithm"
is defined first: letting x, y, etc. range over finite or infinite
sequences, cp over algorithms going from the programming instruc-
tions, p, to the sequences, we set

K (x) = min length (p) such that cp(p) = x, or

co, if no p exists such that cp (p) = x,

that is, the complexity of a sequence on algorithm cp is the length of
the minimal binary program for the sequence, if such exists, and
diverges otherwise. At this point, appeal is made to Church's Thesis,
according to which the functions properly called "computable by
algorithm" are just the partial recursive functions, and the variable
cp in the above is taken as ranging over the latter. (Eecall that the
recursive functions are those a Turing machine can compute, and the
partial ones are those that need not be defined for every integer as
argument.) Now relative to a partial recursive function, a (finite)
sequence may be classed as random on significance level m (an integer)
if its complexity is within m of its length.

Inspection of this definition clearly reveals dependence on the
algorithm relating program to sequences. However, proponents of this
approach have cited a "fundamental theorem" ([11], pp. 5-6; [8],
pp. 135-36) which is supposed to reduce severely this aspect of
relativity. The idea behind this theorem is this: one appeals to a
universal Turing machine (or partial recursive function) in eval-
uating complexity of sequences and observes that the greatest amount
by which the universal machine's measure can exceed that of another
machine's is given by an index for the latter plus a systematic trans-
lation of its progrnmmi ng language into that of the universal machine.
Thus, the theorem states, there exists a partial recursive function, A,
such that for any other partial recursive function cp , the following
inequality holds:

does not depend on the sequence x to be computed
but only on the given function (machine), cp. The order of quantifiers
here is this: 3AVcp3c Vx, from which the elements of strength and weak-
ness in the theorem nay be inferred. Functions A satisfying this
theorem are called "asymptotically optimal"; it is to these that one
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then appeals in delineating the class of "random sequences": their
complexity as measured by an asymptotically optimal function is within
(chosen) significance level of their length.

While there certainly is some power to this theorem, it should be
clear that relativity to programming language has by.no means been
eliminated. For one thing, the optimal functions satisfying the
fundamental theorem are not unique, i.e., there are many. What can be
established is the following:

i.e., the difference in complexity values assigned relative to any two
such functions to sequences is uniformly bounded by a constant, that
is, it is never greater than some finite amount depending only on the
functions (and not on the sequences whose complexity is in question).
This means, intuitively, that for any two asymptotically optimal
programming methods, there will be indefinitely many sequences of
sufficient complexity such that any disagreement as to their com-
plexity on the part of the two programming methods will be insigni-
ficantly small. However, it does not mean that such disagreement
will be small for all sequences (or problems).. On the contrary, there
is no bound that can be set on the values of the constants appearing
either in the expression above (for the difference between optimal
functions) or in the fundamental theorem's inequality which defines
optimality. On the contrary, since programming languages of arbitrary
complexity (intuitively) are being considered (i. e., we're talking
about arbitrary Turing machines), it is clear that as the index cp
(in the fundamental theorem) varies over the whole class of machines or
partial recursive functions, the constant o^ assumes arbitrarily large
finite values. (For instance, translations from arbitrarily "cumber-
some" programming languages must be taken into account.) Similarly
for the constants bounding the .differences between pairs.of..asympto-
tically optimal machines. What this .means is that, for ..any optimal
method, there will be sequences of arbitrary length such that some
non-optimal method can be found wEich generates the sequence more com-
pactly or efficiently tnah the given "optimal" method. And this "more"

e (measuimay be itself of arbitrary size (measured in bits) as the length of
such, sequences grows. Further, it means that there exist sets of
sequences of arbitrary length (finite) such that the rank ordering
of ascending complexity induced by one asymptotically optimal method
i£ totally different from the rank ordering given by~another~asympto-
tically optimal method. This is important for it means that different
optimal methods may disagree widely on how they explicate qualitative
judgments as to which sequences are more complex than which.

What does any of this have to do with claims that certain physical
processes are ultimately, irreducibly random? Let us consider finite
outcome sequences obtained by subjecting a quantum mechanical system
to a given state preparation and measurement of a "yes-no" observable
such that the state is not an eigenstate of the observable. We may,

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192463 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192463


86

for simplicity, further suppose that the quantum mechanical proba-
bility for a "yes" answer (designated'l') is l/2, and likewise for
the probability of a "no" ('0'). Now if probability is understood
in terms of relative frequency in an ensemble of identically prepared
systems, we face the problem that ensembles don't come ordered,
whereas order is at the'heart of Kolmogorov randomness. We can, how-
ever, with Benioff, stipulate that time provide the ordering. Just
what this means if measurement destroys the system and a new one must
be prepared is not clear, but let us not. pause over this. Under any
method not involving prevision, we would expect the generated binary
sequences to exhibit a random character. In fact, we can even prove
that a composite system made up of the reprepared segments will yield
sequences whose probability of being Kolmogorov random (on a reason-
able significance level) approaches 1 as the length of the sequence
grows without bound, provided that it is assumed that the components
of the system are uneorrelated.

Here then is some connection between physical and mathematical ran-
domness. But just what is the connection? First, note that we must
not make the mistake of supposing that a high probability of obtaining
Kolmogorov random sequences even tends to show that the process
generating the sequences is "ultimately acausal" or "indeterministic".
That this is a mistake is immediately obvious when one considers
sequences generated by coin flips or other "classical" systems.
Second, however, the assumption that the components of the system are
uneorrelated does have physical implications, and without that assump-
tion the argument does not go through. To see the significance of
this, suppose we were to observe the improbable:: a long outcome
sequence of a highly non-random character, such as 10101010...
Observation of such sequences in a laboratory under controlled con-
ditions might well lead some physicist to contrive an "On-off exten-
sion of quantum mechanics"! At least it would be reasonable to
question the uncorrelatedness of the components. In short, such
observations of non-random sequences would cause us with cause to seek
causes.

The link, then, between mathematical and physical randomness is
epistemic and only that. Observations of mathematically non-random
sequences can be used to decide when further explanation in terms
of as yet undiscovered causal factors is wanting. But, in no sense
is any notion of mathematical randomness serving as an explication
for "ultimate physical randomness", whatever that might be.

Even this much connection must not be exaggerated. In particular,
one must not commit the fallacy of supposing that the a priori likeli-
hood of the specific alternating sequence of our example is any less
than that of any other sequence. To the best of our knowledge,
equiprobability for all sequences is the proper assumption, and it
would be surprising to find any sequence whatever generated over and
over again. But the non-random sequence of our example has the special
property of being repetitive, so that its subsequences are non-random
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in just the same way. Thus, observation of a single instance of this
sequence (very long) may be taken as a repetition of a number of
(still long) sequences of the same type. It is this feature that
provides justification for treating a single case of the sequence of
our example as cause for greater concern than a single occurrence of
a random sequence, or of many other non-random sequences. Thus it
would seem to be primarily the phenomenon of obtaining the same
result under repetition rather than the specifically, non-random
character of the initial observed sequence that provides the rationale
for seeking further causal factors. As it turns out, this only com-
plicates, but does not upset, the sort of connection I am urging, since
m repetitions of a relatively random sequence of length n will yield
a sequence of length m x n which is relatively non-random, the more
so (on a given significance level) as m increases.

3. Indeterminism .

Talk of "ultimate randomness" of physical events is not to be
explicated in terms of mathematical randomness. As already indicated,
it is closely linked with talk of causal indeterminism. Is there
any hope of making sense of this kind of talk? One often finds
appeals to "ultimate indeterminism in nature" made in connection with
claims that a statistical theory.such as quantum mechanics is "com-
plete", or "the best that we can do, in principle." (cf.,e.g., [5],
p. J+8.)• When one presses for clarification of what is really being
asserted by such phrases, one is quickly disappointed. Answers
generally exhibit one of the following three defects: (l) the expli-
cation makes the notion in question relative to humans or parochial
in a way that undermines the "objective" thrust of the phrases as
physicists and philosophers have used them; (2) the explication
avoids the first pitfall but has the immediate consequence that no
matter how the world may happen to be, it is deterministic, thereby
trivializing the notion; or (3) the account avoids both (l) and (2)
but is irreducibly metaphysical in character, taking as given a full
set of "possible worlds" with or without a temporal branching struc-
ture on which the truth or falsity, respectively, of indeterminism
directly depends. • • . . • •

The major open question in this area seems to be to be this: are
these three categories exhaustive, or is there a fourth, a non-
parochial, non-trivial, not irreducibly metaphysical explication of
any of the phrases in this interrelated family? I do not have an
answer, but the question seems to me important. But to highlight this,
a few comments on why each of the three types is defective are in
order. Nothing really needs to be said on (2), since nobody intends
to be making trivial statements in the contexts at issue. As to paro-
chiality ((1)), this is almost as clearly unintended, and so, with
non-triviality, may be taken as a condition on the problem of
explication. However, let us note in passing two brief points.
First, just what counts as non-parochial is susceptible of degrees
and is quite vague. What is intended, I think, is that whether a
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physical system is indeterministic (in given magnitudes) ought to be
as much a fact about the system itself as any other theoretical
physical fact (such as being in a certain state of motion relative
to a coordinate system). Second, however, at least parochial inter-
pretations, such as "predictable by human physicists", can be com-
prehended as yielding intelligible assertions (subject to elimination
of some residual vagueness), and even interesting ones. This cannot,
I believe, be said for "explications" of the third kind. I do not
suppose that all talk of possible worlds is on a par, and that we must
accept or reject all of it. But in this context I regard it as com-
pletely unhelpful and, by and large, unintelligible. Let me briefly
explain.

What does it mean, on a possible worlds approach, to say that the
actual world is (futuristically) indeterministic in magnitudes m. ? It
means that there is some possible world indistinguishable from tne
actual up till (or at) some point in time and thereafter different in
respect of the m^ (construed as functions from physical systems at
times to the real numbers). Now "possible" here cannot mean "logi-
cally possible" in any sense based on analyticity or linguistic meaning,
since if it did, the world would always be indeterministic in whatever
magnitudes you like. No contradiction is involved in saying that
future branching occurred. So on such an interpretation, we get tri-
vialization. If "possible" means "physically possible", then there
are two cases to consider, (i) This is explained as "satisfying all
(true) physical laws", in which case either the notion of "true physi-
cal law" is being taken as primitive and the account is not really of
type (5) anyway, or "physical law" is itself explained as "true in all
physically possible worlds" (or something equally obscure), in which
case we have what amounts to vicious circularity, (ii) Physical possi-
bility isn't explained at all. In this case, we are being asked to make
sense of statements of the form, 'the world might (physically) have been
the same till time t and different (in specified ways) afterwards', or
of the form, 'if any world had been physically the same as the actual
till time t, it would have continued to be the same thereafter'. But, I
claim, we have.no way whatsoever of evaluating such statements without
appealing to some body of theory taken to hold in the actual world/
But what body of theory could this be? One might respond, "quantum
mechanics together with strong negative mathematical results on hidden
variable extensions of quantum mechanics (e.g., [10])." Space does
not permit an adequate treatment of this, but an important problem with
the proposal seems to me to be that it does nothing to help clarify
what the counterfactuals mean, what it is, that is, that we're
appealing to our "best scientific theory" to .confirm. Moreover, it is
hard to see how the appeal is even relevant to confirmation when we
realize that claims of indeterminism involve quantification over all
"laws of nature", in contrast (I would argue) to more homely counter-
factuals evaluated by invoking specific theories. What, it may be
asked, can quantum mechanics possibly tell us about "all.laws of na-
ture"? Si short, as_ long &s_ we construe indeterminism claims in such
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fashion,..-we.are,quantifying over too ill-defined a totality to know
what we're talking about. ~

It must be stressed that our problem concerns indeterminism as
predicated of physical systems or the physical universe as a whole.
This must not be confused with the problem of characterizing theories
as deterministic or indeterministic. Here it seems, we have a much
firmer grasp. In addition to clear examples, such as Newtonian
mechanics, we have the work of Montague [15] which presents general
definitions in terms of the models of the theory in question. Roughly,
a theory T is (futuristically) deterministic in magnitudes m^.. ,ni
(represented by magnitude-signs 2L) just in case any pair of models of
T which agree at a given time on their interpretations of the vocabu-
lary of T also agree on the m^ at any other (future) time."

One might suppose that, given such a characterization of 'deter-
ministic theory', it is but a short step to saying what counts as a
deterministic world: the world is deterministic in magnitudes m, iff
it is truly described by a theory deterministic in the m., indeter-
ministic (in m^) otherwise. But unless restrictions are placed on
what is to count as a theory, trivializatibn follows trivially, since,
given a modicum of set theory, there is always a theory with a predi-
cate which picks out the actual "m.-trajectory" of the physical
universe (just a function from the'Veal line E to E n (assuming
1 s i £ n), itself a set theoretic object), and if the theory simply
uses this function to predict future states, it is by definition
deterministic. (Earman has made a similar observation in [7].)

Is there any hope for this approach? So far little has been done
beyond pointing out that genuine deterministic theories must consist
of lawlike sentences as opposed to accidental ones. But until we have
some grounding for this distinction, we don't really have an approach.
And it is just here that we face the danger of lapsing back into
either the first or the third category of explication mentioned above.
A Humean approach to lawlikeness will give us parochialism, and a
possible worlds approach will give us nothing worth having. We seem to
have regenerated our problem.

A word here is in order on a related problem confronting appli-
cations of Montague's work. This concerns the question of what it is to
represent a magnitude in a theory. (This was also raised by Earman
in [7].) Normally we take for granted that certain terms in our own
language designate magnitudes of theoretical interest. However, a
deterministic theory need not be in our own language, and so the ques-
tion how this semantic relation gets established has at some point to
be faced. If magnitudes are taken as intensional abstracta in the
manner of possible worlds semantics, the problem is essentially that of
making sense of "rigid designation" of magnitudes, in the terminology
of Kripke (see [13]). In particular, any possible worlds approach to the
problem of lawlikeness must deal with this. Why is this crucial for a
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metaphysical approach to indeterminism? For the simple reason that,
without a strong.,intensioaal relation of magnitude, designation, in a
very large., class- of..conceivable cases we_ get once again trivialization
of the determinism issue. For in the absense of such an intensional
relation, our criterion of magnitude designation must be extensional.
In addition, if parochialism is to be avoided, the "possible worlds"
or model-theoretic structures representing them must contain enough
structure to interpret a large variety of possible languages. • But
these conditions will allow us, in a great many cases, to pass from a
given indeterministic theory to a deterministic theory in Montague's
sense, preserving both truth in the actual world and lawlikeness
(where this is understood as truth in all the relevant "worlds").
(For a proof-sketch of this claim, see Appendix.)

Note that this is just one more problem for the metaphysical
approach. It is.not necessarily a problem that arises in any context
where model-theoretic structures are taken as representing a possible
world. So long as we are working with structures,taken.as our own
"constructions", we simply appeal to our own stipulations as to what
is designated by a term. . The difficulty arises when we speak of .
"possible worlds" as somehow given in advance. On this picture, how
do we know what we are designating? • . • .. :

If any progress is to be made on this approach, some principled .
restrictions must be found on the languages in which physical theories
may be framed. Such restrictions would carry over to the model- .
theoretic structures used to represent possible worlds, so that such
structures could not be used to interpret arbitrary theories in arbi-
trary languages. Perhaps it would be illuminating to consider
restricting.languages to those learnable by any viable form of
intelligence. The main problem here is to avoid a circular appeal
to "physical possibility"—one is in effect seeking an independent
characterization of "physically possible physicist". This would look
toward a synthesis, not between physics and mathematics, but between
physics and biology. That, however, brings us to the limit of this
discussion. :. :

Appendix

On the Montague-Earman approach to determinism,.the world is deter-
ministic in magnitudes v^ provided there is a theory T consisting of
(true) laws which represent the v. such:that the class of (relevant)
models of T exhibits no temporal branching. It is assumed that the
models have a temporal structure isomorphic to the real line. Branch-
ing (futuristic) occurs if two structures agree on the interpretations
of the magnitude.terms up until a given time but differ on some such
term at a later time. An ordered triple, (m,m',t), where m and m1 are
relevant models which agree on the v i terms (we designate these v^)
prior to (or =) t but disagree at some t' later than (or =) t, will be
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called a branch-point. Earmsn ( in [ 7]) called the approach under
consideration "linguistic" since the notion of lawlike sentence was
taken as primitive. Apart from its ultimate status, if we take "law"
to coincide with "sentence true in a sufficient class of structures
representing natural possibility", then trivialization threatens un-
less the conditions for a theory's representing a magnitude are quite
strong. This can be made more precise as follows.

Let a be a class of model-theoretic structures (taken as repre-
senting some notion of natural possibility). We assume that each m
in a is suitably rich in the sense of containing a large set of (n-ary)
extensions from its domain, so that (reducts of) these structures
can serve as models of theories in a wide variety of languages.
Furthermore, we assume each m contains as a part a"~mathematically
rich structure including at least the real numbers and functions from
concrete objects in the domain to reals. A magnitude v may be taken
as a function from a to such functions (from concreta in the domain
in question to reals with appropriate units). Thus, intuitively, the
magnitude position (classical) may be taken as a function which
assigns to each m £ a the function in m which assigns each particle
in m at t the real number representing the position of the particle
at t.

Suppose now that T is a theory in the variables v. consisting of
laws over a , i.e., the reducts m|T of. each m in a to the vocabulary
of T is a model of T. (it is assumed that _T is fully interpreted
over <y.) Suppose further that one of the structures in a represents
the actual world. Call it G. Our main claim is this: If T is
indeterministic in (some) v^ in a, T can be transformed into a T* by
a reinterpretation of the terms v^ (and possibly other extralogical
vocabulary) with the following properties:

(i) T* is indistinguishable from T in the real world G;
(ii) T* consists of laws over a ',
(iii) T* is deterministic in the Vj_ in a ,

provided that extensionally equivalent interpretations of the v.
(in just the structure G) suffice for theories to represent the same
magnitude s.

The strategy in constructing T* is to modify the interpretations
of the v^ so as to eliminate all branch points in a. For simplicity,
suppose we have a single branch point, (G,m,t)^,where the subscript
•y1 indicates that it is just with respect to this magnitude that G
and m diverge at time t. Let us further suppose that G and m contain
the same enduring objects (this way we avoid having to introduce
isomorphisms between the models—there is no essential loss of gen-
erality). Suppose v is position, and suppose that at t, a single
particle p in m diverges e? to the left (in some plane in some
fixed coordinate system) of the straight path p takes in G. Now,
change the interpretation v of the position variable v of T to v* as
follows: for all t, v*G(p) = vG(p);

for t1 < t, v*m(p) = ^ )
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for t1 a t, v-^Cp) = 6° to the right of position
in m, i.e., v*m(p) = vG(p).

That is, v* is just like position except that at times s t in m
it coincides with position in the real world G rather than position
in m. ('6° to the right . .71" is just an informal abbreviation of a
predicate picking out the G trajectory of the particle p.) If no
other objects or magnitudes are affected, this is the only change
needed to eliminate the branch-point. By our hypothesis on the mathe-
matical richness of m, v* is well-defined, since the function des-
cribing the real-world trajectory of p exists in m. By fiat, condition
(i) of the claim is satisfied. Similarly for condition (ii): m|v
under the new interpretation, v*, satisfies the sentences of T*, since
v*m _ V G for a]_]_ -t} an(j (jjv is by hypothesis a model of T. On
condition (iii), obviously <G,m,t) * is not a branch-point. But we
must be sure that the reinterpretation does not introduce any new
branch points with other structures, m'. To deal with this, we must
compare all structures in a with G as we did m, eliminating all branch-
points <G,m',t> by re-interpretation as above. How we observe that,
since the reintXrpretations force all structures to agree with G, any
branch points of the form (mjin'jt'Xy* (f > t) introduced by reinter-
preting v.over m can be rewritten as <G,m',t') , since by stipulation
v*m = vm f o r a l l t, and v*^ = V

s , also for all t. Thus,
eliminating all branch points involving G will automatically take
care of any introduced by reinterpretation. Proceeding in the same
way for other structures fixed in the role of G, taking care not to
alter previous reinterpretations, we eliminate all branch points in cv»

We have been assuming that a single magnitude behaved indeterminis-
tically in an isolated way. This is of course highly unrealistic,
since theories typically relate a set of magnitudes. In general, the
above procedure would have to be carried out on each of the magnitudes
in question, preserving interpretations on G while eliminating branch
points by forcing agreement with G (or whatever structure is held
fixed). Again the assumption of mathematical richness of the struc-
tures insures that the required functions exist in all structures.
And by forcing agreement with G (or other fixed structures) on all the
reinterpreted variables of the theory, it is guaranteed that the
models and the sentences of T* are laws (in virtue of being satisfied
by all m in a).

It may be remarked that this trivialization of determinism is
itself a trivial consequence of the extensional-.criterion of magnitude
representation together with the assumption of richness of the
structures. It is. What follows is that this metaphysical approach
to determinism rests critically upon some intensionalist account of
magnitude representation. That is what one would expect; our claim
and the details supporting it are merely designed to bolster that
expectation in a somewhat precise way.
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Notes

It is true that, by the well-known Lowenheim-Skolem theorem, there
is a countable model of any consistent physical theory even if the
theory includes all of mathematical analysis. The minimal model of
Zermelo-Fraenkel set theory could serve as such a model.' But this only
shows that it is possible to interpret mathematical physics over a
countable domain so that all its theorems come out true on the inter-
pretation. It by no means shows that such an interpretation is
intended. From the mathematical realist's standpoint, any such
interpretation can be regarded as deviant, in that one is simply
quantifying over too BTTMII a class of functions. In other words, on
the realist's interpretation of mathematical-physics, it is not in the
deviant sense in which the theory quantifies over uncountable sets.

Still, there is a difference in the case of random reals: new axioms
asserting their existence do rule out the minimal model (and any others
not containing any), whereas no new axioms (in a countable language)
can rule out all countable models. Benioff's point might then be put
in this way: if physics is construed as incorporating certain claims
about random sequences, even certain otherwise consistent though
deviant interpretations must be categorically rejected.

2The proof is analogous to that of ZF-definability of "partial
satisfaction", i.e., of satisfaction in a transitive structure for
the language of ZF with domain a set. See [18], pp. 66-68, Theorems
7.5, 7.10.

The proof is as follows: by definition (in ZF) we have x is
restricted-Benioff random iff x lies in every measure 1 Borel set B
such that B is definable by a formula of ZF with restricted quanti-
fiers, as indicated above. Let X denote the class of all such
Borel sets. It suffices to show that ("K is non-empty. But this
follows trivially from the fact that X is countable (which it is,
since defining wffs form a countable set (the bounds on the quantifiers
coming from a countable set of countable ordinals)), because a
countable intersection of measure 1 sets is measure 1 (by the -
additivity of the measure). Q.e.d. Since this proof can be carried
out in ZF, it follows that every model of ZF (including M Q ) must con-
tain restricted-Benioff random reals.

In essence, Benioff's "weakest allowable" criterion comes to this:
require of random sequences (relative to theory T) membership in only
those Borel sets of measure 1 which the theory in question (plus
"interpretive rules") force you to require. As he formulated it, given
a theory T plus rules B, require that a random sequence belong only
to those measure 1 Borel sets B in a class D (Pa fixed probability
measure) such that for some (experimentally fenerable?) sequence ty ̂  B

which lies in all the other (measure l) sets in IL,11^ can be used to
derive a contradiction" in T plus E. ([3], §3) The only way I can
make sense of this is to read it as saying that B is to be a required
property of randomness only if a contradiction can be derived from T, E,
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and the sentence, "ty j. B", which fits with my interpretation.
Frankly, I am at a loss to see any real motivation for such a

criterion, except perhaps that of relying on one's favorite theory.
But even if this were regarded as sufficient, there are still serious
problems with the approach. These emerge in his example ([3]j §3)
involving quantum mechanics. This example purportedly shows that
the property of invariance of limit mean under observer-realizable
subsequence selection is a necessary property of randomness for QM
because, allegedly, a contradiction is derivable in QM from the
assumption that a sequence generated by a QM process lacks this pro-
perty. But how is such a contradiction derivable? Only if some
additional strong assumption is made, such as, "Every sequence
generated by a QM process has this invariance property." Nothing that
I know of in current physical theory supports such an assumption. As
far as we know, repeated measurements for a question observable on a
system in a state exhibiting dispersion for the question can yield any
sequence whatever. The most we can say is that almost every sequence
(in the measure theoretic sense, which'allows for uncountably many
exceptions!) satisfies the condition. In his own argument, Benioff
derived a contradiction; but he tacitly assumed that the theory-
experiment connection is such that observation of a single sequence
not satisfying the predicted limit mean allows the inference that
either a different state was prepared or a different question-
observable was tested. But, if I am right, we' have no grounds for
any such assumption.

In sum, for Benioff's criterion to work, we must be able to prove
in our theory T plus interpretive rules that every sequence generated
by a T-explained process have the property of randomness in question.
But in the case of quantum mechanics, perhaps our most highly developed
physical theory and the one that seems to involve statistical notions
essentially, we have.no basis for proving these kinds of theorems.

One might reply that the criterion should be thought of not in
connection with QM but rather some more comprehensive extension of QM.
This leads, however, to a curious predicament: for the very kind of
extension that would enable the criterion to work—namely, one which
predicted that all generated sequences have certain measure 1 pro-
perties—would, in all likelihood, no longer be an essentially
statistical theory. The very need to talk about random sequences or
outcomes (within the theory itself, as opposed to a general inductive
logic) would have been overcome.

5ft, similar line of reasoning is suggested by L. Sklar, in [17],
with regard to counterfactuals on limits of relative frequencies
faced by proponents of a "propensity" interpretation of probability.

"There is an interesting technical problem here concerning whether
model theoretic conditions for deterministic theories must be met by
every pair of models of such theories, or whether it is sufficient to
require that the conditions be satisfied by a relevant subset of the
models. The problem arises because typically many of the models of a
rich theory are non-standard even in ways concerning "structure"
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(independent of the particular objects in the domain of the model),
and may therefore be irrelevant to the intended interpretation of
"determinism". That such a situation obtains with respect to notions
of "determination" between levels of scientific theories has been
explained in [9] where it is also shown how the irrelevance of non-
standard interpretations leads to independence of determination
principles from reductionist principles.

In the present case, restriction to "standard" models of deter-
ministic theories results in further independence of determinism from
theoretical predictability (of the behavior of the magnitudes in
question), beyond what has already been noticed, (cf.,[!+].) The main
idea here is that, if all models of a theory are relevant, then
Montague's conditions on models amount to implicit definability of
future predicates in terms of past; by Beth's definability theorem
this yields explicit definability, which is only a stone's throw
from "predictability-in-principle". If some models are irrelevant,
this argument breaks down.
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