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We revisit the problem of estimating the spot volatility of an Itô semimartingale using
a kernel estimator. A central limit theorem (CLT) with an optimal convergence rate
is established for a general two-sided kernel. A new pre-averaging/kernel estimator
for spot volatility is also introduced to handle the microstructure noise of ultra
high-frequency observations. A CLT for the estimation error of the new estimator
is obtained, and the optimal selection of the bandwidth and kernel function is sub-
sequently studied. It is shown that the pre-averaging/kernel estimator’s asymptotic
variance is minimal for two-sided exponential kernels, hence justifying the need
of working with kernels of unbounded support. Feasible implementation of the
proposed estimators with optimal bandwidth is developed as well. Monte Carlo
experiments confirm the superior performance of the new method.

1. INTRODUCTION

Itô semimartingale models for the dynamics of asset returns have been widely used
in financial econometrics. Such a process takes the form

dXt = μtdt +σtdWt +dJt, (1.1)

where {Wt}t≥0 is a standard Brownian motion (BM) and {Jt}t≥0 is the jump
component. The spot volatility σt is a key feature of the model as it plays a crucial
rule in option pricing, portfolio management, and financial risk management. Over
the last decade, there has been growing interest in the estimation of volatility due to
the wide availability of high-frequency data. In this work, we are concerned with
spot volatility estimation in an Itô semimartingale model via kernel smoothing.
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PREAVERAGING KERNEL ESTIMATION OF SPOT VOLATILITY 559

This is one of the most widely used nonparametric methods in statistics, dating
back to the seminal work of Parzen (1962) and Rosenblatt (1956).

One of the earliest works on kernel-based estimation of spot volatility dates back
to Foster and Nelson (1996), where they studied a weighted rolling window esti-
mator, which is essentially a kernel estimator with compact support. Asymptotic
normality was established under abstract conditions that were not directly stated in
terms of the coefficients of the Itô semimartingale (1.1). Specifically, they worked
with a discretized time series approximation of the model (1.1). Fan and Wang
(2008) established the asymptotic normality for a general kernel estimator, this
time working directly with the model (1.1) under relatively mild conditions on the
coefficients, but without jumps. However, the result therein also required a certain
condition on the convergence rate of the bandwidth to zero, which allowed them
to neglect the “target error” coming from approximating the spot volatility by a
kernel weighted volatility. As a result, the convergence rates of the estimators were
suboptimal (see Section 6 of Figueroa-López and Li (2020a) for more details).
Kristensen (2010) also proved a central limit theorem (CLT) for kernel-based
estimators under the absence of jumps and a no-leverage condition (i.e., σ and
W were assumed to be independent). Yu et al. (2014a) generalized Kristensen’s
result by allowing a jump component of finite activity (FA), but still assuming
no-leverage effects. Mancini, Mattiussi, and Renò (2015) studied more general
Itô semimartingales, but again FA jumps. All these works only considered CLTs
with suboptimal convergence rates. Alvarez et al. (2012) proposed an estimator
of σ

p
t by considering forward finite-difference approximations of the realized

power variation process of order p, which is essentially a forward-looking kernel
estimator with a uniform kernel. Jacod and Protter (2011) (see Section 13.3 therein)
considered both backward and forward finite-difference approximations of the
realized quadratic variation. Both works obtained the best possible convergence
rates for their CLTs for a rather general Itô semimartingale model (in the case of
Jacod and Protter (2011), also including jumps). We also refer to Aït-Sahalia and
Jacod (2014, Chap. 8) for a more detailed review of the relevant literature.

More recently, Figueroa-López and Li (2020a) studied the leading order terms
of the mean-squared error (MSE) of kernel-based estimators for continuous Itô
semimartingales under a certain local condition on the covariance function of the
spot variance σ 2

t , which covers not only Brownian driven volatilities, but also those
driven by fractional BM and other Gaussian processes. Using the asymptotics
for the MSE, the optimal convergence rate was established and formulas for
the optimal bandwidth and kernel functions were derived under a no-leverage
condition. CLTs for general right-sided kernel estimators were also obtained (see
also Remark 8.10 in Aït-Sahalia and Jacod (2014), where a result for a general
right-sided kernel with compact support was stated without proof). One of the
objectives of the present work is then to extend the results of Figueroa-López
and Li (2020a) and Yu et al. (2014a),1 and prove a CLT for a general two-sided

1As explained above, Yu et al. (2014a) established a CLT for a general two-sided kernel but with a suboptimal
converge rate, FA jumps, and no leverage.
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kernel of unbounded support, with optimal convergence rate and in the presence
of jumps and leverage effects. As proved in this paper in greater generality,
such kernels can have better performance than either one-sided or compactly
supported kernels. More specifically, we show that, at the optimal convergence
rate regime (i.e., assuming the bandwidth bn is such that bn�

−1/2
n

n→∞−→ β ∈ [0,∞]2

and choosing β to optimize the convergence rate of the estimation error), the
double exponential kernel K(x) = exp(−|x|)/2 minimizes the resulting asymptotic
variance of the estimation error, hence extending the findings of Figueroa-López
and Li (2020a) to a more general setting. This result was stated in Foster and
Nelson (1996) partially based on a heuristic justification, since the formula of the
asymptotic variance used to derive it required the kernel to be compactly supported,
while the exponential kernel is clearly not of this type. In the context of kernel
density estimation, van Eeden (1985) showed that double exponential kernels are
optimal if the density is not continuous. As stated in Kristensen (2010), when
the volatility has second derivatives that are Hölder continuous, the Epanechnikov
kernel 1[−1,1](x)3(1− x2)/4 is optimal (see also Section 4 of Figueroa-López and
Li (2020b) for other related results).

While the results described in the previous paragraph are important for inter-
mediate intraday frequencies (e.g., 1–5 min), it is widely accepted that financial
returns at ultra high frequency are contaminated by market microstructure noise.
Specifically, high-frequency asset prices exhibit several stylized features, which
cannot be accounted for by Itô semimartingales, such as clustering noises, bid/ask
bounce effects, and roundoff errors (cf. Aït-Sahalia and Jacod (2014, Chap. 2)).
Such discrepancies between macro and micro movements are typically modeled by
an additive noise. The literature of statistical estimation methods under microstruc-
ture noise has grown extensively since last decade and is still a highly researched
subject (see Zhang, Mykland, and Aït-Sahalia (2005), Hansen and Lunde (2006),
Bandi and Russell (2008), Barndorff-Nielsen et al. (2008), Podolskij and Vetter
(2009), Jacod et al. (2009), and Mykland and Zhang (2012) for a few seminal works
in the area as well as the monograph Aït-Sahalia and Jacod (2014)). Most of the
existing literature on volatility estimation for high-frequency data with microstruc-
ture noise has mainly focused on the estimation of the integrated volatility or
variance (IV), defined as IVT = ∫ T

0 σ 2
t dt. Zhang et al. (2005) showed that scaled

by (2n)−1, the realized variance estimator, the gold standard for IV estimation
in the absence of microstructure noise, consistently estimates the variance of the
microstructure noise, instead of the integrated volatility, as the sampling frequency
n increases. There are several approaches to overcome this problem: the Two-
Scale Realized Variance (TSRV) estimator by Zhang et al. (2005) and the efficient
Multiscale Realized Variance by Zhang (2006); the Realized Kernel estimator by
Barndorff-Nielsen et al. (2008); the pre-averaging method by Podolskij and Vetter
(2009) and Jacod et al. (2009); and the Quasi-Maximun Likelihood Estimator by
Xiu (2010).

2This condition always holds through a subsequence of bn.
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Spot volatility estimation is often viewed as a by-product of integrated volatility
estimation since, in principle, we can recover the spot volatility σ 2

t as a finite-
difference approximation of an estimate of the integrated volatility. Following this
idea, Zu and Boswijk (2014) constructed a Two-Scale Realized Spot Variance
(TSRSV) estimator based on the TSRV integrated variance estimator of Zhang
et al. (2005). They proved consistency and derived the asymptotic distribution of
the estimation error with a convergence rate of n−1/12, which is suboptimal.

The second objective of our work is to construct a kernel-based estimator of the
spot volatility based on the pre-averaging integrated variance estimator of Jacod
et al. (2009). The basic idea is simple and natural. If we denote ÎV

pre−av
t the pre-

averaging estimator of IVt = ∫ t
0 σ 2

s ds, our estimators combine this with a kernel
localization technique as follows:

σ̂ 2
t =

∫ t

0

1

bn
K

(
s− t

bn

)
dIVpre−av

s ,

where K is a suitable kernel function and bn > 0 is the bandwidth, which should
converge to 0 at an appropriate rate. We establish the asymptotic mix normality
of our estimator and identify two asymptotic regimes for two different bandwidth
convergence regimes. One of those regimes yields the optimal convergence rate of
n−1/8 for our estimator. It is important to point out that the asymptotic theory for the
kernel/pre-averaging estimator cannot be derived from that for the pre-averaging
integrated variance and also is substantially different and harder than that for kernel
based estimators in the absence of microstructure noise.

Although combining pre-averaging and kernel smoothing is a natural idea, to
the best of our knowledge, there are only two related results in the literature.
Aït-Sahalia and Jacod (2014) (see Section 8.7 therein), stated, without proof, a
stable convergence result of a pre-averaging estimator for the spot volatility of a
continuous Itô semimartingale,3 but only in the case of a one-sided uniform kernel
K(t) = 1[0,1](t) (see also Chen (2019) for a similar estimator). Here, we consider a
truncated version to handle the jumps and a general two-side kernel (see below
as to the need of considering such kernels). Yu et al. (2014b) also proposed a
pre-averaging kernel estimator for the spot volatility, slightly different from our
estimator. They established asymptotic normality with suboptimal convergence
rate for their untruncated estimator in the case of a continuous Itô semimartingale,
and for their truncated estimator in the presence of Lévy jumps of bounded
variation. In both situations, a no-leverage condition was adopted. In our case,
we consider not only leverage effects, but also more general jump processes, not
necessarily of Lévy type and with no restriction in the index of jump activity, under
both the suboptimal and optimal convergence rate regimes.

3The estimator therein is different from ours. Our estimator includes a debiasing term, which is omitted in Aït-Sahalia
and Jacod (2014). Our Monte Carlo experiments show that such a correction is important in finite samples.
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As an important application of our results, we study the problem of bandwidth
and kernel function selection. More specifically, by assuming that the bandwidth
bn satisfies bn�

−1/4
n

n→∞−→ β ∈ [0,∞], we show that the choice β ∈ (0,∞) makes
the convergence rate of the estimation error optimal (i.e., converging to 0 faster).
We then determine the value of β� ∈ (0,∞) that minimizes the asymptotic variance
of the estimation error. Finally, when choosing such a bandwidth b�

n = β��
1/4
n ,

we determine the kernel function that minimizes the limiting variance. As in the
absence of microstructure noise, we deduce that the optimal kernel is a two-sided
exponential or Laplace function K(x) = 1

2 e−|x|. This fact justifies the necessity
of developing the asymptotic theory for general kernels of unbounded support
over the more widely used uniform kernels. If we were constrained to compactly
supported kernels in the suboptimal asymptotic regime, a uniform kernel would be
the best, but this is no longer the case if we allow kernels with unbounded support
and/or consider an optimal convergence rate regime. Similarly, two-sided kernels
will perform better than one-sided, even if compactly supported. Let us finally
remark that the optimality criteria adopted in this work are not those of minimizing
the MSE of the estimator, whose asymptotic behavior is much more challenging
to derive in the model generality intended here. In the absence of microstructure
noise, leverage effects, and jumps, Figueroa-López and Li (2020a) did obtain
formulas for the leading terms of the MSE and the bandwidth that minimize them.

The implementation of the optimum bandwidth (at the optimum rate) is more
challenging because it involves the volatility of volatility (i.e., the standard devi-
ation of the volatility process) and the spot volatility itself. Hence, to implement
it, we develop a new method, which iteratively estimates the spot volatility, the
vol vol, and the optimal bandwidth. Using Monte Carlo simulation, we compare
our estimator with the TSRSV estimator of Zu and Boswijk (2014) and show a
significant improved accuracy. We also illustrate the improvement achieved by the
optimal exponential kernel and the calibrated optimal bandwidth via our iterative
method.

We finish the Introduction by giving one more reason for the importance of
estimating the spot volatility. As mentioned above, while spot volatility estimation
can, at least conceptually, be seen as a by-product of integrated variance estimation,
interestingly enough, one can also use spot volatility estimation as an intermediate
step toward the estimation of integrated volatility functionals of the form IT(g) :=∫ T

0 g(σ 2
s )ds. Specifically, once an estimator σ̂ 2

t of σ 2
t has been developed, one can

naturally devise an estimator for IT(g) of the form ÎT(g) = �n
∑n

i=1 g(σ̂ 2
ti
), where

ti = i�n and �n = T/n, followed by an appropriate bias correction adjustment. In
the absence of noise, Jacod and Rosenbaum (2013), Mykland and Zhang (2009),
and Li, Liu, and Xiu (2019) have developed methods for the estimation of these
functionals (see also Li and Xiu (2016), Li, Todorov, and Tauchen (2017), and
Aït-Sahalia and Xiu (2019) for related methods and other applications thereof).
Recently, Chen (2019) developed an estimator for ÎT(g) based on a forward finite-
difference approximation of the standard pre-averaging estimator of the integrated
variance.
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The rest of the paper is organized as follows: Section 2 introduces the setting
of the problem and the main result. Section 3 shows an application of our main
theorem: the optimal parameter and kernel selection. The simulations are provided
in Section 4. Some conclusions are given in Section 5. The proofs of our main
results can be found in Appendixes A and B.

2. THE SETTING, ESTIMATOR, AND MAIN RESULTS

Throughout, we consider an Itô semimartingale of the form:

Xt = X0 +
∫ t

0
μsds+

∫ t

0
σsdWs

+
∫ t

0

∫
E
δ(s,z)1{|δ(s,z)|≤1}(p−q)(ds,dz)+

∫ t

0

∫
E
δ(s,z)1{|δ(s,z)|>1}p(ds,dz),

(2.1)

where all stochastic processes (μ := {μt}t≥0, σ := {σt}t≥0, W := {Wt}t≥0, p :=
{p(B) : B ∈ B(R+ × E)}) are defined on a complete filtered probability space(
�(0),F (0),F(0),P(0)

)
with filtration F(0) = (

F (0)
t

)
t≥0 and are assumed to satisfy

standard conditions for X to be well defined. Here, W is a standard BM adapted to
the filtration F(0), and p is a Poisson random measure on R+ ×E for some arbitrary
Polish space E with compensator q(du,dx) = du ⊗ λ(dx), where λ is a σ -finite
measure on E having no atom. For further details regarding Itô semimartingales,
see Section 2.1.4 of Jacod and Protter (2011).

We denote the spot variance process ct = σ 2
t and assume that it is also an Itô

semimartingale with the following dynamics:

ct = c0 +
∫ t

0
μ̃sds+

∫ t

0
σ̃sdBs +

∫ t

0

∫
E
δ̃(s,z)(p−q)(ds,dz), (2.2)

where B := {Bt}t≥0 is a standard BM adapted to F(0) so that d 〈W,B〉t = ρtdt. Here,
{μ̃t}t≥0 is adapted, locally bounded; {ρt}t≥0 is adapted, locally bounded, càdlàg;
{σ̃t}t≥0 is adapted, càdlàg; and δ̃ is a predictable function on R+ × E satisfying
standard conditions for the process above to be well defined (see Jacod and Protter,
2011).

We now state the main assumption on the process X.

Assumption 1. The process X satisfies (2.1) with ct = σ 2
t satisfying (2.2) and,

for some r ∈ [0,2], measurable functions 
m,�m : E → R+, constants Cm < ∞,
and a localizing sequence of stopping times (τm)m≥1 such that τm → ∞, we have

t ∈ [0,τm] 
⇒

⎧⎪⎪⎨⎪⎪⎩
|μt|+ |σt|+ |μ̃t|+ |σ̃t| ≤ Cm,

|δ(t,z)|∧1 ≤ 
m(z), where
∫


m(z)rλ(dz) < ∞,∣∣∣δ̃(t,z)∣∣∣∧1 ≤ �m(z), where
∫

�m(z)2λ(dz) < ∞.
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The parameter r plays a key role in our asymptotic results. In short, r determines
the jump activity of the process: the larger r is, the more active or frequent are the
small jumps of the process. When r = 0, the process exhibits finite many jumps in
any bounded time interval (in that case, we say that the jumps are of FA). When
r < 1 (r > 1), the jump component of the process is of bounded (unbounded)
variation.

To establish the CLT for the kernel estimator ĉt, we need some assumptions on
the kernel.

Assumption 2. The kernel function K : R → R is bounded, Lipschitz, and
piecewise C1 on (−∞,∞) such that

∫
K(x)dx = 1,

∫ |K(x)x|dx < ∞, K(x)x2 → 0,
as |x| → ∞, and

∫ |K′(x)|dx < ∞.

For an arbitrary process {Ut}t≥0 and a given time span �n > 0, we shall use the
notation

Un
i := Ui�n, �n

i U := Un
i −Un

i−1.

Stable convergence in law is denoted by
st−→. See (2.2.4) in Jacod and Protter

(2011) for the definition of this type of convergence. As usual, an ∼ bn means that
an/bn → 1 as n → ∞.

Throughout the paper, we consider two settings: observations with and without
market microstructure noise. In the absence of microstructure noise, we use
standard kernel estimation, whereas to handle the noise, we propose a type of pre-
averaging kernel estimator. These two settings together with the main results are
presented in the following two subsections.

2.1. Observations Without Microstructure Noise

In this subsection, we assume that we can directly observe the process X in (2.1)
at discrete times ti := ti,n := i�n, where �n := T/n and T ∈ (0,∞) is a given fixed
time horizon. We also consider a sequence of truncation levels vn satisfying

vn = α��
n for some α > 0, � ∈

(
0,

1

2

)
. (2.3)

To estimate the spot volatility cτ , at a given time τ ∈ (0,T), we adopt the kernel
estimator, studied in Fan and Wang (2008) and Kristensen (2010) and its truncated
version, studied in Yu et al. (2014a) and Mancini et al. (2015):

ĉn (mn)τ :=
n∑

i=1

Kmn�n (ti−1 − τ)
(
�n

i X
)2

, (2.4)

ĉn (mn,vn)τ :=
n∑

i=1

Kmn�n (ti−1 − τ)
(
�n

i X
)2
1{|�n

i X|≤vn}, (2.5)
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where Kb(x) := K(x/b)/b, mn ∈ N, and bn := mn�n is the bandwidth of the
kernel function.4 The asymptotic behavior of this estimator with one-sided uniform
kernels (i.e., K(x) = 1[0,1](x) or K(x) = 1[−1,0](x)) was studied in Jacod and Protter
(2011). Yu et al. (2014a) showed a CLT for (2.5) at the suboptimal convergence
rate (β = 0) under a nonleverage condition (i.e., d 〈W,B〉t = 0) in (2.1) and (2.2)
and a compound Poisson jump component. In this part, we extend these results for
general two-sided kernels with possibly unbounded support, optimal convergence
rate of the estimation error, and a more general type of Itô semimartingales. There
is an important motivation for considering general unbounded kernels since, as
proved in Figueroa-López and Li (2020a) in the no-leverage case and without
jumps, exponential and some other nonuniform unbounded kernels can yield
estimators with significantly better performance than those based on uniform
kernels. In Section 3, we show that this is also true under the more general
semimartingale models (2.1) and (2.2).

We now proceed to describe the limiting distribution of the estimation error of
(2.4) and (2.5). Let V,V ′ be independent centered Gaussian variables, independent

of F (0), defined on a “very good” filtered extension
(
�̃(0),F̃ (0),

(
F̃ (0)

t

)
t≥0,P̃

(0)
)

of(
�(0),F (0),

(
F (0)

t

)
t≥0,P

(0)
)

(see Jacod and Protter (2011) for definition) such that

E
(
V2
)= 2

∫
K2(u)du, E

(
V ′2)=

∫
L2(t)dt, (2.6)

where L(t) = ∫∞
t K(u)du1{t>0} − ∫ t

−∞ K(u)du1{t≤0}. Next, let Z(0)
τ ,Z′(0)

τ be
defined as

Z(0)
τ = cτ V, Z′(0)

τ = σ̃τ V ′. (2.7)

Now, we are ready to introduce our main theorem for a general kernel estimator in
the absence of microstructure noise. The proof is given in Appendix A.

Theorem 2.1. Let the sequence {mn}n≥1 that controls the bandwidth of the
kernel estimator be such that mn → ∞, mn�n → 0, and

mn

√
�n → β, with β ∈ [0,∞]. (2.8)

Then, under Assumptions 1 and 2, at a given time τ ∈ [0,T], we have:

(a) If X is continuous, both the truncated version (2.5) and the nontruncated
version (2.4) satisfy the following stable convergence in law, as n → ∞:

(i)
√

mn
(
ĉn
τ − cτ

) st−→ Z(0)
τ +βZ′(0)

τ , if β < ∞,

(ii)
1√

mn�n

(
ĉn
τ − cτ

) st−→ Z′(0)
τ , if β = ∞,

(2.9)

where Z(0)
τ ,Z′(0)

τ are defined as in (2.7).

4Here, mn is equivalent to kn in Theorem 13.3.7 of Jacod and Protter (2011), whereas mn�n is equivalent to the
bandwidth hn of Figueroa-López and Li (2020a).
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(b) Suppose

mn�
a
n → β ′ ∈ (0,∞), where a ∈ (0,1), (2.10)

so that (2.8) holds with β = 0 when a < 1/2, β = β ′ ∈ (0,∞) when a = 1/2,
or β = ∞ when a > 1/2. Then, when X is discontinuous, we have (2.9) for the
nontruncated version (2.4), as soon as

either r <
4

3
, or

4

3
≤ r <

2

1+a

(
and then a <

1

2

)
.

(c) Under (2.10), when X is discontinuous, we have (2.9) for the truncated version,
as soon as

r <
2

1+a∧ (1−a)
, � >

a∧ (1−a)

2(2− r)
. (2.11)

Remark 2.1. The CLTs above generalize the results in Figueroa-López and Li
(2020a), where only right-sided kernels were considered under the absence of
jumps, in Jacod and Protter (2011) and Alvarez et al. (2012), where only one-
sided uniform kernels (i.e., K(x) = 1[0,1](x) or K(x) = 1[−1,0](x)) were studied,
and in Aït-Sahalia and Jacod (2014), where a CLT for a general right-sided kernel
with compact support was stated without proof. The proof of Theorem 2.1 is also
different from that in Figueroa-López and Li (2020a) and is based on the approach
of Jacod and Protter (2011). The case with β = 0 produces a CLT with convergence
rate m−1/2

n , which vanishes slower than �
1/4
n , the optimal rate. In that case, our

result generalizes Fan and Wang (2008), Kristensen (2010), Yu et al. (2014a), and
Mancini et al. (2015) by allowing jumps of both finite and infinite activity and
dependence between the volatility and the BM driving the log-return process X
(leverage effects).

Remark 2.2. As stated by the points (b) and (c) above, in the presence of jumps,
both estimators (2.4) and (2.5) can attain the optimal convergence rate of �

1/4
n ,

but only if the index of jump activity is less than 4
3 . In the presence of higher

jump activity, the estimators can only achieve the suboptimal convergence rate of
m−1/2

n � �
1/4
n (cases a < 1/2 and β = 0). It is worth noting the surprising fact

that, even in the presence of jumps, the untruncated kernel estimator (2.4) can still
consistently estimate the spot volatility. In the case of finitely many jumps, we may
explain this fact by noting that in a small local window, there could be at most a
finite number of jumps, while, in the limit, there are increasingly more increments
that do not contain jumps.5 Nevertheless, in practice and for better finite-sample
performance, one typically would prefer the truncated version of the estimator.

Remark 2.3. As explained in the Introduction, it is critical to expand the results
to general two-sided kernels of unbounded support since these kernels exhibit
superior performance. For instance, in the suboptimal rate case (β = 0), the kernel

5We thank a referee for pointing out this interesting insight.
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K with support [0,1] that minimizes the asymptotic variance 2
∫

K2(u)du is the

uniform kernel Kunif (x) = 1[0,1](x) since, by Jensen’s inequality,
∫ 1

0 K2(u)du ≥
(
∫ 1

0 K(x)dx)2 = 1 = ∫ 1
0 K2

unif (u)du. However, there are many other kernels that
are two-sided or of unbounded support and that attain smaller variance, even
in the suboptimal rate case β = 0. For instance, both K(x) = 2−11[−1,1](x) and
Kexp+(x) = e−x1(0,∞)(x) are such that

∫
K2(u)du = 1/2. In the optimal rate case

(β ∈ (0,∞)) and when picking the optimal value of β, the optimal kernel is the
two-sided exponential K(x) = 2−1e−|x| as shown in Section 3.4.

2.2. Observations in the Presence of Microstructure Noise

In this part, we assume that our observations of X are contaminated by
“microstructure” noise. That is, we assume that we observe

Yti := Xti + εti, (2.12)

where ε = {εt} is the noise process and, as before, ti := ti,n := i�n, 0 ≤ i ≤ n, with
�n := T/n and a fixed time horizon T ∈ (0,∞). We allow the noise ε to depend on
X, but in such a way that, conditionally on the whole process X, {εt}t≥0 is a family of
independent, centered random variables. More formally, following the framework
of Jacod and Protter (2011), for each time t, we consider a transition probability

Qt
(
ω(0),dz

)
from

(
�(0),F (0)

t

)
into (R,B(R)), and the canonical process {εt}t≥0

on R[0,∞) defined as εt(ω̃) = ω̃(t) for t ≥ 0 and ω̃ ∈ R[0,∞). Next, we construct
a new probability space

(
R[0,∞),B,σ (εs : s ∈ [0,t)),Q

)
, where B is the product

Borel σ -field and Q = ⊗t≥0Qt. We then define an enlarged filtered probability
space

(
�,F, (Ft)t≥0 ,P

)
and a filtration (Ht) as follows:⎧⎪⎪⎨⎪⎪⎩

� = �(0) ×R[0,∞),

Ft = F (0)
t ⊗σ (εs : s ∈ [0,t)), Ht = F (0) ⊗σ (εs : s ∈ [0,t)),

P(dω(0),dω̃) = P(0)(dω(0))Q(ω(0),dω̃).

Any variable or process in either �(0) or R[0,∞) can be extended in the usual way to
a variable or a process on �. We now state the assumptions on the F (0)-conditional
law of the noise process.

Assumption 3. All variables (εt : t ≥ 0) are independent conditionally on F (0),
and we have:

• E
(
εt|F (0)

)= 0;

• for all p > 0, the process E
( |εt|p|F (0)

)
is
(
F (0)

t

)
-adapted and locally bounded;

• the conditional variance process γt = E
( |εt|2

∣∣F (0)
)

is càdlàg.

Along the lines of Jacod and Protter (2011) (originally proposed in Jacod et al.
(2009)), to construct the pre-averaging estimator, we need:
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(i) a sequence of positive integers kn, which represent the length of the pre-
averaging window, satisfying

kn = 1

θ
√

�n
+o

(
1

�
1/2
n

)
, for some θ > 0; (2.13)

(ii) a real-valued weight function g on [0, 1], satisfying that g is continuous,
piecewise C1 with a piecewise Lipschitz derivative g′ such that g(0) =
g(1) = 0 and

∫ 1
0 g(s)2ds = 1;

(iii) a sequence vn representing the truncation level, satisfying

vn = α (kn�n)
� for some α > 0, � ∈ (0,

1

2
). (2.14)

Next, for an arbitrary process U, we define the sequences:

U
n
i =∑kn−1

j=1 g
(

j
kn

)
�n

i+j−1U = −∑kn
j=1

(
g
(

j
kn

)
−g

(
j−1
kn

))
Un

i+j−2,

Ûn
i =∑kn

j=1

(
g
(

j
kn

)
−g

(
j−1
kn

))2(
�n

i+j−1U
)2

.
(2.15)

As seen from the definition, U
n
i is the weighted average of the increments

�i+j−1U,j = 1, . . . ,kn − 1, whereas Ûn
i is a debiasing term. For a weight function

g as above, let

φkn(g) =
kn∑

i=1

g(
i

kn
)2, φ′

kn
(h) =

kn∑
i=1

(
g(

i

kn
)−g(

i−1

kn
)

)2

, (2.16)

and note that

φkn(g) = kn
∫ 1

0 g2(s)ds+O(1) = kn +O(1),

φ′
kn

(g) = 1
kn

∫ 1
0 (g′(s))2ds+O

(
1
k2

n

)
.

(2.17)

Now, we can define the pre-averaging estimators of the spot variance cτ at τ ∈
(0,T). We consider a nontruncated version, defined as

ĉ(kn,mn)τ = 1

φkn (g)

n−kn+1∑
j=1

Kmn�n

(
tj−1 − τ

)((
Y

n
j

)2 − 1

2
Ŷn

j

)
, (2.18)

as well as, two truncated versions:

ĉ(kn,mn,vn,1)τ = 1

φkn (g)

n−kn+1∑
j=1

Kmn�n

(
tj−1 − τ

)((
Y

n
j

)2
1{|Ȳn

j |≤vn} −
1

2
Ŷn

j

)
,

ĉ(kn,mn,vn,2)τ = 1

φkn (g)

n−kn+1∑
j=1

Kmn�n

(
tj−1 − τ

)((
Y

n
j

)2 − 1

2
Ŷn

j

)
1{|Ȳn

j |≤vn}.

(2.19)
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The basic idea is the same as in the case where the efficient process X is observed
without noise. We see Y

n
j as a noise-free proxy of the increment �n

j X. By properly
choosing the truncation level vn → 0 (e.g., vn � √

unln(1/un) with un := kn�n),
the event |Ȳn

j | > vn will suggest the occurrence of a “big” jump happening during
the time interval [ j�n,( j + kn)�n] and, thus, we eliminate such a term from the
summations in (2.19). The estimator ĉ(kn,mn,vn,2)τ is closer to the one defined
in Yu et al. (2014b), whereas ĉ(kn,mn,vn,1)τ is similar to the one considered
in Chen (2019), although therein only the one-sided kernel K(x) = 1[0,1](x) is
studied. It will be interesting to compare their statistical properties and finite-
sample performance in our simulation study of Section 4.

Before giving the asymptotic behavior of the pre-averaging estimators (2.18)
and (2.19), we introduce the limiting distributions. Below, Zτ,Z′

τ are defined on a

good extension
(
�̃,F̃,

(
F̃t
)

t>0,P̃
)

of the space
(
�,F, (Ft)t≥0 ,P

)
so that, condi-

tionally on F , they are independent Gaussian random variables with conditional
variance

δ2
1(τ ) := Ẽ

(
Z2

τ |F
)= 4

(
�22c2

τ /θ +2�12cτ γτ θ +�11γ
2
τ θ3)∫ K2(u)du,

δ2
2(τ ) := Ẽ

(
Z′2

τ |F)= σ̃ 2
τ

∫
L2(t)dt,

(2.20)

with φ1(s) = ∫ 1
s g′(u)g′(u−s)du, φ2(s) = ∫ 1

s g(u)g(u−s)du, �ij =
∫ 1

0 φi(s)φj(s)ds,
and L(t) = ∫∞

t K(u)du1{t>0} −
∫ t
−∞ K(u)du1{t≤0}. The following result establishes

the asymptotic behavior of the estimation error for the proposed estimators. The
proof is given in Appendix B.

Theorem 2.2. Let {mn}n≥1 be a sequence of positive integers such that mn → ∞,
mn�n → 0, mn

√
�n → ∞, and mn�

3/4
n → β, for some β ∈ [0,∞], and let kn, vn,

and g be as described in (i)–(iii) above. Then, under Assumptions 1–3, we have:

1. When X is continuous, the pre-averaging estimators (2.18) and (2.19) are all
such that, as n → ∞,

(i) m1/2
n �1/4

n

(
ĉτ − cτ

) st−→ Zτ +βZ′
τ, if β ∈ [0,∞),

(ii)
1√

mn�n

(
ĉτ − cτ

) st−→ Z′
τ, if β = ∞.

(2.21)

2. When X is discontinuous and r ∈ (0,2], with

mn�
a
n → β ′ ∈ (0,∞), where a ∈ (

1

2
,1), (2.22)

and r,� satisfying

r <
5

2
−2

[
(a− 1

4
)∧ (1−a+ 1

4
)

]
, � ≥ (a− 1

4 )∧ (1− (a− 1
4 ))− 1

4

2− r
,

(2.23)
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the truncated pre-averaging estimator ĉ(kn,mn,vn,1)τ in (2.19) satisfies (2.21)
with β = 0 when a < 3/4, with β = β ′ when a = 3/4, or with β = ∞ when
3/4 < a < 1.

3. When X is discontinuous and r ∈ (0,2], with (2.22) and r,� satisfying

r ≤ 4− 2

a∨ (3/2−a)
,

(a− 1
4 )∧ (1− (a− 1

4 ))− 1
4

2− r
≤ � ≤ (2−2a)∨ (2a−1)

r
,

(2.24)

the truncated pre-averaging estimator ĉ(kn,mn,vn,2)τ in (2.19) satisfies (2.21)
with β = 0 when a < 3/4, with β = β ′ ∈ (0,∞) when a = 3/4, and with β = ∞
when 3/4 < a < 1.

Remark 2.4. The second and third points in the above theorem show that the
truncated pre-averaging estimators (2.19) can achieve the optimal convergence
rate of �

1/8
n , but only if the index of jump activity is restricted to be r < 3

2 for
ĉ(kn,mn,vn,1) and r < 4

3 for ĉ(kn,mn,vn,2). If the index of jump activity is larger
than 3

2 and 4
3 , respectively, the estimators can only achieve suboptimal convergence

rates. When comparing their theoretical properties, ĉ(kn,mn,vn,1) can, in principle,
handle jumps with higher index r than ĉ(kn,mn,vn,2) at the optimal bandwidth.
However, as we will see in Section 4, ĉ(kn,mn,vn,2) appears to be more effective
at eliminating jumps when the jump size is large in the presence of FA jumps. The
two estimators have similar performance when the jump’s size is relatively small.

Remark 2.5. Let us give some intuition or heuristic explanation of the estimator
(2.19) and its asymptotic behavior established above. For the estimation of the
integrated variance (IV), [X,X]T = ∫ T

0 ctdt, Jacod et al. (2009) proposed the
following pre-averaging estimator:

[̂X,X]s := 1

φkn(g)

s

s− kn�n

[s/�n]−kn+1∑
j=1

((
Y

n
j

)2 − 1

2
Ŷn

j

)
, s ∈ (0,T],

for a continuous Itô semimartingale X. It was shown that

1

�
1/4
n

(
[̂X,X]T − [X,X]T

)
st−→ Unoise

T ,

where Unoise
T is a centered Gaussian process with conditional variance

δT := E
((
Unoise

T

)2 |F
)

=
∫ T

0
ζtdt :=

∫ T

0
4
(
�22c2

t /θ +2�12ctγtθ +�11γ
2
t θ3

)
dt.

In the no-thresholding case (vn = ∞), the spot volatility estimator (2.19) can be
viewed as a localization of the IV process in that

ĉt ≈
∫

Kmn�n(s− t)d[̂X,X]s.
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More specifically, the factor s
s−kn�n

is omitted for the spot volatility estimator. If

we use the representation Unoise
t = ∫ t

0(ζs)
1/2dBU

s , where BU is a Wiener process,

we can then heuristically argue that ĉt − ct ≈ ∫
Kmn�n(s− t)d([̂X,X]s − [X,X]s) =

�
1/4
n
∫

Kmn�n(s − t)dUnoise
s = �

1/4
n
∫

Kmn�n(s − t)(ζs)
1/2dBU

s . Therefore, the vari-
ance of the estimation error at time t is expected to be close to√

�n

∫
K2

mn�n
(s− t)ζsds ≈ 1

mn
√

�n
4
(
�22c2

t /θ +2�12ctγtθ +�11γ
2
t θ3

)∫
K2(u)du,

which is indeed the case, but only when mn�
3/4
n → β = 0 as formally shown in

Theorem 2.2. It is important to remark that the proof of Theorem 2.2 does not rely
on the heuristic arguments above.

3. AN APPLICATION: OPTIMAL PARAMETER TUNING

In this section, as an application of our main Theorems 2.1 and 2.2, we show how
to tune the bandwidth parameter β and the pre-averaging parameter θ , as well
as the kernel function K of the estimator, in order to minimize the asymptotic
variance of the estimation error ĉτ − cτ . Two possible approaches can be taken.
Minimize the asymptotic variance of ĉτ , say δ̃2(τ ), at each time τ or minimize the
integrated asymptotic variance

∫ T
0 δ̃2(t)dt over the period [0,T]. In our simulations

of Section 4, we implemented both methods and found out that the second method
yields slightly better results. An explanation for this is given in Remark 4.1.
Therefore, in this part, we focus on the second approach.

By necessity, the optimal choices of θ and β under the criterion of the previous
paragraph will be expressed in terms of the integrated variance and quarticity,
IVT := ∫ T

0 ctdt and QrTT := ∫ T
0 c2

t dt, respectively, the Integrated Volatility of

Volatility (IVV),
∫ T

0 σ̃ 2
t dt, and the integrated variance of the noise εt,

∫ T
0 γtdt. We

can estimate
∫ T

0 σ̃ 2
t dt and

∫ T
0 γtdt separately, whereas for IVT and QrTT , we propose

an iterative procedure in which an initial rough estimate of ct on a grid of [0,T]
is used to determine initial estimates of IVT and QrTT . These estimates are then
used to find suitable estimates of the optimal values for θ and β. Finally, these
estimated θ̂ and β̂ are applied in the kernel pre-averaging estimator (2.19) to refine
our estimates of ct on the grid.

Remark 3.1. A related problem, that is not being considered here in detail, is
that of tuning the truncation level vn in the truncated estimators (2.5) and (2.19).
Most of the literature about this problem has been in the context of estimating the
integrated variance IVT = ∫ T

0 σ 2
s ds. It has been customary in econometric studies

to adopt a power threshold of the form vn = c�γ
n . The rule of thumb is to take

a value of γ close to .5 and c that depends on an estimate of the volatility level.
For instance, Jacod and Todorov (2014) took γ = .49 and c = 4

√
BPV , where

BPV := π
2

∑n
i=2 |�n

i−1X||�n
i X| is the bipower variation. More recently, this issue

has also been studied in the literature using more objective and statistically valid
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approaches, but only in the absence of microstructure noise. In the case of FA
jumps and constant volatility σ , Figueroa-López and Mancini (2019) showed that
the optimal threshold (in terms of minimizing the conditional MSE) is asymptoti-
cally equivalent to

√
2σ 2�n ln(1/�n) and proposed an iterative method to estimate

σ . In the presence of small jumps that behave like those of an α-stable Lévy
process, Figueroa-López, Gong, and Han (2022) showed that the optimal threshold
is asymptotically equivalent to

√
(2−α)σ 2�n ln(1/�n). Again, these results are

in the absence of microstructure noise and for the problem of estimating the
integrated variance. However, given the local nature of spot volatility estimation,
one can imagine that similar results may hold for the estimators (2.5) and (2.19).
We leave this problem for future research.

3.1. Optimal Selection of θ

Recall that we set kn = 1
θ
√

�n
+o

(
1

�
1/4
n

)
and, thus, the parameter θ determines the

length of the pre-averaging window kn. The following corollary, which follows
easily from Theorem 2.2, gives us a method to tune θ up.

Corollary 3.1. The optimal value θ∗ of θ , which is set to minimize the
integrated asymptotic variance of the pre-averaging kernel estimator (2.19), is
such that

(θ�)2 =

√
�2

12

(∫ T
0 ctγtdt

)2 +3�11�22
∫ T

0 γ 2
t dt

∫ T
0 c2

t dt −�12
∫ T

0 ctγtdt

3�11
∫ T

0 γ 2
t dt

. (3.1)

Remark 3.2. Note that the local version of (3.1) (i.e., the value of θ that
minimizes the spot asymptotic variance δ2

1(t)) is such that

(θ�,local
t )2 = ct

√
�2

12 +3�11�22 −�12

3�11γt
. (3.2)

In the context of integrated volatility estimation, Jacod and Mykland (2015)
obtained the same formula (see equation (3.8) therein). It was also proposed a
two-step procedure to implement it. However, in our simulation, we found out that
the performance of the estimator is less sensitive to the choice of θ than to that of
the bandwidth.

3.2. Optimal Bandwidth Selection

From Theorem 2.2, we can deduce that when mn (the bandwidth in �n units) is of
the form mn = β�

−3/4
n for some constant β ∈ (0,∞), the optimal convergence rate

of �
1/8
n is attained and we further have

�−1/8
n

(
ĉ(kn,mn,vn)τ − cτ

) st−→ β−1/2
(
Zτ +βZ′

τ

)
.
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Therefore, the limiting distribution above has conditional variance δ̄2(τ ) :=
1
β
δ2

1(τ ) + βδ2
2(τ ), where δ2

1(τ ) and δ2
2(τ ) are given as in (2.20). The following

result gives the optimal value of β that minimizes
∫ T

0 δ̄2(τ )dτ .

Corollary 3.2. Let

�(θ) := �(θ;g) := �22

θ

∫ T

0
c2

t dt +2�12θ

∫ T

0
γtctdt +�11θ

3
∫ T

0
γ 2

t dt.

With the bandwidth bn = mn�n = β�
1/4
n , the optimal value of bn, which is set to

minimize
∫ T

0 δ̄2
τ dτ , is given by

b�
n =

√√√√∫ T
0 δ2

1(t)dt∫ T
0 δ2

2(t)dt
�1/4

n = �1/4
n

√
4�(θ)

∫
K2(u)du∫ T

0 σ̃ 2
t dt

∫
L2(v)dv

. (3.3)

With this optimal bandwidth choice, the integrated variance
∫ T

0 δ̄2(τ )dτ of the

limiting distribution for the scaled estimation error �
−1/8
n

(
ĉ(kn,mn,vn)τ − cτ

)
is

given by

2

√∫ T

0
δ2

1(t)dt
∫ T

0
δ2

2(t)dt = 4

√
�(θ)

∫ T

0
σ̃ 2

t dt
∫

K2(u)du
∫

L2(v)dv. (3.4)

Note that b�
n contains unknown theoretical quantities that need to be estimated

in order to devise a plug in type estimator. Under the assumption of γt ≡ γ , the
variance of the noise, γ , can be estimated using the estimator in Zhang et al. (2005):

γ̂ = 1

2n

n∑
i=1

(
Yn

i −Yn
i−1

)2
.

For the estimation of the IVV,
∫ T

0 σ̃ 2
t dt, we start by obtaining a preliminary estimate

of the spot variance c on the grid τ ∈ {ti}i=0,...,n, via the estimator (2.19), starting
with some sensible initial estimates of the tuning parameter values. For example,
we can set bn = mn�n = �

1/4
n . Let us denote these initial estimates as ĉti,0. We

then compute the sparse realized quadratic variation of the ĉti ’s to estimate the

IVV = ∫ T
0 σ̃ 2

t dt:

ÎVVT,0 :=
[n/p]−1∑

i=0

(ĉt(i+1)p,0 − ĉtip,0)
2,

for some positive integer p � n. We also implemented a pre-averaging integrated
variance estimator for the IVV based on the spot variance estimates. However, the
choice of tuning parameters here could be tricky and the performance is similar
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to the simpler sparse Realized Variance estimator above. As for
∫ T

0 c2
t dt, we can

simply compute the sum of squares of the preliminary estimates ĉ2
ti,0

and multiply
by �n.6 Now, with these estimates, we can calculate an estimate of the optimal
bandwidth b�

n using the result of Corollary 3.2. Such an approximate optimal
bandwidth can then be used to refine our estimates of the spot variance grid.
Continuing this procedure iteratively, we hope to obtain good estimates of the
optimal bandwidth.

Note that (3.3) sets the same bandwidth for the entire path of X. We can also
consider a local or nonhomogeneous bandwidth: for τ ∈ [0,T], the local bandwidth
is set to minimize the asymptotic variance of the estimation error at time τ .
Concretely, by setting mn = β�

−3/4
n and minimizing the asymptotic spot variance

δ̄2(τ ) = β−1δ2
1(τ )+βδ2

2(τ ), the optimal bandwidth is given by

b�,local
n (τ ) = δ1(τ )

δ2(τ )
�1/4

n = �1/4
n

√
4�τ(θ)

∫
K2(u)du

σ̃ 2
τ

∫
L2(u)du

, (3.5)

with δ1(τ ) and δ2(τ ) defined as in Theorem 2.2 and �τ(θ) defined as

�τ(θ) := �22

θ
c2
τ +2�12γτ θcτ +�11γ

2
τ θ3.

With this optimal bandwidth, the variance of the limiting distribution for the
estimation error is given by

2δ1(τ )δ2(τ ) = 4

√
�τ(θ)σ̃ 2

τ

∫
K2(u)du

∫
L2(u)du. (3.6)

Since the local bandwidth has the flexibility to adapt to the volatility level, we
may expect that a data-driven estimate of the bandwidth b�,local

n (τ ) in (3.5) should
outperform a data-driven estimate of the homogeneous bandwidth b�

n in (3.3).
However, in our Monte Carlo simulations of Section 4, we found out that this
is not always the case. A possible explanation for this is given below (see also
Remark 4.1 for further analysis).

Remark 3.3. We can see the constant bandwidth (3.3) as an approximation
of the optimal local bandwidth (3.5), where the mean values

∫ T
0 �t(θ)dt/T and∫ T

0 σ̃ 2
t dt/T are used as proxies of the spot values �τ(θ) and σ̃ 2

τ , respectively.
These global proxies have the advantages of being easier and more accurate to
estimate. This may be one of the reasons why a data-driven estimate of the constant

6In the simulations, we also tried the preaveraged quarticity estimator of Jacod et al. (2009) (equation (3.14) therein),
but the results were suboptimal.
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bandwidth b�
n may be able to outperform a data-driven estimate of the local version

b�,local
n (τ ) in some situations.

3.3. Optimal Kernel Function

With the optimal bandwidths of Section 3.2, we can now obtain a formula for the
asymptotic variance, which enjoys an explicit dependence on the kernel function
K. It is then natural to attempt to find the kernel that minimizes such a variance.
As observed from (3.4) or (3.6), we only need to minimize

I(K) =
∫

K2(u)du
∫

L2(u)du =
∫

K2(u)du
∫∫

xy≥0
K(x)K(y)(|x|∧ |y|)dxdy,

over all kernels K such that
∫

K(u)du = 1, where for the second equality above
we used that L(t) = ∫∞

t K(u)du1{t>0} − ∫ t
−∞ K(u)du1{t≤0}. It has been proved in

Figueroa-López and Li (2020a, Sect. 4.1) that, among all the kernel functions
satisfying Assumption 2, the exponential kernel function Kexp(x) = 1

2 exp(−|x|)
is the one that minimizes the functional I(K). Figueroa-López and Li (2020a)
(see Remark 4.2 therein) showed that, compared with the two-sided uniform
(resp. Epanechnikov) kernels, the integrated asymptotic variance can be reduced
by approximately 14% (resp. 6%) when using exponential kernels. Figueroa-
López and Li (2020a) also showed that exponential kernels have a computational
advantage since they enable us to reduce the time complexity for estimating the
volatility on all the grid points t1 < · · · < tn, from O(n2) to O(n). This property
is particularly useful when working with high-frequency observations, where n is
quite large.

3.4. Tuning Parameters Under the Absence of Microstructure Noise

By following the same arguments as above, we can determine the optimal band-
width parameter and kernel function for the estimators (2.4) and (2.5) under the no-
microstructure-noise models (2.1) and (2.2). Specifically, we first take a bandwidth
of the form bn = β�

1/2
n (β ∈ (0,∞)), which, from Theorem 2.1, leads to the best

possible rate of convergence �
−1/4
n of (2.4) and (2.5). In that case, the asymptotic

variance will take the form δ̄2
τ = β−1δ2

1(τ )+βδ2
2(τ ), where

δ2
1(τ ) = 2c2

τ

∫
K2(u)du, δ2

2(τ ) = 2σ̃ 2
τ

∫
L2(t)dt.

Then, the optimal value of β that minimizes the asymptotic variance is
β∗ = δ1(τ )/δ2(τ ), leading to the optimal bandwidth

b̃�,local
n = δ1(τ )

δ2(τ )
�1/2

n = �1/2
n

√
2c2

τ

∫
K2(u)du

σ̃ 2
τ

∫
L2(u)du

. (3.7)
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Plugging β∗ into δ̄2
τ leads to the optimal asymptotic variance of

2δ1(τ )δ2(τ ) = 4

√
c2
τ σ̃

2
τ

∫
K2(u)du

∫
L2(u)du,

which, as before, is minimized by the two-sided exponential kernel K(x) =
2−1e−|x|. See the Introduction for other related results in the literature.

4. SIMULATION STUDY

In this section, we study the performance of the kernel pre-averaging estimators
(2.18) and (2.19), together with the implementation procedure described in Sec-
tion 3.2, and compare the results with the TSRSV estimator proposed in Zu and
Boswijk (2014).

4.1. Simulation Design and Performance Metrics

We implemented two different data-generating models: a Heston model and a one-
factor stochastic volatility (SV1F) model. More specifically, in Sections 4.2–4.5,
we consider the Heston model:

Yti = Xti + εti,

dXt = (μ− ct/2)dt + c1/2
t dWt + JX

t dNX
t ,

dct = κ (α − ct)dt +γ c1/2
t dBt +√

ct−Jc
t dNc

t ,

(4.1)

where we assume that Bt = ρWt +
√

1−ρ2W̃t, with W̃ being a BM independent
with W. We adopt the same parameter values as in Zhang et al. (2005), but properly
normalized so that the time unit is 1 day:

μ = 0.05/252, κ = 5/252, α = 0.04/252, γ = 0.5/252, ρ = −0.5.
(4.2)

We set the noise as εn
i := εti

i.i.d.∼ N
(
0,0.00052

)
, and the initial values to X0 = 1

and c0 = 0.04/252. The jump parameters are taken from Chen (2019) and set to

be JX
t

iid∼N(−0.01,0.022), NX
t+�−NX

t ∼ Poisson (36�/252), log
(
Jc

t

) iid∼N(−5,0.8),
and Nc

t+� −Nc
t ∼ 1√

252
Poisson(12�/252), with all these random processes being

mutually independent.
We also consider the SV1F model (cf. Barndorff-Nielsen et al., 2008; Zu and

Boswijk, 2014; Yu et al., 2014b):

Yn
i = Xn

i + εn
i

dXt = μdt + exp (β0 +β1γt) dWt + dJt,

dγt = αγt dt +dBt.

(4.3)
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The model above is adopted in Sections 4.6 and 4.7 with different parameter values
that will be specified therein.

Throughout, we use the usual triangular weight function g(x) = 2x∧(1−x). We
simulate data for 1 day (T = 1), and assume that the data are observed once every
second, with 6.5 trading hours per day. The number of observations is thenn =
23,400. For the jth simulated path {X( j)

ti : 0 ≤ i ≤ n,ti = iT/n}, we estimate the
corresponding skeleton of the spot variance process, {cti,j}i=1,...,n, for a given pre-
averaging parameter θ and a bandwidth parameter β̃ (the bandwidth is then given
by β̃�

1/4
n ). The estimated path is denoted as {ĉti,j}i=1,...,n. Next, we calculate the

average of the squared errors (ASE),

ASEj = 1

n−2l+1

n−l∑
i=l

(
ĉti,j − cti,j

)2
.

Here, l = [0.1n] is used to further alleviate boundary effects. Then, we take the
square root of the average of the ASEs over all the simulated paths:

R̂MSE =
√√√√ 1

m

m∑
j=1

ASEj,

where m is the number of simulations. This is an estimate of

RMSE =
√√√√E

[
1

n−2l+1

n−l∑
i=l

(
ĉti − cti

)2

]
.

4.2. Elimination of Jumps and Truncation

In this subsection, we will show that the truncation in the estimator (2.19) does a
good job in eliminating the jumps of the process (4.1). To this end, we compare
the performance of the truncated estimator ĉ(kn,mn,vn,1) in (2.19), with that of
the nontruncated estimator

ĉ
(
kn,mn,Y

∗)
τ

:= 1

φkn (g)

n−kn+1∑
j=1

Kmn�n

(
tj−1 − τ

)((
Y

∗n
j

)2 − 1

2
Ŷ∗n

j

)
, (4.4)

applied to the continuous Heston model:

Y∗n
i = X∗n

i + εn
i ,

dX∗
t = (

μ− c∗
t /2

)
dt +√c∗

t dWt,

dc∗
t = κ

(
α − c∗

t

)
dt +γ

√
c∗

t dBt.

(4.5)
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Table 1. Comparison between truncated and nontruncated
estimators

ĉ (kn,mn,Y∗) ĉ(kn,mn,Y) ĉ(kn,mn,vn)

R̂MSE ×105 5.483386 16.83420 5.419338

We set β = 1, θ = 5, and vn = 1.8 × √
BPV(kn�n)

0.47, where BPV =
π
2

∑n
i=2

∣∣�n
i−1X‖�n

i X
∣∣.7 The results are based on 2,000 simulated paths of both

Y and Y∗. As proposed in Kristensen (2010), in order to alleviate the edge effects,
we replace Kmn�n (ti−1 − τ) in (2.19) and (4.4) with

Kadj
mn�n

(ti−1 − τ) = Kmn�n (ti−1 − τ)

�n
∑n−kn+1

j=1 Kmn�n

(
tj−1 − τ

) .

The R̂MSE’s of the three estimators are reported in Table 1.
These results suggest that the truncation procedure can effectively eliminate

the jumps under this Heston model, since the estimated RMSE of the truncated
estimator for the model (4.1) is even less than that of the nontruncated estimator
based on the continuous model (4.5).

4.3. Validity of the Asymptotic Theory and Necessity of Debiasing

We first show that the asymptotic behavior of the estimation error is consistent with
our theoretical result. By Corollary 3.2, the optimal rate of convergence of the
estimation error is attained when the bandwidth takes the form m�

n�n = β�
1/4
n ,

for some β ∈ (0,∞), and, thus, we only analyze the case 1(i) (β ∈ (0,∞)) of
Theorem 2.2. We aim to estimate the spot variance c0.5 in the Heston model
(4.1) without jumps. Accordingly and for simplicity, we use the untruncated pre-
averaging kernel estimator (2.18). We take β = 1 and exponential kernel. The
histogram of the estimation errors, ĉ0.5 − c0.5, based on 25,000 simulated paths,
is shown in Figure 1. We also plot the theoretical density of the estimation error
as prescribed by Theorem 2.2 but with the true parameter values for γ and θ , and
replacing c0.5 with the average value of c0.5 over all 25,000 paths. As can be seen,
the theoretical density is consistent with the empirical results.

To investigate the need of the bias correction term Ŷn
j in ĉ(kn,mn,vn,1)τ ,

let us consider a new estimator without the bias correction term, c̃τ =∑n−kn+1
j=1 Kmn�n

(
tj−1 − τ

)(
Y

n
j

)2
1{|Ȳn

j |≤vn}. We show the histogram of the estima-

tion errors c̃0.5 − c0.5 for 25,000 simulated paths, and, for comparison, also plot
the same theoretical asymptotic density function of Figure 1. As shown in the left
panel of Figure 2, the estimator c̃0.5 significantly overestimates the spot variance,
which shows the necessity of the bias correction term Ŷn

j in (2.19).

7A similar threshold is applied in Jacod and Todorov (2014).
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Figure 1. Histogram of ĉt − ct at t = 0.5 and the density of the theoretical limiting distribution.

Figure 2. Left panel: The effect of bias correction term. Right panel: The comparison of the
asymptotic distribution between uniform and exponential kernels.

4.4. Performance for Different Kernels

Before analyzing the empirical performance of the estimators for different kernels,
we compare the theoretical asymptotic densities of the estimation error for the
exponential and uniform kernels. This is shown in the right panel of Figure 2. We
can see therein that, as predicted in Section 3.3, the exponential kernel estimator
has smaller asymptotic variance.

We now proceed to compare the finite-sample performance of the untruncated
pre-averaging kernel estimator (2.18) for different kernels in the Heston model
(4.1) without jumps. We assume both a no-leverage setting (ρ = 0) and a negative
correlation setting (ρ = −0.5). We fix θ = 5 and apply the iterative homogeneous
bandwidth selection method introduced in Section 3.2 with different kernels. We
report the estimated RMSE with the initial bandwidth β = 1 and the result of
iterative bandwidth selection method after one iteration in Table 2 for the following
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Table 2. Comparison of different kernel functions

R̂MSE ×105 (ρ = 0)

Kernel β = 1 Optimal bandwidth selection

Kexp 1.400 1.068

Kunif 1.890 1.608

K1 2.173 1.648

K2 2.064 1.476

Table 3. Comparison between optimal bandwidth and
suboptimal bandwidth

R̂MSE ×105(ρ = −0.5)

Bandwidth h1(optimal) h2 (suboptimal) h3 (suboptimal)

β = 1 1.418 1.605 1.754

β = 2 1.133 1.225 1.308

β = 3 1.077 1.121 1.678

β = 4 1.050 1.073 1.104

four kernels:

Kexp(x) = 1

2
e−|x|, Kunif (x) = 1

2
1{|x|<1},

K1(x) = |1− x|1{|x|<1}, K2(x) = 3

4
(1− x2)1{|x|<1}.

This shows that, indeed, the exponential kernel provides the best performance.

4.5. Optimal Bandwidth

First, we show that the suboptimal bandwidth, which corresponds to β = 0 in
Theorem 2.2, indeed performs worse than the optimal bandwidth, even though its
asymptotic variance is easier to estimate without the βZ′

τ term. For simplicity, we
again only consider the Heston model (4.1) without jumps and the untruncated pre-
averaging kernel estimator (2.18). We will compare the truncated and untruncated
versions in more detail below in Section 4.7.

In Table 3, we compare the optimal bandwidth h1 = β�
1/4
n with the suboptimal

bandwidths h2 = β�0.28
n and h3 = β�0.3

n , using the exponential kernel with
β = 1,2,3,4, respectively, based on 1,000 simulated paths. The results show the
advantage in using the optimal bandwidth for the same level of the coefficient β.

Next, we compare the results of the iterative homogeneous and local bandwidth
selection methods, as discussed in Section 3.2. Based on some initial simulations,
we observed that the parameter θ , which controls the length of the pre-averaging
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Table 4. Comparison of different bandwidth selection methods
based on 1,000 simulations. RMSE for initial bandwidth β = 1 is
1.4086×10−5. Columns 2 and 3 show the results corresponding
to the first and second iterations of bandwidth selection methods.
Columns 4 and 5 show the results using oracle and semi-oracle
bandwidths, respectively

R̂MSE ×105(ρ = −0.5)

1st iter. 2nd iter Oracle Semi-oracle

Homogeneous 1.0530 1.0529 1.0540 1.0533

Local 1.0571 1.0551 1.0542 1.0547

window kn as kn = 1
θ
√

�n
, has comparatively smaller effect on the performance

of estimator than that of the bandwidth. Therefore, throughout this section, we
fix θ = 5, which is computed by (3.1) using true parameter values, and consider
different bandwidth selection techniques.8

In Table 4, we report the estimated RMSE values for different bandwidth
selection methods. For the homogeneous bandwidth selection method (3.3), we
apply the realized variance of sparsely sampled (5 min) spot variance estimates
{ĉti} to estimate the vol vol

∫ T
0 σ̃ 2

t dt as described in Section 3.2. We fix the estimated
vol vol after the first iteration to prevent the increased variance brought by the
iterative method. The first two iterations are shown in the first two columns
of the table, and we can see that the second iteration does not improve the
result significantly. Therefore, one iteration of the bandwidth selection method
is sufficient in practice. For the local bandwidth method, we use

∫ T
0 σ̃ 2

t dt/T as a
proxy of σ̃ 2

τ in the formula (3.5). As a reference, we also give the results of using
an oracle optimal bandwidth, which is computed by the true parameter values and
the simulated spot variance process with equations (3.3) and (3.5) for the optimal
homogeneous and optimal local bandwidths, respectively. In the last column, we
provide the result of a semi-oracle type of bandwidth, where we use the estimated
spot variance “skeleton” {ĉti} to estimate

∫ T
0 ctdt and

∫ T
0 c2

t dt, via Riemann sums9

while using the true parameter of γ given in (4.2) to estimate
∫ T

0 σ̃ 2
t dt = γ 2

∫ T
0 ctdt.

The last simplification is possible due to the special structure of the diffusion
coefficient of variance process in the Heston model (4.1). A similar approach can
be applied whenever the vol vol depends on the volatility. As we can see therein,
the data-driven approaches (first two columns) are quite close to the oracle and
semi-oracle estimates.

8We also considered other values of θ , and the results were similar.
9We also apply the pre-averaging estimate of quarticity given in Jacod, Podolskij, and Vetter (2010), but the results
were less optimal.
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Figure 3. Left panel: MSE vs. bandwidth when γ = 1
252 . Right panel: MSE vs. bandwidth when

γ = 0.5
252 .

Remark 4.1. The estimator with local bandwidth has the flexibility to adjust
its bandwidth at different times based on the data. Therefore, theoretically,
this estimator should be able to achieve a lower value of the integrated
asymptotic variance

∫ T
0 δ̄2(τ )dτ , which, as defined in Corollary 3.2, is given

by �
1/4
n
∫ T

0

(
1
βt

δ2
1(t)+βtδ

2
2(t)

)
dt. However, our simulations show that the

performance of the local bandwidth is almost the same as that of the homogeneous
bandwidth. To further investigate this phenomenon, in the left panel of Figure 3,
we show the estimated RMSE values for different times τ against the parameter
β in the bandwidth formula bn = β�

1/4
n . As before, we simulate the Heston

model (4.1) with the same parameters as in (4.2), but with the vol vol parameter
γ = 1

252 . We can conclude from the figure that the optimal β-value is almost
the same for different τ ’s, and this value is also close to the theoretical optimal
homogeneous bandwidth based on the asymptotic variance of the estimator. Thus,
an estimator with homogeneous bandwidth can achieve a similar result without
extra computation cost. This trend is less obvious when the vol vol parameter γ

is relatively small. In the right panel of Figure 3, we show the estimated RMSE
vs. β when γ = 0.5

252 . In that case, the perceived almost flat trend as the bandwidth
increases shows that the realized variance can serve as a good proxy of the spot
volatility, at least for the purpose of tuning the parameters of the estimators, since
the spot volatility estimator degenerates to the integrated volatility estimator when
the bandwidth gets large.

4.6. Comparison with TSRSV

In this section, we adopt the model (4.3) with the same parameters as in Zu and
Boswijk (2014):

μ = 0.03, β1 = 0.125, α = −0.025, ρ = −0.3, β0 = β2
1/(2α). (4.6)
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Table 5. Comparison between TSRSV and kernel pre-averaging estimator. We
set the parameter θ in (2.13) to be 5, 5, and 1.5 for the noise levels 0.0001,0.001,
and 0.01, respectively. For the TSRSV estimator, to reduce the computational
cost, instead of choosing the initial bandwidth using the cross-validation method
proposed in Kristensen (2010) as did in Section 4.2.1 of Zu and Boswijk (2014),
we use the bandwidth already selected in Zu and Boswijk (2014, Tables 8–10),
as the initial values to estimate the vol vol. Note that the obtained RMSEs of
the smoothing TSRSV estimator under the different noise levels (0.0727, 0.1121,
and 0.2345) match the results in Zu and Boswijk (2014), who reported the values
0.094, 0.118, and 0.223, respectively

Frequency ω2 = 0.0001 ω = 0.001 ω = 0.01

ĉPA ĉTSRSV ĉPA ĉTSRSV ĉPA ĉTSRSV

1 s 0.0411 0.0727 0.0546 0.1121 0.0634 0.2345

5 s 0.0505 0.1487 0.0649 0.1392 0.1066 0.3005

We also take γ0 ∼ N
(
0, − 1

2α

)
and J = 0. The microstructure noise εn

i is set to be

εn
i := εti

i.i.d.∼ N
(
0,ω2

)
, where, as in Zu and Boswijk (2014), ω2 can take one of

three possible levels: 0.0001, 0.001, and 0.01.
For the TSRSV estimator, we implement the smoothing version of the TSRSV

(see Zu and Boswijk (2014, Sect. 3.1)), denoted by ĉTSRSV , and calculate the
bandwidth and scale parameters according to Section 3.4 of Zu and Boswijk
(2014). For our pre-averaging estimator, we implement the nontruncated version
(denoted by ĉPA) with exponential kernel and use the iterative method described in
Section 3.2 for bandwidth selection. We consider two sampling frequencies: 1 or
5 s. In Table 5, we report the RMSEs of the two estimators. As shown in the table,
the pre-averaging estimator has a superior performance, especially when the noise
level is large.

4.7. Comparison Between the Truncated and Untruncated Estimators

In this subsection, we study the two versions of the truncated estimators (2.19) and
the nontruncated estimators (2.18) under various levels of jump size and sample
frequency, using the simulation setting in Yu et al. (2014b). The parameters therein
are chosen from Huang and Tauchen (2005):

μ = 0.03, β1 = 0.125, α = −0.1, ρ = 0, β0 = 0. (4.7)

We also conduct our study in the same experiment design as in Yu et al. (2014b).
More specifically, we consider three levels of jump activity (no jumps, com-
pound Poisson jumps, and Variance Gamma jumps); three noise levels (ω =
0025,0.035,0.05), and three different sample frequencies (one observation every
10 s, every 30 s, and every 60 s). In the case of FA jumps, Jt = ∑Nt

j=1 Zτj with
Zτj ∼ N(0,σ 2

Y ) and {Nt}t≥0 ∼ Poisson(3), whereas in the case of infinite activity
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Table 6. The RMSEs of the pre-averaging estimators. We set the parameter θ in
(2.13) to be 5, 3, and 2 for 10-, 30-, and 60-s data, respectively. The truncation level
is set to be vn = α

√
BPVφkn(g)(�n)

0.49, with BPV = π
2

∑n
i=2

∣∣�n
i−1X‖�n

i X
∣∣ and

calculated on sparsely sampled data (5-min frequency). When σY = 0, α = 5,4,4
for 10-, 30-, and 60-s data, respectively; when σY = 0.5, α = 5.5,3.5,3 for 10-,
30-, and 60-s data, respectively; when σY = 1.5, α = 5.2,3,2.5 for the respective
frequencies; and, finally, in the case of jump with infinite activity, we set α = 6,4,4
for 10-, 30-, and 60-s data, respectively

Frequency ω = 0.025 ω = 0.035 ω = 0.05

ĉT,2 ĉT,1 ĉNon ĉT,2 ĉT,1 ĉNon ĉT,2 ĉT,1 ĉNon

Scenario A: Diffusion with no jumps σY = 0

10 s 0.1421 0.1421 0.1420 0.1474 0.1474 0.1472 0.1689 0.1690 0.1677

30 s 0.1724 0.1724 0.1719 0.1763 0.1763 0.1758 0.1846 0.1846 0.1837

60 s 0.2057 0.2057 0.2054 0.2085 0.2085 0.2083 0.2161 0.2161 0.2160

Scenario B: Diffusion with small jumps σY = 0.5

10 s 0.1311 0.1630 1.0120 0.1347 0.1641 1.0004 0.1592 0.1805 0.9943

30 s 0.1660 0.1893 0.9758 0.1690 0.1913 0.9798 0.1797 0.1971 0.9783

60 s 0.2083 0.2209 0.9738 0.2113 0.2215 0.9732 0.2205 0.2255 0.9730

Scenario C: Diffusion with large jumps σY = 1.5

10 s 0.1952 0.9402 9.4648 0.2013 0.9397 9.3509 0.2090 0.9013 9.1702

30 s 0.2262 0.9183 9.0481 0.2256 0.9132 9.0438 0.2279 0.8990 8.9954

60 s 0.2640 0.8949 8.9794 0.2635 0.8892 8.9731 0.2590 0.8707 8.9514

Scenario D: Diffusion with jumps of infinite activity

10 s 0.1246 0.1247 0.1271 0.1330 0.1331 0.1349 0.1529 0.1530 0.1547

30 s 0.1576 0.1577 0.1594 0.1587 0.1588 0.1598 0.1728 0.1729 0.1740

60 s 0.1940 0.1940 0.1952 0.1959 0.1959 0.1966 0.2063 0.2063 0.2076

jumps, Jt = cGt + ηW̃Gt with Gt ∼ Gamma(t/b,b), b = 0.23, c = −0.2, η = 0.2,
and W̃ is an independent BM, as in Mancini (2009).

In Table 6, we report the RMSEs of our nontruncated estimators (2.18) and trun-
cated estimators (2.19), denoted by ĉT,1, ĉT,2, and ĉNon, respectively. We observe
that when there are no jumps, all three estimators have similar performance, with
the nontruncated estimators giving slightly better results. However, when jumps
are present, the truncated estimators have a much superior performance, especially
when the jump size is large, and ĉT,2 appears to be more effective at eliminating
jumps compared with ĉT,1.

Yu et al. (2014b) also proposed a pre-averaging kernel estimators for the spot
volatility. As mentioned in the Introduction, their estimator has a different debias-
ing term, which could affect the finite-sample performance, and their asymptotic
normality is only established with suboptimal convergence rate. Our results in
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Table 6 are comparable with Yu et al. (2014b, Sect. 5). For example, the RMSE
0.1421 under ω = 0.025,σY = 0 with 10-s data is close to the RMSE

√
0.0201 =

0.1417 in Yu et al. (2014b).

5. CONCLUSIONS

In this paper, we introduce high-frequency-based kernel estimators of the spot
volatility under both the absence and presence of microstructure noise. One of
the key differences of our results from those of earlier literature is to consider
a general kernel in an asymptotic regime for the bandwidth that leads to optimal
convergence rates for the resulting kernel estimators. Under this regime, kernels of
unbounded support offer improved performance compared with uniform or other
kernels with bounded support. General two-sided kernels of unbounded support
were already advocated in the work of Figueroa-López and Li (2020a), where it
was proved for the first time that exponential kernels are optimal, hence, formally
validating an old conjecture of Foster and Nelson (1996). Unfortunately, Figueroa-
López and Li (2020a) imposed strong assumptions for the validity of their results,
the most important of which are the absence of leverage effects, microstructure
noise, and jumps. These three effects are, of course, pervasive in real transaction
data. In this work, we are able to relax all of those constraints and consider a rather
general model. We further develop a feasible implementation of the proposed
estimators. Via Monte Carlo experiments, we confirm the superior performance
of the proposed estimators.

APPENDIX A. Proof of Theorem 2.1

We follow the steps in the proof of Theorem 13.3.3 in Jacod and Protter (2011) (which
implies Theorem 13.3.7). By virtue of localization, without loss of generality, we assume
throughout the proof that |δ(t,z)| ≤ 
(z), | δ̃(ω,t,z)|∧1 ≤ �(z) and


(z)+�(z)+
∫


(z)rλ(dz)+
∫

�(z)2λ(dz)+|μt|+ |σt|+ |Xt|+ |ρt|+ |σ̃t|+ |μ̃t| ≤ A,

(see Section 4.4.1 and (6.2.1) of Jacod and Protter (2011) and Appendix A.5 of Aït-Sahalia
and Jacod (2014) for details). We use C to represent a generic constant that may change
from line to line.

A.1. Elimination of the Jumps and the Truncation

We denote the process
∫ t

0
∫
Rd δ(s,x)μ(ds,dx) by δ �μt, and we set

X′′ =
{

δ �p, if r ≤ 1,
δ � (p−q), if r > 1,

X′ = X −X′′, zn =
{ √

mn, if β < ∞,
1√

mn�n
, if β = ∞.

To explicitly indicate the process Y for which the spot estimator is calculated, we use the
notation ĉ(mn,vn,Y)τ . The proof of the following lemma is similar to the one of Theorem
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13.3.3 in Jacod and Protter (2011) and is omitted for the sake of space (see details in
Figueroa-López and Wu (2022)).

Lemma A.1. When X = X′ or when (2.10) and � ≤ 1−a
r hold, we have, as n → ∞,

P
(
ĉn (mn,vn,X)t �= ĉn (mn,X)t

)→ 0, (A.1)

Furthermore, under (2.10) and (2.11), we have

zn
(
ĉn (mn,vn,X)t − ĉn (mn,vn,X

′)
t

) P−→ 0. (A.2)

A.2. Proof in the Continuous Case

With the previous lemma, it remains to prove the stable convergence (2.9) under the
following assumption.

Assumption 4. We have (2.1) with X continuous, ct = σ 2
t satisfies (2.2), the processes

μ,μ̃,σ,σ̃ are bounded, and |δ̃(ω,t,z)|∧1 ≤ �(z) with a bounded function � on E satisfying∫
E �(z)2λ(dz) < ∞.

Now, we proceed our proof with the nontruncated estimator, which, for easiness of

notation, is defined as ĉ(mn)τ :=∑n
i=1 Kmn�n

(
ti−1 − τ

)(
�n

i X
)2. We first introduce some

notation. Recall that Un
i := Ui�n and, for t ∈ ((i−1)�n,i�n], let

Vn
t :=

n∑
j=1

Kmn�n

(
tj−1 − t

)((
�n

j W
)2 −�n

)
,

V ′n
t := �n

n∑
j=1

Kmn�n

(
tj−1 − t

)(
Bn

j −Bn
i

)
,

Zn
t := cn

i Vn
t , Z′n

t := σ̃ n
i V ′n

t , Z′′n
t = ĉ(mn)t − ct −Zn

t −Z′n
t .

(A.3)

All the three cases in Theorem 2.1 for the continuous case follow from the next two lemmas.

Lemma A.2. Under Assumptions 2 and 4, with �n → 0, mn�n → 0, and mn
√

�n → ∞,
we have the following stable convergence in law:(√

mnZn
t ,

1√
mn�n

Z′n
t

)
st−→
(

Z(0)
t ,Z′(0)

t

)
,

where Z0
t and Z′(0)

t are defined in (2.7).

Lemma A.3. Under Assumptions 2 and 4, we have, for all t ∈ [0,T], z(0)
n Z′′n

t
P−→ 0, where

z(0)
n = m1/2

n if mn�
1/2
n → β < ∞ and z(0)

n = 1/
√

mn�n if mn�
1/2
n → β = ∞.

We prove these two lemmas in the next two subsections.
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A.2.1. Proof of Theorem A.2. We first show

(√
mnVn

t ,
1√

mn�n
V ′n

t

)
st−→ (

V,V ′), (A.4)

where (V,V ′) are defined in (2.6). Denote the bandwidth of the kernel as bn := mn�n,

recall that t ∈ ((i − 1)�n,i�n], and we can write the pair
(√

mnVn
t , 1√

mn�n
V ′n

t

)
as∑n

j=1

(
ζ n

j (t),ζ ′n
j (t)

)
, where

ζ n
j (t) = √

mnKbn

(
tj−1 − t

)((
�n

j W
)2 −�n

)
,

ζ ′n
j (t) = �n√

mn�n

⎧⎪⎪⎨⎪⎪⎩
0, if j = 1,

−
(∑j−1

l=1 Kbn(tl−1 − t)
)
�n

j B, if 2 ≤ j ≤ i,(∑n
l=j Kbn(tl−1 − t)

)
�n

j B, if i < j ≤ n.

Then we notice that
(
ζ n

j (t),ζ ′n
j (t)

)
is F (′)

tj measurable and with Fj := F (0)
tj ,

∑n
j=1

E
(

ζ n
j (t)

∣∣∣F (0)
j−1

)
= 0, and

∑n
j=1E

(
ζ ′n

j (t)
∣∣∣F (0)

j−1

)
= 0. Recall that ρs = d 〈W,B〉s /ds

is càdàg and bounded on the interval [tj−1,tj]. By Itô’s lemma, the Cauchy–Schwarz
inequality, and Doob’s inequality, we have

∣∣∣∣E((�n
j W

)2
�n

j B

∣∣∣∣F (0)
j−1

)∣∣∣∣≤ C�
3/2
n

√
E

((
ρtj −ρtj−1

)2
∣∣∣∣F (0)

j−1

)
.

Then, by a change of variable,

∣∣∣∣∣∣
n∑

j=1

E
(

ζ n
j (t)ζ ′n

j (t)
∣∣∣Fj−1

)∣∣∣∣∣∣
≤ C�2

n

i∑
j=2

∣∣Kbn

(
tj−1 − t

)∣∣⎛⎝j−1∑
l=1

∣∣Kbn(tl−1 − t)
∣∣⎞⎠max

j

√
E

((
ρtj −ρtj−1

)2
∣∣∣∣F (0)

j−1

)

+C�2
n

n∑
j=i+1

∣∣Kbn

(
tj−1 − t

)∣∣⎛⎝ n∑
l=j

∣∣Kbn(tl−1 − t)
∣∣⎞⎠max

j

√
E

((
ρtj −ρtj−1

)2
∣∣∣∣F (0)

j−1

)

≤ C
∫

|K(u)| |L(u)|dumax
j

√
E

((
ρtj −ρtj−1

)2
∣∣∣∣F (0)

j−1

)
.

We notice that ρ is right-continuous and uniformly bounded on [0,T] and, thus,∑n
j=1E

(
ζ n

j (t)ζ ′n
j (t)

∣∣∣Fj−1

)
→ 0, as n → ∞.Next, we can deduce the following by the

Riemann sum theorem and change of variables:
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n∑
j=1

E
(

ζ n
j (t)2

∣∣∣Fj−1

)
= 2

n∑
j=1

mn�2
nK2

bn
(tj−1 − t) −→ 2

∫
K2(u)du,

mn�n

n∑
j=1

E
(

ζ ′n
j (t)2

∣∣∣Fj−1

)
∼
∫ T

t

(∫ T

v
Kbn(s− t)ds

)2

dv

+
∫ t

0

(∫ v

0
Kbn(s− t)ds

)2
dv −→

∫
L2(u)du,

where L(t) = ∫∞
t K(u)du1{t>0} − ∫ t

−∞ K(u)du1{t≤0}. Note also that

n∑
j=1

{E
(

ζ n
j (t)4

∣∣∣Fi−1

)
+E

(
ζ ′n

j (t)4
∣∣∣Fi−1

)
} ≤ C

mn

∫
K4(u)du+ C

m2
n�n

∫
L(u)4du −→ 0,

where Uj is a standard normal distribution and C is a generic constant. To apply Theorem
2.2.15 in Jacod and Protter (2011), we further need to show that

(i)
n∑

j=1

E
(

ζ n
j (t)

(
Mtj −Mtj−1

)∣∣∣Fj−1

)
→ 0, (ii)

n∑
j=1

E
(

ζ ′n
j (t)

(
Mtj −Mtj−1

)∣∣∣Fj−1

)
→ 0,

(A.5)

whenever M is either one of the components of (W,B) or is in the set N containing all

bounded
(
F (0)

t

)
-martingales orthogonal (in the martingale sense) to (W,B). When M = W

or B, (A.5(i)) holds true since it is the F( j−1)�n -conditional expectation of an odd function
of the increments of the process W after time ( j − 1)�n. On the other hand, by the

boundedness of the process ρ, we have |E(�jB�jW
∣∣Fj−1

) | = E
( ∣∣∣∫ tj

tj−1
ρsds

∣∣∣∣∣∣F|−∞
)

≤
C�n, for some constant C and, thus, (A.5(ii)) can be shown as follows:

n∑
j=1

E
(

ζ ′n
j (t)

(
Mtj −Mtj−1

)∣∣∣Fj−1

)

≤ �
3/2
n√
mn

⎛⎝ n∑
j=i+1

∣∣∣∣∣∣
n∑

m=j

Kbn

(
tm−1 − t

)∣∣∣∣∣∣+
i∑

j=2

∣∣∣∣∣∣
j−1∑
m=1

Kbn

(
tm−1 − t

)∣∣∣∣∣∣
⎞⎠

≤ C
1

mn�n

∫
|L(u)|du → 0.

Suppose now that N is a bounded martingale, orthogonal to (W,B). By Itô’s formula, we see

that ζ n
j (t) can be written as

√
mnKbn

(
tj−1 − t

)∫ tj
tj−1

2
(

Ws −Wtj−1

)
dWs, i.e., a stochastic

integral with respect to W on the interval [( j−1)�n,j�n]. Similarly, ζ ′n
j (t) is a stochastic

integral with respect to B on the same interval. Then the orthogonality of N and (W,B)

implies (A.5). Now, we can apply Theorem 2.2.15 in Jacod and Protter (2011) and conclude
that(√

mnVn
t ,

1√
mn�n

V ′n
t

)
st−→ (

V,V ′),
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where V,V ′ are defined in (2.6). Finally, recall that Zn
t := cn

i Vn
t , and Z′n

t := σ̃ n
i V ′n

t . From
the càdlàg property of σ and σ̃ , we see that cn

i → ct and σ̃ n
i → σ̃t, for t ∈ ((i−1)�n,i�n].

Then Lemma A.2 follows from (A.4).

A.2.2. Proof of Lemma A.3. For t ∈ ((i−1)�n,i�n], we can rewrite Z′′n
t defined

in (A.3) as Z′′n
t =∑5

j=1 ζ n
j (t), where

ζ n
1 (t) = cn

i �n

n∑
j=1

Kbn(tj−1 − t)− ct,

ζ n
2 (t) =

n∑
j=1

Kbn(tj−1 − t)

((
�n

j X
)2 − cn

j−1

(
�n

j W
)2
)

,

ζ n
3 (t) =

n∑
j=1

Kbn(tj−1 − t)σ̃ n
i

((
�n

j W
)2 −�n

)(
Bn

j −Bn
i

)
,

ζ n
4 (t) =

n∑
j=1

Kbn(tj−1 − t)
(

cn
j−1 − cn

i − σ̃ n
i

(
Bn

j −Bn
i

))(
�n

j W
)2

.

Therefore, it is enough to prove that, for l = 1,2,3,4 and all t ∈ [0,T], we have

z(0)
n ζ n

l (t)
P→ 0. (A.6)

Proof of (A.6) for l = 1. By Lemma 3.1 in Figueroa-López and Li (2020b) with f = 1
and Assumption 2,

�n

n∑
j=1

Kbn(tj−1 − t)−
∫ T

0
Kbn(s− t)ds = 1

2

(
K(A+)−K(B−)

) �n

b
+o

(
�n

b

)
= O

(
�n

b

)
,

where (A,B) is the support of K and −∞ ≤ A < 0 < B ≤ ∞. Therefore, the boundedness
of c implies that

ζ n
1 (t) = cn

i

(∫ T

0
Kbn(s− t)ds

)
− ct +O

(
�n

b

)
= cn

i − ct +C
∫
(0,T)c

Kbn(t − τ)dt +O

(
�n

b

)
.

Furthermore, we can deduce E(ci − ct)
2 ≤ C�n, for t ∈ ((i−1)�n,i�n] from (2.2).

Assumption 2 implies that x1/2 ∫∞
x K(u)du → 0, as x → ∞. We then have

b−1/2
n

∫
(0,T)c

Kbn(t − τ)dt = 1√
bn

(∫ τ
bn

−∞
K(u)du+

∫ ∞
T−τ
bn

K(u)du

)
→ 0, as n → ∞. �

Proof of (A.6) for l = 2. Let ρn
j (t) = �n

j X −σ n
j−1�n

j W. In view of (2.1.44) in Jacod and
Protter (2011), for q ≥ 2, we have

E
(∣∣∣ρn

j (t)
∣∣∣q)≤ Kq�

1+q/2
n , E

(∣∣∣σj−1�n
j W

∣∣∣q)≤ C�
q/2
n .
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Then, since

∣∣∣∣(�n
j X
)2 −σ 2

j−1

(
�n

j W
)2
∣∣∣∣≤ 2

(∣∣∣ρn
j (t)

∣∣∣2 +
∣∣∣ρn

j (t)
∣∣∣ ∣∣∣σ 2

j−1�n
j W

∣∣∣), the inequal-

ities above and the Cauchy–Schwarz inequality yield

E
∣∣ζ n

2 (t)
∣∣≤ 2

n∑
j=1

∣∣Kbn(tj−1 − t)
∣∣E(∣∣∣ρn

j (t)
∣∣∣2 +

√
E
∣∣∣ρn

j (t)
∣∣∣2E ∣∣∣σ 2

j−1�n
j W

∣∣∣2)

≤ C
n∑

j=1

∣∣Kbn(tj−1 − t)
∣∣(�2

n +�
3/2
n

)
∼
∫

K(u)du
√

�n.

We then have the result since zn
√

�n → 0. �

Proof of (A.6) for l = 3. ζ n
3 (t) can be written as σ̃ n

i �n(t) where each σ̃ n
i is bounded

F (0)
i measurable and �n(t) =∑n

j=1 Kbn(tj−1 − t)

((
�n

j W
)2 −�n

)(
Bn

j−1 −Bn
i

)
. We can

compute that E
(
�n(t)

) = 0 and
∣∣∣E(�n

j W�n
j B
)∣∣∣ =

∣∣∣E(∫ tj
tj−1

ρsds
)∣∣∣ ≤ C�n. Notice that(

�n
j W

)2 −�n,Bn
j−1 −Bn

i are independent when j ≥ i+1 and
(
�n

j W
)2 −�n,Bn

i −Bn
j are

independent when j ≤ i. Then, by tower property, we have

E
(
�n(t)

)2 ≤ 2�2
n

n∑
j=i+1

K2
bn

(tj−1 − t)(tj−1 − ti)+
i∑

j=1

K2
bn

(tj−1 − t)
(

2�2
n(ti − tj)+C1�3

n

)

∼ �n

(∫ ∞
0

K2(u)udu−
∫ 0

−∞
K2(u)udu

)
,

where C2
1 =E(χ2

1 −1)4E
(
χ2

1

)2
. Then 1√

�n
�n(t) is bounded in probability, and the result

follows, since zn
√

�n → 0. �

Proof of (A.6) for l = 4. Let ηn
j =

(
cn

j−1 − cn
i − σ̃ n

i

(
Bn

j−1 −Bn
i

))
= ∫ tj−1

ti μ̃sds +∫ tj−1
ti

(
σ̃s − σ̃ n

i

)
dBs + Mtj−1 − Mi, where M = δ̃ � (p− q). Following the same argument

for proof of (13.3.37) for (j = 6) in Jacod and Protter (2011), on the set �(n,N,ε) =
{|�Ms| ≤ ε,∀s ∈ (i−Nmn�n,i+Nmn�n]}, with the notation γ n

j = 1
tj−1−ti

E
(∫ tj−1

ti∣∣σ̃s − σ̃ti
∣∣2 ds

)
, we deduce that, for j ∈ (i−Nmn�n,i+Nmn�n],

E

((
ηn

j

)2
1�(n,i,ε)

)
≤ C(tj−1 − ti)ρ(n,j,ε), with ρ(n,ε) = tj−1 − ti

ε
+γ n

j +φ(ε),

where φ(ε) = ∫
{�(z)<ε} �(z)2λ(dz) going to 0 as ε → 0. Since σ̃ is càdlàg and bounded, we

see that γ n
j → 0 for all j and thus ρ(n,j,ε) → 0. From (2.1.44) in Jacod and Protter (2011),

we also have, for all j, E

((
ηn

j

)2
)

≤ C(tj−1 − ti) and, thus,

E
∣∣ζ n

4 (t)
∣∣= E

∣∣ζ n
4 (t)

∣∣1�(n,N,ε) +E
∣∣ζ n

4 (t)
∣∣1�(n,N,ε)c

≤ CN
√

Nmn�nρ(n,ε)+C
√

mn�n

(∫ ∞
N

K(u)
√

udu+
∫ −N

−∞
K(u)

√
udu

)
.
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Additionally, we have limε→0 limsupn ρ(n,ε) = 0 and
∫∞

N K(u)
√

udu + ∫−N
−∞ K(u)

√
udu

N→∞−→ 0. The result follows by zn
√

bn < ∞. �

APPENDIX B. Proof of Theorem 2.2

Again, by virtue of localization, without loss of generality, we assume throughout the proof
that |δ(t,z)| ≤ 
(z), | δ̃(ω,t,z)|∧1 ≤ �(z) and


(z)+�(z)+
∫


(z)rλ(dz)+
∫

�(z)2λ(dz)+|μt|+ |σt|+ |Xt|+ |ρt|+ |σ̃t|+ |μ̃t| ≤ A.

B.1. Elimination of the Jumps and the Truncation

We set

X′′ =
{

δ �p, if r ≤ 1,
δ � (p−q), if r > 1,

X′ = X −X′′, z̃n =
{

m1/2
n �

1/4
n , if β < ∞,

1√
mn�n

, if β = ∞.

Let Y∗ = Y −X +X′ be the continuous process with microstructure noise and set

ĉ∗ (kn,mn)τ = 1

φkn (g)

n−kn+1∑
j=1

Kmn�n

(
tj−1 − τ

)((
Y

∗n
j

)2 − 1

2
Ŷ∗n

j

)
. (B.1)

We need some preliminary estimates:

• By Corollary 2.1.9(a)–(c) in Jacod and Protter (2011), for p > 0 and q ∈ [0,1/r),

E

[
sup

u∈[0,s]

(∣∣X′′
τ+u −X′′

τ

∣∣
sq

∧1

)p ∣∣∣F (0)
τ

]
≤ Cs(1−qr)(p/r∧1)a(s), (B.2)

where a(s) → 0 as s → 0. Let gn(t) =∑kn
j=1 g( j/kn)l(( j−1)�n,j�n](t). With un = kn�n

and X̄′′n
i = ∫ (i−1)�n+un

(i−1)�n
gn(s − (i − 1)�n)dX′′

s , the same as (9.2.13) in Jacod and Protter
(2011), we deduce that

E

[(∣∣X̄′′n
i

∣∣
uq

n
∧1

)p ∣∣∣F (0)
(i−1)�n

]
≤ Cu(1−qr)(p/r∧1)

n an, (B.3)

where an → 0 as n → ∞.
• By the proof of Lemma 16.4.3 in Jacod and Protter (2011), for all q > 0,

E
(∣∣X̄′n

i

∣∣q | F(i−1)�n

)
≤ Cq�

q/4
n , E

(∣∣∣X̂′n
i

∣∣∣q ∣∣∣F(i−1)�n

)
≤ Cq�

3q/2
n ,

E
(∣∣∣X̂n

i

∣∣∣q ∣∣∣F(i−1)�n

)
≤ Cq�

q/2
n

(
�q

n +�q∧1
n

)
,

E
(∣∣Ȳn

i

∣∣q ∣∣∣F(i−1)�n

)
≤ Cq�

q/4
n

(
1+�−(q/4−1/2)+

n

)
, (B.4)

E
(∣∣∣Ŷn

i

∣∣∣q ∣∣∣F(i−1)�n

)
≤ Cq�

q/2
n

(
�q

n +1+�q∧1
n

)
.
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• From (16.2.3) in Jacod and Protter (2011), for all p > 0,

E
(∣∣ε̄(g)n

i

∣∣p | H(i−1)�n

)≤ Cp�
p/4
n , E

(∣∣̂εn
i

∣∣p | H(i−1)�n

)≤ Cp�
p/2
n . (B.5)

• Combining (B.4) and (B.5), and applying (a+b)q ≤ Kq(aq +bq), for all q > 0,

E
(∣∣Ȳ∗n

i

∣∣q | F(i−1)�n

)
≤ CqE

(|X̄′(g)n
i |q + ∣∣ε̄(g)n

i

∣∣q | F(i−1)�n

)≤ Cq�
q/4
n ,

E
(∣∣∣Ŷ∗n

i

∣∣∣q | F(i−1)�n

)
≤ CqE

(∣∣∣X̂′n
i

∣∣∣q + ∣∣ε̂n
i

∣∣q | F(i−1)�n

)
≤ Cq�

q/2
n .

(B.6)

The following result will allow us to reduce the proof to the case of a continuous process
and a kernel estimator without truncation.

Lemma B.1. Under Assumption 1, we have

z̃n
∣∣ĉ(kn,mn,vn,l)τ − ĉ∗ (kn,mn)τ

∣∣ P−→ 0, (B.7)

for both l = 1,2 if X = X′, for l = 1 if (2.22) and (2.23) hold, and for l = 2 if (2.22) and
(2.24) hold.

Proof. Let En
j denote the conditional expectation with respect to F( j−1)�n . We first

check the proof for the case of l = 2. The proof for l = 1 is shown below. We can write∣∣∣∣∣
((

Ȳn
j

)2 − 1

2
Ŷn

j

)
1{∣∣∣Ȳn

j

∣∣∣≤νn

}−
((

Ȳ∗n
j

)2 − 1

2
Ŷ∗n

j

)∣∣∣∣∣≤
4∑

r=1

η
n,r
j ,

where

η
n,1
j =

∣∣∣∣∣(Ȳn
j

)2
1{∣∣∣Ȳn

j

∣∣∣≤νn

}−
(

Ȳ∗n
j

)2
1{∣∣∣Ȳ∗n

j

∣∣∣≤νn

}∣∣∣∣∣,
η

n,2
j = 1

2

∣∣∣∣∣̂Yn
j 1

{∣∣∣Ȳn
j

∣∣∣≤νn

}− Ŷ∗n
j 1{∣∣∣Ȳ∗n

j

∣∣∣≤νn

}∣∣∣∣∣,
η

n,3
j =

∣∣∣Ȳ∗n
j

∣∣∣21{∣∣∣Ȳ∗n
j

∣∣∣>νn

}, η
n,4
j = 1

2

∣∣∣Ŷ∗n
j

∣∣∣1{∣∣∣Ȳ∗n
j

∣∣∣>νn

}.

(B.8)

When X = X′,ηn,1
j = 0. When r ∈ (0,2], by the proof of Lemma 2 in Chen (2019),10 under

(B.3), there is a sequence an → 0 such that11 En
j [|ηn,1

j |] ≤ C�
(�+1/2)−r�/2
n an. Next,

η
n,2
j = 0 when X = X′. When r ∈ (0,2], we have∣∣∣̂Yn
j − Ŷ∗n

j

∣∣∣≤ C
(

X̂′′n
j +

√
Ŷ∗n

j X̂′′n
j

)
.

If we set μ,σ = 0, we have En
j

∣∣∣X̂′′n
j

∣∣∣q = En
j

∣∣∣X̂n
j

∣∣∣q ≤ Kq�
q/2
n

(
�

q
n +�

q∧1
n

)
from (B.4)

for q > 0. Combining with (B.6) and taking q = 1, we have En
j |̂Yn

j − Ŷ∗n
j | ≤ C(�

3/2
n +

10Or follow the proof of Lemma 13.2.6 in Jacod and Protter (2011).
11The notation Ȳ,Ŷ is slightly different in Chen (2019), which results in the different form of the following inequality.
The relation between � in our setting and ρ in Chen (2019) is �/2+1/4 = ρ.
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�
1/4
n �

3/4
n ) ≤ C�n. By the notation (2.15) and the Cauchy–Schwarz inequality, we have,

for arbitrary α > 0,

η
n,2
j ≤ 1

2

∣∣∣̂Yn
j − Ŷ∗n

j

∣∣∣+ Ŷn
j

∣∣∣Ȳ∗n
j

∣∣∣α
να

n
+ Ŷ∗n

j

∣∣∣Ȳ∗n
j

∣∣∣α
(νn/2)α

+ Ŷ∗n
j

⎛⎝
∣∣∣X̄′′n

j

∣∣∣
νn/2

∧1

⎞⎠, (B.9)

where the last term is because 2
∣∣∣Ȳ∗n

j

∣∣∣ < νn <

∣∣∣Ȳn
j

∣∣∣ implies
∣∣∣X̄′′n

j

∣∣∣ > νn/2, and therefore,∣∣∣X̄′′n
j

∣∣∣
νn/2 ∧ 1 > 1{

2
∣∣∣Ȳ∗n

j

∣∣∣<νn<

∣∣∣Ȳn
j

∣∣∣}. Applying the Cauchy–Schwarz inequality and (B.3) and

(B.4), we have

η
n,2
j ≤ C

(
�n +

√
�n�

α(1/2−�)
n +

√
�n2α�

α(1/2−�)
n +

√
�n�

1/2−� r/2
n an

)
.

(B.10)

Since � < 1/2, there exists α such that α (1/2−�) ≥ 1/2. Then, En
j |ηn,2

j | ≤ C(�n +
�

3/4−� r/4
n a1/2

n ). By Cauchy–Schwarz’s and Markov’s inequalities and (B.6), for an
arbitrary positive number m,

En
j

∣∣∣ηn,3
j

∣∣∣≤√
En

j

∣∣∣Ȳ∗n
j

∣∣∣4Pn
j

(∣∣∣Ȳ∗n
j

∣∣∣> vn

)
≤ C

√
�nEn

j

∣∣∣Ȳ∗n
j

∣∣∣m /vm
n ≤ C

√
�

1+m/4−m�/2
n .

Similarly, there exists m such that En
j

∣∣∣ηn,3
j

∣∣∣ ≤ C�n. By the same argument, En
j

∣∣∣ηn,4
j

∣∣∣ ≤
C�n. Now, we have the following when r ∈ (0,2] by combining the above inequalities:

E
(|ĉ(kn,mn,vn,2)τ − ĉ∗ (kn,mn)τ

)
≤ C�

1/2
n

n−kn+1∑
j=1

Kmn�n

(
tj−1 − τ

)[
�

�+1/2−r�/2
n an +�n +

√
�

3/2−� r/2
n an

]
≤ C

[
�

�−r�/2
n an +√�n +�

1/4−� r/4
n

√
an

]
,

by the property of the kernel. Therefore, recalling (2.22), to show that z̃n

∣∣∣ĉ(kn,mn,vn,2)τ −
ĉ∗ (kn,mn)τ

∣∣∣is oP(1), we need the condition (2.24). This concludes (B.7) for l = 2.

When l = 1, ĉ(kn,mn,vn,1) − ĉ∗ (kn,mn) has a similar decomposition like (B.8) with

η
n,2
j = 1

2

∣∣∣̂Yn
j − Ŷ∗n

j

∣∣∣ and η
n,4
j = 0. Therefore, E

(|ĉ(kn,mn,vn,1)τ − ĉ∗ (kn,mn)τ
) ≤

C
[
�

�−r�/2
n an +√

�n

]
. In that case, the second inequality in (2.23) gives (B.7) for

l = 1. Since � < 1/2, we necessarily need that r < 5
2 −2

[(
a− 1

4

)
∧
(

1−a+ 1
4

)]
.

Finally, when X = X′, note that E
(|ĉ(kn,mn,vn,l)τ − ĉ∗ (kn,mn)τ

)≤ C
√

�n, for l = 1,2,

since η
n,1
j = η

n,2
j = 0. Therefore, we can conclude (B.7) in all the cases stated in the

statement of the lemma. �
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B.2. Proof of Stable Convergence in Law for Continuous Process

With the lemma above, it suffices to prove Theorem 2.2 for the nontruncated estimator (B.1)
under Assumption 4. We first introduce some notations needed for the proofs.

Define

φ(Y)n
i = (Y

n
i )2 − 1

2
Ŷn

i = (X
n
i + εn

i )2 − 1

2
Ŷn

i ,

φn
i,j = (σ(i−j−1)�n W

n
i + εn

i )2 − 1

2
ε̂n

i ,

�n
i,j = E(φn

i,j|H(i−1)�n)− (σ(i−j−1)�n W
n
i )2.

(B.11)

With any process U, we associate the variables


(U)n
i = sup

t∈[(i−1)�n,i�n+kn�n]
|Ut −U(i−1)�n |, 
′(U)n

i =
(
E
((


(U)n
i

)4∣∣∣F(i−1)�n

))1/4
.

The following decomposition will be instrumental to deduce the behavior of the estima-
tion error:

ĉ(kn,mn)τ − cτ =
5∑

l=1

H(l)n,

where, using the notation Ei−1[·] = E[·|F(i−1)�n ], bn := mn�n, and φn := φkn(g),

H(1)n = 1

φn

n−kn+1∑
i=1

Kbn (ti−1 − τ)
(
φn

i,0 −Ei−1
(
φn

i,0

))
, H(2)n =

∫ T

0
Kbn (t − τ)ctdt − cτ ,

H(3)n = 1

φn

n−kn+1∑
i=1

Kbn (ti−1 − τ)
(
φ(Y)n

i −φn
i,0

)
, H(4)n = 1

φn

n−kn+1∑
i=1

Kbn (ti−1 − τ)Ei−1
(
�n

i,0

)
,

H(5)n = �n

n−kn+1∑
i=1

Kbn (ti−1 − τ)cti−1 −
∫ T

0
Kbn (t − τ)ctdt.

The first term is the statistical error, whereas the second term is the local approximation
error. Each of these will contribute one term to the asymptotic variance in (2.21(i)).

We recall some needed estimates and preliminary results.

1. By Lemma 16.5.14 in Jacod and Protter (2011), for some constant C,∣∣Ei−1
(
φ(Y)n

i −φn
i,0

)∣∣≤ C�3/4
n

(
�1/4

n +
′(μ)n
i +
′(̃σ )n

i +
′(γ )n
i

)
. (B.12)

2. As in Lemma 16.5.15 in Jacod and Protter (2011), if an array
(
δn

i

)
satisfies

0 ≤ δn
i ≤ K, �nE

n∑
i=1

δn
i → 0, (B.13)

then, for any q > 0, the array
(∣∣δn

i

∣∣q) also satisfies (B.13). Furthermore, if U is a
càdlàg bounded process, the two arrays

(

(U)n

i

)
and

(

′(U)n

i

)
also satisfy (B.13).
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3. Under Assumptions 3 and (2.2), by Lemma 16.5.13 in Jacod and Protter (2011), for
all q > 0,

Ei−1
( ∣∣φ (Y)n

i

∣∣q + ∣∣φn
i,0

∣∣q∣∣)≤ Cq�
q/2
n , (B.14)

Ei−1

(∣∣φ (Y)n
i −φn

i,0

∣∣2)≤ C�n

(
�1/2

n + (
′(σ )n
i

)2)
, Ei−j−1

(∣∣∣φn
i,j

∣∣∣q)≤ Cq�
q/2
n .

(B.15)

4. Let γ ′
t = E(|εt|3 |F (0)). Under Assumptions 3 and (2.2), by Lemma 16.5.12 in Jacod

and Protter (2011), �n
i,j defined in (B.11) is such that

Ei−1

∣∣∣�n
i,j

∣∣∣≤ C�n +C�3/4
n

(

′(γ )n

i +
′ (γ ′)n
i

)
, Ei−1

∣∣∣�n
i,j

∣∣∣2 ≤ C�3/2
n . (B.16)

5. By Itô’s Lemma and Burkholder–Davis–Gundy inequalities (see Section 2.1.5 of
Jacod and Protter (2011)), we have, for all s,t ≥ 0 and p ≥ 2,

E

(
sup

r∈[0,s]

∣∣∣σ 2
t+r −σ 2

t

∣∣∣p ∣∣∣Ft

)
≤ Cps, E

(
sup

r∈[0,s]
|σt+r −σt|p

∣∣∣Ft

)
≤ Cps, (B.17)


′(σ )n
i = E

(
sup

t∈[(i−1)�n,i�n+kn�n]

∣∣σt −σ(i−1)�n

∣∣4 ∣∣∣F(i−1)�n

)1/4

≤ C (kn�n)
1/4 .

(B.18)

Theorem 2.2 will then follow from the following lemmas.

Lemma B.2. Under Assumptions 2–4, with mn → ∞, mn�n → 0, and mn
√

�n → ∞,

we have m1/2
n �

1/4
n H(1)n st−→ Zτ , where Zτ is described in Theorem 2.2.

Lemma B.3. Under Assumptions 2–4, with mn → ∞, mn�n → 0, and mn�
3/4
n → β ∈

[0,∞), m1/2
n �

1/4
n

(
H(1)n +H(2)n) st−→ Zτ +βZ′

τ , where Z′
τ is described in Theorem 2.2.

Lemma B.4. Under Assumptions 2–4, assuming mn�
3/4
n → β ∈ [0,∞], we have

znH(l)n P−→ 0 for l = 3,4,5, (B.19)

where zn = m1/2
n �

1/4
n if mn�

3/4
n → β < ∞, and zn = 1√

mn�n
if mn�

3/4
n → β = ∞.

We prove the lemmas above in three steps. In Step 1, we start to prove the last lemma
which is more straightforward than the other two. In Step 2, we prove Lemma B.2. In
Step 3, we show Lemma B.3.

Step 1. For l = 3, set ζ n
i = 1

φkn (g)
Kmn�n(ti−1 − τ)

(
φ (Y)n

i −φn
i,0

)
and bn :=

mn�n. By Lemma 2.2.10 in Jacod and Protter (2011), the result follows if the array
znE

(|ζ n
i | | F(i−1)�n

)
is asymptotically negligible. To this end, note that (B.12) yields

E
(|ζ n

i | | F(i−1)�n

)≤ C�1/4
n �n|Kmn�n (ti−1 − τ)|E

((
�1/4

n +
′(μ)n
i +
′ (̃σ )n

i +
′(γ )n
i

))
,
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where recall that we are assuming that σ̃ , μ, and γ are càdlàg bounded processes by localiza-

tion. Thus, from Lemma 16.5.15 in Jacod and Protter (2011),
(
(
′(̃σ )n

i )2
)
,
(
(
′(μ)n

i )2
)
,

and
(
(
′(γ )n

i )2
)

satisfy (B.13). By the Cauchy–Schwarz inequality,

�n

n−kn+1∑
j=1

|Kbn(ti−1 − τ)|E(
′(μ)n
i
)= o

(
(mn�n)−1/2

)
. (B.20)

We can obtain similar results on (
′(̃σ )n
i ) and 
′(ϒ)n

i . Thus, zn
∑n−kn+1

j=1 E
(
|ζ n

i | |
F(i−1)�n

)
is O(zn�

1/2
n ) + o(zn/(m1/2

n �
1/4
n )) and, hence, converges to 0. This finishes

the proof for l = 3. For l = 4, by (2.13), (2.17), and (B.16), we have

|H(4)n| ≤ C
1

kn

n−kn+1∑
j=1

|Kbn

(
tj−1 − τ

) |(�n +�
3/4
n

(

′(γ )n

i +
′ (γ ′)n
i

))
,

which is O
(
�

1/2
n

)
+o

(
�

1/4
n√

mn�n

)
by similar argument as in (B.20). For l = 5, we have

∣∣H(5)n
∣∣≤ ∫ T

tn−kn+1

∣∣∣Kbn (t − τ)σ 2
t

∣∣∣dt +
n−kn+1∑

j=1

∫ tj

tj−1

∣∣∣Kbn (s− τ)σ 2
s −Kbn (tj−1 − τ)σ 2

( j−1)�n

∣∣∣ds

≤ C
1

mn
√

�n
+ (n− kn −1)�n

(
1

mn�
1/2
n

+ 1

m2
n�n

)
= OP

(
1

mn
√

�n

)
, (B.21)

where the first term in (B.21) follows from the boundedness of K and σ , whereas the
second term in (B.21) can be deduced by (B.17) and Lipschitz property of K. Indeed, for
s ∈ [tj−1,tj],∣∣∣Kbn(s− τ)σ 2

s −Kbn(tj−1 − τ)σ 2
( j−1)�n

∣∣∣
≤
∣∣∣Kbn(s− τ)σ 2

s −Kbn(s− τ)σ 2
( j−1)�n

∣∣∣+ ∣∣∣Kbn(s− τ)σ 2
( j−1)�n

−Kbn(tj−1 − τ)σ 2
( j−1)�n

∣∣∣,
which is OP

(
1/mn�

1/2
n

)
+OP

(
1/m2

n�n

)
. So, we deduce (B.19) for l = 5.

Step 2. To show Lemma B.2, we need several preliminary lemmas. We employ the “block
splitting” method proposed in Jacod and Protter (2011) (see Section 16.5.4 and page 548
therein). Recall that

H(1)n =
n−kn+1∑

i=1

ζ n
i ,

where ζ n
i = 1

φkn (g)
Kmn�n (ti−1 − τ)

(
φn

i,0 −E
(

φn
i,0

∣∣∣F(i−1)�n

))
. The variables ζ n

i are not

martingale differences. To use martingale methods, we fix an integer m ≥ 1, and divide the
summands in the definition of H(1)n into blocks of size mkn and kn. Concretely, the �th
big block, of size mkn, contains the indices between I(m,n,�) = (�− 1)(m + 1)kn + 1 and

I(m,n,�)+mkn −1. The number of such blocks before time t is ln(m) =
[

n−kn+1
(m+1)kn

]
. These

big blocks are separated by small blocks of size kn, and the “real” time corresponding to
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the beginning of the �th big block is t(m,n,�) = (I(m,n,�)− 1)�n. Then we introduce the
summand over all the big blocks,

Zn(m) :=
ln(m)∑
�=1

δ(m)n
� :=

ln(m)∑
�=1

mkn−1∑
r=0

ζ n
I(m,n,�)+r . (B.22)

Note that the sequence
(
δ(m)n

�

)
are now martingale differences w.r.t. the discrete filtration

G� = F(I(m,n,�+1)−1)�n , for � = 1, . . . ,ln(m).
We now show that the contribution of the small blocks, i.e., H(1)n − Zn(m), is asymp-

totically “negligible” compared to m−1/2
n �

−1/4
n .

Lemma B.5. Under Assumptions 2–4, limm→∞ limsupn→∞E
(

m1/2
n �

1/4
n
∣∣H(1)n −

Zn(m)
∣∣)= 0.

Proof. Denote by J(n,m) the set of all integers j between 1 and n − kn + 1, which
are notin the big blocks (i.e., those corresponding to the small blocks). We further divide
J(n,m) into kn disjoint subsets J(n,m,r) for r = 1, . . . ,kn, where J(n,m,r) is the set of all
j ∈ J(n,m) equal to r modulo kn. Then, H(1)n − Zn(m) =∑kn

r=1
∑

j∈J(n,m,r) ζ
n
j . Observe

that E
(

ζ n
j

∣∣∣F( j−1)�n

)
= 0 and ζ n

j is F( j+kn)�n measurable. Then
∑

j∈J(n,m,r) ζ
n
j is the

sum of martingale increments, because any two distinct indices in J(n,m,r) are more than

kn apart. Therefore, by (B.14) and the fact that E
(

ζ n
j

∣∣∣F( j−1)�n

)
= 0, for some constant

C (changing from line to line) and large enough n,

E
∣∣∣ ∑

j∈J(n,m,r)

ζ n
j

∣∣∣2 ≤ C
∑

j∈J(n,m,r)

�n

φ2
kn

(g)
K2

bn
(tj−1 − τ) ≤ C

1

(m+1)k3
nmn�n

∫
K2(u)du ≤ C

�
1/2
n

mmn
,

where the last inequality holds because of (2.13) and the second inequality holds
because, recalling that two consecutive j’s in J(n,m,r) are separated by (m + 1)kn,

(m + 1)knmn�2
n
∑

j∈J(n,m,r) K2
bn

(tj−1 − τ) converges to
∫

K2(u)du. Then, E
(

m1/2
n �

1/4
n∣∣H(1)n −Zn(m)

∣∣) is O
(
1/

√
m
)
, for large enough n. As m → ∞, the above quantity goes

to 0 and we get the result. �

Next, we modify the “big-blocks” process Zn(m) defined in (B.22) in such a way that
each summand involves the volatility at the beginning of the corresponding large block.
Recalling the notation in (B.11), we set

ηn
i,r = 1

φkn(g)
Kmn�n

(
ti−1 − τ

)(
φn

i,r −E
(

φn
i,r

∣∣∣F(i−r−1)�n

))
, (B.23)

η′n
i,r = 1

φkn(g)
Kmn�n(ti−1 − τ)

(
E
(

φn
i,r

∣∣∣F(i−r−1)�n

)
−E

(
φn

i,r

∣∣∣F(i−1)�n

))
, (B.24)

Mn(m) =
ln(m)∑
i=1

mkn−1∑
r=0

ηn
I(m,n,i)+r,r, M′n(m) =

ln(m)∑
i=1

mkn−1∑
r=0

η′n
I(m,n,i)+r,r . (B.25)
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Lemma B.6. Under Assumptions 2–4, for a fixed m,

lim
n→∞E

(
m1/2

n �
1/4
n

∣∣Zn(m)−Mn(m)−M′n(m)
∣∣)= 0.

Proof. We use a similar method as in the previous lemma: Let J′(n,m) the set of all
integers j between 1 and n− kn +1, which are inside the big blocks, that is of the form j =
I(m,n,i)+ l for some i ≥ 1 and l ∈ {0, . . . ,mkn −1}. Let J′(n,m,r) be the set of all j ∈ J′(n,m)

equal to r modulo kn. We can then write Zn(m)−Mn(m)−M′n(m) =∑kn
r=1

∑
j∈J′(n,m,r) θ

n
j ,

where θn
j = 1

φkn (g)
Kmn�n(tj−1 − τ)

(
φn

j,0 −φn
j,l −E

(
φn

j,0 −φn
j,l

∣∣∣F( j−1)�n

))
, when j =

I(m,n,i)+ l. Note φj,0 and φj,l have the same noise part, − 1
2 ε̂n

j , and the cross term W
n
j εn

j
has expectation 0. Then, for some constant C and large enough n,

E
∣∣∣θn

j

∣∣∣2 ≤ 1

φ2
kn

(g)
K2

mn�n
(tj−1 − τ)E

∣∣∣φn
j,0 −φn

j,l

∣∣∣2 ≤ CK2
mn�n

(tj−1 − τ)mkn�3
n,

for j ∈ J′(n,m,r), where the last inequality follows by conditioning on F( j−1)�n , using that

E
[
(W

n
j )4|F( j−1)�n

] = 3φkn(g)2�2
n, and applying (B.17). As in the proof of the previous

lemma,

E
∣∣∣ ∑

j∈J′(n,m,r)

θn
j

∣∣∣2 ≤ C�3
nkn

∑
j∈J′(n,m,r)

K2
mn�n

(tj−1 − τ) ≤ C
�n

mn

∫
K2(u)du.

So we have E
(

m1/2
n �

1/4
n

∣∣Zn(m)−Mn(m)−M′n(m)
∣∣) is less than Cm1/2

n �
1/4
n kn

√
�n
mn

and, hence, it converges to 0. �

Now, we prove M′n(m), defined in (B.25), is asymptotically negligible.

Lemma B.7. Under Assumptions 2–4, limn→∞E
(

m1/2
n �

1/4
n

∣∣M′n(m)
∣∣)= 0.

Proof. Recall that bn = mn�n and �n
i,j = E(φn

i,j|H(i−1)�n) − (σ(i−j−1)�n W
n
i )2 and,

since Ht = F (0) ⊗ σ (εs : s ∈ [0,t)),

E
(

�n
i+r,r

∣∣∣F(i−1)�n

)
= E

(
φn

i+r,r

∣∣∣F(i−1)�n

)
−E

(
(σ(i−1)�n W

n
i+r)

2
∣∣∣F(i−1)�n

)
,

E
(
�n

i+r,r

∣∣∣F(i+r−1)�n

)
= E

(
φn

i+r,r

∣∣∣F(i+r−1)�n

)
−E

(
(σ(i−1)�n W

n
i+r)

2
∣∣∣F(i+r−1)�n

)
.

Since W
n
i+r is a linear combination of W(i+r)�n, . . . ,W(i+r+kn−1)�n , we have

η′n
i+r,r = 1

φkn(g)
Kbn(ti+r−1 − τ)

(
E
(

φn
i+r,r

∣∣∣F(i−1)�n

)
−E

(
φn

i+r,r

∣∣∣F(i+r−1)�n

))
= 1

φkn(g)
Kbn(ti+r−1 − τ)

(
E
(

�n
i+r,r

∣∣∣F(i−1)�n

)
−E

(
�n

i+r,r

∣∣∣F(i+r−1)�n

))
.
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Next, note that, by (B.16), we have

E
∣∣∣E(�n

i+r,r

∣∣∣F(i−1)�n

)
−E

(
�n

i+r,r

∣∣∣F(i+r−1)�n

)∣∣∣2
≤ E

(
E
(

�n
i+r,r

∣∣∣F(i+r−1)�n

)2
)

≤ E

(
E

((
�n

i+r,r

)2
∣∣∣∣F(i+r−1)�n

))
≤ C�

3/2
n .

We can then deduce that, for r �= l,

E
(
η′n

i+r,rη
′n
i+l,l

)
≤ C

1

φkn(g)2
|Kbn(ti+r−1 − τ)||Kbn(ti+l−1 − τ)|�3/2

n .

Therefore, denoting for simplicity Ii = I(m,n,i) = (i−1)(m+1)kn +1,

E
∣∣∣mkn−1∑

r=0

η′n
I(m,n,i)+r,r

∣∣∣2 ≤ C�
1/2
n

(∫ tIi+(mkn−1)�n

tIi−1

|Kbn (s− τ) |ds

)2

.

The result is then proved since m1/2
n �

1/4
n E

∣∣M′n(m)
∣∣≤ Cm1/2

n �
1/2
n

∫ |K(u)|du → 0. �

At this stage, we are ready to prove a CLT for the processes Mn(m), for each fixed m.
We follow the arguments of Jacod and Protter (2011, p. 550). For completeness, we outline
them here. Let

L (g)t =
∫ t+1

t
g(u− t)dW1

u, L′ (g)t =
∫ t+1

t
g′(u− t)dW2

u, (B.26)

where W1 and W2 are two independent one-dimensional BMs defined on an auxiliary space(
�̃,F̃,

(
F̃t

)
t≥0

,P̃

)
. The processes L(g) and L′(g) are independent, stationary, centered,

and Gaussian with covariances E
(
L (g)t L (g)s

) = ∫ (t+1)∧(s+1)
t∨s g(u − t)g(u − s)du, and

E
(
L′ (g)t L′ (g)s

) = ∫ (t+1)∧(s+1)
t∨s g′(u − t)g′(u − s)du. Next, denoting Ẽ the expectation

with respect to P̃, let

μ
(
v,v′)= Ẽ

((
vL (g)s + v′L′ (g)s

)2 − v′2φ(g′)
)
,

μ′ (v,v′;s,s′
)= Ẽ

(((
vL (g)s + v′L′ (g)s

)2 − v′2φ(g′)
)((

vL (g)s′ + v′L′ (g)s′
)2 − v′2φ(g′)

))
,

R
(
v,v′)=

∫ 2

0

(
μ′ (v,v′;1,s

)−μ
(
v,v′)μ(v,v′))ds.

As argued in the proof of Theorem 7.20 in Aït-Sahalia and Jacod (2014), one can show

that 1
θ R(σt,θvt) equals 4

(
�22σ 4

t /θ +2�12σ 2
t γtθ +�11γ 2

t θ3
)
, where vt = √

γt is the

conditional standard deviation for εt. For a fixed m and t ∈ [0,T], let γ (m)t = mμ(σt,θvt),
and γ ′(m)t = ∫ m

0 ds
∫ m

0 ds′μ′ (σt,θvt;s,s′
)
.

Lemma B.8. Under Assumptions 2–4, for each m ≥ 1, as n → ∞, the process

m1/2
n �

1/4
n Mn(m) converges in law to an random variable (r.v.) Y(m), which conditionally

on F is a centered Gaussian r.v. with variance

E
((

Y(m)
)2∣∣∣F)= 1

m+1

1

θ

(
γ ′(m)τ −γ (m)2

τ

)∫
K2(u)du.
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Proof. For i = 1, . . . ,ln(m), let η(m)n
i := m1/2

n �
1/4
n

∑mkn−1
r=0 ηn

I(m,n,i)+r,r , Gn
i =

F(I(m,n,i+1)−1)�n , Ei−1[·] = E[·|Gn
i−1], bn = mn�n, and φn = φkn(g). For simplicity, we

write Ii = I(m,n,i). Note that η(m)n
i is Gn

i -measurable and, furthermore, E[η(m)n
i |Gn

i−1] =
0. We will apply Theorem 2.2.15 in Jacod and Protter (2011) to the martingale increments
η(m)n

i ,i = 1, . . . ,ln(m). By the Jensen-type inequality and (B.15), we have, for each fixed m,

ln(m)∑
i=1

Ei−1
∣∣η(m)n

i

∣∣4 ≤ C
ln(m)∑
i=1

m2
n�3

n

⎛⎝mkn−1∑
r=0

1

|φn| |Kbn

(
tIi+r−1 − τ

) |
⎞⎠4

≤ C
ln(m)∑
i=1

m4m2
n�3

n
1

mkn�n

∫ tIi−1+mkn�n

tIi−1

K4
bn

(s− τ)ds → 0.

(B.27)

Therefore, for every ε > 0,
∑ln(m)

i=1 Ei−1

(∣∣η(m)n
i

∣∣21∣∣η(m)n
i

∣∣2≥ε

)
≤ 1

ε

∑ln(m)
i=1 Ei−1(∣∣η(m)n

i

∣∣4) n→∞−→ 0. It remains to prove that, for a fixed m,

Sn :=
ln(m)∑
i=1

Ei−1

((
η(m)n

i
)2) P−→ 1

(m+1)φ2(g)

1

θ

∫
K2(u)du

(
γ ′(m)τ −γ (m)2

τ

)
,

(B.28)

and, for any bounded Ft-martingale N that is orthogonal to W, or for N = W,

ln(m)∑
i=1

E
(
η(m)n

i
(
N(Ii+1−1)�n −N(Ii−1)�n

) ∣∣∣Gn
i−1

)
P→ 0. (B.29)

We start by proving (B.28). Let

αn
i := 1

k2
n�n

mkn−1∑
r=0

Kbn

(
tIi+r−1 − τ

)
φn

Ii+r,r

= 1

k2
n�n

Kbn

(
tIi−1 − τ

)mkn−1∑
r=0

φn
Ii+r,r +OP

(
1

m2
n�

3/2
n

)
.

(B.30)

For (I(m,n,i)−1)�n ≤ s < (I(n,m,i+1)−1)�n, set

γ n
s = Ei−1

( 1

k2
n�n

mkn−1∑
r=0

φn
Ii+r,r

)
, γ ′n

s = Ei−1

(( 1

k2
n�n

mkn−1∑
r=0

φn
Ii+r,r

)2)
.

Then, we have

Sn = mn�
1/2
n

k4
n�2

n

φ2
kn

(g)

ln(m)∑
i=1

K2
mn�n

(tIi−1 − τ)

(
γ ′n

tIi−1
−
(
γ n

tIi−1

)2
)

+OP

(
1

mn
√

�n

)
.

If we can show that for any s ∈ [0,T],

γ n
s

P−→ γ (m)s, γ ′n
s

P−→ γ ′(m)s, (B.31)
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we can obtain (B.28); indeed,

Sn = 1

(m+1)kn�n
mn�

1/2
n k2

n�2
n

∫ T

0
K2

mn�n
(s− τ)

(
γ ′(m)s −γ (m)2

s

)
ds+oP(1)

= 1

θ(m+1)

∫ T−τ
mn�n

−τ
mn�n

K2(u)
(
γ ′(m)τ+umn�n −γ (m)2

τ+umn�n

)
du+oP(1)

P−→ 1

θ(m+1)

∫
K2(u)du

(
γ ′(m)τ −γ (m)2

τ

)
.

To show (B.31), we fix s ∈ [0,T] and apply Lemma 16.3.9 in Jacod and Protter (2011) with
the sequence in = I(m,n,i), Tn = (I(m,n,i) − 1)�n if I(m,n,i − 1)�n ≤ s < I(m,n,i)�n.
Concretely, with the notation Ln

u = 1√
kn�n

W
n
in+[knu], L′n

u = √
knεn

in+[knu], L̂n
u = knε̂ n

in+[knu],

for u ∈ [0,m], we have

1

k2
n�n

mkn−1∑
r=0

φn
i+r,r = Fn

(
σTn Ln,L′n,L̂n),

where Fn is the function on D×D×D (here D = D
(

[0,m] : R1
)

is the Skorokhod space),

defined as

Fn(x,y,z) = 1

kn

mkn−1∑
r=0

⎛⎜⎝
⎛⎝x

(
r

kn

)
+ 1√

k2
n�n

y

(
r

kn

)⎞⎠2

− 1

2k2
n�n

z

(
r

kn

)⎞⎟⎠ . (B.32)

Note that the functions Fn,F2
n converge pointwise to F,F2, respectively, where

F(x,y,z) =
∫ m

0

{
(x (s)+ θy(s))2 − 1

2
θ2z(s)

}
ds.

Now, we deduce from Lemma 16.3.9 in Jacod and Protter (2011) that with Z = 1, φ(f ) =∫ 1
0 f 2(u)du and the notation from (B.26):12

E
(

Fn
(
σTn Ln,L′n,L̂n)∣∣G(i−1)

) P→ E
(
F
(
σsL,vsL′,2φ(g′)γs

))= γ (m)s.

Similarly,

E
(

F2
n
(
σTn Ln,L′n,L̂n)∣∣∣G(i−1)

)
P→ γ (m)′s,

and we conclude (B.31). This finishes the proof for (B.28). Now, we show (B.29). Let

ζ n
i = m1/2

n �
1/4
n

φkn(g)

mkn−1∑
r=0

Kmn�n

(
tIi+r,r − τ

)
φn

Ii+r,r,

12Below, we assume that the space
(
�̃,F̃,P̃

)
, where W1 and W2 (hence, L and L′) are defined, is an extension of

the space (�,F,P) and that W1 and W2 are independent of X and ε.
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and set Dn
i (N) = N(Ii+1−1)�n − N(Ii−1)�n . Since E

(
D(N)n

i |Gn
i−1

)
= 0, we only need to

prove that, for any bounded martingale N,

ln(m)∑
i=1

E
(
ζ n

i Dn
i (N)

∣∣∣Gn
i−1

)
P→ 0. (B.33)

Following the same argument of (B.27) and inequality (B.15), we have

ln(m)∑
i=1

E
(
ζ n

i
)2 = mn�

1/2
n

φ2
kn

(g)

ln(m)∑
i=1

Ei−1

((mkn−1∑
r=0

Kmn�n

(
tIi+r−1 − τ

) |φn
Ii+r,r|

)2)

≤ C
ln(m)∑
i=1

m2mn�
3/2
n

1

mkn�n

∫ tIi−1+mkn�n

tIi−1

K2
mn�n

(s− τ)ds = O(1) .

(B.34)

If N is a square-integrable martingale, the Cauchy–Schwarz inequality yields⎛⎝ln(m)∑
i=1

Ei−1
(
ζ n

i Dn
i (N)

)⎞⎠2

≤
⎛⎝ln(m)∑

i=1

E
(
ζ n

i
)2⎞⎠⎛⎝ln(m)∑

i=1

E
(
Dn

i (N)
)2⎞⎠≤ C

√
EN2

T .

Note with notation (B.11) and

ζ ′n
i = m1/2

n �
1/4
n

φkn(g)

mkn−1∑
r=0

Kmn�n

(
tIi+r,r − τ

)
�n

Ii+r,r,

the same argument also yields Ei−1
(
ζ ′n

i Dn
i (N)

) ≤ C�
1/4
n

√
EN2

T . As shown on page 552

of Jacod and Protter (2011), we just need to prove this for N ∈ N (i),i = 0,1, where N (0)

is the set of all bounded (F (0)
t )-martingales orthogonal to W and N (1) is the set of all

martingales having N∞ = h
(
χt1, . . . ,χtw

)
, where h is a Borel bounded function on Rw

and t1 < · · · < tw and w ≥ 1. When N is either W or in N (0), D(N)n
i is H∞ measurable.

Therefore, Ei−1

(
ζ n

Ii
D(N)n

i

)
is equal to

Ei−1

(
ζ ′n

I(m,n,i)D(N)n
i

)
+ m1/2

n �
1/4
n

φkn (g)
Ei−1

(
mkn−1∑

r=0

Kbn

(
tIi+r,r − τ

)(
σ(Ii−1)�n W

n
Ii+r

)2
D(N)n

i

)
.

The second term vanishes when N = W since it is the F(Ii−1)�n -conditional expectation of
an odd function of the increments of the process W after time (Ii − 1)�n. Suppose now
that N is a bounded martingale, orthogonal to W. By Itô’s formula, we see that (W

n
j )2

is the sum of a constant (depending on n) and of a martingale which is a stochastic
integral with respect to W,B on the interval [( j−1)�n, ( j+ kn −1)�n]. Then, the orthog-
onality of N and W implies this second term above vanishes as well. So, we have that

E
(
ζ n

Ii
D(N)n

i |Gn
i−1

)
≤ C�

1/4
n

√
EN2

T . When N ∈ N (1) is associated with h and w and the

ti’s, the same argument in Jacod and Protter (2011) and the inequality E
(
ζ n

i

)2 ≤ C 1
mn

√
�n
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deduced from (B.34) yield

E

⎛⎝ln(m)∑
i=1

∣∣∣Ei−1

(
ζ n

Ii
D(N)n

i

)∣∣∣
⎞⎠≤ Cw

(
�

1/4
n + 1

mn
√

�n

)
,

and (B.29) is shown. This finishes the proof of Lemma B.8. �

The only thing left to prove Lemma B.2 is the stable convergence in law Y(m)
st−→ Zτ ,

as m → ∞. For this, we only need to show that, as m → ∞, 1
m+1

(
γ ′(m)τ −γ (m)2

τ

)
st−→

R(στ,θvτ ). Recall that the process (L,L′) is stationary, and the variables (Lt,L′
t) and

(Ls,L′
s) are independent if |s − t| ≥ 1. So, μ′ (v,v′;s,s′

) = (
μ
(
v,v′))2 when |s − s′| ≥ 1

and μ′ (v,v′;s,s′
)= μ′ (v,v′;1,s′ +1− s

)
, for all s,s′ ≥ 0 with s′ +1−s ≥ 0. Then, if m ≥ 2

and letting μ = μ(στ,θvτ ) and μ′ (s,s′)= μ′ (στ,θvτ ;s,s′
)
, we have

1

m+1

(
γ ′(m)τ −γ (m)τ γ (m)τ

)= 1

m+1

∫ m

0
ds
∫ m

0
μ′ (s,s′)ds′ −m2μ2

= m−1

m+1

∫ 2

0

(
μ′ (1,s′)−μ2

)
ds′ + 1

m+1

∫ 1

0
ds
∫ 2

1−s

(
μ′ (1,s′ +1− s

)−μ2
)

ds′,

which converges to R(στ,θvτ ), since μ,μ′ are bounded. This finishes the proof of
Lemma B.2.

Step 3. We now show Lemma B.3.

Proof of Lemma B.3. Let bn = mn�n and t(i) = (I(m,n,i)−1)�n, where the notation
for I(m,n,i) can be found after Step 2 above. From the proof of Theorem 6.2 in Figueroa-
López and Li (2020a) and recalling we have bounded jumps, we have

b−1/2
n

∫ T

0
Kbn (t − τ)

(
σ 2

t −σ 2
τ

)
dt = b−1/2

n �τ−√
bn

∫ T

τ−√
bn

L

(
t − τ

bn

)
dBt +oP(1),

where L(t) = ∫∞
t K(u)du1{t>0} − ∫ t

−∞ K(u)du1{t≤0}. Furthermore, we have

b−1/2
n

∫
(0,T)c

Kbn(t − τ)dt = 1√
bn

(∫ −τ
bn

−∞
K (u)du+

∫ ∞
T−τ
bn

K(u)du

)
→ 0, as n → ∞,

since Assumption 2 implies that x1/2 ∫∞
x K(u)du → 0, as x → ∞. So, for a fixed m, we can

rewrite m1/2
n �

1/4
n H(2)n as

βb−1/2
n �τ−√

bn

ln(m)∑
i:t(i)>τ−√

bn

∫ t(i)+(m+1)kn�n

t(i)
L

(
t − τ

bn

)
dBt +oP(1) =:

ln(m)∑
i=1

α(m)n
i +oP(1),

(B.35)

with α(m)n
i = 0 if i is such that t(i) ≤ τ −√

bn. Combining with the proof of Lemma B.2,
we can deduce the following lemma.
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Lemma B.9. Under Assumptions 2 and 3 and (2.2), with mn → ∞ and mn�
3/4
n → β ∈

(0,∞),

lim
m→∞ limsup

n→∞
m1/2

n �
1/4
n E

∣∣∣∣∣∣H(1)n +H(2)n −
ln(m)∑
i=1

ζ(m)n
i −

ln(m)∑
i=1

α(m)n
i

∣∣∣∣∣∣= 0,

where ζ(m)n
i := m1/2

n �
1/4
n

1
φkn (g)

Kbn (t(i)− τ)
∑mkn−1

r=1 φn
Ii+r,r with notation (B.11). �

Now Lemma B.3 follows if we apply Theorem 2.2.15 in Jacod and Protter (2011) to the
sum of martingale differences

(
ζ(m)n

i +α(m)n
i

)
and the filtration Gi = F(Ii+1−1)�n

, and

show that
∑ln(m)

i=1

(
ζ(m)n

i +α(m)n
i

) st−→ Zτ +βZ′
τ . To this end, we first need to show, for a

fixed m,

ln(m)∑
i=1

Ei−1

((
ζ(m)n

i
)2)→ 1

m+1

1

θ

(
γ ′(m)τ −γ (m)2

τ

)∫
K2(u)du, (B.36)

ln(m)∑
i=1

Ei−1

((
α(m)n

i
)2)→ β2�2

τ

∫
L2(u)du, (B.37)

ln(m)∑
i=1

Ei−1
((

ζ(m)n
i α(m)n

i
))→ 0. (B.38)

The proof of (B.36) can be found in the proof of Lemma B.2. (B.37) can be directly derived
from the definition (B.35). So, we only need to show (B.38). With the notation (B.11), we
have

Ei−1

⎛⎝⎛⎝mkn−1∑
r=0

φn
Ii+r,r

⎞⎠∫ t(i)+(m+1)kn�n

t(i)
L

(
t − τ

bn

)
dBt

⎞⎠
= σ 2

t(i)Ei−1

⎛⎝⎛⎝mkn−1∑
r=0

(
W

n
t(i)+r

)2

⎞⎠∫ t(i)+(m+1)kn�n

t(i)
L

(
t − τ

bn

)
dBt

⎞⎠
+Ei−1

⎛⎝⎛⎝mkn−1∑
r=0

�t(i)+r,r

⎞⎠∫ t(i)+(m+1)kn�n

t(i)
L

(
t − τ

bn

)
dBt

⎞⎠ := Ai +Bi.

Let Us
i,r = ∫ s

t(i)+r�n
gn

(
u−(t(i)+r�n)

kn�n

)
dWu, gn(t) =∑kn

r=1 g
(

r
kn

)
1[ (r−1)�n

kn�n
, r�n

kn�n
,
](t). By

the Itô lemma, we have, when t(i) > τ −√
bn,

Ai = 1

k2
n�n

σ 2
t(i)Ei−1

(
mkn−1∑

r=0

∫ t(i)+(r+kn)�n

t(i)+r�n

Us
i,rgn

(
s− (t(i)+ r�n)

kn�n

)
L

(
s− τ

bn

)
ρsds

)
= 0,
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since E
(

Us
i,r

∣∣∣Gi−1

)
= 0. As for Bi, we can apply the Cauchy–Schwarz inequality. By

(B.16) and the boundedness of L,

B2
i ≤ Ei−1

⎛⎝mkn−1∑
r=0

�t(i)+r,r

⎞⎠2 ∫ t(i)+(m+1)kn�n

t(i)
L2
(

s− τ

bn

)
ds ≤ C�n.

Finally, we can show

ln(m)∑
i=1

E
((

ζ(m)n
i α(m)n

i
) |Gi−1

)=
ln(m)∑

i:t(i)>τ−√
bn

CbnKbn(t(i)− τ)�τ−√
bn

(Ai +Bi)

≤ Cbn

ln(m)∑
i=1

∣∣Kbn(t(i)− τ)
∣∣(�1/2

n

)
= O(mn�n) → 0.

Now, we single out a two-dimensional BM W̃ = (W,B), and a subset N of bounded
martingales, all orthogonal to W̃. Let Dn

i (N) = N(Ii+1−1)�n
− N(Ii−1)�n . We need

to prove
∑ln(m)

i=1 E
((

ζ(m)n
i +α(m)n

i

)
Dn

i (N)|Gn
i−1

)
P→ 0, whenever N is one of the

components of W̃ or is in the set N . Since [Wt,Bt] ≤ [Wt,Wt] = t, we can deduce∑ln(m)
i=1 E

((
ζ(m)n

i +α(m)n
i

)
Dn

i (N)|Gn
i−1

)
P→ 0,for the same reason as in proving

(B.29). Next,
∑ln(m)

i=1 E
((

ζ(m)n
i +α(m)n

i

)4 |Gi−1

)
P→ 0 can be easily deduced by

straightforward computation and (B.27). Thus, letting m → ∞, we can conclude that

m1/2
n �

1/4
n

(
H(1)n +H(2)n) converges stably in law to a random variable defined on a

good extension
(
�̃,F̃,

(
F̃t

)
t>0

,P̃
)

of the space
(
�,F, (Ft)t≥0 ,P

)
, which, conditionally

on F , is Gaussian with a conditional variance δ2
1 + δ2

2. Combining with Lemma B.2,

we can finally deduce that m1/2
n �

1/4
n

(
H(1)n +H(2)n) st−→ Zτ + βZ′

τ , where Zτ ,Z′
τ are

defined on
(
�̃,F̃,

(
F̃t

)
t>0

,P̃
)

and conditionally independent with Ẽi−1

(
Z2
τ

)
= δ2

1 and

Ẽi−1

(
Z′2
τ

)
= δ2

2.
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