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Abstract

We provide well-posedness results for nonlinear parabolic partial differential equations (PDEs) given by
reaction–diffusion equations describing the concentration of oxygen in encapsulated cells. The cells are
described in terms of a core and a shell, which introduces a discontinuous diffusion coefficient as the
material properties of the core and shell differ. In addition, the cells are subject to general nonlinear
consumption of oxygen. As no monotonicity condition is imposed on the consumption, monotone
operator theory cannot be used. Moreover, the discontinuity in the diffusion coefficient bars us from
applying classical results on strong solutions. However, by directly applying a Galerkin method, we obtain
uniqueness and existence of the strong form solution. These results provide the basis to study the dynamics
of cells in critical states.

2020 Mathematics subject classification: primary 35K57; secondary 35K55.

Keywords and phrases: parabolic PDE, reaction–diffusion, diffraction problem, core–shell geometry,
Galerkin approximation.

1. Introduction

King et al. [5, 6] proposed models that describe reaction–diffusion of oxygen through
a protective shell encapsulating a core of donor cells to determine conditions so that
hypoxia of the donor cells can be avoided. This geometry introduces a discontinuous
diffusion coefficient as the material properties of the core and shell differ. The
results of King et al. are restricted to numerical computation of stationary solutions
assuming spherical geometries. Their results were made rigorous in [2]. In [1], the
corresponding parabolic partial differential equation (PDE) is studied for general
core–shell geometries. It is shown that the PDE is well posed and that stationary
solutions are stable. These last results crucially depend on the monotonicity of the
oxygen consumption and are derived from Michaelis–Menten kinetics. However,
during critical cell states such as partial death of donor cells, these monotonicity
conditions will not be satisfied. In this paper, we consider the PDE for general
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consumption, that is, consumption is bounded, nonnegative and zero for negative
concentrations.

In the classical theory on existence and uniqueness for nonlinear reaction–diffusion
equations, it is typically assumed that the reaction term has asymptotics similar to
an odd degree polynomial [8, 9]. This means that the reaction term is unbounded.
Consequently, the regularity of the constructed solution will depend on the degree of
the leading asymptotics of the reaction term. However, in our setting, the reaction term
is bounded which leads to a degenerate setting with respect to classical theory.

We construct the solutions using the Galerkin method (see [8, 9]). Although the
nonlinearity in our setting does not exactly satisfy the classical results in [8, 9], a
Galerkin set-up still works. Additionally, we are dealing with a so-called diffraction
problem [7] meaning that the diffusion coefficient is discontinuous. However, it turns
out that the bounds on the term with the Laplacian guarantee that the bounds for the
Galerkin approximation are not in danger. Finally, as with diffraction problems, the
loss of regularity resulting from the discontinuity will not be visible when considering
the well-posedness of weak solutions, but only when we consider the well-posedness
of strong solutions.

This paper is organised as follows. In Section 2, we present the statement of the
problem and in Section 3, we provide preliminaries. In Section 4, we first establish
the global existence and uniqueness of the weak solutions in Section 4.1, followed by
the main results on global existence and uniqueness of the strong solutions in Section
4.2. Finally, in Section 5, we provide conclusions and some remarks for future work.

2. Statement of the problem

We start with a description of the core–shell geometry. For an integer N ≥ 2, let
Ω ⊂ RN with Ω compact, S � ∂Ω be the boundary of Ω, ν : S→ RN be the outward
unit vector and T > 0 be a constant. Let Γ (⊂ Ω) be an (N − 1)-dimensional surface that
divides Ω into two open domains Ω1 and Ω2, that is, Γ = Ω1 ∩Ω2, Ω = Ω1 ∪Ω2 ∪ Γ.
We suppose ∂Ω1 = Γ and ∂Ω2 = S ∪ Γ (see Figure 1). We take S, Γ of class C2.

The governing equations of our problem are given by

du
dt
− bΔu = f (u) in Ωi × (0, T), i = 1, 2, (2.1)

u = 0 on S × (0, T), (2.2)
[u]Γ = 0 on Γ × (0, T), (2.3)

[b∇u · ν]Γ = 0 on Γ × (0, T), (2.4)
u = u0 in Ω, at t = 0, (2.5)

where b : Ω1 ∪Ω2 → R is given by

b(x) �

⎧⎪⎪⎨⎪⎪⎩
b1 if x ∈ Ω1,
b2 if x ∈ Ω2,
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FIGURE 1. Core–shell geometry of an encapsulated cell.

with constants b1, b2 > 0. Here, the discontinuous diffusion term, bΔu, is called the
diffraction Laplacian, u0 : Ω→ R is a given initial value and [·]Γ : Γ × (0, T)→ R
denotes the difference of limiting values on Γ, which is defined by

[u]Γ(x, t) � u2(x, t) − u1(x, t) = lim
y→x
y∈Ω2

u2(y, t) − lim
y→x
y∈Ω1

u1(y, t),

where u1 and u2 are the restrictions of u toΩ1 andΩ2, respectively. Finally, we consider
a linear operator f : L2(Ω)→ L2(Ω) that is assumed to be Lipschitz and satisfies the
conditions:

(u, f (u)) ≤ K for all u ∈ L2(Ω),
‖ f ‖L2(Ω) ≤ K, (2.6)

with K > 0. Here, (· , ·) denotes the inner product on L2(Ω) and ‖ f ‖L2(Ω) is the operator
norm given by

‖ f ‖L2(Ω) � sup
u∈L2(Ω),u�0

‖ f (u)‖L2(Ω)

‖u‖L2(Ω)
.

Equations (2.1)–(2.5) are for the transformed concentration. The concentration can be
retrieved by v = c0 − u with v = c0 on S × (0, T) (see [1, Appendix A]). We assume
that the consumption g(v) := f (c0 − v) is bounded, nonnegative and zero for negative
concentrations. Then, (2.6) is satisfied.

3. Preliminaries

3.1. Notation. We define V � H1
0(Ω), H � L2(Ω) and V∗, H∗ as their dual spaces,

respectively. The inner product on V is defined by (u, v)V = (u, v)H + (∇u,∇v)H . We
denote by (· , ·) the inner product on H, and by 〈· , ·〉 the pairing between V∗ and V.
Then, V ⊂⊂ H = H∗ ⊂ V∗, where we write V ⊂⊂ H to emphasise the compactness of
the embedding of V in H. Let X = V , H or V∗. The Lp(0, T; X)-norm (p = 2,∞) is

‖u‖Lp(0,T;X) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( ∫ T

0
‖u(t)‖2X dt

)1/2
if p = 2,

ess sup
t∈[0,T]

‖u‖X if p = ∞.
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We define bmax := max{b1, b2} and bmin := min{b1, b2}. We denote un converging
weakly to u in X by un ⇀ u in X. We reserve c > 0 to denote generic positive constants
that do not depend on the relevant parameters and variables.

3.2. Diffraction Laplacian. We introduce the bilinear form a : V × V → R given by

a(u, v) =
∫
Ω

b∇u · ∇v dx.

This induces a linear operator A : V → V∗ given by 〈Au, v〉 = a(u, v) for v ∈ V .
Note that a(· , ·) is bounded (|a(u, v)| ≤ c‖u‖V‖v‖V ) and coercive (c‖u‖2V ≤ a(u, u)).

Consequently, by the Lax–Milgram theorem, A is bijective. Also, observe that A−1 is
bounded since for Au = f ∈ V∗, we can write ‖u‖2V ≤ ca(u, u) = c〈 f , u〉 ≤ c‖ f ‖V∗‖u‖V ,
which gives ‖u‖V ≤ c‖ f ‖V∗ . Define S : H → H by S = r ◦ A−1 ◦ ι, with A−1 : V∗ → V ,
ι the inclusion map ι : H → V∗ and r the restriction map r : V → H. Since A is
bijective and A−1 bounded, S is compact. Abusing notation, we write A = S−1 and
consider A : H → H. Observe that A is symmetric. From spectral theory for unbounded
operators, A can be represented by Au =

∑∞
j=1 λj(u, wj)wj, where λj and wj are the real

eigenvalues and eigenfunctions of A, respectively. From the smoothness on the bound-
aries, the domain of A is given by D(A) = {u ∈ V : u|Ωi ∈ H2(Ωi), u satisfies (2.4)}.
The inner product on D(A) is given by (u, v)D(A) = (Au, Av).

3.3. Projections. We define the projection Pn which maps u ∈ H into the first n
eigenfunctions of A: Pnu :=

∑n
j=1(u, wj)wj. The projection orthogonal to Pn is defined

by Qn := id − Pn.

3.4. Classical results. We review the classical results from [9]. Most of these results
have been reduced to fit the application. A page number is included so that the full
statement can be recovered.

LEMMA 3.1 [9, page 199]. If X = H, V or V∗, then

‖Pnu‖X ≤ ‖u‖X , Pnu→ u in X (n→ ∞).

LEMMA 3.2 [9, page 218]. Let O be a bounded open set in Rm and let gj be a sequence
of functions in L2(O) with ‖gj‖Lp(O) ≤ C. If g ∈ L2(O) and gj → g pointwise almost
everywhere, then gj ⇀ g in L2(O).

THEOREM 3.3 [9, page 191]. Suppose that

u ∈ L2(0, T; V) and
du
dt
∈ L2(0, T; V∗).

Then u ∈ C0([0, T], H), with the caveat that u may have to be adjusted on a set of
measure zero.

4. Well-posedness results

We will start with the well-posedness of the weak solutions which we then
straightforwardly extend to the well-posedness of the strong solution.
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4.1. Weak solutions. We consider
du
dt
+ Au = f (u), (4.1)

as an equality in L2(0, T; V∗).

THEOREM 4.1 (Well-posedness of weak solutions). For any T > 0, (4.1) with u(0) =
u0 ∈ H has a unique weak solution u such that u, du/dt ∈ L2(0, T; V∗) and u ∈
C0([0, T]; H) with the caveat that it may have to be adjusted on a set of measure zero.
Furthermore, u0 �→ u(t) is in C0(H; H).

PROOF. We consider the solutions expressed by the first n eigenfunctions of A:

un(t) =
n∑

j=1

unj(t)wj,

satisfying (dun

dt
, wi

)
+ (Aun, wi) = ( f (un), wi), 1 ≤ i ≤ n,

with (un(0), wi) = (u0, wi). Define Hn := PnH ⊂ H. We need to solve the initial value
problem

dv
dt
+ Av = Pn f (v), v(0) = Pnu(0), (4.2)

on the finite-dimensional space Hn. The mapping v �→ −Av + Pn f (v) is Lipschitz
continuous from Hn to Hn. By standard existence–uniqueness results for ordinary
differential equations (ODEs), (4.2) has a unique solution on some finite interval [0, T]
with T dependent on n and u0. We will see that the solution exists for all T > 0.

Consider the inner product of (4.2) with un:(dun

dt
, un

)
+ (Aun, un) = (Pn f (un), un).

Observe that (Pn f (un), un) = ( f (un), Pnun) = ( f (un), un). From the assumption that
(u, f (u)) ≤ K and the coercivity of a(· , ·),

1
2

d‖un‖2H
dt

+ bmin‖un‖2V ≤ K.

Integrating both sides over t between 0 and T gives

1
2
‖un(T)‖2H + bmin

∫ T

0
‖un‖2V dt ≤ KT +

1
2
‖u(0)‖2H .

We define γ := KT + 1
2‖u(0)‖2H . Then, we obtain the bounds:

sup
t∈[0,T]

‖un(t)‖2H ≤ 2γ, (4.3)
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∫ T

0
‖un‖2V dt ≤ γ

bmin
. (4.4)

Observe that γ is linear in T. Hence, (4.3) with local existence of solutions for (4.2)
gives existence of solutions for any T > 0. From (4.3) and (4.4), un is uniformly
bounded in L∞(0, T; H) and L2(0, T; V).

Since ‖ f ‖H ≤ K, we see that f (un) is uniformly bounded in L2(0, T; H) and Aun is
uniformly bounded in L2(0, T; V∗). Hence, from (4.2), dun/dt is uniformly bounded in
L2(0, T; V∗). By Aloaglu’s compactness theorem, we can extract a weakly convergent
subsequence un, with un ⇀ u in L2(0, T; V) and f (un)⇀ χ in L2(0, T; H). The strong
convergence un → u in L2(0, T; H) is obtained by using Lemma 3.2.

Now we want to show that Pn f (un)⇀ χ in L2(0, T; H). We have∫
ΩT

(Pn f (un) − χ)φ dx dt =
∫
ΩT

( f (un) − χ)φ dx dt −
∫
ΩT

Qn f (un)φ dx dt (4.5)

for all φ ∈ L2(0, T; H). Recall that f (un)⇀ χ in L2(0, T; H). So we just need to consider
the Qn term in (4.5). Observe that ‖Qn f (un)‖H = ‖ f (un)‖H ≤ K. We can consider φ =∑m

j=1 αj(t)φj, where αj ∈ L2(0, T) and φj ∈ C∞c (Ω)) since φ is dense in L2(0, T; H). From
Lemma 3.1, Qnφj → 0 in H and we have shown that Pn f (un)⇀ χ in L2(0, T; H). By
combining the results, we arrive at the equality

du
dt
+ Au = χ,

which holds in the dual space L2((0, T); V∗).
Next, we show that χ = f (u). Since un → u in L2(0, T; H), there exists a subse-

quence unj such that unj (x, t)→ u(x, t) for almost every (x, t) ∈ [0, T] ×Ω. Note that
f (unj )(x, t)→ f (u)(x, t) for almost every (x, t) ∈ [0, T] ×Ω) and f (unj ) is uniformly
bounded in L2(0, T; H). Therefore, by Lemma 3.2, f (unj )⇀ f (u) in L2(0, T; H). This
implies that the function χ, which is the weak limit of the sequence f (unj ), must
be equal to f (u) because there can only be one weak limit in the given function
space. Now we have u ∈ L2(0, T; V) and du/dt ∈ L2(0, T; V∗). By Theorem 3.3, u ∈
C0([0, T]; H).

To show that un(0) = u(0), let φ ∈ C1([0, T]; V) with φ(T) = 0. Consider the limiting
equation of the approximation〈du

dt
, v
〉
+ a(u, v) = 〈 f (u), v〉 (v ∈ V).

Integrating from 0 to T and using integration by parts,∫ T

0
−〈u, φ′〉 + a(u, φ) dt =

∫ T

0
〈 f (u(t)), φ〉 dt + (u(0), φ(0)). (4.6)

However, from the Galerkin approximation,∫ T

0
−〈un, φ′〉 + a(un, φ) dt =

∫ T

0
〈Pn f (un(t)), φ〉 dt + (un(0), φ(0)). (4.7)
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Recall that un(0) = Pnu0 → u0. Taking the limit in (4.7) and comparing it with (4.6)
yields (u0 − u(0), φ(0)) = 0, which implies u0 = u(0) as φ(0) is arbitrary.

To show the uniqueness and continuous dependence of the solutions, take u0, v0 ∈ H
and consider the corresponding solutions u, v. We define w � u − v. Then, w satisfies

dw
dt
+ Aw = f (u) − f (v), w(0) = u0 − v0.

We take the inner product with w to obtain

1
2

d‖w‖2H
dt

+ (Aw, w) = ( f (u) − f (v), u − v).

Because ( f (u) − f (v), u − v) ≤ c‖u − v‖2H and (Aw, w) ≥ bmin‖w‖V ,

1
2

d‖w‖2H
dt

≤ c‖w‖2H .

By integrating over t, we get ‖u(t) − v(t)‖H ≤ ‖u0 − v0‖Hect, which implies the unique-
ness and continuous dependence on initial conditions. �

4.2. Strong solutions. In this section, we consider more regular solutions (we refer
to such solutions as strong solutions) by regarding (4.1) as an equality that holds in
L2(0, T; H).

THEOREM 4.2 (Well-posedness of strong solutions). Equation (4.1) with u(0) =
u0 ∈ V has a unique solution u for any T > 0 with u ∈ L2(0, T; D(A)) and du/dt ∈
L2(0, T; H), and u ∈ C0([0, T]; V) with the caveat that it may have to be adjusted on a
set of measure zero. Furthermore, u0 �→ u(t) in C0(V; V).

PROOF. We follow a similar method as in the proof of Theorem 4.1. We consider the
inner product of (4.2) with Aun, which gives

(dun

dt
, Aun

)
+ ‖Aun‖2H = (Pn f (un), Aun). (4.8)

Now, let us assume that b1 > b2. By integrating the first term on the left-hand side of
(4.8) over t ∈ [0, T], and using the fact that (dun/dt, Aun) = a(un, dun/dt),

b2

2
‖un(T)‖2V −

b1

2
‖un(0)‖2V ≤

∫ T

0

(dun

dt
, Aun

)
dt. (4.9)

However, by applying the Cauchy–Schwarz inequality and Young’s inequality to the
right-hand side of (4.8) and combining with (4.9),

b2

2
‖un(T)‖2V −

b1

2
‖un(0)‖2V + ‖un‖2L2(0,T;D(A)) ≤

1
2
‖Pn f (un)‖2L2(0,T;H) +

1
2
‖un‖2L2(0,T;D(A)),

which implies

b2‖un(T)‖2V − b1‖un(0)‖2V ≤ ‖Pn f (un)‖2L2(0,T;H) ≤ ‖ f (un)‖2L2(0,T;H).
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By a similar argument as in the proof of Theorem 4.1, we can show that un → u in
L2(0, T; D(A)) and Pn f (un)⇀ f (u) in L2(0, T; H).

We have u ∈ L2(0, T; D(A)) and du/dt ∈ L2(0, T; H), so if we take v = (∇u)i, then
v ∈ L2(0, T; V) and dv/dt ∈ L2(0, T; V∗), which allows us to apply Theorem 3.3 to
deduce that v ∈ C0([0, T]; H). Consequently, u ∈ C0([0, T]; V).

Next, we adapt the continuous uniqueness proof of Theorem 4.1 for V. Take u0,
v0 ∈ V and consider the corresponding solutions u, v. Define w � u − v. Then, w
satisfies

dw
dt
+ Aw = f (u) − f (v), w(0) = u0 − v0.

By taking the inner product with Aw and using the fact that f is Lipschitz continuous,(dw
dt

, Aw
)
+ ‖Aw‖2H ≤ ( f (u) − f (v), Aw) ≤ 1

2
c2‖w‖2V +

1
2
‖Aw‖2H .

We move the second term on the right-hand side to the left-hand side, and drop the
‖Aw‖2H term. By integration over [0, t] and applying similar steps as in (4.9) to the
left-hand side,

‖w(t)‖2V ≤
c2

b2

∫ t

0
‖w(s)‖2V ds +

b1

b2
‖w(0)‖2V .

From Gronwall’s inequality, ‖u(t) − v(t)‖2V ≤ (b1/b2)‖u(0) − v(0)‖2V exp(c2t/b2), which
implies uniqueness and continuous dependence on initial conditions. In the case of
b2 > b1, the result can be obtained by interchanging b2 and b1. �

REMARK 4.3. Let us consider the classical approach to the Laplacian problem with
smooth diffusion and regularise the jump in diffusivity by passing to a limit where the
transition region between b1 and b2 shrinks to a lower-dimensional surface.

We state a Laplacian problem with diffusion coefficient bε : Ω̄→ R (for all ε > 0),
where bε is sufficiently smooth. Let uε be the solution of the problem

duε
dt
− ∇ · (bε∇uε) = f in Ω × [0, T],

uε = 0 on ∂Ω × [0, T],

uε = u0
ε in Ω̄ at t = 0,

with f ∈ L2(0, T; L2(Ω)). Then, uε ∈ L2(0, T; H2(Ω)) ∩ L∞(0, T; H1
0(Ω)) for all ε > 0

(see [4] for the full statement). We note that the statement can be extended to nonlinear
f using the techniques in the proof of Theorem 4.1.

When bε → b as ε→ 0, the regularised solutions uε are uniformly bounded in
L2(0, T; V). By the compactness theorem, we can extract a subsequence that converges
weakly in L2(0, T; V). Hence, by passing to the limit ε→ 0, the weak limit u satisfies
the weak formulation of the PDE with the discontinuous diffusion coefficient b. Thus,
we can obtain u ∈ L2(0, T; V). However, the strong solution in D(A) is not guaranteed
due to the potential loss of regularity introduced by the discontinuity in b. This is
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[9] Well-posedness results for reaction–diffusion equations 9

because the higher regularity (that is, second-order derivatives) may not be controlled
uniformly as ε→ 0, particularly at the interface where the jump occurs.

Instead, we tackled the discontinuous diffusion problem directly, proving the
existence and uniqueness of weak solutions using the Galerkin method and then
leveraging elliptic regularity results to demonstrate that these weak solutions are
actually strong solutions.

5. Conclusion

In this paper, we established the global existence and uniqueness of strong
solutions for reaction–diffusion equations with diffraction Laplacian and nonlinear
terms describing general oxygen consumption. These results extend previous work [1]
which relied on monotonicity properties of the nonlinear term. This work can be used
to make results in [3] rigorous as well as provide the theoretical foundation for future
numerical work on the dynamics of critical cell states.
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