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Abstract

The term moderate deviations is often used in the literature to mean a class of large devi-
ation principles that, in some sense, fills the gap between a convergence in probability
of some random variables to a constant, and a weak convergence to a centered Gaussian
distribution (when such random variables are properly centered and rescaled). We talk
about noncentral moderate deviations when the weak convergence is towards a non-
Gaussian distribution. In this paper we prove a noncentral moderate deviation result for
the bivariate sequence of sums and maxima of independent and identically distributed
random variables bounded from above. We also prove a result where the random vari-
ables are not bounded from above, and the maxima are suitably normalized. Finally,
we prove a moderate deviation result for sums of partial minima of independent and
identically distributed exponential random variables.

Keywords: Central limit theorem; Fisher–Tippett–Gnedenko theorem; joint distribution
of sum and maxima; large deviations; moderate deviations; sums of partial minima
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1. Introduction

The theory of large deviations gives an asymptotic computation of small probabilities on
an exponential scale; see [5] as a reference for this topic. The basic definition of this theory
is the concept of a large deviation principle (LDP for short). More precisely, a sequence of
probability measures {πn : n ≥ 1} on a topological space X satisfies the LDP, with speed vn and
a rate function I, if the following conditions hold: vn → ∞ as n → ∞, the function I : X →
[0, ∞] is lower semicontinuous,

lim inf
n→∞

1

vn
log πn(O) ≥ − inf

x∈O
I(x) for all open sets O,
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1154 R. GIULIANO ET AL.

and

lim sup
n→∞

1

vn
log πn(C) ≤ − inf

x∈C
I(x) for all closed sets C.

Moreover, we talk about weak LDP (WLDP for short) if the above upper bound for closed sets
holds for compact sets only. We also recall that, if every level set {x ∈X : I(x) ≤ η} is compact
(for η ≥ 0), the rate function I is said to be good. Finally, we say that the sequence {πn : n ≥ 1}
can often be seen as a sequence of laws of X -valued random variables {Xn : n ≥ 1} defined on
the same probability space (�,F , P), i.e. πn = P(Xn ∈ · ) for every n ≥ 1, and, with a slight
abuse of terminology, we say that {Xn : n ≥ 1} satisfies the LDP.

In several common cases the rate function is good and uniquely vanishes at a certain point
x∞ ∈X . Then we can show that {Xn : n ≥ 1} converges in probability to x∞; moreover, roughly
speaking, if E is a Borel subset of X such that x∞ /∈ Ē, P(Xn ∈ E) tends to zero as e−vnI(E) (as
n → ∞), where I(E) := infx∈E I(x) > 0.

The term moderate deviations is used for a class of LDPs that fills the gap between two
asymptotic regimes:

(i) the convergence in probability of some random variables {Xn : n ≥ 1} to some constant
x∞, governed by the LDP with speed vn, and a good rate function I (this LDP will called
the reference LDP);

(ii) the weak convergence to a centered Gaussian distribution of a centered and suitably
rescaled version of the random variables {Xn : n ≥ 1}.

More precisely, we mean a class of LDPs for which the random variables involved depend
on a class of positive sequences {an : n ≥ 1} (called scalings) such that

an → 0 and anvn → ∞ (as n → ∞); (1)

the speed will be 1/an (so the speed is less fast than vn and this explains the term moderate),
and these LDPs are governed by the same quadratic rate function J which uniquely vanishes at
zero. Moreover, we can say that, in some sense, we can recover the asymptotic regimes (i) and
(ii) above by choosing an = 1/vn (so the second condition in (1) fails) and an = 1 (so the first
condition in (1) fails), respectively.

Some recent moderate deviation results in the literature concern cases in which the weak
convergence is towards a non-Gaussian distribution. Hence we talk about noncentral moderate
deviations (NCMD for short) and typically the common rate function J for the class of LDPs
is not quadratic. Some examples of NCMD results can be found in [11], where the weak con-
vergences are towards Gumbel, exponential, and Laplace distributions. In the same reference
the interested reader can find references in the literature with other examples. The examples
in the literature essentially concern univariate random variables; the only multivariate example
we are aware of is presented in [17], where the weak convergence is trivial because a sequence
of identically distributed random variables is considered.

The aim of this paper is to prove two moderate deviation results, and a further LDP. The
first moderate deviation result fills the gap between convergence to a constant for the bivari-
ate sequence of sums and maxima of independent and identically distributed (i.i.d.) random
variables (under suitable hypotheses; in particular they are bounded from above), and weak
convergence towards a pair of independent random variables with standard Gaussian and
Weibull marginal distributions (more precisely, we always have the Weibull distribution of
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Asymptotic results for sums and extremes 1155

parameter 1, i.e. the distribution of a random variable U such that −U is exponentially dis-
tributed with mean 1); the weak convergence is a consequence of [4, Theorem 1] (see also
[1, 13] for generalizations; here we also cite [2, 16, 21] among the other references on the joint
distribution of sums and maxima). Thus we obtain the NCMD result for a bivariate sequence. In
particular, in this paper we also prove the reference LDP with speed vn = n, i.e. Proposition 3.

We prove Proposition 6, which can be seen as a suitable modification of Proposition 3
(under some other suitable hypotheses; in particular they are not bounded from above). As we
shall see, this new result is the LDP with vn = log n.

The second moderate deviation result fills the gap between convergence to a constant for
the sequence of sums of partial minima of i.i.d. exponential random variables, and weak
convergence to a centered Gaussian distribution proved in [12]. Thus we obtain a moderate
deviation (MD) result. In this case the reference LDP with speed vn = log n is a known result
[10, Proposition 5.2].

By taking into account that in this paper we present some results with sums and maxima, we
also recall here some other references which describe the impact of maximal order statistics
in the asymptotics of the sum in the normal deviation region: [14, 15, 19]. Actually, these
references concern the case with heavy-tailed i.i.d. random variables.

We conclude this section with an outline of the paper. We start with some preliminaries
in Section 2. We prove the NCMD result for the bivariate sequence in Section 3, and the MD
result for the sums of partial minima of i.i.d. exponential random variables in Section 5. Finally,
in Section 4 we prove Proposition 6.

2. Preliminaries

We start with a standard way to obtain the LDP with speed vn on a Polish space X . First, if
we denote by BR(x) the open ball centered at x with radius R, we can obtain a weak LDP (i.e.
the lower bound for open sets, and the upper bound for compact sets) showing that

−I(x) ≤ lim
R→0

lim inf
n→∞

1

vn
log πn(BR(x)) ≤ lim

R→0
lim sup

n→∞
1

vn
log πn(BR(x)) ≤ −I(x)

for all x ∈X (this can be seen as a consequence of [5, Theorem 4.1.11]); actually, we can
consider an arbitrary basis of neighborhoods of each point x ∈X instead of open balls. We can
successively (see, e.g., [5, Lemma 1.2.18]) obtain the full LDP (i.e. the upper bound for closed
sets), showing that the exponential tightness condition holds (see, e.g., [5, p. 8]): for all b > 0
there exists a compact set Kb such that

lim sup
n→∞

1

vn
log πn

(
Kc

b

)≤ −b

or, equivalently,

πn
(
Kc

b

)≤ ae−vnb eventually

for some a > 0.
Moreover, in view of what we present in the next sections, we recall two results. The first

is the well-known Gärtner–Ellis theorem [5, Theorem 2.3.6(c)]. Here we recall a simplified
version of the theorem, with X =R.
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1156 R. GIULIANO ET AL.

Proposition 1. Let {πn : n ≥ 1} be a sequence of probability measures on R, and let {vn : n ≥ 1}
be a speed function. Moreover, assume that, for all θ ∈R, the limit

�(θ ) := lim
n→∞

1

vn

∫
R

evnθx πn(dx)

exists as an extended real number, and that 0 ∈ (D(�))◦, where D(�) := {θ ∈R : �(θ ) < ∞}.
Then, if � is essentially smooth and lower semicontinuous, the sequence {πn : n ≥ 1} satisfies
the LDP with good rate function �∗ defined by �∗(x) := supθ∈R{θx − �(θ )}.

For completeness, we recall that the function � is essentially smooth [5, Definition 2.3.5] if
it is differentiable throughout the set (D(�))◦ (assumed to be nonempty), and if it is steep, i.e.
|�′(θn)| tends to infinity whenever {θn : n ≥ 1} ⊂ (D(�))◦ is a sequence which converges to a
boundary point of D(�).

The second result is [3, Theorem 2.3], which plays a crucial role in the proof of the first
moderate deviation result (i.e. the one for the bivariate sequence of sums and maxima of
i.i.d. random variables). In this case we have X =Y ×Z , where Y and Z are Polish spaces.
Moreover, for any given probability measure πn on X =Y ×Z , we consider the marginal dis-
tributions πY

n on Y and πZ
n on Z , i.e. πY

n (dy) = ∫Z πn(dy, dz) and πZ
n (dz) = ∫Y πn(dy, dz), and

the conditional distributions
{
π

Y|Z
n (dy | z) : z ∈Z} on Y such that

πn(dy, dz) = πY|Z
n (dy | z) πZ

n (dz).

Proposition 2. Let {πn : n ≥ 1} be a sequence of probability measures on X =Y ×Z , where
Y and Z are Polish spaces. We assume that the following conditions hold.

(C1) The sequence
{
πZ

n : n ≥ 1
}

satisfies the LDP with speed vn and a good rate function IZ.

(C2) If {zn : n ≥ 1} ⊂Z and zn → z ∈Z , then
{
π

Y|Z
n (dy | zn) : n ≥ 1

}
satisfies the LDP with

speed vn and good rate function IY|Z( · | z), where
{
IY|Z( · | z) : z ∈Z} is a family of good

rate functions such that

(y, z) �→ IY|Z(y | z) is lower semicontinuous. (2)

Then
{
πn : n ≥ 1

}
satisfies the WLDP with speed vn and rate function IY,Z defined by

IY,Z(y, z) := IY|Z(y | z) + IZ(z). Moreover,
{
πY

n : n ≥ 1
}

satisfies the LDP with speed vn

and rate function IY defined by

IY (y) := inf
z∈Z

{IY,Z(y, z)} = inf
z∈Z

{IY|Z(y | z) + IZ(z)};

{πn : n ≥ 1} satisfies the full LDP if the rate function IY,Z is good and, in such a case,
the rate function IY is also good.

In what follows we apply Proposition 2 in the proofs of Propositions 3 and 5. Actually,
we omit the statement for

{
πY

n : n ≥ 1
}

because it would allow us to recover well-known
results.
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3. NCMD for sums and maxima of i.i.d. random variables

Throughout this section we assume the following.

Assumption 1. Let {Wn : n ≥ 1} be a sequence of i.i.d. real random variables with density func-
tion f which is assumed to be positive only on an interval (m,M), where −∞ ≤ m < M < +∞.
We set

I = (m, M) =
{

[m, M] if m > −∞,

(−∞, M] if m = −∞.

Moreover, as usual, we set F(z) := ∫ z
−∞ f (w) dw for z ∈R; then F(M) = 1 and, if m > −∞,

F(m) = 0. Finally, we also assume that, for every z ∈ I, the function κY|Z( · | z) defined by

κY|Z(θ | z) :=
{

θm if z = m > −∞,

log
[(∫ z

−∞ eθwf (w) dw
)
/F(z)

]
otherwise

(3)

is finite in a neighborhood of the origin θ = 0, essentially smooth and lower semicontinuous.

We are interested in the asymptotic behavior of the sequence of bivariate random variables
{(Yn, Zn) : n ≥ 1} defined by

(Yn, Zn) :=
(

W1 + · · · + Wn

n
, max{W1, . . . , Wn}

)
.

The first result in this section is the reference LDP, i.e. Proposition 3, which provides the
full LDP of {P((Yn, Zn) ∈ · ) : n ≥ 1} in the final part of the statement of the proposition.
Successively, under some further conditions (see Assumption 2), in Proposition 4 we show
that we have weak convergence towards a non-Gaussian distribution, and in Proposition 5 we
prove the NCMD result. Both Propositions 3 and 5 will be proved by applying [3, Theorem
2.3], i.e. Proposition 2.

3.1. The reference LDP

We start with the following proposition.

Proposition 3. Assume that Assumption 1 holds. Let IZ be defined by IZ(z) := − log F(z) for
z ∈ I, with the rule log 0 = −∞ for the case z = m when m > −∞; moreover, for each z ∈ I, let
IY|Z( · | z) be the function defined by IY|Z(y | z) := supθ∈R{θy − κY|Z(θ | z)}, where κY|Z(θ | z) is
defined by (3). Then {P((Yn, Zn) ∈ · ) : n ≥ 1} satisfies the WLDP with speed n and rate function
IY,Z defined by IY,Z(y, z) := IY|Z(y | z) + IZ(z). Moreover, {P((Yn, Zn) ∈ · ) : n ≥ 1} satisfies the
full LDP if the rate function IY,Z is good and, in such a case, the rate function IY is also good.

Proof. We want to apply Proposition 2 (on the product space Y ×Z := I × I) to the
sequence {πn : n ≥ 1} defined by πn( · ) = P((Yn, Zn) ∈ · ). It is known that Condition (C1) triv-
ially holds; see, e.g., [9, Proposition 4.1]. So, in the remainder of the proof, we have to show
that Condition (C2) holds.

First, we can easily check the condition in (2). Indeed, if we take {(yn, zn) : n ≥ 1} ⊂ I × I
such that (yn, zn) → (y, z) ∈ I × I, we have

IY|Z(yn | zn) ≥ θyn − κY|Z(θ | zn) for all θ ∈R,
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which yields (if z > m this is trivial; if z = m > −∞ it follows from an application of
L’Hôpital’s rule)

lim inf
n→∞ IY|Z(yn | zn) ≥ θy − κY|Z(θ | z) for all θ ∈R,

and we get lim infn→∞ IY|Z(yn | zn) ≥ IY|Z(y | z) by taking the supremum with respect to θ ∈R.
Thus, (2) is checked.

In order to complete the proof of Condition (C2), some preliminaries are needed. Namely,
we recall a well-known result on order statistics, and we introduce a suitable family of
densities.

• For every n ≥ 1, let W1:n, . . . , Wn:n be the order statistics of W1, . . . , Wn. Then the joint
distribution of (W1:n, . . . , Wn:n) has density

g(w1, . . . , wn) = n!f (w1) · · · f (wn)1w1<···<wn .

• For every z ∈ I such that z �= m when m > −∞, we introduce the density f ( · | z) defined
by

f (w | z) = f (w)

F(z)
1(−∞,z)(w). (4)

We assume for the moment that

log E
[
enθYn | Zn = zn

]= (n − 1)κY|Z(θ | zn) + θzn for all θ ∈R; (5)

this will be checked below. Then, by (5), we get

lim
n→∞

1

n
log E

[
enθYn | Zn = zn

]= κY|Z(θ | z) for all θ ∈R,

and, by the hypotheses on the functions {κY|Z( · | z) : z ∈ I}, we see that Condition (C2) holds
by a straightforward application of the Gärtner–Ellis theorem, i.e. Proposition 1.

To conclude, we have to check (5), and for simplicity we write z in place of zn. Actually, the
case z = m, when m > −∞, is immediate; therefore, from now on, we assume z > m. Firstly
we have

E
[
enθYn | Zn = z

]
=E

[
exp

{
θ

n∑
i=1

Wi:n

}
| Wn:n = z

]

=
∫
Rn−1

exp

{
θ

(
n−1∑
i=1

wi + z

)}
g(w1, . . . , wn−1, z)

n(F(z))n−1f (z)
dw1 · · · dwn−1

= eθz
∫
Rn−1

exp

{
θ

n−1∑
i=1

wi

}
n!f (w1) · · · f (wn−1)f (z)1w1<···<wn−1<z

n(F(z))n−1f (z)
dw1 · · · dwn−1

= eθz
∫
Rn−1

exp

{
θ

n−1∑
i=1

wi

}
(n − 1)!f (w1) · · · f (wn−1)1w1<···<wn−1<z

(F(z))n−1
dw1 · · · dwn−1

= eθz
∫
Rn−1

exp

{
θ

n−1∑
i=1

wi

}
(n − 1)!f (w1 | z) · · · f (wn−1 | z)1w1<···<wn−1 dw1 · · · dwn−1.
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Then let W(z)
1 , . . . , W(z)

n−1 be i.i.d. random variables with common density f ( · | z) in (4);

moreover, we denote their order statistics by W(z)
1:n−1, . . . , W(z)

n−1:n−1. We have

E
[
enθYn | Zn = z

]= eθz
E

[
exp

{
θ

n−1∑
i=1

W(z)
i:n−1

}]

= eθz
E

[
exp

{
θ

n−1∑
i=1

W(z)
i

}]
= eθz

n−1∏
i=1

E
[
eθW(z)

i
]
,

and, by taking into account the definition of the function κY|Z( · | z) in (3), we get

E
[
enθYn | Zn = z

]= eθz( exp
{
κY|Z(θ | z)

})n−1 = exp
{
(n − 1)κY|Z(θ | z) + θz

}
.

Thus (5) is checked. �

We have the following remarks.

Remark 1. The sequence {P((Yn, Zn) ∈ · ) : n ≥ 1} satisfies the full LDP (because the rate func-
tion IY,Z is good) if m > −∞, i.e. if I is compact. Indeed, in such a case, every closed level set
of IY,Z is compact (indeed it is a subset of I × I). We also recall that if m > −∞, the function
κY|Z( · | z) is finite and differentiable.

Remark 2. We can wonder whether we can obtain a version of Proposition 3 when the dis-
tribution of the random variables {Wn : n ≥ 1} is not bounded from above, i.e. when M = ∞.
Firstly, in such a case, the rate function IZ in Proposition 3 is not good, and therefore we can-
not apply Proposition 2. However, we can prove Proposition 6, i.e. a suitable modification of
Proposition 3 with {P((Yn, Zn/hn) ∈ · ) : n ≥ 1} in place of {P((Yn, Zn) ∈ · ) : n ≥ 1}, for some
hn such that hn → ∞.

It is interesting to present the following example in which the rate function IY,Z is good
even if m = −∞.

Example 1. We take I = (−∞, 0] (so M = 0 and m = −∞). Let f be defined by f (w) :=
ew1(−∞,0)(w). Then, for z ∈ (−∞, 0], we have F(z) = ez, which yields IZ(z) = −z;

κY|Z(θ | z) = log

∫ z
−∞ eθwew dw

ez
= log

(
e−z
∫ z

−∞
e(θ+1)w dw

)

=

⎧⎪⎨
⎪⎩

−z + log
e(θ+1)z

θ + 1
if θ + 1 > 0

∞ if θ + 1 ≤ 0

=
{

θz − log (θ + 1) if θ > −1,

∞ if θ ≤ −1,

and therefore, for y < z ≤ 0,

IY|Z(y | z) = sup
θ∈R
{
θy − κY|Z(θ | z)

}= sup
θ>−1

{θ (y − z) + log (θ + 1)} = (z − y) − 1 − log (z − y)

(indeed, the supremum above is attained at θ = (1/(z − y)) − 1).
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Now we are able to check that IY,Z is a good rate function. For every η ≥ 0 we have

{(y, z) ∈ I × I : IY,Z(y, z) ≤ η} = {(y, z) ∈ I × I : IY|Z(y | z) + IZ(z) ≤ η}
= {(y, z) : y < z ≤ 0, (z − y) − 1 − log (z − y) − z ≤ η}

⊂ {(y, z) : y < z ≤ 0, (z − y) − 1 − log (z − y) ≤ η, −z ≤ η};
moreover, for every z ∈ [−η, 0], there exist rη

1 , rη
2 such that 0 < rη

1 < 1 < rη
2 and (z − y) −

1 − log (z − y) ≤ η if and only if rη
1 < z − y < rη

2 ; therefore the (closed) level set {(y, z) ∈
I × I : IY,Z(y, z) ≤ η} is a subset of the compact set (it is a parallelogram)

{
(y, z): − η ≤ z ≤

0, z − rη
2 ≤ y ≤ z − rη

1

}
.

3.2. Weak convergence and NCMD

Throughout this paper we consider the Weibull distribution with parameter 1, i.e. the dis-
tribution of a random variable U such that P(U ≤ u) = min{eu, 1} for all u ∈R (thus −U
is an exponentially distributed random variable with mean 1). We start with the following
assumption.

Assumption 2. Let {Wn : n ≥ 1} be a sequence of i.i.d. real random variables as in
Assumption 1 with density function f (so the random variables {Wn : n ≥ 1} have finite mean
μ < M and variance σ 2 > 0; indeed, κY|Z(θ | M) = log E

[
eθW1

]
is finite in a neighborhood of

the origin θ = 0). Moreover, we assume that F′(M−) > 0, i.e. the left derivative of F at M, exists
and that f (M) = F′(M−). Finally, let {L(n) : n ≥ 1} be a sequence such that L(n) → F′(M−) as
n → ∞.

It is well known that, if Assumption 2 holds, we have the following weak convergence
results (as n → ∞):

(i) By the central limit theorem, {
Yn − μ

σ/
√

n
: n ≥ 1

}
converges weakly to a standard Gaussian distribution;

(ii) {nL(n)(Zn − M) : n ≥ 1} converges weakly to a Weibull distribution with parameter 1.
Indeed, for every z ≤ 0, for a suitable remainder o(1/n) (as n → ∞), for n large enough
we have

P(nL(n)(Zn − M) ≤ z) = P

(
Zn ≤ M + z

nL(n)

)

= Fn
(

M + z

nL(n)

)

=
(

1 + F′(M−)
z

nL(n)
+ o

(
1

n

))n

→ ez (as n → ∞).

Remark 3. The weak convergence of {nL(n)(Zn − M) : n ≥ 1} in (ii) can be related to a par-
ticular case of the Fisher–Tippett–Gnedenko theorem [6, Theorem 3.2.3]. More precisely, we
mean the weak convergence of {

Zn − M

M − F−1(1 − 1/n)
: n ≥ 1

}
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when the random variables {Wn : n ≥ 1} are in the maximum domain of attraction of the Weibull
distribution with parameter 1; see [6, Table 3.4.3, p. 154] for α = 1 (for the related theory,
see [6, Section 3.3.2]). Indeed, we have M − F−1(1 − 1/n) = n−1L1(n) for a slowly varying
function L1; then, since M = F−1(1), we get

L1(n) = F−1(1) − F−1(1 − 1/n)

1/n
→ (F−1)′(1) = 1

F′(M−)
as n → ∞,

and therefore L1(n) plays the role of 1/L(n) (at least for n large enough).

Actually, as we state in the next proposition, we have a stronger result, i.e. the weak
convergence of the bivariate sequence towards a bivariate distribution with independent
components.

Proposition 4. If Assumption 2 holds, then{(
Yn − μ

σ/
√

n
, nL(n)(Zn − M)

)
: n ≥ 1

}

converges weakly to a bivariate distribution with independent components distributed as a
standard Gaussian distribution and a Weibull distribution with parameter 1.

Proof. This is a consequence of [4, Theorem 1]. �

The next proposition provides a class of LDPs that fills the gap between the convergence of
{(Yn, Zn) : n ≥ 1} to (μ, M) (governed by the LDP in Proposition 3 with speed vn = n) and the
weak convergence in Proposition 4. Then we have the NCMD result because the weak con-
vergence in Proposition 4 is towards a non-Gaussian distribution (indeed, the second marginal
distribution is not Gaussian).

Proposition 5. Assume that Assumption 2 holds. Then, for every sequence of positive numbers
{an : n ≥ 1} such that (1) holds with vn = n, the sequence{

P

((√
an

Yn − μ

σ/
√

n
, annL(n)(Zn − M)

)
∈ ·
)

: n ≥ 1

}

satisfies the LDP with speed 1/an and good rate function JY,Z defined by

JY,Z(y, z) =
{

y2

2 − z if z ≤ 0,

∞ otherwise.

Proof. We want to apply Proposition 2 (on the product space Y ×Z := R× (−∞, 0]) to
the sequence {πn : n ≥ 1} defined by

πn( · ) = P

((√
an

Yn − μ

σ/
√

n
, annL(n)(Zn − M)

)
∈ ·
)

.

Notice that here we use some slightly different notation (i.e. JZ , JY|Z , and JY,Z in place of IZ ,
IY|Z , and IY,Z in Proposition 2, respectively). The proof is divided into three parts: the proof of
Condition (C1), the proof of Condition (C2), and the proof of the goodness of the rate function
JY,Z .
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Condition (C1). Here we consider the sequence
{
πZ

n : n ≥ 1
}

defined by πZ
n ( · ) =

P(annL(n)(Zn − M) ∈ · ). We have to prove that
{
πZ

n : n ≥ 1
}

satisfies the LDP with speed 1/an

and good rate function JZ defined by

JZ(z) =
{−z if z ≤ 0,

∞ otherwise.

We start with the proof of the upper bound for every closed set C ⊂ (−∞, 0]. If 0 ∈ C it is
trivial. If 0 /∈ C, we set zC := sup C and therefore we have zC = − infz∈C JZ(z) < 0, with zC ∈
C. Then, for a suitable remainder o(1/ann) (as n → ∞), for n large enough we have

P(annL(n)(Zn − M) ∈ C) ≤ P(annL(n)(Zn − M) ≤ zC)

= P

(
Zn ≤ M + zC

annL(n)

)

= Fn
(

M + zC

annL(n)

)
=
(

1 + F′(M−)
zC

annL(n)
+ o

(
1

ann

))n

,

and therefore

lim sup
n→∞

1

1/an
log P(annL(n)(Zn − M) ∈ C)

≤ lim sup
n→∞

ann log

(
1 + F′(M−)

zC

annL(n)
+ o

(
1

ann

))
= zC = − inf

z∈C
JZ(z).

Now the lower bound for open sets. For every open set O ∈ (−∞, 0] such that z ∈ O, we have
to check that

lim sup
n→∞

1

1/an
log P(annL(n)(Zn − M) ∈ O) ≥ −JZ(z).

This is trivial if z = 0 because P(annL(n)(Zn − M) ∈ O) → 1 (indeed, annL(n)(Zn − M) con-
verges in probability to zero as a trivial consequence of the Slutsky theorem). For z < 0 we
take ε > 0 small enough to have (z − ε, z + ε) ⊂ O ∩ (−∞, 0) and, by also taking into account
some computations above from the proof of the upper bound for closed sets, for n large enough
we get

P(annL(n)(Zn − M) ∈ O)

≥ P(z − ε < annL(n)(Zn − M) < z + ε)

= P

(
M + z − ε

annL(n)
< Zn < M + z + ε

annL(n)

)

= Fn
(

M + z + ε

annL(n)

)
− Fn

(
M + z − ε

annL(n)

)

=
(

1 + F′(M−)
z + ε

annL(n)
+ o

(
1

ann

))n

−
(

1 + F′(M−)
z − ε

annL(n)
+ o

(
1

ann

))n

=
(

1 + F′(M−)
z − ε

annL(n)
+ o

(
1

ann

))n

×
(

(1 + F′(M−)(z + ε)/annL(n) + o(1/ann))n

(1 + F′(M−)(z − ε)/annL(n) + o(1/ann))n
− 1

)
;
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moreover,

lim inf
n→∞

1

1/an
log P(annL(n)(Zn − M) ∈ O)

≥ lim inf
n→∞ ann log

(
1 + F′(M−)

z − ε

annL(n)
+ o

(
1

ann

))

+ lim inf
n→∞ an log

(
exp

(
n log

(
1 + F′(M−)(z + ε)/annL(n) + o(1/ann)

1 + F′(M−)(z − ε)/annL(n) + o(1/ann)

))
− 1

)
,

where

lim inf
n→∞ ann log

(
1 + F′(M−)

z − ε

annL(n)
+ o

(
1

ann

))
= z − ε

and

n log

(
1 + F′(M−)(z + ε)/annL(n) + o(1/ann)

1 + F′(M−)(z − ε)/annL(n) + o(1/ann)

)

= n log

(
1 + F′(M−)2ε/annL(n) + o(1/ann)

1 + F′(M−)(z − ε)/annL(n) + o(1/ann)

)
∼ 2ε

an
;

so finally we have

lim inf
n→∞

1

1/an
log P(annL(n)(Zn − M) ∈ O) ≥ z − ε + 2ε = −JZ(z) + ε,

and we conclude by letting ε go to zero.

Condition (C2). Here we consider the sequence
{
π

Y|Z
n ( · | zn) : n ≥ 1

}
defined by

πY|Z
n ( · | zn) = P

(√
an

Yn − μ

σ/
√

n
∈ · | annL(n)(Zn − M) = zn

)
,

where {zn : n ≥ 1} ⊂ (−∞, 0] such that zn → z (as n → ∞) for some z ∈ (−∞, 0]. Then we

have to prove that
{
π

Y|Z
n ( · | zn) : n ≥ 1

}
satisfies the LDP with speed 1/an and good rate func-

tion JY|Z defined by JY|Z(y | z) = y2/2. Note that the condition in (2) trivially holds; indeed,
(y, z) �→ JY|Z(y | z) = y2/2 is a lower semicontinuous function. Moreover, in what follows, we
simply write JY (y) = y2/2 in place of JY|Z(y | z) = y2/2.

We apply the Gärtner–Ellis theorem, i.e. Proposition 1. Indeed, we show that

lim
n→∞

1

1/an
log E

[
exp

(
θ

an

√
an

Yn − μ

σ/
√

n

)
| annL(n)(Zn − M) = zn

]
= θ2

2
(for all θ ∈R), (6)

and therefore, for every z ≤ 0, we get the desired LDP with rate function JY defined by JY (y) :=
supθ∈R

{
θy − θ2/2

}
for all y ∈R, which coincides with the rate function JY (y) = y2/2.

Now we recall that

√
an

Yn − μ

σ/
√

n
= nYn − nμ

σ
√

n/an
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and annL(n)(Zn − M) = zn if and only if Zn = M + zn/annL(n); then, for n large enough, we
have

P

(√
an

Yn − μ

σ/
√

n
∈ · | annL(n)(Zn − M) = zn

)
= P

(
M + zn/annL(n) + S(zn)

n−1 − nμ

σ
√

n/an
∈ ·
)

,

where S(zn)
n−1 is the sum of n − 1 i.i.d. random variables W(zn)

1 , . . . , W(zn)
n−1 such that

log E
[
eθW(zn)

1
]= κY|Z

(
θ | M + zn

annL(n)

)
(for all θ ∈R).

Thus, we get

log E

[
exp

(
θ

an

√
an

Yn − μ

σ/
√

n

)
| annL(n)(Zn − M) = zn

]

= (n − 1)κY|Z
(

θ

σ
√

ann
| M + zn

annL(n)

)
+ θ

M + zn/annL(n) − nμ

σ
√

ann
,

where, for a suitable remainder o(1//ann) (as n → ∞),

κY|Z
(

θ

σ
√

ann
| M + zn

annL(n)

)
= ∂θκY|Z(0 | M)

θ

σ
√

ann
+ ∂zκY|Z(0 | M)

zn

annL(n)

+ 1

2
∂2
θθ κY|Z(0 | M)

θ2

σ 2ann
+ 1

2
∂2

zzκY|Z(0 | M)
z2

n

a2
nn2L2(n)

+ ∂2
θzκY|Z(0 | M)

θ

σ
√

ann

zn

annL(n)
+ o

(
1

ann

)
;

moreover, we have ∂θκY|Z(0 | M) = μ and ∂2
θθ κY|Z(0 | M) = σ 2, and (we recall that F(M) = 1,∫ M

m f (w) dw = 1 and f (M) = F′(M−) is finite and positive)

∂zκY|Z(0 | M) = F(z)∫ z
m eθwf (w) dw

eθzf (z)F(z) − f (z)
∫ z

m eθwf (w) dw

F2(z)

∣∣∣∣
(θ,z)=(0,M)

= 0.

Then we get the limit in (6), noting that

1

1/an
log E

[
exp

(
θ

an

√
an

Yn − μ

σ/
√

n

)
| annL(n)(Zn − M) = zn

]

= an(n − 1)

{
μ

θ

σ
√

ann
+ σ 2

2

θ2

σ 2ann
+ 1

2
∂2

zzκY|Z(0 | M)
z2

n

a2
nn2L2(n)

+ ∂2
θzκY|Z(0 | M)

θ

σ
√

ann

zn

annL(n)
+ o

(
1

ann

)}
+ anθ

M + zn/annL(n) − nμ

σ
√

ann

= θ

σ
√

ann

(
an(n − 1)μ + ∂2

θzκY|Z(0 | M)
zn(n − 1)

nL(n)
+ anM + zn

nL(n)
− annμ

)

+ θ2(n − 1)

2n
+ an(n − 1)

2
∂2

zzκY|Z(0 | M)
z2

n

a2
nn2L2(n)

+ an(n − 1)o

(
1

ann

)
→ θ2

2

(for each fixed θ ∈R).
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Goodness of the rate function JY,Z. Here we have to check that, for every η ≥ 0, every closed
level set of JY,Z is compact. This can be done by noting that, for every η ≥ 0, we have

{(y, z) ∈R× (−∞, 0] : JY,Z(y, z) ≤ η}
= {(y, z) ∈R× (−∞, 0] : JY (y) + JZ(z) ≤ η}

⊂ {y ∈R : JY (y) ≤ η} × {z ∈ (−∞, 0] : JZ(z) ≤ η},
where both {y ∈R : JY (y) ≤ η} and {z ∈ (−∞, 0] : JZ(z) ≤ η} are compact sets; so every level
set is compact because it is a subset of a compact set. �
Remark 4. The rate function JY,Z(y, z) in Proposition 5 can be expressed as a sum of two
functions which depend on y and z only, i.e. the marginal rate functions JY (y) and JZ(z) that
appear in the proof of that proposition. This is not surprising by the asymptotic independence
stated in Proposition 4.

4. A modification of Proposition 3 when M is not finite

In this section we prove Proposition 6, i.e. a suitable modification of Proposition 3 with
{P((Yn, Zn/hn) ∈ · ) : n ≥ 1} in place of {P((Yn, Zn) ∈ · ) : n ≥ 1}, for some hn such that hn → ∞;
actually, we consider some different hypotheses and, in particular, M = ∞. In order to do that
we refer to [9, Proposition 3.1] (in place of [9, Proposition 4.1]; we mean the part of the proof
of Proposition 3 in which we check that Condition (C1) holds). We start with the following
useful lemma.

Lemma 1. Let {πn}n be a sequence of probability measures (on some Polish space) that sat-
isfies the LDP with speed sn and good rate function I, which uniquely vanishes at some r0.
Moreover, let tn be another speed function such that sn/tn → ∞. Then {πn}n satisfies the LDP
with speed tn and good rate function �( · ; r0) defined by

�( · ; r0) :=
{

0 if r = r0,

∞ if r �= r0.

Proof. First, we can say that {πn}n is exponentially tight with respect to sn (this follows from
the LDP of the sequence {πn}n with speed sn and good rate function I, and [18, Lemma 2.6]).
Then {πn}n is also exponentially tight with respect to tn; indeed, if for every b > 0 there exists
a compact set Kb such that πn

(
Kc

b

)≤ ae−snb eventually for some a > 0, then we have the same
estimate with tn in place sn because e−sn ≤ e−tn . So there exists at least a subsequence of {πn}n

which satisfies the LDP with speed tn (see, e.g., [20, Theorem (P)]). We complete the proof by
showing that, for every subsequence of {πn}n (which we still call {πn}n) that satisfies the LDP
with speed tn, the governing rate function is �( · ; r0). Here, as in Section 2, we consider the
notation BR(r) for the open ball centered at r and with radius R. Then, by the hypotheses, we
have

−I(r) ≤ lim
R→0

lim inf
n→∞

1

sn
log πn(BR(r)) ≤ lim

R→0
lim sup

n→∞
1

sn
log πn(BR(r)) ≤ −I(r)

for every r in the Polish space; our aim is to get the same estimate (up to a subsequence) with
tn in place of sn and �( · ; r0) in place of I.

We start with the case r = r0. Then we trivially have

lim sup
n→∞

1

tn
log πn(BR(r)) ≤ 0 = −�(r0;r0),
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whence we obtain limR→0 lim supn→∞ (1/tn) log πn(BR(r)) ≤ −�(r0;r0). Moreover, for every
R > 0, we have πn(BR(r)) → 1; this yields

lim
n→∞

1

tn
log πn(BR(r)) = 0 = −�(r0;r0),

whence we obtain limR→0 lim infn→∞ (1/tn) log πn(BR(r)) = −�(r0;r0). Thus, the desired
bounds for r = r0 are proved, and we now consider the case r �= r0. Then, we trivially have

lim inf
n→∞

1

tn
log πn(BR(r)) ≥ −∞ = −�(r;r0),

whence we obtain limR→0 lim infn→∞ (1/tn) log πn(BR(r)) ≥ −�(r;r0). Moreover, we can find
ρ > 0 small enough that I(Bρ(r)) := inf{I(y) : y ∈ Bρ(r)} > 0 (thus r0 /∈ Bρ(r)). Then

lim sup
n→∞

1

tn
log πn(BR(r)) ≤ lim sup

n→∞
sn

tn

1

sn
log πn(Bρ(r)) ≤ −∞ = −�(r;r0)

(because sn/tn → ∞ and lim supn→∞ (1/sn) log πn(Bρ(r)) ≤ −I(Bρ(r))); so, by the mono-
tonicity with respect to ρ, we get

lim
R→0

lim sup
n→∞

1

tn
log πn(BR(r)) ≤ lim sup

n→∞
1

tn
log πn(Bρ(r)) ≤ −�(r;r0).

Thus, the desired bounds for r �= r0 are proved, and this completes the proof. �

Now we are able to prove Proposition 6. In particular, we consider the notation in
Assumption 1, and we again use the notation μ for the mean of the i.i.d. random variables
{Wn : n ≥ 1}.
Proposition 6. Let {Wn : n ≥ 1} be i.i.d. random variables with common continuous distribu-
tion function F such that κY (θ ) := log E[eθW1 ] is finite in a neighbourhood of θ = 0. Assume
that M = ∞. We set H(x) = − log (1 − F(x)). Moreover, let hn be such that 1 − F(hn) = 1/n,
or equivalently H(hn) = log n. We also assume that H is a regularly varying function at ∞ of
index α > 0, i.e.

lim
y→∞

H(xy)

H(y)
= xα for all x > 0.

Then {P((Yn, Zn/hn) ∈ · ) : n ≥ 1} satisfies the LDP with speed log n and rate function HY,Z

defined by

HY,Z(y, z) :=
{

HZ(z) if z ≥ 1 and y = μ,

∞ otherwise,

where HZ(z) := zα − 1.

Proof. It is well known that it is enough to prove the following two conditions:

(i) for all (y, z) ∈R
2,

−HY,Z(y, z) ≤ lim
R→0

lim inf
n→∞

1

log n
log P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R))

≤ lim
R→0

lim sup
n→∞

1

log n
log P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R))

≤ −HY,Z(y, z);

(ii) {P((Yn, Zn/hn) ∈ · ) : n ≥ 1} is exponentially tight with respect to the speed log n.
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For the first condition we start with two trivial cases z < 1 and y �= μ, and it is enough to
check the upper bound. If z < 1 we have

P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R)) ≤ P(Zn/hn ∈ (z − R, z + R)) (7)

and, for R > 0 small enough, lim supn→∞ (1/log n) log P(Zn/hn ∈ (z − R, z + R)) = −∞ by
the LDP in [9, Proposition 3.1]. If y �= μ we have

P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R)) ≤ P(Yn ∈ (y − R, y + R))

and, for R > 0 small enough, lim supn→∞ (1/log n) log P(Yn ∈ (y − R, y + R)) = −∞ by the
LDP of {Yn : n ≥ 1} with speed log n with rate function �( · ; μ) in Lemma 1; this LDP is
a consequence of Lemma 1 together with Cramér’s theorem [5, Theorem 2.2.3] with I = κ∗

Y
(where κ∗

Y is defined by κ∗
Y (y) := supθ∈R{θy − κY (θ )}, which uniquely vanishes at y = μ), sn =

n, and tn = log n.
So, we conclude the proof of the first condition by taking z ≥ 1 and y = μ. The upper

bound can be proved as we did before for the case z < 1; indeed, by (7) and by the LDP in
[9, Proposition 3.1], we have

lim
R→0

lim sup
n→∞

1

log n
log P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R))

≤ lim
R→0

lim sup
n→∞

1

log n
log P(Zn/hn ∈ (z − R, z + R)) ≤ −HZ(z).

For the lower bound, we take into account that

P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R))

= P(Zn/hn ∈ (z − R, z + R)) − P((Yn, Zn/hn) ∈ (y − R, y + R)c × (z − R, z + R)),

and we get

lim
R→0

lim inf
n→∞

1

log n
log P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R)) ≥ −HZ(z)

by applying [7, Lemma 19]. In order to do that, we remark that

lim inf
n→∞

1

log n
log P(Zn/hn ∈ (z − R, z + R)) ≥ −HZ(z)

by the LDP in [9, Proposition 3.1], and

lim sup
n→∞

1

log n
log P((Yn, Zn/hn) ∈ (y − R, y + R)c × (z − R, z + R))

≤ lim sup
n→∞

1

log n
log P(Yn ∈ (y − R, y + R)c) ≤ − inf

s∈(y−R,y+R)c
�(s, μ) = −∞

(here we take into account the LDP of {Yn : n ≥ 1} with speed log n stated above). Then, [7,
Lemma 19] yields

lim inf
n→∞

1

log n
log P((Yn, Zn/hn) ∈ (y − R, y + R) × (z − R, z + R)) ≥ −HZ(z),

and we easily get the desired lower bound.
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We conclude with the second condition, i.e. the exponential tightness. By [18, Lemma 2.6],
the marginal sequences are exponentially tight; thus, for all b > 0, there exist two compact sets
K(1)

b and K(2)
b such that P

(
Yn /∈ K(1)

b

)≤ a1e−b log n and P
(
Zn/hn /∈ K(2)

b

)≤ a2e−b log n eventually,

for some a1, a2 > 0. Then, since K(1)
z × K(2)

z is a compact set, we conclude the proof by noting
that

P
(
(Yn, Zn/hn) /∈ K(1)

b × K(2)
b

)≤ P
(
Yn /∈ K(1)

b

)+ P
(
Zn/hn /∈ K(2)

b

)≤ (a1 + a2)e−b log n

eventually. �

We conclude by noting that, as for the rate function JY,Z(y, z) in Proposition 5 (see
Remark 4), we have an asymptotic independence interpretation for the rate function HY,Z(y, z)
in Proposition 6.

Remark 5. The rate function HY,Z(y, z) in Proposition 6 can be expressed as a sum of two
functions which depend on y and z only, i.e. the marginal rate functions �(y;μ) and HZ(z) that
appear in the proof of that proposition.

5. MD for sums of minima of i.i.d. exponential random variables

We start with the following assumption.

Assumption 3. Let {Wn : n ≥ 1} be a sequence of i.i.d. real random variables with exponential
distribution; more precisely, their common distribution function F is defined by F(x) := 1 −
e−λx for all x ≥ 0. Moreover, let {Xn : n ≥ 1} be the sequence of random variables defined, for
all n ≥ 2, by

Xn :=
∑n

k=1 min{W1, . . . , Wk}
log n

.

Now we recall two results. The first one provides the reference LDP, namely the LDP which
governs the convergence of Xn to 1/λ (as n → ∞); indeed, the rate function IX in the next
proposition uniquely vanishes at x = 1/λ.

Proposition 7. Assume that Assumption 3 holds. Then {P(Xn ∈ · ) : n ≥ 2} satisfies the LDP
with speed log n and rate function IX defined by

IX(x) :=
{(√

λx − 1
)2 if x ≥ 0,

∞ if x < 0.

Proof. See [10, Proposition 5.2]. �

The second result concerns the following weak convergence to a centered Gaussian
distribution.

Proposition 8. Assume that Assumption 3 holds. Then (Xn − 1/λ)
√

log n converges weakly (as
n → ∞) to the centered Gaussian distribution with variance σ 2 = 2/λ2.

Proof. The random variables (Xn − 1/λ)
√

(λ2/2) log n converge weakly to the standard
Gaussian distribution [12]; indeed, the distribution function F in Assumption 3 satisfies the
condition

∫ 1
0 |F(x) − x/b|x−2 dx < ∞ (required in [12]) if and only if b = 1/λ. Then we can

immediately get the desired weak convergence. �
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The aim of this section is to prove Proposition 9, which provides a class of LDPs that fills
the gap between the convergence of {Xn : n ≥ 1} to 1/λ (governed by the LDP in Proposition 7
with speed vn = log n), and the weak convergence in Proposition 8. Then we get a (central)
moderate deviation result because the weak convergence in Proposition 8 is towards a Gaussian
distribution. We also remark that, as typically happens, we have I′′

X(1/λ) = 1/σ 2 (where σ 2 =
2/λ2 as in Proposition 8); this equality can be checked with some easy computations, and we
omit the details.

Proposition 9. Assume that Assumption 3 holds. Then, for every sequence of positive numbers
{an : n ≥ 1} such that (1) holds with vn = log n, the sequence{

P

((
Xn − 1

λ

)√
an log n ∈ ·

)
: n ≥ 2

}

satisfies the LDP with speed 1/an and rate function JX defined by JX(x) = x2/(2σ 2), where
σ 2 = 2/λ2 as in Proposition 8.

Proof. We apply the Gärtner–Ellis theorem, i.e. Proposition 1. Indeed, we show that

lim
n→∞

1

1/an
log E

[
exp

(
θ

an

(
Xn − 1

λ

)√
an log n

)]
= σ 2θ2

2︸ ︷︷ ︸
= θ2/λ2

(for all θ ∈R), (8)

and therefore we get the desired LDP with rate function JX defined by

JX(x) := sup
θ∈R

{
θx − θ2

λ2

}
(for all x ∈R),

which coincides with the rate function JX in the statement.
We use a known expression for the moment-generating function of the random variable∑n
k=1 min{W1, . . . , Wk} [8, (3.5)]:

1

1/an
log E

[
exp

(
θ

an

(
Xn − 1

λ

)√
an log n

)]

= an

(
−θ

√
an log n

λan
+ log E

[
exp

(
θ
√

an log n

an
Xn

)])

= −θ
√

an log n

λ
+ an log E

[
exp

(
θ
∑n

k=1 min{W1, . . . , Wk}√
an log n

)]

=
⎧⎨
⎩−θ

√
an log n

λ
+ an

∑n
k=1 log

(
1 + θ/

(
λ
√

an log n
)

k
(
1 − (θ/

(
λ
√

an log n
)))) if

θ

λ
√

an log n
< 1,

∞ otherwise;

then, for each fixed θ ∈R, we can take n large enough to have θ/
(
λ
√

an log n
)
< 1 (since

an log n → ∞, as n → ∞).
Moreover, we remark that

for all v >
1

2
, there exists δ > 0 such that log (1 + x) ≥ x − vx2 for all |x| < δ (9)
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(this can be proved by checking that the function g(x) := log (1 + x) − (x − vx2) has a local
minimum at x = 0); so, for δ > 0 as in (9), we take n large enough to have∣∣∣∣ θ/

(
λ
√

an log n
)

1 − (θ/
(
λ
√

an log n
)) ∣∣∣∣< δ.

Finally, we set

bn := −θ
√

an log n

λ
+ anθ/

(
λ
√

an log n
)

1 − (θ/
(
λ
√

an log n
)) n∑

k=1

1

k

= −θ
√

an log n/λ + θ2/λ2 + anθ/
(
λ
√

an log n
)∑n

k=1 1/k

1 − (θ/
(
λ
√

an log n
))

= (θ
√

an log n/(λ))
(−1 + (∑n

k=1 1/k
)
/log n

)+ θ2/λ2

1 − (θ/
(
λ
√

an log n
)) ,

and, for n large enough, we have

bn − v
θ2/(λ2 log n)(

1 − (θ/
(
λ
√

an log n
)))2

n∑
k=1

1

k2

≤ −θ
√

an log n

λ
+ an

n∑
k=1

log

(
1 + θ/

(
λ
√

an log n
)

k
(
1 − (θ/

(
λ
√

an log n
))))≤ bn

by using (9) with

x = θ/
(
λ
√

an log n
)

1 − (θ/
(
λ
√

an log n
)) ,

and by the well-known inequality log (1 + y) ≤ y for every y > −1.
So, the desired condition (8) holds since

lim
n→∞ bn = θ2

λ2
, lim

n→∞
θ2/(λ2 log n)

1 − (θ/
(
λ
√

an log n
))2

n∑
k=1

1

k2
= 0. (10)

Indeed, the first limit in (10) holds by (1) with vn = log n (which yields an → 0 and
an log n → ∞), and by

lim
n→∞

√
log n

(
−1 +

∑n
k=1 1/k

log n

)
= 0;

the second limit in (10) trivially holds by taking into account an log n → ∞ and∑∞
k=1 1/k2 < ∞. �

In order to make the paper more self-contained we remark that the limit in (8) with an = 1
yields the weak convergence in Proposition 8.
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