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Essential Dimensions of Algebraic Groups
and a Resolution Theorem for G-Varieties
Zinovy Reichstein and Boris Youssin

Abstract. Let G be an algebraic group and let X be a generically free G-variety. We show that X can be trans-
formed, by a sequence of blowups with smooth G-equivariant centers, into a G-variety X ′ with the following
property: the stabilizer of every point of X ′ is isomorphic to a semidirect product U �A of a unipotent group
U and a diagonalizable group A.

As an application of this result, we prove new lower bounds on essential dimensions of some algebraic
groups. We also show that certain polynomials in one variable cannot be simplified by a Tschirnhaus trans-
formation.

1 Introduction

Let k be an algebraically closed base field of characteristic zero, let G be an algebraic group
and let X be a G-variety, both defined over k. Assume X is generically free, i.e., the G-action
is free on a dense open subset of X. Recall that by a theorem of Rosenlicht [Ro1], [Ro2] the
rational quotient map X ��� B separates orbits of X in general position; in other words, we
can think of X as a G-torsor over B.

We shall say that X is defined in dimension d if there exists a dominant rational map
X ��� X1 of generically free G-varieties

X ������ X1

π

�����

�����

π1

B ������ B1

(1.1)

with dim(B1) ≤ d. (Here the vertical arrows represent rational quotient maps for the G-
action.) The smallest integer d such that X is defined in dimension d will be called the
essential dimension of X and denoted by ed(X); cf. Definition 6.1. In the sequel we shall
refer to the rational map (1.1) as a compression (or a G-compression) of X; see Section 2.5.

We will say that the essential dimension ed(G) of the group G is equal to d if every
generically free G-variety is defined in dimension d, and d is the smallest integer with this
property. The essential dimension is a numerical invariant of the group; it can often be
characterized as the minimal number of independent parameters required to describe all
algebraic objects of a certain type. These objects are field extensions if G = Sn, division
algebras if G = PGLn, quadratic forms if G = On, Cayley algebras if G = G2, Albert
algebras if G = F4, etc. Groups of essential dimension 0 are precisely the special groups
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G-Varieties 1019

introduced by Serre [Se1] and classified by Grothendieck [Gro] in the 1950s. For details we
refer the reader to [Re2]; for results on essential dimensions of finite groups see also [BR1]
and [BR2].

The lower bounds on ed(G) in [Re2] are proved in one of two ways. One approach,
due to J.-P. Serre, uses cohomological invariants (see Lemma 6.9 and [Re2, Section 12]);
the second method, due to the first author, relies on applying the Tsen-Lang theorem to
appropriately defined anisotropic forms.

In this paper we develop an alternative approach, based on the following resolution
procedure.

Theorem 1.1 (Corollary 3.6 and Theorem 4.1) Let X be a generically free G-variety. Then
there exists a sequence

Xn
πn−−−−→ Xn−1

πn−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X

of blowups with smooth G-invariant centers such that Xn is smooth and for every x ∈ Xn the
stabilizer Stab(x) is isomorphic to a semidirect product U � A, where U is unipotent and A is
diagonalizable.

In fact, we show that a sequence of equivariant blowups can be chosen so that Xn is in
“standard form”; see Definition 3.1 and Corollary 3.6. The proof of this result depends on
canonical resolution of singularities; see Section 3.

In Sections 5–7 we use the above resolution procedure to prove the following lower
bound on ed(X) and ed(G), and the related numerical invariants ed(X; p) and ed(G; p);
see Definition 6.3. Recall that the rank of a finite abelian group H is the minimal number
of generators of H or, equivalently, the minimal dimension of a faithful k-representation of
H. We shall denote this number by rank(H).

Theorem 1.2 Let G be a semisimple group and let H be an abelian subgroup of G, whose
centralizer is finite.

(a) (Theorem 7.7) Suppose X is a generically free G-variety, x is a smooth point of X, and
Stab(x) contains H. Then ed(X) ≥ rank(H). If H is a p-group then ed(X; p) ≥
rank(H).

(b) (Theorem 7.8) ed(G) ≥ rank(H). If H is a p-group then ed(G; p) ≥ rank(H).

Informally speaking, under the assumptions of the theorem, x is an obstruction to com-
pressing X (as in (1.1)). Note that while the essential dimension is a property of X at the
generic point, this obstruction depends on the presence of special geometric points (namely
smooth fixed points of H). This explains our use of biregular methods, such as resolution
of singularities, in what is a priori a birational setting.

In Section 8 we apply Theorem 1.2 to a number of specific groups G. The new bounds
we obtain are summarized in the following theorem. Note that ed(G) ≥ ed(G; p) for any
prime p; see Definition 6.3.

Theorem 1.3

1. (Theorem 8.1) ed(POn; 2) ≥ n− 1,
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2. (Theorem 8.16) If n ≡ 0 or±1 (mod 8) then ed(Spinn; 2) ≥ [ n
2 ] + 1.

3. (Theorem 8.19(5–6)) ed(2E7; 2) ≥ 7, ed(E7; 2) ≥ 8. Here 2E7 and E7 denote, respectively,
the simply connected and the adjoint groups of type E7.

4. (Theorem 8.19(7–8)) ed(E8; 2) ≥ 9, ed(E8; 3) ≥ 5.

We remark that the bound of part (2) is known to be sharp for n = 7, 8 and 9 (see
[Rost2] and Remark 8.18) and that ed(2E7; 2) ≤ ed(2E7) ≤ 9 (see [Ko] and Remark 8.20).
Further results on essential dimensions of specific groups can be found in Section 8.

Most previously known lower bounds on ed(G) can be derived from the existence of co-
homological invariants; see Lemma 6.9 and [Re2, Section 12]. The bounds of Theorem 1.3
cannot be proved in this way at the moment, since the necessary cohomological invariants
are not known to exist. However, one can view these bounds (as well as the bound of The-
orem 8.6) as an indication of what cohomological invariants may exist; see Remark 8.21.

In the last section we give an application of Theorem 1.2(a) to the problem of simplifying
polynomials by Tschirnhaus transformations. Let F be a field and let

α(x) = xn + a1xn−1 + · · · + an−1x + an

be an irreducible polynomial over F. Recall that a Tschirnhaus transformation (without
auxiliary radicals) is an isomorphism of fields F[x]/

(
α(x)
)
	 F[t]/

(
β(t)
)

, where β(t) ∈
F[t] is another irreducible monic polynomial of degree n. We shall say that β(t) is obtained
from α(x) via this Tschirnhaus transformation. In other words, β(t) can be obtained from
α(x) in this way if β(t) is the minimal polynomial of a generator of the field extension
F ⊂ F[x]/

(
α(x)
)

. (Note that all fields in this paper are assumed to contain a copy of the
base field k and all field extensions and isomorphisms are defined over k; see Section 2.1.)

It is shown in [BR1] that if a1, . . . , an are algebraically independent over k, i.e., α(x)
is the general polynomial of degree n, then at least [n/2] coefficients of β(t) are again
algebraically independent over k. Our main result here is as follows.

Theorem 1.4 (see Theorem 9.1) Suppose n
2 ≤ m ≤ n − 1, where m and n are positive

integers. Let am, . . . , an be algebraically independent variables over k, F = k(am, . . . , an) and
E = F[x]/

(
f (x)
)

, where

f (x) = xn + amxn−m + · · · + an−1x + an.

Then any polynomial obtained from f (x) by a Tschirnhaus transformation has at least n−m
algebraically independent (over k) coefficients.

Note that f (x) has n−m + 1 algebraically independent coefficients. However, the form
with n−m independent coefficients is easily attained by the substitution x = an

an−1
y; see the

proof of Theorem 9.1. Thus the lower bound of the theorem is, indeed, the best possible.
Throughout this paper we shall work over a base field k of characteristic zero. This

assumption will be needed when we appeal to equivariant resolution of singularities, the
Levi decomposition of an algebraic group, and the Luna slice theorem. We do not know
whether or not the results of this paper remain valid in prime characteristic.

Theorem 1.1 can be used in various other settings, not directly related to compressions
or essential dimensions. In [RY1] we apply it, along with the the results of Section 5 and the
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Appendix, to the study of splitting fields and splitting groups of G-varieties, including a new
construction of noncrossed product division algebras. In [RY2] we apply Theorem 1.1 to
give a new algebra-geometric proof of the “Key Lemma” of Parusiński [P]. (The latter result
was used in Parusiński’s proof of the existence of Lipschitz stratifications of semianalytic
sets.)

We remark that our resolution theorems in Section 3 are stated in greater generality than
we need for the applications given in this paper. In particular, for the sake of these appli-
cations, it would have sufficed to assume that k is an algebraically closed field throughout.
(Note, however, that this would not have changed the proofs.) The more general statements
will be needed for further applications; see [RY2].
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2 Notation and Terminology

The following notational conventions will be used throughout the paper.

k a base field of characteristic 0
k̄ the algebraic closure of k
G an algebraic group defined over k; see Section 2.4
C(H) = CG(H) the centralizer of H in G
An = An

k the affine space of dimension n over k
Gm = GL1(k) the multiplicative group A1 − {0} over k
X an algebraic variety over k, often a G-variety
Stab(x) the stabilizer of x
ed essential dimension; see Definitions 6.1 and 6.3

2.1 The Base Field

All algebraic objects in this paper, such as rings, fields, algebraic groups, algebraic varieties,
group actions, etc. and all maps between them will be defined over a fixed base field k of
characteristic 0. In Sections 4–8 we will generally assume that k is algebraically closed; we
shall indicate which of the results are true without this assumption. In Sections 3 and 9 we
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will not assume that k is algebraically closed.

2.2 Algebraic Varieties

Algebraic varieties in this paper are allowed to be reducible; in other words, an algebraic
variety is a reduced separated scheme of finite type over k. (Note that here our terminology
is different from that of Hartshorne [Ha], who defines abstract algebraic varieties to be
irreducible.)

Given an algebraic variety X, we will denote its ring of rational functions by k(X), where
a rational function on a reducible variety is a collection of rational functions on its irre-
ducible components; cf. Section 2.3 below. Note that k(X) is a field if X is irreducible. In
general, if X has irreducible components Xi then k(X) is a direct sum of their function fields
k(Xi).

Unless otherwise specified, by a point of X we shall always mean a closed point.

2.3 Rational Maps

A rational map f : X ��� Y is an equivalence class of regular morphisms from dense open
subsets of X to Y , as in [EGA I, Définition 7.1.2]. Equivalently, f is a collection of rational
maps fi : Xi ��� Y , one for each irreducible component Xi of X. The largest open subset U
of X where f is defined is called the domain of f ; f (U ) is called the range of f . A rational
map is said to be dominant if its range is dense in Y .

A dominant rational map f : X ��� Y is said to be d : 1 if there exists a dense open
subset Y0 of its range such that f is defined on f−1(Y0) and | f−1(y)(k̄)| = d for every
y ∈ Y0(k̄).

A birational isomorphism between X and Y is a pair of rational maps X ��� Y and
Y ��� X inverse to each other, or equivalently, a 1–1 correspondence between the irre-
ducible components Xi of X and Yi of Y and a birational isomorphism between Xi and Yi

for each i.

2.4 Algebraic Groups

If G is an algebraic group (defined over k; see Section 2.1) we shall always assume that G(k)
is Zariski dense in G. Note that this is a rather mild assumption; in particular, it is obviously
satisfied if k is algebraically closed or if G is a finite group all of whose points are defined
over k (e.g., Sn, viewed as an algebraic group over k). It is also satisfied if G is connected
(see [Hu, Theorem 34.4(d)]) and, more generally, if every irreducible component of G has
a k-point.

Our results are, in fact, true, without the above assumption; however, leaving it out
would complicate the proofs in Section 3 (see Remark 3.3). Since this assumption is satis-
fied in every setting we want to consider, we chose to impose it throughout this paper.

2.5 G-Varieties

Let G be an algebraic group. We shall call an algebraic variety X a G-variety if X is equipped
with a regular action of G, i.e., an action given by a regular morphism G× X → X.
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If X and Y are G-varieties then by a regular map X → Y of G-varieties we mean a
regular G-equivariant map. The same applies to rational maps of G-varieties, biregular and
birational isomorphisms of G-varieties, etc.

A G-variety is X called generically free if G acts freely (i.e., with trivial stabilizers) on a
dense open subset if X.

A G-compression X ��� Y is a dominant rational map of generically free G-varieties. We
will also use the term compression if the reference to G is clear from the context.

2.6 Rational Quotients and Primitive Varieties

Let X be a G-variety. A rational map π : X ��� Y is called the rational quotient map (and Y ,
the rational quotient) if π∗

(
k(Y )
)
= k(X)G. The rational quotient exists for any G-variety;

we will denote it by X/G.
We will say that X is a primitive G-variety if the rational quotient X/G is irreducible or,

equivalently, if k(X)G is a field. It is easy to see that X is primitive if and only if G transitively
permutes the irreducible components of X; see, e.g., [Re2, Lemma 2.2].

By a theorem of Rosenlicht the rational quotient map separates the G-orbits in a dense
Zariski open subset of X; see [Ro1, Theorem 2], [PV, Theorem 2.3] and [Ro2]. In particular,
if X is primitive then each component of X has dimension dim(Y ) + dim(G).

3 Equivariant Resolution of Singularities

Much of this paper relies on the resolution of singularities theorem and especially on its
canonical version which only recently became available; see the references below. In this
section we derive several consequences of this result in the setting of G-varieties.

Definition 3.1 We shall say that a generically free G-variety X is in standard form with
respect to a divisor Y if

(i) X is smooth and Y is a normal crossing divisor on X
(ii) the G-action on X − Y is free, and
(iii) for every g ∈ G and for every irreducible component Z of Y either g(Z) = Z or

g(Z) ∩ Z = ∅.

We will say that X is in standard form if it is in standard form with respect to some divisor
Y .

Our interest in G-varieties in standard form is explained by the fact that they have
“small” stabilizers. This property will be explored in Section 4; see Theorem 4.1. We will
now prove that every generically free G-variety can be brought into standard form by a
sequence of blowups with smooth G-equivariant centers.

Theorem 3.2 Let X be a smooth G-variety and Y ⊂ X be a closed nowhere dense G-
invariant subvariety such that the action of G on X − Y is free. Then there is a sequence
of blowups

π : Xn
πn−−−−→ Xn−1

πn−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X(3.1)
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with smooth G-invariant centers Ci ⊂ Xi such that Xn is in standard form with respect to
Dn ∪ π−1(Y ), where Dn is the exceptional divisor of π (and, in particular, Dn ∪ π−1(Y ) is a
normal crossing divisor in Xn).

Remark 3.3 Recall that throughout this paper we assume G(k) is Zariski dense in G; see
Section 2.4. This assumption is used only in this section (in Theorem 3.2 and Corollary 3.6)
and only for the purpose of lifting a G-action on an algebraic variety to its canonical reso-
lution of singularities.

In fact, our results are true without this assumption because an algebraic group action
always lifts to the canonical resolution of singularities of Bierstone-Milman [BM2] (see also
[BM1]).

The last assertion follows from the fact that the canonical resolution commutes with
base field extensions. This reduces the question of lifting a group action to the case where
k is algebraically closed and thus G(k) is Zariski dense in G. Commutativity with base
extensions follows from [BM2, Remark 3.8].

Alternatively, the above assertion about lifting the action of G can be derived (by an ar-
gument more natural than the one we give in the proof of Theorem 3.2 below) from the fact
that the canonical resolution is functorial with respect to smooth morphisms. Functoriality
with respect to smooth morphisms follows from [BM2, Remark 1.5] and the constructive
definition of the invariant in [BM2, Sections 4, 6].

As we do not need the stronger statements of the results of this section (without the
assumption that G(k) is Zariski dense in G), we omit the details of these arguments.

Note also that it is quite possible that the canonical resolution of Villamayor [V2] (see
also [V1]) has the same properties.

We begin with a preliminary lemma. Let

π : Xn
πn−−−−→ Xn−1

πn−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X(3.2)

be a sequence of blowups with smooth G-invariant centers. Recall that the exceptional
divisor E of π is the union of the preimages in Xn of the centers of the blowups π1, . . . , πn;
the composition π is an isomorphism in the complement of E.

Lemma 3.4 Let X be a G-variety, let π : Xn → X be as in (3.2), and let E1 be an irreducible
component of the exceptional divisor E of π. Then for any g ∈ G, either g(E1) = E1 or
g(E1) ∩ E1 = ∅.

Proof Each irreducible component of E is the preimage in Xn of an irreducible component,
say, Ci,1, of the center Ci of one of the blowups πi+1 : Xi+1 → Xi .

Since Ci is a smooth G-invariant subvariety in Xi , its irreducible components Ci,1, . . . ,
Ci,m are disjoint.

We have E1 = (πi · · ·πn)−1Ci,1; hence, for any g ∈ G,

g(E1) = (πi · · ·πn)−1g(Ci,1).

As Ci is G-invariant and Ci,1 is its connected component, g(Ci,1) is also a connected com-
ponent of Ci , say, g(Ci,1) = Ci, j . Thus

g(E1) = (πi · · ·πn)−1Ci, j .
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If j = 1 then g(E1) = E1; if j �= 1 then g(E1)∩ E1 = ∅, since Ci,1 and Ci, j are disjoint.

Proof of Theorem 3.2 Let Di be the exceptional divisor of π1 · · ·πi : Xi → X. Inductively,
assume that Di is a normal crossing divisor in Xi . We shall give a construction of each
blowup center Ci so that Ci and Di simultaneously have only normal crossings. It was
observed by Hironaka [Hi] that this implies that Di+1 is a normal crossing divisor in Xi+1;
this way all Di are normal crossing divisors.

Denote by Yi the union of Di and the preimage of Y in Xi . Let

Xn−1
πn−1
−−−−→ · · ·

π1−−−−→ X0 = X(3.3)

be a canonical embedded resolution of singularities of Y ⊂ X, as in [BM2, Theorem 1.6];
then Dn−1 and the strict transform Cn−1 of Y in Xn−1 simultaneously have only normal
crossings.

Let

Xn
πn−−−−→ Xn−1(3.4)

be the blowup centered at Cn−1; then Yn is a normal crossing divisor in Xn.
The action of each element g ∈ G(k) lifts to the entire resolution sequence (3.3); this

follows from [BM2, Theorem 13.2(2)(ii)]. This means, inductively, that each blowup center
Ci , i = 0, 1, . . . , n− 2, is invariant under this action of g. Since we are assuming that G(k)
is Zariski dense in G (see Section 2.4), each of these Ci is G-invariant; this implies that the
action of G lifts to the entire resolution tower (3.3), Cn−1—which is defined as the strict
transform of Y —is G-invariant, the action of G lifts to the blowup (3.4), and each Yi , i ≤ n,
is G-invariant.

In particular, Xn is smooth, Yn is a G-invariant normal crossing divisor in Xn, and the
action of G on Xn − Yn is free, since Yn contains the preimage of Y . This implies that
conditions (i) and (ii) of Definition 3.1 are satisfied for Xn and the divisor Yn ⊂ Xn.

We claim that Xn and Yn also satisfy condition (iii) of Definition 3.1. Indeed, since
Cn−1 is defined as the strict transform of Y in Xn−1, (π1 · · ·πn−1)−1(Y ) is contained in
Dn−1 ∪Cn−1, and hence,

(π1 · · ·πn)−1(Y ) ⊂ π−1
n (Dn−1) ∪ π−1

n (Cn−1) = Dn.

Consequently, Yn = (π1 · · ·πn)−1(Y ) ∪ Dn = Dn is the exceptional divisor for π1 · · ·πn:
Xn → X. Lemma 3.4 now says that condition (iii) of Definition 3.1 is satisfied for the pair
(Xn,Yn), as claimed.

Remark 3.5 At the beginning of the proof of Theorem 3.2, we could have taken an alter-
native approach by considering the canonical resolution of the sheaf of ideals IY of Y in X,
as in [BM2, Theorem 1.10], instead of first considering the canonical embedded resolution
of singularities of Y , as in [BM2, Theorem 1.6], and then blowing up the strict transform
Cl−1 of Y . Note that the action of g ∈ G lifts to the canonical resolution of IY ; this may be
deduced from [BM2, Remark 1.5].

Alternatively, we could have used the constructive resolution of the idealistic space de-
termined by the couple (IY , 1), as in [V2, Definition 2.4.1 and Theorem 7.3]. The action of
g ∈ G lifts to this resolution by an argument similar to that of [V2, Corollary 7.6.3].
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Corollary 3.6 Let X be a G-variety and Y ⊂ X a closed nowhere dense G-invariant subva-
riety such that the action of G on X − Y is free. Then there is a sequence of blowups

π : Xn
πn−−−−→ Xn−1

πn−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X(3.5)

where the centers Ci ⊂ Xi are smooth and G-invariant, and Xn is in standard form with respect
to a divisor Ỹ ⊂ Xn which contains π−1(Y ).

Proof Note that since Y is nowhere dense in X, it is nowhere dense in each irreducible
component of X.

Consider the canonical resolution of singularities of X,

Xl
πl−−−−→ · · ·

π1−−−−→ X0 = X,(3.6)

as in [V2, Theorem 7.6.1] or [BM2, Theorem 13.2]. The variety Xl is smooth; similarly to
the proof of Theorem 3.2, we find that the centers Ci ⊂ Xi are smooth and G-invariant,
and the action of G lifts to the entire resolution sequence (3.6).

Let Yl be the preimage of Y in Xl. Then Yl is nowhere dense in each of the irreducible
components of Xl, since Y is nowhere dense in each irreducible component of X. Conse-
quently, Yl is nowhere dense in Xl. Now apply Theorem 3.2 to Xl and Yl to obtain a sequence

Xn
πn→ · · ·

πl+1→ Xl with smooth G-invariant centers, such that Xn is in standard form with
respect to a divisor Ỹ ⊂ Xn which contains π−1(Y ).

4 G-Varieties in Standard Form

With the exception of Remark 4.5, we shall assume throughout this section that the base
field k is algebraically closed.

Theorem 4.1 Let X be a generically free G-variety in standard form, and let Y be as in Def-
inition 3.1. Suppose x ∈ X lies on exactly m irreducible components of Y . Then Stab(x) is
isomorphic to a semidirect product U � A, where U is a unipotent group and A is a diagonal-
izable group of rank≤ m.

Our proof of Theorem 4.1 relies on the following lemma.

Lemma 4.2 Let H be a diagonalizable group, X an H-variety, and let XH be the fixed point
set of H in X. If X is smooth at a point x and x ∈ XH then XH is also smooth at x; moreover,
Tx(XH) = Tx(X)H.

Proof Note that if X is affine then the lemma is a consequence of the Luna Slice Theorem;
see [PV, Corollary to Theorem 6.4]. Moreover, since every quasiaffine H-variety can be
equivariantly embedded into an affine H-variety (see [PV, Theorem 1.6]), the lemma also
holds if X is quasiaffine. Thus it is sufficient to show that x has an open quasiaffine H-
invariant neighborhood U ⊂ X.

After replacing X by its smooth locus (which is open and H-invariant), we may assume
X is smooth. Let H0 be the identity component of H; since H is diagonalizable, H0 is a
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torus (possibly H0 = {1}). By a result of Sumihiro (see [Su, Corollary 2]) there exists an
affine H0-invariant neighborhood X0 of x in X. We now define U as

U =
⋂

h̄∈H/H0

h̄(X0).

Since H/H0 is a finite group, U is an open H-invariant quasiaffine neighborhood of x, as
claimed.

Proof of Theorem 4.1 Consider the Levi decomposition Stab(x) = U � A, where A is
reductive and U is unipotent; see, e.g., [OV, Section 6.4]. We want to show that A is, in
fact, a diagonalizable group of rank≤ m.

Denote the irreducible components of Y passing through x by Z1, . . . ,Zm. They inter-
sect transversely at x; in particular, W = Z1 ∩ · · · ∩ Zm is smooth at x. Recall that by our
assumption each Zi is Stab(x)-invariant; hence, W is also Stab(x)-invariant.

As A is reductive, there is an A-invariant subspace V in Tx(X) complementary to Tx(W ).
We have an A-invariant decomposition

V = V1 ⊕V2 · · · ⊕Vm

where

Vi = V ∩ Tx(Z1) ∩ · · · ∩ T̂x(Zi) ∩ · · · ∩ Tx(Zm);(4.1)

each Vi is one-dimensional. The group A acts on each Vi by a character, say, χi : A → Gm

(possibly trivial). We claim that the homomorphism

χ = (χ1, . . . , χm) : A→ (Gm)m

is injective. Note that the theorem is an immediate consequence of this claim.
To prove the claim, note that Ker(χ) is a reductive subgroup of A. Thus in order to

prove that Ker(χ) = {1}, it is sufficient to show that every diagonalizable subgroup of
Ker(χ) is trivial. (Indeed, this immediately implies that the identity component Ker(χ)0 is
unipotent and, hence, trivial; see [Hu, Exercise 1, p. 137]. Thus Ker(χ) is finite and every
abelian subgroup of Ker(χ) is trivial; this is only possible if Ker(χ) = {1}.)

Let H ⊂ Ker(χ) be a diagonalizable group; we want to show that H = {1}. Assume the
contrary. Denote the fixed point set of H by XH . Since the action of G on X − Y is free,
XH ⊂ Y . By Lemma 4.2, XH is smooth. Consequently, only one irreducible component of
XH passes through x; denote this component by XH

0 . Then XH
0 is contained in one of the

components Z1, . . . ,Zm, say in Zi , and by Lemma 4.2,

Tx(X)H = Tx(XH) = Tx(XH
0 ) ⊂ Tx(Zi).(4.2)

Now note that by our assumption, χi|H is trivial and thus Vi ⊂ Tx(X)H but, on the other
hand, by (4.1) Vi �⊂ Tx(Zi), contradicting (4.2). This completes the proof of the claim.

Corollary 4.3 Suppose X is a G-variety in standard form and x is a point of X.
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(a) If Stab(x) is connected then it is solvable.
(b) if Stab(x) is reductive then it is diagonalizable.
(c) if Stab(x) is finite then it is commutative.

Proof Immediate from Theorem 4.1.

Remark 4.4 Our proof shows that

Tx(X)/Tx(W ) =
m⊕

i=1

Tx(Z1) ∩ · · · ∩ T̂x(Zi) ∩ · · · ∩ Tx(Zm)

Tx(W )
.(4.3)

is a direct sum decomposition of the normal space Tx(X)/Tx(W )
∼
= V as a direct sum of

1-dimensional character spaces for the natural action of A. Moreover, the above (diagonal)
representation of A on V is faithful.

Remark 4.5 Suppose the base field k is not necessarily algebraically closed (but is of char-
acteristic 0), X is a generically free G-variety in standard form, and x ∈ X has a finite sta-
bilizer of exponent e. Then the residue field k ′ of x contains a primitive e-th root of unity.
Indeed, Stab(x) has a faithful diagonal representation (4.3) defined over k ′; this is only
possible if k ′ contains a primitive e-th root of unity.

Corollary 4.6 Let X be a generically free G-variety in standard form. Suppose that H =
Stab(x) is a finite group. Then dim(X) ≥ dim(G) + rank(H).

Here rank(H) denotes the rank of the finite abelian group H = Stab(x); see Corol-
lary 4.3(c).

Proof Let Y be as in Definition 3.1. Suppose exactly m irreducible components Z1, . . . ,Zm

meet at x; then by Theorem 4.1 we have m ≥ rank(H). Since Z1, . . . ,Zm intersect trans-
versely at x, their intersection W = Z1 ∩ · · · ∩ Zm is smooth at x and

dim(X) = dimx(W ) + m = dim(W0) + m,

where W0 is the (unique) component of W passing through X.

Since m ≥ rank(H), it only remains to show that dim(W0) ≥ dim(G). Indeed, let

G ′ = {g ∈ G | g(Zi) = Zi ∀i = 1, . . . ,m}.

Then G ′x ⊂ W0. Since G ′ is a subgroup of finite index in G and Stab(x) is assumed to be
finite, we have dim(W0) ≥ dim(G ′x) = dim(G ′) = dim(G), as claimed.
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5 The Behavior of Fixed Points Under Rational Morphisms

Suppose H is an algebraic group and f : X ��� Y is a rational map of H-varieties. In this
section we shall be interested in two types of results (under certain additional assumptions
on H, X, Y and f ): “going down” results, which assert that if H fixes a point of X then it
fixes a point of Y and “going up” results which assert the converse.

Note that the “going down” assertion is always true if f is a regular map; indeed, if x ∈ X
is fixed by H then so is f (x) ∈ Y . The situation is somewhat more complicated for rational
maps; in particular, we need to make a strong assumption on the group H; see Remark A.

Throughout this section we shall assume that the base field k is algebraically closed.
The proofs we originally had in this section relied on canonical resolution of singular-

ities; cf. Remark 5.4. Kollár and Szabó recently found simple characteristic-free proofs of
Propositions 5.3 and 5.6. These proofs are presented in the Appendix at the end of this pa-
per; we shall therefore omit most of our original arguments. We also note that our earlier
versions of Lemma 5.1 and Proposition 5.3 assumed that H is diagonalizable; our earlier
version of Proposition 5.3 (respectively, Proposition 5.6) assumed that Y (respectively X)
is projective, rather than complete. The current Propositions 5.3 and 5.6 are characteristic
zero versions of, respectively, Propositions A.2 and A.4.

We begin with a simple lemma.

Lemma 5.1 Let H = U � A, where U is unipotent and A is diagonalizable, X be an H-
variety and π : X1 → X be a blowup with a smooth H-invariant center C ⊂ X. If x is a
smooth point of X which is fixed by H then there exists an x1 ∈ X1 such that π(x1) = x and x1

is fixed by H.

Proof Recall that π is an isomorphism over X − C ; thus if x �∈ C then we can take x1 =
π−1

1 (x). On the other hand, if x ∈ C then f−1(x) 	 P(V ) (as H-varieties), where V =
Nx(C) = Tx(X)/Tx(C). The action of H has an eigenvector in V (see Lemma A.1); thus H
fixes some x1 ∈ P(V ) = f−1(x), as claimed.

Remark 5.2 Lemma 5.1 shows that Theorem 1.1 is sharp in the sense that the stabilizers
of points of Xn cannot be further reduced by additional blowups with smooth equivariant
centers.

Going down

Proposition 5.3 Let H = U � A, where U is unipotent and A is diagonalizable. Suppose
f : X ��� Y is a dominant rational map of H-varieties, where Y is complete. If H fixes a
smooth point x in X then H fixes a point y ∈ Y .

Proof See Proposition A.2.

Remark 5.4 We will now briefly outline our original proof of Proposition 5.3. It is more
complicated than the proof of Proposition A.2 and only works in characteristic zero; how-
ever, we feel this argument may be of independent interest.
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First we showed that there exists a sequence of blowups

Xn
πn−−−−→ Xn−1

πn−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X

with smooth H-invariant centers such that f lifts to a regular map

f ′ : Xn → Y

of H-varieties. This is, in fact, true for any algebraic group H and any H-equivariant ratio-
nal map f : X ��� Y ; the proof relies on canonical resolution of singularities (see [RY3]).

Applying Lemma 5.1 inductively to the above tower of blowups, we see that for every
i = 0, 1, . . . , n there exists a (necessarily smooth) H-fixed point xi ∈ Xi lying above x = x0.
Now y = f ′(xn) is an H-fixed point of Y .

Going Up

Let H be a diagonalizable group, f : X ��� Y be a rational map of H-varieties. We now
want to prove that if H fixes a smooth point y ∈ Y then H fixes a point of X. We clearly
need to assume that f is dominant and the fibers of f are complete; the following example
shows that these assumptions are not sufficient, even if X is irreducible.

Example 5.5 Let H = Z/n1Z× · · · × Z/nrZ be a finite abelian group, Y be an H-variety,
P be a projective H-variety where H acts freely (i.e., all stabilizers are trivial), and X =
Y × P. Then H acts freely on X, hence, the “going up” assertion will fail for the map
f : X → Y , where f = projection to the first component. (Note that the fibers of this map
are projective, so lack of completeness is not the problem here.) To construct P, let E be an
elliptic curve and let pi be a point of order ni on E. Now set P = En and define the H-action
on P by

(i1, . . . , ir) · (x1, . . . , xn) = (x1 + i1 p1, . . . , xr + ir pr),

where + refers to addition on E.

Nevertheless, it turns out that one can still prove a useful “going up” property.

Proposition 5.6 Let H be an abelian p-group and f : X ��� Y be a dominant rational
d : 1-map of generically free H-varieties. Assume X is complete, d is prime to p and y ∈ Y is
a smooth point fixed by H. Then H fixes a point x ∈ X.

Proof Note that since y is a smooth point of Y fixed by H, the irreducible component Y0 of
Y containing y, is preserved by H. Replacing Y by Y0 and X by the union of its irreducible
components which are mapped dominantly onto Y0, we may assume that Y is irreducible
and each component Xi of X is mapped dominantly onto Y .

Similarly to the argument of the proof of Proposition A.4, we note that H acts on the set
{Xi}; let X j be the H-orbits in this set. Pick an element X∗j in X j ; then

d = deg(X/Y ) =
∑

j

|X j | · deg(X∗j /Y ).
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As d is not divisible by p, there is an orbit X0 consisting of a single element X∗0 such that
deg(X∗0 ) is not divisible by p. Replacing X by X∗0 , we may assume that X is irreducible; now
apply Proposition A.4.

6 Essential Dimensions and Cohomological Invariants

Essential Dimension

We now recall the definition of essential dimension from [Re2]; in the case of finite groups,
see also [BR1] and [BR2].

Definition 6.1

(1) The essential dimension of a primitive generically free G-variety X is the minimal value
of dim(Y/G) = dim(Y ) − dim(G), where Y/G denotes the rational quotient of Y by
G and the minimum is taken over all G-compressions X ��� Y ; see Section 2.5 and
Section 2.6. We denote this number by ed(X).

(2) If V is a generically free irreducible linear representation of G, we refer to ed(V ) as the
essential dimension of G and denote it by ed(G). By [Re2, Theorem 3.4] this number
is independent of the choice of V . Equivalently, ed(G) can be defined as the maximal
value of ed(X), as X ranges over all primitive generically free G-varieties; see [Re2,
Section 3.2].

Remark 6.2 The definition of essential dimension of an algebraic group in [Re2] assumes
that the base field k is algebraically closed and of characteristic 0; the definition of essential
dimension of a finite group in [BR1] and [BR2] is valid over an arbitrary field of character-
istic 0. In this paper we will be interested, almost exclusively, in proving lower bounds on
essential dimensions of various groups and G-varieties. Since ed(X) ≥ ed(X ⊗k k̄) for any
G-variety X, with G finite, as well as for any imaginable notion of ed(X) with G infinite, a
lower bound on ed(G) or ed(X) over k̄ will automatically be valid over k. For this reason,
all lower bounds we prove under the assumption that k is algebraically closed, also hold
without this assumption.

Essential Dimension at p

We will also study the following related numerical invariants which were brought to our
attention by J.-P. Serre.

Definition 6.3

(1) Let p be a prime integer and let X be a primitive generically free G-variety. We define
the essential dimension of X at p as the minimal value of ed(X ′), where the minimum
is taken over all dominant rational d : 1 maps X ′ ��� X of primitive G-varieties (see
Sections 2.3, 2.5 and 2.6), with d prime to p. We shall denote this number by ed(X; p).

(2) The essential dimension of G at p is defined as the maximal value of ed(X; p), as X
ranges over all primitive generically free G-varieties. We shall denote this number by
ed(G; p).
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Remark 6.4 ed(X; p) is closely related to the “relative essential dimension” edm,H(X; p)
defined (for finite groups only) in [BR2, Section 5]. More precisely, ed(X; p) is the maxi-
mal value of edm,H(X; p), as H ranges over all finite groups and m ranges over all positive
integers prime to p. We shall not work with edH,m(X) in this paper.

Remark 6.5 Clearly, ed(X) ≥ ed(X; p) for every primitive generically free G-variety X
and every prime p. In particular, ed(G) ≥ ed(G; p). Note also that if G is a simple group
then ed(X; p) = 0 unless p is one of the so-called exceptional primes. For details, including
a list of exceptional primes, see [Se2, Section 2].

The following lemma will not be needed in the sequel; we include it here to illustrate the
similarity between the definitions of ed(G) and ed(G; p).

Lemma 6.6 Suppose G is an algebraic group and p is a prime integer.

(a) Let X be a primitive generically free G-variety and f : X ��� Y be a G-compression. Then
ed(X; p) ≤ ed(Y ; p).

(b) Let V be a generically free linear representation of G. Then ed(V ; p) = ed(G; p). In other
words, ed(V ; p) ≥ ed(X; p) for any primitive generically free G-variety X; in particular,
ed(V ; p) is independent of the choice of V .

Proof (a) Suppose Y ′ ��� Y is a d : 1 dominant rational map of primitive G-varieties,
where d is not divisible by p. It is enough to show that there exists a commutative diagram
of rational maps

X ′
f ′

������ Y ′

e:1

�����

�����

d:1

X
f

������ Y

(6.1)

of primitive G-varieties, where X ′ ��� X is an e : 1 dominant rational map of primitive
G-varieties and e is not divisible by p. Indeed, the existence of f ′ immediately implies
ed(X ′) ≤ ed(Y ′) (cf. [Re2, Lemma 3.3(b)]); taking the minimum over all Y ′, we obtain
the desired inequality.

To construct the diagram (6.1), note that since X, Y and Y ′ are primitive, k(X)G, k(Y )G

and k(Y ′)G are, by definition, fields; see Section 2.6. Moreover, [k(Y ′)G : k(Y )G] = d. We
claim that there exists a diagram of field extensions

k(Y )G

k(X)G

k(Y ′)G

L

e

d

�������

�������
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where L contains both k(X)G and k(Y ′)G and p � e = [L : k(X)G]. Indeed, write

k(X)G ⊗k(Y )G k(Y ′)G = L1 ⊕ · · · ⊕ Lm,

where each Li is a field; see [J1, Section 5.6]. Since

m∑
i=1

[Li : k(X)G] = dimk(X)G

(
k(X)G ⊗k(Y )G k(Y ′)G

)
= [k(Y ′)G : k(Y )G] = d

is not divisible by p, we conclude that p � [Li : k(X)G] for some i. Now set L = Li and
e = [Li : k(X)G].

The above diagram gives rise to the following diagram of rational maps:

X0
f ′

������ Y ′/G

e:1

�����

�����
d:1

X/G
f

������ Y/G

where X0 is an irreducible algebraic variety whose function field in L. Taking the fiber
product of this diagram with Y over Y/G, and remembering that Y/G ×Y/G Y 	 Y ,
Y ′/G ×Y/G Y 	 Y ′, and X/G ×Y/G Y 	 X as G-varieties (see [Re2, Lemma 2.14]), we
obtain the desired diagram (6.1) with X ′ = X0 ×Y/G Y . Note that X ′/G 	 X0 and thus X ′

is a primitive G-variety; see [Re2, Lemma 2.14].
(b) Recall that by [Re2, Corollary 2.17], for every primitive generically free G-variety X,

there exists a G-compression X × Ad ��� V , where d = dim(V ) and G acts trivially on Ad.
(This fact is a consequence of the “no-name lemma”.) Thus by part (a)

ed(X × Ad; p) ≤ ed(V ; p).(6.2)

On the other hand, the argument of [BR2, Lemma 5.3] shows that

ed(X × A1; p) = ed(X; p)

for any primitive generically free G-variety X; see Remark 6.4. This, along with (6.2), proves
part (b).

Cohomological Invariants

A simple but important relationship between the essential dimension of an algebraic group
G and its cohomological invariants was observed by J.-P. Serre (see Lemma 6.9 below).
This observation makes it possible to deduce lower bounds on ed(G; p) from the existence
of non-trivial cohomological invariants.

In the next section we will develop a method for proving lower bounds on ed(G; p),
which does not presuppose the existence of a non-trivial cohomological invariant. How-
ever, for the purpose of motivating our results and placing them in the proper context, we
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briefly explain the relationship between cohomological invariants and essential dimension.
We will follow up on this theme in Remark 8.21.

Suppose F is field, F̄ is the algebraic closure of F, Γ = Gal(F̄, F) and M is a torsion
abelian group. In the sequel, we shall denote the Galois cohomology group Hi(Γ,M)
by Hi(F,M) (see [Se3]); here we view M as a Γ-module with trivial Γ-action. Note that
Hi( · ,M) is a functor from the category of fields to the category of groups. We shall also
consider the functor H1( · ,G) from the category of finitely generated field extensions of k
to the category of sets. Recall that elements of the non-abelian cohomology set H1(F,G) are
in 1–1 correspondence with primitive generically free G-varieties X such that k(X)G = F;
see [Se3, I.5.2], [Po, Theorem 1.3.3] or [Re2, Lemma 12.3].

Definition 6.7 A cohomological invariant α of G-varieties is a morphism of functors
H1( · ,G) → Hd( · ,M). In other words, α assigns a cohomology class α(X) ∈
Hd
(
k(X)G,M

)
to every primitive generically free G-variety X, so that for every compres-

sion X ��� Y , α(X) is the image of α(Y ) under the natural restriction homomorphism
Hd
(
k(Y )G,M

)
→ Hd

(
k(X)G,M

)
.

Remark 6.8 The above notion of cohomological invariant (and the equivalent notion
used in [Re2, Section 12]) are somewhat more narrow than the usual definition (see [Se2,
6.1] or [KMRT, 31B]), due to the fact that we work over an algebraically closed field k.
This means that a cohomological invariant in the sense of [Se2, Section 6.2] or [KMRT,
Section 31B] is also a cohomological invariant in our sense but the converse may not be
true.

The following observation, due to J.-P. Serre, relates the essential dimension G to coho-
mological invariants.

Lemma 6.9 Let G be an algebraic group. Suppose there exists a non-trivial cohomological
invariant α : H1( · ,G)→ Hi( · ,M), where M is a p-torsion module. Then ed(G; p) ≥ i.

Proof It is sufficient to show that if ed(G; p) < i then that α(X) = 0 for every generically
free primitive G-variety X.

Indeed, for every generically free primitive G-variety X there exists a d : 1-cover X ′ ���
X of G-varieties and a G-compression X ′ → Y such that trdegk k(Y )G = dim(Y/G) < i.
Thus Hi

(
k(Y )G,M

)
= (0) (see [Se3, II.4.2]) and consequently α(Y ) = 0. Since α(X ′) is a

homomorphic image of α(Y ), we conclude α(X ′) = 0. Finally, since [k(X ′)G : k(X)G] = d
is prime to p, the restriction map Hi

(
k(X)G,M

)
→ Hi

(
k(X ′)G,M

)
is injective; see [Se3,

I.2.4]. Thus α(X) = 0, as claimed.

7 Stabilizers as Obstructions to Compressions

In this section we assume that k is algebraically closed; see Remark 6.2.

A Lower Bound

We begin by recalling the following result of Sumihiro.
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Proposition 7.1 Every G-variety is birationally isomorphic to a complete G-variety.

Proof Let X be a G-variety. After removing the singular locus from X, we may assume that
X is smooth. Then X is a disjoint union of smooth irreducible varieties. The group G acts
on the set of irreducible components of X; the orbits of this action give a decomposition
of X as a disjoint union of primitive G-varieties; cf. [Re2, Lemma 2.2(a)]. Thus we may
assume X to be smooth and primitive.

Let X0 be an irreducible component of X, let G0 be the subgroup of G that preserves X0,
and let X ′0 be Sumihiro’s equivariant completion of X0 as an irreducible G0-variety; see [Su,
Theorem 3]. Then X ′ = X ′0 ×G0 G is a G-equivariant completion of X; it is a disjoint finite
union of copies of X ′0. In particular, X ′ and X are birationally isomorphic as G-varieties.

We are now ready to prove our first lower bound on the essential dimension of a G-
variety.

Theorem 7.2 Let H be a finite abelian subgroup of G such that

(a) the centralizer of H is finite, and
(b) H does not normalize any non-trivial unipotent subgroup of G.

Suppose X is a primitive generically free G-variety, x is a smooth point of X fixed by H, and
X ��� Y is a G-compression. Then

1. dim(X) ≥ rank(H) + dim(G).
2. Moreover, dim(Y ) ≥ rank(H) + dim(G). In other words, ed(X) ≥ rank(H).
3. If H is a p-group then ed(X; p) ≥ rank(H).

Note that since X is primitive, dim(X) is the dimension of every irreducible component
of X. Moreover, since X is primitive, so is Y ; hence, dim(Y ) is the dimension of every
irreducible component of Y .

Proof

(1) By Corollary 3.6 there exists a tower

π : Xn
πn−−−−→ Xn−1

πn−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X

of blowups with smooth G-invariant centers such that Xn is in standard form. Thus,
in view of Lemma 5.1, we may replace X by Xn, i.e., we may assume without loss of
generality that X is in standard form.
By Theorem 4.1 Stab(x) = U �A, where U is unipotent and A is diagonalizable. Recall
that H ⊂ Stab(x). Since U is normal in Stab(x), it is normalized by H. Hence, in view
of assumption (b), we conclude that U = {1} and thus Stab(x) = A. In particular,
A ⊂ CG(H); thus A is finite. Now by Corollary 4.6

dim(X) ≥ rank(A) + dim(G) ≥ rank(H) + dim(G),

as claimed.
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(2) By Proposition 7.1 we may assume Y is complete. Moreover, in view of Corollary 3.6
we may also assume that Y is smooth. By Proposition 5.3, there exists a point y ∈ Y
such that H ⊂ Stab(y). Now apply part (1) to Y .

(3) Let X ′ ��� X be a G-equivariant d : 1-cover of X. We want to show ed(X ′) ≥ rank(H).
By Proposition 7.1 we may assume X ′ is complete; moreover, by Corollary 3.6 we may
also assume X ′ is smooth. By Proposition 5.6 there exists a point x ′ ∈ X ′ that is fixed
by H. We now apply part (2) to X ′ to conclude that ed(X ′) ≥ rank(H).

Corollary 7.3 Let G be an algebraic group and H be an abelian subgroup of G such that

(a) the centralizer of H is finite and
(b) H does not normalize any non-trivial unipotent subgroup of G.

Then ed(G) ≥ rank(H). Moreover, if H is a p-group then ed(G, p) ≥ rank(H).

Proof Apply Theorem 7.2(2) and (3) to X = V = generically free linear representation of
G and x = 0 ∈ V .

Example 7.4 Let G be a finite group and H 	 (Z/pZ)m be a subgroup of G. Then
ed(G; p) ≥ m. In particular, ed(Sn; p) ≥ [n/p]; cf. [BR1, Section 6.1] and [BR2, Sec-
tion 7].

A Lemma of Serre

The difficulty in applying Theorem 7.2 and Corollary 7.3 is that condition (b) is often hard
to verify. Fortunately, under rather general assumptions, there is an easy way around this
problem.

Remark 7.5 Let G be an algebraic group. Assume there exists an abelian subgroup H of
G satisfying conditions (a) and (b) of Theorem 7.2. Then the identity component of G is
semisimple.

Proof Assume G is not reductive. Then the unipotent radical Ru(G) is a non-trivial normal
unipotent subgroup of G, and thus condition (b) fails.

Now assume G is reductive. The radical R(G) is the connected component of the center
of G (see [Hu, 19.5]); hence, condition (a) fails unless R(G) is trivial. This means that the
identity component of G is semisimple, as claimed.

Thus if G is connected, we may assume without loss of generality that it is semisimple.
The following lemma, communicated to us by J.-P. Serre, shows that in this case conditions
(a) and (b) of Theorem 7.2 are equivalent.

Lemma 7.6 Let G be a connected semisimple group and let H be a (not necessarily con-
nected) reductive subgroup of G. Then the following conditions are equivalent.

(a) The centralizer CG(H) of H in G is infinite.
(b) H normalizes a non-trivial unipotent subgroup of G.
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(c) H is contained in a proper parabolic subgroup of G.

Proof We will first show that (c) ⇒ (b), then use this implication to prove that (a) ⇒
(b)⇒ (c)⇒ (a).

(c)⇒ (b): If H is contained in a proper parabolic subgroup P then H normalizes the
unipotent radical Ru(P) �= {1}.

(a)⇒ (b): Assume CG(H) is infinite. If CG(H) contains a non-trivial unipotent element
u then H centralizes (and, hence, normalizes) the unipotent subgroup 〈u〉 �= {1} and thus
(b) holds. If the centralizer CG(H) does not contain a non-trivial unipotent element, then
the identity component of CG(H) is a non-trivial torus T. In this case H ⊂ CG(T), and
CG(T) is a Levi subgroup of some non-trivial parabolic subgroup of G; see [Hu, 30.2].
Thus (c) holds, and, hence, so does (b).

(b)⇒ (c): Suppose H normalizes a non-trivial unipotent subgroup U of G. Recall that
the Borel-Tits construction associates, in a canonical way, a parabolic subgroup P(U ) to U
so that U is contained in the unipotent radical of P(U ); see [Hu, 30.3]. In particular, P(U )
is proper. Moreover, by our assumption H ⊂ NG(U ), where NG(U ) denotes the normalizer
of U in G. Since NG(U ) ⊂ P(U ) (see [Hu, Corollary 30.3A]), H is contained in the proper
parabolic subgroup P(U ). This proves (c).

(c)⇒ (a): If H is contained in a proper parabolic subgroup P of G then, by Levi’s decom-
position theorem, H is contained in some Levi subgroup L of P; see [OV, Theorem 6.4.5].
Then CG(L) ⊂ CG(H). Since the center Z(L) contains a non-trivial torus (see [Hu, 30.2]),
and Z(L) ⊂ CG(L) ⊂ CG(H), we conclude that CG(H) is infinite.

A Better Bound

We can now prove the main results of this section.

Theorem 7.7 Let G be an algebraic group, H be an abelian subgroup of G, and X is a gener-
ically free G-variety. Suppose H ⊂ Stab(x) for a smooth point x of X.

(1) Assume G is (connected and) semisimple and the centralizer CG(H) is finite. Then
ed(X) ≥ rank(H). Moreover, if H is a p-group then ed(X; p) ≥ rank(H).

(2) More generally, if the identity component G0 of G is semisimple and the centralizer
CG0 (H ∩ G0) is finite then ed(X) ≥ rank(H). Moreover, if H is a p-group then
ed(X; p) ≥ rank(H).

Proof It is enough to verify that G and H satisfy conditions (a) and (b) of Theorem 7.2. In
part (1) this follows immediately from Lemma 7.6.

(2) To check condition (a), note that CG0 (H ∩ G0) is of finite index in CG(H ∩ G0).
This implies that CG(H ∩ G0) is finite and, hence, so is CG(H). To check condition (b),
note that since we are working over a field of characteristic 0, unipotent subgroups of G are
connected (see, e.g., [OV, 3.2.2, Corollary 2]) and, hence, contained in G0. By Lemma 7.6,
H ∩ G0 does not normalize any of them (except for {1}). Hence, neither does H.

Theorem 7.8 Let G be an algebraic group and H be an abelian subgroup of G.
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(1) Suppose G is (connected and) semisimple and the centralizer CG(H) is finite. Then
ed(G) ≥ rank(H). Moreover, if H is a p-group then ed(G; p) ≥ rank(H).

(2) More generally, if the identity component G0 of G is semisimple and the centralizer
CG0 (H∩G0) is finite then ed(G) ≥ rank(H). Moreover, if H is a p-group then ed(G; p) ≥
rank(H).

Proof Apply Theorem 7.7 with X = V = generically free linear representation of G and
x = 0.

Remark 7.9 Let G be a semisimple algebraic group and H = (Z/pi1 Z)×· · ·×(Z/pir Z) be
an abelian p-subgroup of G of rank r satisfying the assumptions of Theorem 7.8(1). Then
ed(G; p) ≥ r and, in particular, ed(V ; p) ≥ r for any generically free linear representation
of G; cf. Lemma 6.6(b).

Moreover, there exists an irreducible G-variety X such that ed(X; p) = r. Indeed, let
W = Ar be a faithful representation of H, where the i-th cyclic factor of H acts by a faithful
character on the i-th coordinate of Ar , and trivially on all other coordinates. Let X =
G ×H W be the induced G-variety. Since X is the quotient of the smooth variety G ×W
by the free H-action h(g,w) = (gh−1, hw), X is smooth and dim X = dim G + r. By our
construction the point x = (1G, 0W ) is fixed by H. Theorem 7.7(1) shows that ed(X; p) ≥ r;
on the other hand, dim X − dim G = r, and hence, ed(X; p) = r.

The same construction goes through if G and H satisfy the assumptions of Theo-
rem 7.8(2), except that in this case X will be primitive and not necessarily irreducible.

8 Applications

We now want to apply Theorem 7.8 to specific groups G. In most cases we will choose H
to be an elementary abelian p-subgroup of G. Note that the theorem does not apply if H
is contained in a subtorus T of G because in this case the centralizer of H contains T and,
hence, is infinite. Thus we are interested in nontoral finite abelian subgroups of G. These
subgroups have been extensively studied; see, e.g., [A], [Bo], [BS], [CS], [Gri], [Wo].

Before we proceed with the applications, we make two additional remarks. First of all,
for the purpose of applying Theorem 7.8 we may restrict our attention to maximal finite
abelian subgroups of G. Indeed, we lose nothing if we replace H by a larger (with respect to
containment) finite abelian subgroup; this will only have the effect of making the centralizer
smaller and improving the resulting bound on ed(G). Secondly, a nontoral finite abelian
subgroup of G, even a maximal one, may have an infinite centralizer and, hence, not be
suitable for our purposes. Thus our task is to find maximal finite abelian subgroups of G
with finite centralizers.

We shall assume that k is an algebraically closed field throughout this section; cf. Re-
mark 6.2.

Orthogonal Groups

Theorem 8.1

1. ed(On; 2) ≥ n for every n ≥ 1.
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2. ed(SOn; 2) ≥ n− 1 for every n ≥ 3.
3. ed(POn; 2) ≥ n− 1 for every n ≥ 3.

Proof Apply Theorem 7.8 with

(1) H 	 (Z/2Z)n = the diagonal subgroup of G = On.
(2) H 	 (Z/2Z)n−1 = the diagonal subgroup of G = SOn.
(3) H 	 (Z/2Z)n−1 = the diagonal subgroup of G = POn.

Remark 8.2 For alternative proofs of (1) see [Re2, Theorem 10.3 and Example 12.6]. For
alternative proofs of (2) see [Re2, Theorem 10.4 and Example 12.7]. (Note that equality
holds in both cases.) The inequality (3) is new to us.

Projective Linear Groups

The essential dimension of PGLn is closely related to the structure of central simple algebras
of degree n; we begin by briefly recalling this connection.

We shall say that a field extension K/F is prime-to-p if it is a finite extension of degree
prime to p.

Definition 8.3 (a) Let F be a field and let A be a finite-dimensional F-algebra. We will
say that A is defined over F0 if there exists an F0-algebra A0 such that A 	 A0 ⊗F0 F (as
F-algebras). Equivalently, A is defined over F0 if there exists an F-basis e1, . . . , ed of A such
that

eie j =

d∑
h=1

ch
i j eh

and every structure constant ch
i j is contained in F0.

(b) τ (A) is defined as the minimal value of trdegk(F0). Here the minimum is taken over
all subfields F0 of F such that k ⊂ F0 and A is defined over F0.

(c) Let p be a prime. Then τ (A; p) is defined as the minimal value of τ (A⊗F K), where
K ranges over prime-to-p extensions of F.

Example 8.4 If A = Mn(F) then τ (A) = 0, since A = Mn(k)⊗k F.

Lemma 8.5

1. ed(PGLn) is the maximal value of τ (A) as A ranges over all central simple algebras of
degree n containing k as a central subfield.

2. ed(PGLn) is the maximal value of τ (D) as D ranges over all division algebras of degree n
containing k as a central subfield.

3. ed(PGLn; p) is the maximal value of τ (A; p) as A ranges over all central simple algebras of
degree n containing k as a central subfield.

4. ed(PGLn; p) is the maximal value of τ (D; p) as D ranges over all division algebras of degree
n containing k as a central subfield.
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5. ed(PGLn; p) = ed(PGL pr ; p), where pr is the highest power of p dividing n.
6. ed(PGLn; p) = 0 if n is not divisible by p.
7. ed(PGL p; p) = 2.

Proof (1) and (2) are proved in [Re2, Lemma 9.2]. (3) and (4) follow from Lemma 9.1,
Proposition 8.6 and Theorem 8.8(a) in [Re2].

(5) Suppose n = prm, where m is not divisible by p. If D is a division algebra of degree
pr with center F and A = Mm(D) then τ (A) = τ (D); see [Re2, Lemma 9.7]. Thus for any
prime-to-p extension K/F, we have τ (A⊗F K) = τ (D⊗F K). By part (3) the maximal value
of the left hand side (over all D and K) is≤ ed(PGLn; p). On the other hand, by part (4), the
maximal value of the right hand side is ed(PGLpr ; p). Thus ed(PGL pr ; p) ≤ ed(PGLn; p).

Conversely, given any division algebra D of degree n with center F, there exists a prime-
to-p extension K/F such that D⊗F K = Mm(D0), where D0 is a division algebra of degree
pr with center K; see [Row, Theorem 3.1.21]. Thus by part (4)

τ (D; p) ≤ τ (D⊗F K; p) = τ (D0; p) ≤ ed(PGL pr ; p).

Taking the maximum over all D and using part (4) once again, we obtain ed(PGLn; p) ≤
ed(PGL pr ; p), as desired.

(6) Follows from part (5) with r = 0.
(7) It is enough to show τ (D; p) = 2 for every division algebra D of degree p. To show

τ (D; p) ≥ 2, note that for any prime-to-p extension K/F, D⊗F K is a division algebra; see
[Row, Corollary 3.1.19]. By Tsen’s theorem, τ (D⊗F K) ≥ 2; see [Re2, Lemma 9.4(a)]. This
proves τ (D; p) ≥ 2.

On the other hand, by a theorem of Albert, there exists a prime-to-p extension K/F such
that D ′ = D⊗F K is a cyclic division algebra. Then by [Re2, Lemma 9.4(b)] τ (D ′) ≤ 2 and
hence, τ (D; p) ≤ 2.

The following inequality is a consequence of [Re1, Theorem 16.1(b)] and Lemma 8.5(3)
above.

Theorem 8.6 ed(PGL pr ; p) ≥ 2r.

We will now give an alternative proof based on Theorem 7.8. In fact, we will prove a
slightly stronger result; see Theorem 8.13. We begin with the following elementary con-
struction.

Definition 8.7 Let A is an abelian group of order n. and let V = k[A] be the group
algebra of A.

(a) The regular representation P : A → GL(V ) = GLn is given by a �→ Pa ∈ GL(V ) =
GLn, where

Pa

(∑
b∈A

cbb
)
=
∑
b∈A

cbab

for any a ∈ A and cb ∈ k.
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(b) The representation D : A∗ → GL(V ) = GLn is defined by χ �→ Dχ ∈ GL(V ), where

Dχ
(∑

a∈A

caa
)
=
∑
a∈A

caχ(a)a

for any χ ∈ A∗ and ca ∈ k.

Note that in the basis {a | a ∈ A} of V , each Pa is represented by a permutation matrix
and each Dχ is represented by a diagonal matrix; this explains our choice of the letters P
and D.

Lemma 8.8 Let A be a finite abelian group, a, b ∈ A and χ, µ ∈ A∗. Then

(a) DχPa = χ(a)PaDχ.
(b) (PaDχ)(PbDµ)(PaDχ)−1 = χ(b)µ−1(a)(PbDµ)

Proof Part (a) can be verified directly from Definition 8.7. Part (b) is an immediate con-
sequence of part (a).

Lemma 8.9 Suppose A is an abelian group of order n such that its 2-Sylow subgroup is either
(i) non-cyclic or (ii) trivial (the latter occurs when n is odd). Then

(a) Pa ∈ SLn for every a ∈ A and
(b) Dχ ∈ SLn for every χ ∈ A∗.

Proof (a) Recall that Pa is a permutation matrix representing the permutation σa : A→ A
given by b→ ab. Thus det(Pa) = (−1)sign(σa), and we only need to show σa is even.

Assume, to the contrary, that σa is odd. Let m be the order of a. Since σa is a product of
n
m disjoint m-cycles, both n

m and m−1 are odd. In particular, m and, hence, n is even. Thus
assumption (ii) fails. On the other hand, since n

m = [A : 〈a〉] is odd, the Sylow 2-subgroup
of A is contained in 〈a〉 and, thus assumption (i) fails. This contradiction proves that σa is
an even permutation.

(b) Suppose χ is an element of A∗ of order m and let ζm be a primitive m-th root of
unity. The matrix Dχ is diagonal with entries χ(a), as a ranges over A; here χ(a) assumes
the value (ζm)i exactly n

m times for each i = 0, 1, . . . ,m− 1. Hence,

det(Dχ) =
(m−1∏

i=0

(ζm)i
) n

m
= (ζm)

m· m−1
2 ·

n
m
.

Assume, to the contrary that det(Dχ) �= 1. Then both n
m and m − 1 are odd. Arguing as

in part (a), we conclude that n = |A∗| is even and the Sylow 2-subgroup of A∗ is cyclic.
Since A and A∗ are isomorphic, this contradicts our assumption. Hence, det(Dχ) = 1, as
claimed.

Definition 8.10 Assume A is an abelian group of order n, e is an integer dividing n and
ζe is a primitive e-th root of unity.
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(i) Let φn : A × A∗ → PGLn be the map of sets given by φn(a, χ) = image of PaDχ in
PGLn. We define Hn as the image of φn in PGLn.

(ii) Suppose A satisfies the conditions of Lemma 8.9. Then we define φe : A × A∗ →
SLn /〈ζeIn〉 by the formula φe(a, χ) = PaDχ (mod〈ζeIn〉). We define He as the image
of φe in SLn /〈ζeIn〉.

Note that SLn /〈ζnIn〉 = PGLn. If A satisfies the conditions of Lemma 8.9 then the two
definitions of φn (and thus Hn) coincide.

Lemma 8.11 Under the assumptions of Definition 8.10,

(i) Hn is a subgroup of PGLn and φn is an isomorphism between A× A∗ and Hn;
(ii) He is a subgroup of SLn /〈ζeIn〉 and φe is an isomorphism between A × A∗ and He, pro-

vided that A satisfies the conditions of Lemma 8.9 and the exponent of A divides e.

The lemma says, in particular, that, if e is divisible by the exponent of A then He is a
subgroup of SLn /〈ζeIn〉 whenever He is defined. (Note that in part (i), e = n = |A| is
necessarily divisible by the exponent of A.)

Proof By Lemma 8.8(a), Pa and Dχ commute modulo 〈ζnIn〉 in case (i) and modulo 〈ζeIn〉
in case (ii). The lemma is an easy consequence of this fact.

In the sequel we shall assume that A is an abelian p-group of order pr and e = pi ,
where 1 ≤ i ≤ r is chosen so that e is divisible by the exponent of A. Note that under
these assumptions He is always well-defined and is a subgroup of SLn/〈ζeIn〉. (Indeed, if
the conditions of Lemma 8.9 fail to be satisfied then p = 2, A is cyclic and hence, e = n, so
that He is given by Definition 8.7(i).)

Lemma 8.12 Suppose A is an abelian p-group of order n = pr, and e = pi with 1 ≤ i ≤ r.
Assume the exponent of A divides e. Let π : SLn/〈ζeIn〉 → PGLn be the natural projection, let
H = π−1(Hn) and let K = Ker(π) be the center of SLn/〈ζeIn〉. Then

(a) H = He × K 	 A× A∗ × (Z/pr−iZ).
(b) Hn is self-centralizing in PGLn,
(c) H is self-centralizing in SLn/〈ζeIn〉.

Proof

(a) The surjective homomorphism π|H : H → Hn splits: the complement of K in H is He.
Since K is central, part (a) follows.

(b) Denote the centralizer of Hn in PGLn by C(Hn). Lemma 8.8(b) shows that for every
b ∈ A and µ ∈ A∗, the matrix PbDµ spans a one-dimensional representation space
for the conjugation action of Hn on Mn(k); moreover, Hn acts on these |Hn| spaces by
distinct characters. Since there are n2 = p2r of these spaces and dim(Mn) = |Hn| = n2,
we conclude that Mn(k) decomposes as a direct sum of these one-dimensional repre-
sentations. Any g ∈ C(Hn) ⊂ PGLn is represented by a non-zero matrix lying in one
of them, i.e., by a non-zero constant multiple of PaDχ for some a ∈ A and χ ∈ A∗.
This shows that C(Hn) = Hn in PGLn, as claimed.
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(c) Denote the centralizer of H in SLn/〈ζeIn〉 by C(H). Since H is abelian, H ⊂ C(H). On
the other hand, in view of part (b), C(H) ⊂ π−1

(
C(Hn)

)
= π−1(Hn) = H.

Theorem 8.13

ed(SL pr /〈ζpi Ipr〉; p) ≥

{
2r + 1 if i = 1, . . . , r − 1,

2r if i = r.

Note that if i = r then SL pr /〈ζpi Ipr〉 = PGL pr , and we obtain the bound of Theorem 8.6.

Proof Applying Lemma 8.12 to A = (Z/pZ)r ; we obtain a finite abelian self-centralizing
p-subgroup H ⊂ SL pr /〈ζpi Ipr〉. By part (a) rank(H) = 2r + 1 if 1 ≤ i < r and 2r if i = r.
The desired inequalities now follow from Theorem 7.8.

Remark 8.14 One can show that any abelian p-subgroup of PGLpr with a finite central-
izer has rank ≤ 2r. Thus the lower bounds of Theorem 8.13 cannot be improved by this
method.

Spin Groups

We will now apply Theorem 7.8 to obtain lower bounds on the essential dimension of some
spin groups. Elementary abelian subgroups of Spinn are described in some detail in [Wo].
In particular, if p is an odd prime then every elementary abelian p-group is toral (see [Se2,
Section 2.2], [Wo, Theorem 5.6], or [Gri, (2.22)]) and thus is not suitable for our purposes.
We shall therefore concentrate on elementary abelian 2-subgroups.

Recall that Spinn fits into an exact sequence

{1} −−−−→ {−1, 1} −−−−→ Spinn
f

−−−−→ SOn −−−−→ {1},

where {−1, 1} is the central subgroup of Spinn. Let D 	 (Z/2Z)n−1 be the diagonal sub-
group of SOn and let D ′ = f−1(D) ⊂ Spinn. We want to construct elementary abelian
2-subgroups of D ′. (Note that every elementary abelian 2-subgroups of Spinn is conjugate
to a subgroup of D ′; see [Wo, Theorem 5.6].)

Recall that a doubly even code L of length n is a vector subspace of (Z/2Z)n with the
property that the weight of every element of L is divisible by 4. (Here the weight of an
element of (Z/2Z)n is defined as the number of 1s among its coordinates.) We shall say that
an m × n-matrix over Z/2Z is a generator matrix for L if its rows span L as a Z/2Z-vector
space.

Doubly even codes of length n are in 1–1 correspondence with elementary abelian 2-
subgroups of D ′ containing −1; this is explained in [Wo, Sections 1 and 2]; see also [St,
Section 7]. Explicitly, let En be the (index 2) subgroup of (Z/2Z)n) consisting of all code-
words of even weight. Consider the group isomorphism φ : (En,+)→ (D, ·) given by

φ(i1, . . . , in) =




(−1)i1 0 · · · 0
0 (−1)i2 · · · 0
· · · · · · · · · · · ·
0 0 · · · (−1)in


 .(8.1)
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If L ∈ En is a doubly even code of dimension d then φ(L) is an elementary abelian 2-
subgroup of SOn of rank d. The preimage H = f−1

(
φ(L)
)

of this subgroup in Spinn is
thus an elementary abelian 2-subgroup of rank d + 1. Note that by [Wo, Theorem 2.1],
every elementary abelian subgroup of D ′ containing−1 is obtained in this way.

Recall that not every elementary abelian 2-subgroup is good for our purposes; in order
to apply Theorem 7.8, we need to construct one whose centralizer is finite. Clearly the
group H = f−1

(
φ(L)
)

has a finite centralizer in Spinn if and only if its image f (H) = φ(D)
has a finite centralizer in SOn.

Lemma 8.15 Let L be a doubly even code of length n and let

φ : En → SOn

be as in (8.1). Then φ(L) has a finite centralizer in SOn if and only if a generator matrix of L
has distinct columns.

Proof The map φ|L may be viewed as an orthogonal representation of L 	 (Z/2Z)d. This
representation is given to us as a direct sum of characters χ1, . . . , χn : L → Gm, where
χ j(i1, . . . , in) = (−1)i j . Note that a generator matrix of L has distinct columns if and only
if these characters are distinct. If the characters are distinct then by Schur’s Lemma the
centralizer of φ(L) in SOn consists of diagonal matrices and, hence, is finite. On the other
hand, if two of these characters are equal then the centralizer of φ(L) contains a copy of
SO2 and, hence, is infinite.

We are now ready to state our main result on spin groups.

Theorem 8.16 ed(Spinn; 2) ≥ [ n
2 ] + 1 for every n ≡ 0, 1 or−1 (mod 8).

Proof The above discussion shows that it is sufficient to construct a doubly even code L of
length n and dimension [n/2] all of whose columns are distinct.

We now exhibit such codes in the three cases covered by the theorem. Let 0i (respectively,
Ji) denote, the i-tuple of zeros (respectively, the i-tuple of ones) in (Z/2Z)i . One can now
check directly that each of the following codes is doubly even of dimension [ n

2 ]; moreover,
in each case the generator matrix (for the generating set given below) has distinct columns.

n = 8m L = 〈(a, a), (04m, J4m)〉, where a ranges over all elements of (Z/2Z)4m of even
weight.

n = 8m + 1 L = 〈(01, a, a), (04m+1, J4m)〉, where a ranges over all elements of (Z/2Z)4m of
even weight.

n = 8m− 1 L = 〈(a, a, 01), (04m−1, J4m)〉, where a ranges over all elements of (Z/2Z)4m−1

of even weight.

This completes the proof of the theorem.
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Remark 8.17 Recall the following exceptional isomorphisms of classical algebraic groups:

Spin2 	 (Gm)2,

Spin3 	 SL2,

Spin4 	 SL2× SL2,

Spin5 	 Sp4, and

Spin6 	 SL4 .

(This phenomenon is caused by the fact that while the Dynkin diagrams of types An, Bn,
Cn, and Dn are distinct for large n, for small n there are some overlaps.) We conclude that
all of these groups are special (see [Gro, Section 5], [PV, Section 2.6]) and thus

ed(Spinn) = 0 for every 2 ≤ n ≤ 6

(see [Re2, Section 5.2]). This shows that the condition n ≡ 0, 1 or −1 (mod 8) is not as
arbitrary as it may seem at first glance.

Remark 8.18 The following results are due to M. Rost [Rost2]:

ed(Spin7) = 4

ed(Spin8) = 5

ed(Spin9) = 5

ed(Spin10) = 4

ed(Spin11) = 5

ed(Spin12) = 6

ed(Spin13) = 6

ed(Spin14) = 7.

The proofs rely on the properties of quadratic forms of dimension≤ 14. In particular, our
bound is sharp for n = 7, 8 and 9. On a lighter note, our bound is also sharp for n = 1,
since Spin1 = Z/2Z and ed(Z/2Z) = 1.

Exceptional Groups

Theorem 8.19

1. ed(G2; 2) ≥ 3.
2. ed(F4; 2) ≥ 5.
3. ed(F4; 3) ≥ 3.
4. ed(3E6; 3) ≥ 4. Here 3E6 denotes the simply connected group of type E6 over k.
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5. ed(2E7; 2) ≥ 7. Here 2E7 denotes the simply connected group of type E7 over k.
6. ed(E7; 2) ≥ 8. Here E7 denotes the adjoint E7.
7. ed(E8; 2) ≥ 9.
8. ed(E8; 3) ≥ 5.
9. ed(E8; 5) ≥ 3.

Proof In each case we exhibit an abelian subgroup H with a finite centralizer, then appeal
to Theorem 7.8.

(1) Let O be the split octonion algebra generated by i, j, and l, as in [J2, pp. 16–
17]. We can identify G2 ⊂ GL8 with the automorphism group of O. Now let
H = 〈α, β, γ〉 	 (Z/2Z)3, where

α(i) = −i α( j) = j α(l) = l

β(i) = i β( j) = − j β(l) = l

γ(i) = i γ( j) = j γ(l) = −l.

To prove that H is self-centralizing, note that the representation of H on O (viewed
as an 8-dimensional vector space) is a direct sum of 8 distinct characters; cf. [Gri,
Table I, p. 257] or [CS, p. 252].

(2) A self-centralizing H = (Z/2Z)5 ⊂ F4 is described in [Gri, (7.3)].
(3) A self-centralizing H = (Z/3Z)3 ⊂ F4 is described in [Gri, (7.4)].
(4) Use the maximal H = (Z/3Z)4 of 3E6 described in [Gri, (11.13)(i)]; see also [CS].

Note that by [Gri, (11.13)(i)] H has a finite normalizer in 3E6; hence, its centralizer
is finite as well.

(5) Let u be an element of order 4 in 2E7 whose centralizer C(u) is isomorphic to
SL8 /(±I8); see [Gri, bottom of p. 283]. (According to the notational conventions
of [Gri, (2.14)], u is an element of type 4A.) Note that under the identification
C(u)

∼
= SL8 /(±I8), the element u corresponds to the central element of order 4

in SL8 /(±I8) which is represented by the scalar matrix ζI8, where ζ is a primitive
8-th root of unity.
By Lemma 8.12(a), with p = 2, r = 3, e = 2 and A = (Z/2Z)3, the group C(u) =
SL8 /(±I8) contains a self-centralizing finite abelian subgroup H 	 (Z/2Z)6 ×
(Z/4Z), where the Z/4Z-factor is the center of C(u), i.e., is equal to 〈u〉. Moreover,
H is self-centralizing in C(u). Since u ∈ H, we conclude that H is self-centralizing
in 2E7. Applying Theorem 7.8 to H, we obtain the desired inequality ed(2E7) ≥
rank(H) = 7.

(6) A self-centralizing subgroup H = (Z/2Z)8 of E7 is described in [Gri, Theo-
rem 9.8(ii)]; see also [CS].

(7) E8 has a maximal elementary abelian subgroup H 	 (Z/2Z)9 called a “type 1
subgroup”; see [A], [Gri, (2.17)] and [CS]. By [Gri, (2.17)] this subgroup has a
finite normalizer. Hence, its centralizer is finite as well. (In fact, one can show that
H is self-centralizing; see [Gri, p. 258]).

https://doi.org/10.4153/CJM-2000-043-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-043-5


G-Varieties 1047

(8)–(9) E8 contains self-centralizing subgroups H1 	 (Z/3Z)5; and H2 = (Z/5Z)3; see
[Gri, (11.5) and (10.3)]

Remark 8.20 Alternative proofs of inequalities (1), (2) and (3) can be found in [Re2,
12.14 and 12.15]. In fact, equality holds in all three cases: in the case of (1) this is proved
in [Re2], for (2) and (3) this was observed by J.-P. Serre [Se4]. Moreover, V. E. Kordonsky
[Ko] has shown that ed(F4) ≤ 5 (and thus ed(F4) = 5).

One can show, by modifying the proof of [Re2, Proposition 11.7] (or, alternatively, of
[Ko, Theorem 9]) that ed(3E6; 3) ≤ ed(F4; 3) + 1 = 4, so that inequality (4) is sharp as
well. We do not know the exact value of ed(3E6); however, Kordonsky has shown that
ed(3E6) ≤ 6; see [Ko, Section 4.2]. Thus ed(3E6) = 4, 5 or 6. We remark that alternative
proofs of (4) were recently shown to us by M. Rost and by R. S. Garibaldi [Ga].

An alternative proof of part (9) is based on Lemma 6.9 and the existence of a nontrivial
Rost invariant H1( · , E8) → H5( · ,Z/5Z); see [Se2, 7.3] or [KMRT, (31.40) and (31.47)].
M. Rost has informed us that he can prove ed(E8; 5) = 3.

We do not know whether or not inequalities (5)–(8) are sharp. Regarding (5), we remark
that by a theorem of Kordonsky ed(2E7) ≤ 9 (see [Ko, Theorem 10]); thus ed(2E7) and
ed(2E7; 2) are equal to 7, 8 or 9.

To the best of our knowledge, inequalities (5)–(8) are new.

A Wish List for Cohomological Invariants

Remark 8.21 Some of the lower bounds of this section allow alternative proofs based
on the existence of certain cohomological invariants; see Lemma 6.9. For example,
Theorem 8.1(1) follows from the existence of a non-trivial cohomological invariant
H1( · ,On)→ Hn( · ,Z/2Z) (namely, the n-th Stiefel-Whitney class, see [Se2, Section 6.3]),
Theorem 8.19(2) follows from the existence of the cohomological invariant of H1( · , F4)→
H5( · ,Z/2Z) (see [Se2, Section 9.2]), Theorem 8.19(3) follows from the existence of the
Serre-Rost invariant H1( · , F4)→ H5( · ,Z/3Z) (see [Se2, Section 9.3]), etc.

Other inequalities cannot be proved in this way because the needed cohomological in-
variants are not known to exist. On the other hand, these bounds suggest that there may
exist cohomological invariants of the types listed below. (Here by a mod p invariant of
G-varieties in Hd we shall mean a cohomological invariant H1( · ,G) → Hd( · ,M) in the
sense of Definition 6.7, with M p-torsion.)

1. (cf. Theorem 8.6) A mod p invariant of PGL pr -varieties in H2r .
In the case p = r = 2 an invariant of this type was recently constructed by J.-P. Serre
[Se5] (see also [Rost1] and [RST]).

2. (cf. Theorem 8.16) A mod 2 invariant of Spinn-varieties in H[n/2]+1 for n ≡ 0, ±1
(mod 8).
For n = 7, 8 and 9 such invariants were recently constructed by M. Rost [Rost2].

3. (cf. Theorem 8.19(6)) A mod 2 invariant of E7-varieties in H8.
4. (cf. Theorem 8.19(7)) A mod 2 invariant of E8-varieties in H9.
5. (cf. Theorem 8.19(8)) A mod 3 invariant of E8-varieties in H5.
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The above-mentioned constructions of Serre and Rost represent the only currently
known invariants of types 1–5.

9 Simplifying Polynomials by Tschirnhaus Transformations

Let E/F be a field extension of degree n such that k ⊂ F. Suppose E = F(z) and

fz(t) = tn + α1(z)tn−1 + · · · + αn(z)

is the minimal polynomial of z over F. We are interested in choosing the generator z
whose minimal polynomial has the simplest possible form. More precisely, we want
trdegk k

(
α1(z), . . . , αn(z)

)
to be as small as possible. We shall denote the minimal value

of trdegk k
(
α1(z), . . . , αn(z)

)
by τ (E/F). Note that τ (E/F) is the same as τ (E) given by

Definition 8.3, where E is viewed as an n-dimensional F-algebra. (We remark that τ (E/F)
was denoted by ed(E/F) in [BR1] and [BR2].)

As we explained in the Introduction, a choice of a generator z (or, equivalently, an iso-
morphism of fields E 	 F[t]/( fz)) is called a Tschirnhaus transformation without auxiliary
radicals. If E/F is given as the root field of a polynomial f (x) ∈ F[x], i.e., E = F[x]/

(
f (x)
)

,
then the polynomial fz(t) is said to be obtained from f (t) via the Tschirnhaus substitution
x �→ z. In this setting we are interested in simplifying the given polynomial f (t) = fx(t)
by a Tschirnhaus substitution, where the “complexity” of a polynomial is measured by the
number of algebraically independent coefficients (over k). The number τ (E/F) tells us to
what extent f (x) can be simplified.

A case of special interest is the generic field extension L/K of degree n. More precisely,
K = k(a1, . . . , an), L = K[x]/

(
g(x)
)

, and

f (x) = xn + a1xn−1 + · · · + an,

where a1, . . . , an are algebraically independent variables over k. The following results are
proved in [BR1] (see also [BR2]): τ (L/K) = ed(Sn) ≥ [n/2] and τ (L/K) ≥ τ (E/F), where
E/F is any field extension of degree n.

The object of this section is to prove Theorem 1.4 stated in the Introduction. Using the
terminology we introduced above, Theorem 1.4 can be rephrased as follows.

Theorem 9.1 Suppose n
2 ≤ m ≤ n− 1, where m and n are positive integers. Let am, . . . , an

be algebraically independent variables over k, F = k(am, . . . , an) and E = F[x]/
(

f (x)
)

,
where

f (x) = xn + amxn−m + · · · + an−1x + an.

Then τ (E/F) = n−m.

Note that f (x) is an irreducible polynomial over F so that E is, in fact, a field. Indeed, by
Gauss’ Lemma (see [L, V.6]) it is enough to check irreducibility over the ring k[am, . . . , an];
now we can set am = · · · = an−1 = 0 and apply the Eisenstein criterion (see [L, V.7]).
Alternatively, the irreducibility of f (x) follows from Lemma 9.4 below.
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The Variety Xm,n

Before we can proceed with the proof of Theorem 9.1, we need to establish several elemen-
tary properties of the variety Xm,n ⊂ An given by

Xm,n = {x = (x1, . . . , xn) | s1(x) = s2(x) = · · · = sm−1(x) = 0},(9.1)

where si(x) is the i-th elementary symmetric polynomial in x1, . . . , xn. Note that Xm,n can
also be described as

Xm,n = {x = (x1, . . . , xn) | p1(x) = p2(x) = · · · = pm−1(x) = 0},(9.2)

where pi(x) = xi
1 + · · · + xi

n = 0; the equivalence of the two definitions follows from
Newton’s formulas. (Recall that char (k) = 0 throughout this paper.) Note that (9.2)
defines Xm,n for every positive integer m (of course, Xm,n = {0} if m > n) and that the
symmetric group Sn acts on Xm,n by permuting the coordinates x1, . . . , xn.

To simplify the exposition, we shall assume that the base field k over which Xm,n is de-
fined, is algebraically closed; we note that Lemmas 9.3 and 9.4 are true without this as-
sumption.

Lemma 9.2 Suppose x = (x1, . . . , xn) ∈ Xm,n. Then either x = 0 or at least m of its
coordinates x1, . . . , xn are distinct.

Proof It is enough to prove the lemma under the assumption that xi �= 0 for every i =
1, . . . , n. Indeed if, say, x1 = · · · = xr = 0 and xr+1, . . . , xn �= 0 then we can replace n by
n− r and x by y = (xr+1, . . . , xn) ∈ Xi,n−r .

After permuting the coordinates of x, we may assume x1, . . . , xr are distinct and
x1, . . . , xn ∈ {x1, . . . , xr}. Suppose n1 of the coordinates x1, . . . , xn are equal to x1, n2

of them are equal to x2, . . . , and nr of them are equal to xr . By definition of Xm,n we have
p1(x) = · · · = pm−1(x) = 0 or, equivalently,

r∑
i=1

nix
j
i = 0 for every j = 1, . . . ,m− 1.

This means that the columns of the Vandermonde matrix


x1 x2 . . . xr

x2
1 x2

2 . . . x2
r

. . . · · · · · · · · ·
xm−1

1 xm−1
2 . . . xm−1

r




are linearly dependent. Since we are assuming x1, . . . , xr are distinct non-zero elements of
k, this is only possible if r ≥ m, as claimed.

Lemma 9.3 Every non-zero point of Xm,n is smooth.
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Proof We apply the Jacobian criterion to the system of polynomial equations p1(x) =
· · · = pm−1(x) = 0 defining Xm,n. The Jacobian matrix of this system is given by

J(x1, . . . , xn) =




1 1 . . . 1
2x1 2x2 . . . 2xn

3x2
1 3x2

2 . . . 3x2
n

· · · · · · · · · · · ·
(m− 1)xm−2

1 (m− 1)xm−2
2 . . . (m− 1)xm−2

n


 .

It is easy to see that this (m− 1)× n-matrix has rank m− 1 whenever m− 1 or more of the
coordinates x1, . . . , xn are distinct. By Lemma 9.2 this means that J(x) has rank m− 1 for
every 0 �= x ∈ Xm,n. Thus every 0 �= x ∈ Xm,n is smooth.

Lemma 9.4 If 1 ≤ m ≤ n− 1 then Xm,n is an irreducible variety of dimension n−m + 1.

Proof Consider the morphism π : Xm,n → An−m+1 given by

π(x) =
(
sm(x), . . . , sn(x)

)
(9.3)

where s j is the j-th elementary symmetric polynomial, as before. Then π is surjective, and
the fibers of π are precisely the Sn-orbits in Xm,n. This shows that dim(Xm,n) = n−m + 1.
On the other hand, since Xm,n is cut out by m − 1 homogeneous polynomials in An, every
irreducible component of it has dimension≥ n−m+1; cf., e.g., [Ha, Proposition I.7.1]. We
conclude that every component of Xm,n has dimension exactly n−m + 1 and the restriction
of π to any component of Xm,n is dominant. Since Sn acts transitively on the fibers of π, its
action on the set of the irreducible components of Xm,n is also transitive.

Let X1 be an irreducible component of Xm,n and let H be the subgroup of Sn preserving
X1. Since Sn transitively permutes the components of Xm,n, it is enough to show that H =
Sn. We will do this by proving that H contains every transposition (i, j) for 1 ≤ i < j �= n.

We claim that Stab(x) ⊂ H for every 0 �= x ∈ X1. Indeed, assume to the contrary that
g ∈ Stab(x) but g(X1) �= X1. Then g(X1) and X1 are distinct irreducible components of
Xm,n passing through x. Hence, x is a singular point of Xm,n, contradicting Lemma 9.3. This
proves the claim.

It is now sufficient to show that for every transposition g = (i, j) there exists a point
0 �= x ∈ X1 such that g(x) = x. In other words, we want to show that there is a non-zero
point x = (x1, . . . , xn) ∈ X1 with xi = x j .

To prove the last assertion, we pass to the projective space Pn−1. Let P(Xm,n) be the
projectivization of Xm,n, i.e., the subvariety of Pn−1 given by (9.1). Then the irreducible
components of Xm,n are affine cones over the irreducible components of P(Xm,n); in par-
ticular, X1 is an affine cone over P(X1), where dim

(
P(X1)

)
= dim(X1)− 1 = n−m. Thus

our assumption that m ≤ n − 1 translates into dim
(

P(X1)
)
≥ 1. This implies that P(X1)

has a non-trivial intersection with any hyperplane. In particular, P(X1) ∩ {xi = x j} �= ∅
and, hence, X1 contains a non-zero point preserved by (i, j). This completes the proof of
Lemma 9.4.

Remark 9.5 The condition m ≤ n− 1 in Lemma 9.4 is essential. Indeed, the variety Xn,n

is a union of (n−1)! lines given (in parametric form) by (ζ1t, ζ2t, . . . , ζnt), where ζ1, . . . , ζn
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are distinct n-th roots of unity. In other words, P(Xm,n) is a union of the (n− 1)! projective
points of the form (ζ1 : · · · : ζn); note that none of these points lies on the hyperplane
xi = x j for any choice of 1 ≤ i < j ≤ n.

Proof of Theorem 9.1

To prove the inequality τ (E/F) ≤ n − m, let z = an−1

an
x. (Note that here we are using the

assumption m ≤ n − 1.) Substituting x = an

an−1
z into the equation f (x) = 0, we see that

the minimal polynomial of z over F is of the form

fz(t) = tn + bmtm + · · · + bn−1t + bn,

where bn = bn−1 =
an

n−1

an−1
n

. Thus

τ (E/F) ≤ trdegk k(bm, . . . , bn−1, bn) = trdegk k(bm, . . . , bn−1) ≤ n−m,

as claimed.
It therefore remains to show that τ (E/F) ≥ n−m. Since

τ (E ⊗k k̄/F ⊗k k̄) ≥ τ (E/F),

we may assume without loss of generality that k = k̄ is algebraically closed; cf. Remark 6.2.
Let Xm,n be the Sn-variety defined by (9.1) and let E# be the normal closure of E over F.
Note that by [BR1, Lemma 2.3] τ (E/F) = τ (E#/F). Our strategy will thus be as follows:
first we will show that

τ (E#/F) = ed(Xm,n),(9.4)

then

ed(Xm,n) ≥ n−m.(9.5)

We now proceed to prove (9.4). By [BR1, Lemma 2.7] it is enough to show that the field
extensions E#/F and k(Xm,n)/k(Xm,n)Sn are isomorphic.

We claim that k(Xm,n)Sn = k(sm, . . . , sn), where si is the i-th symmetric polynomial of
x1, . . . , xn, viewed as a regular function on Xm,n. Indeed, it is clear that k(s1, . . . , sn) ⊂
k(Xm,n)Sn . To prove equality, observe that the polynomial f (x) = xn + amxn−m + · · · +
an−1x + an has n distinct roots for a generic choice of (am, am+1, . . . , an) ∈ An−m+1 (because
xn − 1 has n distinct roots). This means that the map

π : Xm,n → An−m+1

given by (9.3), is generically n! : 1 and consequently, [k(Xm,n) : k(sm, . . . , sn)] = n!. Thus

[k(Xm,n)Sn : k(sm, . . . , sn)] =
[k(Xm,n) : k(sm, . . . , sn)]

[k(Xm,n) : k(Xm,n)Sn ]
=

n!

n!
= 1,
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as claimed.
Continuing with the proof of (9.4), note that the sm, . . . , sn are algebraically indepen-

dent over k. (This follows, e.g., from the fact that the map π defined in (9.3), is domi-
nant.) Thus the fields k(sm, . . . , sn) and F = k(am, . . . , an) are isomorphic via a map that
takes si to ai for every i. Now observe that k(Xm,n) is the splitting field of the polynomial
g(x) = xn + smxn−m + · · ·+ sn−1x + sn over k(Xm,n)Sn = k(sm, . . . , sn) and E# is by definition
the splitting field of f (x) over F = k(am, . . . , an). By the uniqueness of the splitting field,
we see that the field extensions k(Xm,n)/k(Xm,n)Sn and E#/F are isomorphic, as claimed.
This completes the proof of (9.4).

It remains to prove the inequality (9.5). In view of Theorem 7.2(2) it is sufficient to show
that there exists a smooth point x ∈ Xm,n such that Stab(x) contains a subgroup isomorphic
to (Z/2Z)n−m. We shall thus look for a point of the form

x = (α1, α1, α2, α2, . . . , αn−m, αn−m, αn−m+1, αn−m+2, . . . , αm−1, αm),(9.6)

where at least one αi is non-zero. (Here we are using the assumption that m ≥ n/2 and
thus 2(n−m) ≤ n.) By Lemma 9.3 any non-zero point x of Xm,n is smooth; moreover, if x
is as in (9.6) then Stab(x) contains the subgroup

〈(1, 2), (3, 4), . . . , (2n− 2m− 1, 2n− 2m)〉 	 (Z/2Z)n−m.

Thus we only need to show that a non-zero point of the form (9.6) exists on Xm,n. Sub-
stituting x into the defining equations p1(x) = · · · = pm−1(x) = 0 of Xm,n (see (9.2)), we
obtain a system of m−1 homogeneous equations in α1, . . . , αm. Since the number of vari-
ables is greater than the number of equations, this system has a non-trivial solution, which
gives us the desired point. This completes the proof of the inequality (9.5) and, hence, of
Theorem 9.1.

Remark 9.6 The same argument (with part (3) of Theorem 7.2 used in place of part (2))
shows that τ (E; 2) = n − m in the sense of Definition 8.3 (here, as before, E is viewed as
an n-dimensional F-algebra). In particular, the polynomial f (x) of Theorem 9.1 cannot be
reduced to a form with ≤ n − m algebraically independent coefficients by a Tschirnhaus
transformation, even if we allow auxiliary radicals of odd degree; cf. [BR2, Theorem 7.1].
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1–32.
[V2] , Patching local uniformizations. Ann. Sci. École. Norm. Sup. (4) 25(1992), 629–677.
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A Appendix

Fixed Points of Group Actions
and Rational Maps
János Kollár and Endre Szabó

Abstract. The aim of this note is to give simple proofs of the results in Section 5 about the behaviour of fixed
points of finite group actions under rational maps. Our proofs work in any characteristic.

Lemma A.1 Let K be an algebraically closed field and H a (not necessarily connected) linear
algebraic group over K. The following are equivalent.

1. Every representation H → GL(n,K) has an H-eigenvector.
2. There is a (not necessarily connected) unipotent, normal subgroup U < H such that H/U

is abelian.

Proof Let H → GL(n,K) be a faithful representation. If (1) holds then H is conjugate to
an upper triangular subgroup, this implies (2).

Conversely, any representation of a unipotent group has fixed vectors (cf. [Borel91,
I.4.8]) and the subspace of all fixed vectors is an H/U -representation.

Proposition A.2 (Going down) Let K be an algebraically closed field, H a linear algebraic
group over K and f : X ��� Y an H-equivariant rational map of K-schemes. Assume that

1. H satisfies the equivalent conditions of Lemma A.1,
2. H has a smooth fixed point on X, and
3. Y is proper.

Then H has a fixed point on Y .

Proof The proof is by induction on dim X. The case dim X = 0 is clear.
Let x ∈ X be a smooth H-fixed point and consider the blow up BxX with exceptional

divisor E ∼= Pn−1. The H-action lifts to BxX and so we get an H-action on E which has a
fixed point by (1). Since Y is proper, the induced rational map BxX → X ��� Y is defined
outside a subset of codimension at least 2. Thus we get an H-equivariant rational map
E ��� Y . By induction, there is a fixed point on Y .

Remark A.3 If H does not satisfy the conditions of Lemma A.1 then Proposition A.2 fails
for some actions. Indeed, let H → GL(n,K) be a representation without an H-eigenvector.
This gives an H-action on Pn with a single fixed point Q ∈ Pn. The corresponding action
on BQPn has no fixed points.

Proposition A.4 (Going up) Let K be an algebraically closed field and H a finite abelian
group of prime power order qn (q is allowed to coincide with char K). Let p : X ��� Z be an
H-equivariant rational map of irreducible K-schemes. Assume that

1. p is generically finite, dominant and q � deg(X/Z),
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2. H has a smooth fixed point on Z, and
3. X is proper.

Then H has a fixed point on X. Moreover, if X ��� Y is an H-equivariant rational map to a
proper K-scheme then H has a fixed point on Y .

Proof The proof is by induction on dim Z. The case dim Z = 0 is clear.
Let z ∈ Z be a smooth fixed point and E ⊂ BzZ the exceptional divisor. Let p̄ : X̄ → BzZ

denote the normalization of BzZ in the field of rational functions of X and Fi ⊂ X̄ the
divisors lying over E. H acts on the set {Fi}. Let F j denote the H-orbits and in each pick a
divisor F∗j ∈ F j . By the ramification formula (see [Lang65, Corollary XII.6.2])

deg(X/Z) =
∑

j

|F j | · deg(F∗j /E) · e(p̄, F∗j )

where e(p̄, F∗j ) denotes the ramification index of p̄ at the generic point of F∗j . Since
deg(X/Z) is not divisible by q, there is an orbit F0 consisting of a single element F∗0 such
that deg(F∗0 /E) is not divisible by q.

We have H-equivariant rational maps F∗0 ��� E, F∗0 ��� X and F∗0 ��� Y . By induction
H has a fixed point on F∗0 , X and Y .

Remark A.5 We see from the proof that Proposition A.4 also holds if H is abelian and only
one of the prime divisors of |H| is less than deg(X/Z).

The method also gives a simpler proof of a result of [Nishimura55]. One can view this
as a version of Proposition A.2 where H is the absolute Galois group of K.

Proposition A.6 (Nishimura lemma) Let K be a field and f : X ��� Y a rational map of
K-schemes. Assume that

1. X has a smooth K-point, and
2. Y is proper.

Then Y has a K-point.

Proof The proof is by induction on dim X. The case dim X = 0 is clear.
Let x ∈ X be a smooth K-point and consider the blow up BxX with exceptional divisor

E ∼= Pn−1. The divisor E has smooth K-points. Since Y is proper, the induced rational map
BxX → X ��� Y is defined outside a subset of codimension at least 2 and we get a rational
map E ��� Y . By induction, there is a K-point on Y .

Remark A.7 One may combine Propositions A.2 and A.6 if we know that any H-represen-
tation has an eigenvector defined over K. There are two interesting cases where this condi-
tion holds:

1. H is Abelian of order n and K contains all n-th roots of unity.
2. H is nilpotent and its order is a power of char K.
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