Appendix C

Coordinates and momenta

The space-time coordinates $(t, x, y, z) \equiv(t, \vec{x})$ are denoted by the contravariant four-vector x, which is defined as: ${ }^{1}$

$$
\begin{equation*}
x^{\mu} \equiv(t, x, y, z) \equiv\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \tag{C.1}
\end{equation*}
$$

The covariant four-vector is defined as:

$$
\begin{equation*}
x^{\mu} \equiv(t,-x,-y,-z) \equiv\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=g_{\mu \nu} z^{\nu} \tag{C.2}
\end{equation*}
$$

where:

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{C.3}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

The three-vector is also often denoted as:

$$
\begin{equation*}
\vec{x} \equiv \mathbf{x} \tag{C.4}
\end{equation*}
$$

The momentum vector is defined in the same way:

$$
\begin{equation*}
p^{\mu}=\left(E, p_{x}, p_{y}, p_{z}\right) \tag{C.5}
\end{equation*}
$$

The scalar products are:

$$
\begin{align*}
x^{2} & =x_{\mu} x^{\mu}=t^{2}-\vec{x}^{2}, \\
p_{1} \cdot p_{2} & =p_{1}^{\mu} p_{2, \mu}=E_{1} E_{2}-\vec{p}_{1} \vec{p}_{2}, \\
x \cdot p & =t E-\vec{x} \cdot \vec{p} \tag{C.6}
\end{align*}
$$

The derivative operator is:

$$
\begin{equation*}
\partial_{\mu} \equiv \frac{\partial}{\partial x_{\mu}} \equiv\left(\frac{\partial}{\partial t},-\vec{\nabla}\right) \equiv\left(\frac{\partial}{\partial t},-\frac{\partial}{\partial x},-\frac{\partial}{\partial y},-\frac{\partial}{\partial z}\right) . \tag{C.7}
\end{equation*}
$$

The Dalembertian operator is:

$$
\begin{equation*}
\nabla^{2} \equiv \partial x_{\mu} \partial x^{\mu}=\frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2} \tag{C.8}
\end{equation*}
$$

[^0]The electromagnetic four-vector potential is:

$$
\begin{equation*}
A_{\mu}=(\Phi, \vec{A}) \tag{C.9}
\end{equation*}
$$

The electromagnetic field strength is:

$$
\begin{equation*}
F_{\mu \nu}=\frac{\partial}{\partial x_{\nu}} A_{\mu}-\frac{\partial}{\partial x_{\mu}} A_{\nu} \tag{C.10}
\end{equation*}
$$

The electromagnetic and magnetic fields are:

$$
\begin{equation*}
\mathbf{E}=\left(F^{01}, F^{02}, F^{03}\right) \quad \mathbf{B}=\left(F^{23}, F^{31}, F^{12}\right) \tag{C.11}
\end{equation*}
$$

The gluon field tensor is:

$$
\begin{equation*}
G_{\mu \nu}^{a}=\frac{\partial}{\partial x_{\nu}} A_{\mu}^{a}-\frac{\partial}{\partial x_{\mu}} A_{\nu}^{a}+g f_{a b c} A_{\mu}^{b} A_{\nu}^{c} \tag{C.12}
\end{equation*}
$$

where A_{μ}^{a} is the guon fields and $a=1,2, \ldots 8$ are the colour indices. The electromagnetic covariant derivative is:

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}+i e A_{\mu} \tag{C.13}
\end{equation*}
$$

The gluon covariant derivative acting on the quark colour componet $\alpha, \beta=$ red, blue, yellow is:

$$
\begin{equation*}
\left(D_{\mu}\right)_{\alpha \beta} \equiv \delta_{\alpha \beta} \partial_{\mu}-i g \sum_{a} \frac{1}{2} \lambda_{\alpha \beta}^{a} A_{\mu}^{a}, \tag{C.14}
\end{equation*}
$$

where $\lambda_{\alpha \beta}^{a}$ are eight 3×3 colour matrices.

[^0]: ${ }^{1}$ We shall follow the notations of Bjorken-Drell and Landau-Lifchitz.

