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ON THE WORD PROBLEM FOR 
ORTHOCOMPLEMENTED MODULAR LATTICES 

MICHAEL S. RODDY 

(0.1) Introduction. In [16] Freese showed that the word problem for the free 
modular lattice on 5 generators is unsolvable. His proof makes essential use 
of Mclntyre's construction of a finitely presented field with unsolvable word 
problem [30]. (We follow Cohn [7] in calling what is commonly called a division 
ring a field, and what is commonly called a field a commutative field.) In this 
paper we will use similar ideas to obtain unsolvability results for varieties of 
modular ortholattices. The material in this paper is fairly wide ranging, the 
following are recommended as reference texts. Burris and Sankappanavar, [6], 
for universal algebra, for a short discussion of word problems and for references. 
Crawley and Dilworth [12], Gràtzer [17], for lattice theory, and the survey 
paper of Day [13], for our approach to coordinatization. The only reasonably 
comprehensive texts on *rings, as far as I know, are Berberian [1] and Herstein 
[21], but the material presented here is elementary and one could survive with 
a good undergraduate algebra text, e.g. [8]. For ortholattice theory the standard 
reference is Kalmbach [26]. Finally, the ring constructions used in this paper 
are drawn entirely from Cohn [7] and [9]. I have attempted to make the paper 
reasonably self contained and accessible. For this reason some proofs, definitions 
or observations have been included which to the specialist in the particular field 
might seem trivial or unnecessary. 

(0.2) Modular Ortholattices. (cf. [26], [40]). An orthocomplementation, ab­
breviated OC, on a bounded lattice (L; V, A, 0,1) is a function 

':L->L 
i x —> x 

satisfying, for all a,b G L 
(i) (Complementation laws) 

a V a = 1 

a A a' = 0 

(ii) (deMorgan's laws) 

(a V b)' = d Ab' 

(a A b)' = aVbf 
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(iii) 

(a')' = a. 

A perhaps more intuitive condition than de Morgan's laws, although not an 
equation, is 

(iv) (antimonotonicity) 

a g b => b1 û a 

for all a,b € L. It is easy to show that, with the other conditions, (ii) and (iv) 
are equivalent. 

A bounded lattice together with an orthocomplementation is called an ortho-
complemented lattice or ortholattice, abbreviated OL. If the lattice reduct of an 
OL, L, is modular then L is called a modular ortholattice, abbreviated MOL. 
More formally, an ortholattice is an algebra 

(L;V,A,',0,1) 

where (L; V, A,0, 1) is a bounded lattice with OC, ' : L —•» L. L is a modular 
ortholattice in case (L; V, A) is modular. 

Example 1. Boolean algebras are the best known variety of orthocomple-
mented lattices. They are the distributive ortholattices. 

Example 2. The prototypical examples, for us, come from Hermitian forms 
on finite dimensional vector spaces. The simplest examples of these go as fol­
lows. Let F be a commutative field. A Hermitian form on F then is an «-tuple 
(oc\,..., a„) E Fn so that for all (a\,...,an) G Fn 

n 

2^aiC*iaj = 0 

implies for all /, 

ai = 0. 

Let L = L(Fp) be the lattice of all (right) vector subspaces of Fn. We will use 
the Hermitian form ( a i , . . . , an) to define an OC on L. Let V be a subspace of 
F and set 

n 

V' := {(Ml, . . , M „ ) G F " : ^ v/ow - 0, for all (v , , . . . , v„) G V}. 
i=\ 

It is easy to show (cf. [4]) that ' is an OC on L. A familiar situation is when 
the Hermitian form consists entirely of l's and the field is the real numbers. 
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In this case the OC is the orthogonal complement derived from the usual inner 
product. These examples are prototypical in the sense that the OC for every 
'coordinatizable' MOL can be derived from a more general notion of a Hermitian 
form, as we will see. 

(0.3) Word Problems, (cf. [6], [14]). Let 1/ be a variety of algebras, G a finite 
set and Rel a finite set of equations of the type of V involving only elements 
of G. The pair (G,Rel) is called a finite presentation. Considering the elements 
of G as extra constants and the elements of Rel as extra identities we obtain 
the variety V. The free algebra on the empty set in V is said to be finitely 
presented in V with finite presentation (G, Rel), this algebra will be written 
V' (G,Rel). The word problem for 1/ (G,Rel) asks for an algorithm which will 
determine whether or not a given equation will hold in this algebra. If such an 
algorithm exists then it is a solution to the word problem and the word problem 
for ^(G^Reï) is said to be solvable. The word problem for V asks whether 
there is a solution to the word problem for each finite presentation on V (the 
distinction between this definition and the existence of a uniform solution for 
the variety should be noted, see [35]). Finally, if we ask only for a solution to 
the word problem when Rel is empty we are considering the free word problem 
because then V'(G,Rel) is just a free algebra in V, on G. 

Example 1. Boolean algebras and distributive lattices have solvable word 
problem because every word can be reduced to one in 'normal form'. This 
reduction process is a solution to the word problem, cf. page 133 [17]. 

Example 2. Ortholattices and lattices have solvable free word problem. Both 
have an algorithm which compares words in free algebras, Whitman's algorithm 
[44] for free lattices, and a modification of it by Bruns [5] for ortholattices. They 
both also share Evans' embeddability property [14] via the MacNeille comple­
tion, so their general word problems are also solvable. An explicit solution for 
the ortholattice case is given in [26]. 

Example 3. Groups and semigroups both have solvable free word problem, 
normal forms for free algebras are easily visualized, but neither have a solvable 
word problem in general. The existence of a finitely presented semigroup with 
unsolvable word problem was established by Post [39], this marked the starting 
point of such investigations. This was used by Novikov [38] to find a finitely 
presented group with unsolvable word problem, a major technical achievement. 
An excellent presentation of this material is given in [41]. 

Example 4. For modular lattices the existence of a finitely presented modular 
lattice with unsolvable word problem was established by Hutchinson [25], and 
Lipshitz [29]. As mentioned, a negative solution for the free case was given by 
Freese [16], for 5 generators. His method was ingeneously adapted by Herrmann 
[20] to the case of 4 generators. 

The number of generators allowed is critical in determining solvability. The 
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critical jump for modular lattices is from three to four. For us it is from two to 
three. 

THEOREM (0.3.1) ([27]). The free MOL on two generators is finite. 

It follows that the word problem is solvable for any two generated MOL. For 
this reason we will concern ourselves primarily with the case of three generators. 

(0.4) Motivation. The negative solutions listed above all have in common the 
fact that they are based on Post's original construction and will be, at least 
indirectly, used in this paper. There are many other examples of unsolvability, 
some based on Post's construction, some not. One remarkable thing about Post's 
original result and about many of its derivatives is that these algebras have all 
arisen naturally from sources where it is not obvious à priori that unsolvability 
will occur. Unsolvability is therefore not always expected, and its occurrence 
anywhere is of some interest. The ability to adapt the original semigroup presen­
tation to these other varieties of algebras also shows how, in some sense, these 
disparate equational theories are woven together. For MOL's there are other and 
perhaps less esoteric reasons for interest. 

Quantum mechanical systems have associated with them an algebra of propo­
sitions, cf. [22], [36] or [26]. The interpretation of the operations of such an 
algebra is exactly the same as the classical Boolean case for 'compatible' or 
'commuting' propositions, (see the references listed above). For 'noncompati-
ble' or 'noncommuting' propositions it is not exactly clear how to interpret the 
operations A and V. In fact, it is not even agreed that such operations should 
exist on a purely syntactic level, cf. [36] for example. However in the classi­
cal models, the projection (ortho)lattices of Hilbert spaces, these operations are 
defined. This was first emphasized by Birkhoff and vonNeumann in their 1936 
paper 'On the logic of quantum mechanics', [4]. This paper has led to a well 
developed theory of, particularly, the orthomodular lattices. (Still the best ac­
count of the passage from the Hilbert space to the ortholattice setting is given in 
[22].) It is this interpretation of ortholattices as propositional logics that makes 
the solution of the word problem an important goal for varieties of ortholattices. 

In fact, the algebras Birkhoff and vonNeumann proposed for study were mod­
ular ortholattices, or more accurately the n-distributive MOLs; the ones arising 
from projective geometries. It is thus tempting to overstate the importance of 
the results in this paper. But modularity only holds when the Hilbert space is 
finite dimensional and even Birkhoff later admitted the need for infinitely many 
dimensions, [3]. Even so, the finite dimensional case is not completely without 
interest. I also believe there may be applications of the techniques developed 
here to wider classes of algebras which do include the infinite dimensional 
Hilbert space examples. 

1. Coordinatization of modular ortholattices. 

(1.1) Multiplicative Structures with Involution. Let (5, •) be a semigroup. An 
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involution on (5, •) is a map 

satisfying for all a, /? G 5, 

and 

(a*)* = a. 

We may consider the involution as an extra operation. A *semi'group, or semi­
group with involution, is an algebra (5;-,*), where * is an involution on the 
semigroup (S; •)• Other structures with a semigroup reduct may admit an invo­
lution, however it is usual to insist that the involution be compatible with the 
other operations. 

Example 1. Let (G;-,-1 ,<?) be a group, and let * be an involution on the 
semigroup (G; •)• * is automatically compatible with the other operations as the 
following two computations show. The identity element of a group is unique as 
even a one sided identity, and for any g E G w e have 

g-e* = ((eV-g*) = (e-gy = (gV = g. 

Therefore, e* = e. For any g G G, g~l is unique as a left inverse of g, and 

g*-(g-lY = (g-l-gY = e*=e. 

Therefore (g*)~l = (g~lT- Thus a * group or group with involution is an algebra 
(G; •,* , - 1 , e) where * is an involution on the group (G; -,-1 , e). 

For any group taking inverses produces an involution but for our purposes it 
is not one of much interest. 

Example 2. Let (/?;+,-, —,0, 1) be a ring with unit. An involution on 
(/?;+,-, —,0,1) is an involution * on the semigroup (/?;•) which is compati­
ble with addition, ie., for all s, t G R, 

(a + b)*=a*+b*. 

Compatibility with the constants is easy to establish. Hence a *ring9 or, ring 
with involution, is an algebra (R; +, -, —,*, 0,1), where * is an involution on the 
ring (R; +, -, —,0,1). A * field is a *ring which is also a field. 

In connection with this last example we consider a semigroup S with 0. An 
involution * on S is nondegenerate is case for all s 

s* • s — 0 implies s = 0. 
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The involution is degenerate in case it is not nondegenerate. An involution on a 
ring is degenerate or nondegenerate according to whether it is as an involution 
on the multiplicative semigroup of the ring. We will not be interested in degen­
erate involutions so let us adopt the convention of assuming that the involution 
on a *ring is nondegenerate unless it is specified that it may be degenerate. 
We will soon see the intimate connection between nondegenerate involutions on 
certain rings and OC's on MOLs. 

Finally, observe that it is relatively easy to build a categorical framework 
which handles both involutions on multiplicative structures and polarities on 
ordered structures, of which OC's are the 'nondegenerate' case. This viewpoint 
was taken in an earlier draft of this paper, but was cumbersome since our intents 
here are technical and fairly specific. The basic necessity for such a treatment 
is the concept of an opposite, or dual, structure; in this case the 'opposite' of 
a semigroup and the 'dual' ordering of a partially ordered set. See [11] for a 
categorical treatment of structures with involution. 

(1.2) Canonical Frames. The next few sections are devoted to recalling 
enough coordinatization theory to understand and exploit the links between cer­
tain MOLs and regular rings with involution. We start with some notation and 
definitions which apply to all rings. 

Let R be a ring and let n G N. For any right R-module M we define the 
following two ordered structures. 

(i) L(MR) is the (modular) lattice of all right tf-submodules of M. 
(ii) L(MR) is the subpartially ordered set of L(MR) consisting of all finitely 

generated right /?-submodules of M. 
In general L{MR) is not a sublattice of L(MR), not even when MR is itself 

finitely generated which is the case we will be interested in. In fact we will 
usually only be interested in right /^-modules of the form RR, n G N. Let us 
establish some notation for this situation. Fix R and n. As usual, for x G Rn the 
right /?-submodule of Rn generated by x is xR. For / ^ n let et be the vector 
consisting of a 1 in the i'th place and O's elsewhere. Let en+\ be the vector with 
a 1 in every place. The (n + l)-tuple (e\R,... jen+\R) is called the canonical 
n-frame of L(RR), or, of L(RR), depending on context. 

(1.3) An Isomorphism. For a ring R and n G N let Rn be the ring of n x n 
matrices over R. There is a fundamental, obvious, isomorphism between L(RR) 
and L(RnRn). Define 

*¥:L(Rn
R)-*L(RnRn) 

by 

M —> {(atj | (ûiy,..., anj) G M J = 1 , . . . , n} 

and 

®:L(RnRn)^L(Rn
R) 
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by 

A-+{(au...,an)eRn\ 

(a\,..., an) is the column of a matrix in A}. 

THEOREM (1.3.1). (Proposition 14, [42]). O and *F are inverse lattice isomor­
phisms. Furthermore, finitely generated right submodules and finitely generated 
right ideals correspond to one another under each of these maps. 

(1.4) Frames, (cf. [13]). We have already introduced the canonical «-frame 
in the lattice of right /?-submodules of Rn. If L is a bounded modular lattice 
then a spanning n-frame in L is an (n + l)-tuple (JCI, . . . , Jtn+i) of elements of L 
satisfying, for all ij\ k G { 1 , . . . , n}, 

(0 \fxi = \Jxh 

(ii) ^-A V xk = 0. 

and 

(iii) V ^ = L 

If (JCI, ...,JCW+I) satisfies (i) and (ii) but not necessarily (iii) then it is called an 
n-frame. If L is in addition an MOL then a (spanning) «-frame in L is orthogonal 
in case for all / ^ j with 1 Û i,j ^ n, xt ^ x-. 

(1.5) Regular Rings. In this section we recall some basic facts about regular 
rings. Our main concern will be to provide enough information to prove the 
main theorem. A slightly more comprehensive version of this section, which is 
consistent with the notation used here, is given in [40] and that in turn is taken 
mainly from the original [43], see also [42]. Let R be a ring. An element e G R 
is an idempotent in case e — e1. We recall some facts about idempotents. 

OBSERVATION (1.5.1) ([43]). (1) e is an idempotent if and only if ' 1 — e is an 
idempotent. 

(2) eR = {a G R | ea = a}, where e is an idempotent. 
(3) eR and (1 — e)R are complements in L(RR), where e is an idempotent. 
(4) Conversely, if two right ideals I and J are complements in L(RR) then 

there exists an idempotent e G R with I — eR and J = (1 — e)R. 

THEOREM (1.5.2) ([43]). For a ring R the following conditions are equivalent. 
(i) Every principal right ideal has a complement in L(RR). 

(ii) For every a G R there exists an idempotent e G R with eR = aR. 
(iii) For every e G R there exists r G R with ara — a. 
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A ring R is regular in case it possesses one, hence all, of the above properties. 
Usually (iii) is used as the definition of a regular ring because of its obvious 
left-right symmetry. 

THEOREM (1.5.3) ([43]). For a regular ring R, L(RR) is a complemented mod­
ular lattice; it is a sublattice of L(RR). 

THEOREM (1.5.4) ([43]). Let R be a ring and let n E N. R is regular if and 
only if Rn is regular. 

(1.6) OC's and Involutions. A ^regular ring is a *ring which is also regular. 
A projection of a ^regular ring R is an idempotent e E R with e = e*. The set of 
all projections of R is written Pr{R). As its idempotents describe the structure of 
the lattice of finitely generated right ideals of a regular ring, so the projections 
describe the structure of the ortholattice induced by the involution when R is a 
*regular ring. A regular ring is of order n in case L(RR) contains an «-frame. 

THEOREM (1.6.1) ([43]). (a) If R is * regular then the map 

aR^{r eR\a*r = 0} 

defines an OC, ', on L(RR). The involution * is said to generate the OC '. 
Conversely, if R is of order n,n ^ 3, then each OC on L(RR) is generated by a 
unique involution on R. 

(b) Ifee Pr(R) then (eR)' = (1 - e)R. 

(1.7) Coordinatization of Modular Lattices. We recall the basic coordina-
tization theorem for complemented modular lattices. Let L and M be mod­
ular lattices containing, not necessarily spanning, «-frames, (jti,... ,xn+\) and 
0>i,... ,)VH-I) respectively. A frame preserving homomorphism is a lattice ho-
momorphism from L to M which maps x, to y{, for each /, 1 ^ / ^ n + 1. Of 
course, a frame preserving homomorphism is frame preserving with respect to 
two specific frames, context will usually specify these. 

COORDINATIZATION THEOREM (1.7.1) ([43], see also Theorem 5, [13]). Let L 
be a complemented modular lattice containing a spanning n-framey n ^ 4, 
(JCI, . . . ,xn+\). Then there exists a regular ring R and a frame preserving iso­
morphism sending (*i,... ,xv+i) to the canonical frame of L(Rn

R). 

The theorem is proved by coding the operations of the ring as lattice poly­
nomials. Our final objective is to use these operations to obtain unsolvability 
in an MOL, so it is worth our while spending some time here understanding 
the operations. There are several slightly different but equivalent ways of doing 
this. We are following the approach of Day [13], as opposed to, for example, 
that of [16], or [19]. 

(1.8) The Arithmetic of Frames, (cf. [13]). Let (JCI, . . . ,xn+\) be an «-frame, 
n è 3, in a bounded modular lattice L. Then standard modular arguments show 
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that (*i7X2,-*3,0 is a 3-frame in L, where 

A(xi V i 2 VJC3). == ( v «) 
Let w := (JCI V t) A fe V x3). The diagonal is 

£> : = { d £ L : w A d = wAxi and w V J = w V xj}. 

Define, 

®:DxD-*D 

by 

by 

and 

a 0 ft := (JCI V 0 A (JC2 V (fc V a) A (((JC3 V jtO A (x2 V ft)) V H>))), 

0 : D ^ D 

0a := (r V JCO A [x3 V ((X! Vi2) A (w V [(*, Vi3) A (x2 V a)])], 

(g) : D x D —> D 

by 

0 <g> ft := (*, V f) A (x2 V (fo V ft) A (JC, V ((*, V r) A (*2 V a))). 

It is instructive to do the calculations which show that these operations in fact 
do what they should in a submodule lattice. That is, if L = £(/?#) then 

D = { ( l , r , r ) K : r e / ? } , 

and if r, s G R then 

(1, r, r)/? 0 (1 , J , 5)7? = ( l , r + 5, r + s)R, 

(1, r, r)tf 0 (1 ,5 , 5)/? = (1, re, rs)fl, 

and 

0(l ,r , r) /? = ( l , - r , - r ) # . 
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THEOREM 1.8.1 ([43], see also Theorem 3, [13]). IfL is a complemented modu­
lar lattice with n-frame (x\,...,xn+\), n^ 4, then (D; 0 , ®, 0 ,x\ , t) is a regular 
ring with unit t and zero x\. 

As a result the full coordinatization theorem can be restated as follows. Let 
R be the ring (D; 0 , ® , 0 , Jti, t) and suppose (JCI, . . . , JCW+I) spans L. Then there 
exists a unique frame preserving isomorphism, / , from L to L(Rn

R), with the 
canonical frame, so that f(a) = (17#, tf,0,... ,0)/? for all # G D. Calculations 
using (1.8.1) also provide us with the following observation: 

PROPOSITION (1.8.1). Let R be a regular ring and define (D; 0 ,®, 0,*i , 0 in 
terms of the canonical frame of L(RR). Then the map 

f-.R^D 

given by 

/ ( r ) = ( l , r , r ,0 , . . . ,0 )R 

is a ring isomorphism. 

(1.9) Hermitian Forms on ^Regular Rings. The isomorphism of (1.3.1) can 
be used to translate from involutions on Rn to Hermitian forms on R. This was 
first done for the special case of fields in [4] and later extended by F. Maeda 
[31]. 

THEOREM (1.9.1) ([31]). If ' is an OC on L{Rn
R) and if the canonical frame is 

orthogonal then there exist invertible a^ . . . , ocn G R and an involution * on R 
so that for each i, 

ai — a* 

and for M G L(Rn
R), 

M' = {(ai , . . . , an) I a\m\ + a^o t̂f^ + • • • + a*nanmn — 0, 

for all (mi,. . . , m j G M}. 

The (n + l)-tuple (1, a2 , . . . , a„;* ) is called a Hermitian form associated with 
the OC, ', (we follow [31] in this choice of terminology). 

In general, a Hermitian form on a regular ring R is an (n + l)-tuple 
(« i , . . . , anf ) where * is an involution on R each a, is invertible, self-adjoint, 
i.e., a7 = a*, and the form is nondegenerate, i.e., for a\,...,an G R, 

a\oc\a\ + • • • + a*nana*n = 0 

implies 

ai — 0, for each /. 
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THEOREM (1.9.2) ([31]). lf(ct\,..., anf ) is a Hermitian form on the regular 
ring R then the map on L(RR) defined by 

M ->M' := 

{(ai,.. .,an)\ d[a\m\ +alaim2 + • • • + a*nanmn = 0, 
for all (mu...,mn) G M} 

is an OC on L(Rn
R). 

We will always work with Hermitian forms whose first element is 1, (1.9.1) 
shows us that this is no restriction. By (1.6.1) the involution on Rn is unique, 
for n ^ 3. But the uniqueness of the Hermitian form associated with the OC 
on L(RR) via the isomorphism of (1.3.1) has to be qualified. It depends on the 
choice of orthogonal frame and on the fact that ot\ = 1. However, elementary 
calculations show that with these provisions the Hermitian form is also unique. 

There is another observation that belongs here. Suppose /?i,.. . ,/?„ are invert-
ible elements of the *regular ring R and that (a\1..., anf ) is a Hermitian form 
on R. If, for a\,..., an G R, 

afflaiPiai + • • • + a*nf3*nan(3nan = 0, 

then frai = 0 for each /. But since each /?/ is invertible this means that at — 0, 
for each /. We have proved, 

PROPOSITION (1.9.3). If(oL\,..., anf ) is a Hermitian form on R then so too is 

(P*lalpu..-,l3*n(Xnl3n,*)-

(1.10) More arithmetic. Let L(RR) be an MOL with orthogonal canon­
ical frame and an associated Hermitian form (1,«2? • • • ,<Xn* )• Our objec­
tive is to show that for each k12 ^ k ^ n, (1, o^, cty,0,... ,0)7? and 
( l , ^ 1 , 0 ^ , 0 , . . .,0)7? can be expressed as ortholattice polynomials on ele­
ments on the canonical frame. A consequence of this will be that any ring 
relation between the elements of the Hermitian form can be expressed as an 
ortholattice relation between the elements of the canonical frame using the op­
erations of (1.8.1). We will show this via a sequence of lemmas whose proofs 
consist of calculations in the submodule lattice. These calculations will not be 
done and the lemmas will be formulated only for k = 3 and k = 4. The argu­
ment for k — 2 follows the argument for k = 3 and the arguments for all other 
values of k follow the argument for k = 4. This is done to avoid the notational 
inconvenience of a general argument, a typical calculation is given for (1.10.8). 
Here the canonical frame is (JCI, .. .,xn+\) and t is as defined in section (1.8). Let 
Da be the subring of D, from (1.8), contained in the subortholattice of L(Rn

R) 
generated, as an ortholattice, by the elements of the canonical frame. 

LEMMA (1.10.1). 

( l ,0 ,-a3-1 ,0 ? . . . ,0) /? = (x1Vx3)Ar / . 
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LEMMA (1.10.2). For any a ^R, 

(1, a, a, 0 , . . . , 0)R = (t V xx) A ((1,0, a, 0 , . . . , 0)R V x2), 

and 

(1,0, a, 0 , . . . , 0)R = (xi V x3) A ((1, a, a, 0 , . . . , 0)/? V x2). 

COROLLARY (1.10.3). 

( 1 , ^ 0 ^ , 0 , . . . , 0 ) f l e D a 

and 

( l , - a 3 - 2 , - a 3 - 2 , 0 , . . , 0 ) / ? G Z ) a . 

LEMMA (1.10.4). 

( l , 0 , a 3 , 0 , . . . , 0 ) / ? = ( x 1 V x 3 ) A ( ( l , - a 3 - 2 , - a 3 - 2 , 0 , . . . , 0 ) / ? ) / . 

COROLLARY (1.10.5). 

( l , a 3 , « 3 , 0 , . . , 0 ) i ? G D , 

The calculations for k = 4 are similar, except we need a slightly more complex 
translation process. 

LEMMA (1.10.6). For a G R, 

( l , f l , a , 0 , . . . , 0 ) / ? = (rVjci)A ((1,0,0, - a , 0 , . . . , 0)R 

V ( 0 , 1 , 1 , 1 , 0 , . . . , 0 ) / ? ) 

(0,l,l,l,0,...,0)/? = feVx3Vx4)Af V A 
'V 2,3,4 ' 

( l , 0 , 0 , a , 0 , . . . , 0 ) f l - (xi V i 4 ) A ( ( l , - a , - 0 , O , . . . , O ) f l 

V ( 0 , 1 , 1 , 1 , 0 , . . . , 0 ) / ? ) . 

LEMMA (1.10.7). 

( l , 0 , 0 , - a 4 1 , 0 , . . . , 0 ) / ? = (x1 Vx4)Ax^+1 
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and 

(1,0,0, a4 ,0,. . . ,0)/? = (x 1 Vx4)A(( l ,0 ,0 , -^ 2 ,0 , . . . ,0 ) /? ) / . 

COROLLARY (1.10.8). 

and 

( l , a 4 , a 4 , 0 , . . . , 0 ) / ? eD* . 

Proof. We will outline a proof of the second part of the claim, since it is 
probably the most involved of the calculations in this section. From the first 
part we have 

(l,a4\aj\0,...,0)ReD. 

Squaring this, using ®, we obtain 

From (1.10.6) we obtain, (1,0,0, - a ^ 2 , 0 , . . . , 0)R. Now, 

(1,0,0, a 4 , 0 , . . . ,0 ) /? - (x 1 Vx 4 )A(( l ,0 ,0 , -a 4 , 0 , . . . ,0 ) /? ) / , 

applying (1.10.6) again, and using 0 we obtain (1, a4, a 4 , 0 , . . . , 0)R. 

This sequence of lemmas (for general k) proves, 

PROPOSITION (1.10.9). Let Ra be the subring of R generated by the elements 
of the Hermitian form and their inverses and let Da be the subring ofD defined 
above. Then, 

f(Ra) Ç A*, 

where f is the ring isomorphism provided by (1. 8.2). 

It is actually quite easy to see that f(Ra) — Da but we will not prove it here. 

(1.11) The free MOL on an Orthongonal n-Frame with Relations. A spanning 
orthogonal «-frame is an example of a finite presentation in the variety of MOL's. 
The finitely presented MOL whose presentation is the spanning orthogonal n-
frame is called the free MOL on a spanning orthogonal n-frame, written Frmin). 
If n ^ 4 then, by (1.7.1), Frm(n) can be coordinatized. 

Let O be a finite set of ring relations on the letters aç , . . . , an, a^"1,..., a"1. 
Let R be a regular ring with Hermitian form (1, a 2 , . . . , an;* ). Then by (1.10.9), 
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there exists a finite set of ortholattice relations, Oo, involving only elements 
of the orthogonal frame of L(R^) (with OC induced by the Hermitian form 
(a 2 , . . . , an'* )), which correspond via the isomorphism / with the relations O, 
i.e., the relations O hold in R if and only if the relations OQ hold in the MOL 
L(Rn

R)-
Let Frm(n, O) be the free MOL on the orthogonal «-frame, « ^ 4, satisfying 

the relations O0, i.e., the finitely presented MOL on the presentation obtained 
by adjoining the relations OQ to the presentation for an orthogonal «-frame, 
let R<$> be the coordinatizing ring of Frm(n, O) and let (1, Q i , . . . , £ln* ) be the 
associated Hermitian form. Then we have: 

LEMMA (1.11.1). Let R be a ^regular ring with Hermitian form (1, . . . ,«„;* ), 
let O be a set of*ring relations involving only form elements which hold in R. 
Then there exist unique homomorphisms 

f:Frm(n,&)-+L(Rn
R), 

f : R®—>R, 

so that for all r G R<&, 

/ ( ( l , r , r , 0 , . . . , 0 ) ^o ) = ( l , / ( r ) , / ( r ) , 0 ? . . . , 0 )* , 

and 

f(Qt) = <xh l ^ i ^ n . 

Proof. The existence of the frame preserving ortholattice homomorphism,/, 
follows from the universality properties of Frm{n, O). Its 'extension' to the ring 
homomorphism / is accomplished via (1.8.1) and (1.8.2). The final part of the 
claim follows from the uniqueness of the Hermitian form, cf. the comments 
below (1.9.2). 

It was shown in [34], see also [20], that any MOL generated by an orthogonal 
«-frame is generated by 3 elements. To obtain a finitely presented 3-generated 
MOL with unsolvable word problem we will encode unsolvability in the mul­
tiplicative group of a *field in terms of the elements of a Hermitian form and 
pull this unsolvability back into the free MOL on a spanning orthogonal «-frame 
with a certain set of relations. The construction of the * field and the mechanics 
of the proof will occupy the rest of this paper. 

2. *Ring constructions. 

(2.1) Amalgamated Coproducts, (cf. page 92, [7]). Let C be a category and let 
K be an object of C. The comma category (K, C) has, as objects, C-morphisms 
of the form 

K->A 
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and as morphisms, commutative triangles of the form 

A 
^ I K 

B 

Coproducts in this category are called C -coproducts amalgamating, or, over K. 
More explicitly, if 

(t>t :K^Gn iel 

is a family of C -morphisms then its coproduct over K is an object of (AT, C), 

<t>\K-+G 

along with a family of morphisms of (K, C) 

Gt 

*L 

K 

C 

so that for any family of morphisms of (&, C), 

G, 
<k 

K 0, 

c 
there exists a unique C-morphism 

f3:G-*C 

so that for all / G /, 

G, 

K 
K 

<y 

fi. 
a, C 

commutes. 
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(2.2) Coproducts of Multiplicative Structures with Involution. Our construc­
tion will require taking amalgamated coproducts of * structures (where 'structure' 
means ring, semigroup or group) over a sub-*structure in the category under con­
sideration. We start this section with a simple lemma which often allows us to 
do this by just taking the coproduct in the underlying category without the in­
volution, and then defining an involution on it. Again, we formulate the lemma 
only generally enough to cover present needs. 

Let V be one of the varieties of algebras with semigroup reduct given in 
(1.1), and let * ^ be the corresponding variety of structures with involution. For 
A an object in V let Aopp be the opposite of A, i.e., Aopp has the same underlying 
set and operations except the multiplication is reversed. 

LEMMA (2.2.1). Let fa : K —*Gi, i E I, be a set of homorphisms in 
suppose that the amalgamated coproduct of the G; over K, 

"V and 

K 
K 

Gt 

G 

exists in V . Then it is contained in (the reduct of) * V ; in fact, it is the coproduct 
of the Gt over K in*^ . 

Proof There are two parts to the proof. We will show first that the V co-
product, if it exists, is in (the reduct of) * V. Then we will show that it is also 
the coproduct in * V. We begin with a simple observation. If f3 : A —> B is in 
V then (3 : Aopp —• Bopp, the same underlying set map, is also in V. To see 
this let us use juxtaposition for the multiplication in A and /?, and 0 for the 
opposite multiplication. Then for x, y E A, we have 

P(x Qy) = P(yx) = /3(y)/3(*) = /?(*) 0 P(y)> 

It follows that 

Kopp 

* 

QOPP 

QOPP 

is a coproduct as well. 
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For each / G /, we have 

<t>, K > G, 

fcopp <!>,• 

* 

-> G w 

Qopp 

commutative. This induces a morphism * : G —• G w , with 

K 

fcopp 4> 

-> G 

-> G ^ 
commutative. Trivially, idc : G —> G is the unique morphism completing, 

4>c 
K 

<t> 
G 

to a commutative diagram. But *o* : G —> G also completes this diagram, hence 
*o* = idc. It follows that * is an involution, and the first part of the proof is 
complete. 

Let 

A - Gt 

K P.-

c 
i G /, be a set of morphisms in (AT, *1/). Then there exists a unique morphism 
/3 in (K,V) so that 

G/ 

tf 

<f> 
G 

a, " c 

P 
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commutes for all / G /. We need to show that (3 is in *1/. Now, for a G Gh we 
have 

Ma*) = Piata*)) = /?(«/(<*)*) 

and this implies 

PWa)) = Ma) = (Pi(a*))* = (/3(a,(a)*))*. 

This computation and the uniqueness of (3 mean that f3 equals the composition, 
* o/?o*, which in turn implies /3(g)* — P(g*), for all g G G. In other words (3 is 
in * V and the second part of the proof is complete. 

We will use the symbol ]JC to denote an amalgamated coproduct over the 
object C. Context will make it clear which variety of algebras we are dealing with 
if this isn't explicitly stated. The last result allows us to obtain new ^structures 
from old ones by taking coproducts, but there is also a standard coproduct 
construction allowing one to obtain * structures from structures which may not 
have an involution. For A G V we define the center of A as 

C(A) := {c G A : ca = ac, for all a G A}. 

We can form the coproduct of A with Aopp amalgamating any substructure, C, 
of C(A), to obtain the structure A JJC Aopp. 

LEMMA (2.2.2). The identity map from A to Aopp extends to an involution on 
A]lcA

opp. 

Proof. By considering the coproduct as the union of the presentations of the 
factors (cf. page 94 [7], for example) it is clear that, in general, the opposite of the 
coproduct A ] J C # is Aopp WCoPPBopp. Applying this observation to the present 
situation we observe that the maps ida and idAoPP extend to a homomorphism 

/ \ opp 

*:A\\A0PP -> ( A J J A ^ M 
C(A) ^ C(A) ' 

and easy uniqueness arguments show that 

* 0 * = M XT 
i-AC(A) 

Note, however, that there is no claim here that the coproduct is well behaved 
(cf. (2.4)), or even nontrivial. 

There are two applications of this lemma which we will include here, even 
though they will not be used until Section 3. For a set G let FD(G) be the 
free group on G and let F*G(G) be the free *group on G. Consider the group 
homomorphism 

FG(G) -+ FG(G)opp 
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induced by mapping the generators identically. By (2.2.2) this map induces 
an involution on the coproduct FG(G)\[FG(G)opp (here C is just the trivial 
subgroup consisting of the unit). To emphasize the involution let us relabel the 
elements of the generating set of FG(G)opp and the set itself by superscripting 
* to them. The isomorphism which acts identically on the generators becomes, 

(1) * : FG(G)-> FG(G*), 

x-^x* 

and its inverse, 

* : FG(G*) -+ FG(G\ 

x —> x*. 

LEMMA (2.2.3). As a "group FG(G)]\FG(G*) is free on G. 

Proof. There is a unique group homomorphism 

h : FG(G) ] J FG(G*) -> F*G(G) 

mapping G identically and mapping G* to the image of G under the involution 
of F*G(G) in the manner corresponding to (1) above. We will use the same 
trick again to show that h is a *group homomorphism. Replace h with the group 
homomorphism 

k — * o ho* 

obtained by composing h on either side with the appropriate involution. Then 
for x G G we have 

k(X) = (Kx*)T = (Xy = x 

and for x* G G* we have 

k(x*) = (h(x*y = (h(x)T =x*. 

The uniqueness of h implies that h — k and this implies that h is a *group 
homomorphism. The freeness of F*G(G) implies that h is an isomorphism. 

For a set Rel of *group relations on G let F*G(G \ Rel) be the free *group 
on the presentation (G | Rel). Here we will restrict attention to the special case 
where Rel is a set of group relations on G. Let FG(G \ Rel) be the free group 
on the corresponding group presentation. Observe that 

FG(G | Rel)opp 9* FG(G | Relopp\ 
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where Relopp is the set of relations obtained by reversing the multiplication. 
Again, this time in anticipation, we will write this group FG(G* | Rel*). From 
(2.2.2) we know that 

FG(G \Rel)\\FG{G* \ Rel*) 

is a * group. We will prove that it is free on the *group presentation (G | Rel). 
Using (2.2.3) we know that there exist unique *group homomorphisms/,g and 
a unique group homomorphisms h so that 

F*G(G) J- > FG(G)UFG(G*) 

\f 

F*G(G\Rel) < — FG(G\Rel)UFG(G*\Rel*) 

commutes. 

LEMMA (2.2.4). As a * group FG(G \ Rel)]\FG{G* \ Rel*) is free on the 
presentation (G | Rel). 

Proof. If we can establish that h is a *group homomorphism then it follows 
immediately from the universality properties of F*G(G \ Rel) that h is an iso­
morphism. The argument we use is similar to that used in (2.2.3). Let us replace 
h with the group homomorphism 

k — * o /zo*, 

obtained by composing h on either side with the appropriate involution. Then 
for any a G FG(G) we have 

k(f(j(a)) = (h(f(j(a))*))* = (h(f(j(a*))))* = g(a*)* = g(a). 

The uniqueness of h implies that h — k and this implies that h is a *group 
homomorphism. 

(2.3) R-Fields. Let R be a ring, an R-field is a field K together with a ring 
homomorphism from R to K. K is afield of fractions for R when this homo­
morphism is an embedding. The relevant setting for the study of /^-fields, for a 
fixed R, is the category of /^-fields with specializations, (see page 388, [9]). K 
is a universal /?-field in case it is universal, page 389 [9], in this category. There 
is no real need for us to go into the definition of a specialization. But there are 
some things we should note. 

(1) Specializations are equivalence classes of partial functions rather than 
functions, but each isomorphism forms an equivalence class on its own and 
hence can be thought of as a specialization (page 388, [9]). Actually more can 
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be said. Any isomorphism between two rings extends to a unique isomorphism 
between their universal fields of fractions if these exist, see page 89, [7]. 

(2) A stricter version of 'field of fractions' of a ring is illustrated by the 
embedding of the integers in the rationals. That is, every element of the field 
can be written as a quotient of elements from the ring. We will call such a 
field a rational field of fractions. A rational field of fractions is a universal field 
of fractions, and when it exists it is unique, up to isomorphism, as a field of 
fractions, cf. Theorem 8.6 and Corollary 8.7, page 38, [9]. 

LEMMA (2.3.1). Let R be a *ring. If a : /? —> K is an R-field then 

a o * : R - • Kopp 

is an R-field, and, if (i \ K —> Kopp is a specialization then (3 : Kopp —» K is an 
Ropp -field specialization. 

Proof The first part is entirely trivial. The second follows directly from the 
definition of a specialization (page 388, [9]). 

(2.4) Coproducts of *Fields. In this section we will recall some of the in­
formation we need about fields, we'll then modify this material to obtain some 
*fields. If we consider the category of 2.2 to be the category of rings with ring 
homomorphisms then amalgamated coproducts always exist. It is much harder 
to guarantee that the coproduct is 

(i) faithful, each at is an embedding, and 
(ii) separating', for each distinct ij G /, 

al(Gl)naJ(GJ) = alo<t>i(K). 

These are both desirable properties which do hold in the more common settings 
of groups and semigroups. 

THEOREM (2.4.1). (Bergman [2], cf. Theorem 5.1.2, Theorem 5.3.2, [7]) The 
ring coproduct of a family of fields over a given field is faithful and separating. 
The resulting ring is a fir and hence has a universal field of fractions. This field 
of fractions is by definition the field coproduct of the family. 

PROPOSITION (2.4.2). The universal field of a *ring is a *field, or, more pre­
cisely, the involution on the *ring extends to a unique involution on the universal 
field. 

Proof. From the universality property of K we know that there exists a unique 
specialization (not necessarily a full homomorphism) * : K —•+ Kopp completing 

R > K 

* 

ftopp ZZ ^ gopp 

to a commutative diagram. Now, *o* and idK (by remark (1) of (2.3)) both 
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uniquely complete the trivial 

R - > K 

idR\ 

R ~^—>K 

to a commutative diagram. So *o* = idK. This implies that * : K —•» Kopp is an 
isomorphism of period two and hence an involution. 

Actually we have a bit more here. If 

a\R-+S 

is a *ring isomorphism and R and S have universal fields of fractions, K and 
L respectively, then it follows from (1) of (2.3) that a extends to a unique 
field isomorphism, à from K to L. A uniqueness argument analogous to the 
uniqueness argument first used in (2.2.1) and similar to the one used just above 
can be used to show that à is a *field isomorphism. 

PROPOSITION (2.4.3). If a : R —> S is a *ring isomorphism and if K and L 
are universal fields of R and S respectively then a extends uniquely to a *field 
isomorphism à : K —> L. 

We also have, 

PROPOSITION (2.4.4). The field coproduct of ^fields with amalgamated 
sub*field is a * field. 

Proof. The field coproduct is, by definition, the universal field of fractions of 
the ring coproduct which by (2.2.1), applied to the variety of rings is the *ring 
coproduct. The result now follows from (2.4.2). 

(2.5) Power Series Fields (cf. page 526, [9]). The material in this section is 
drawn mainly from [9], [7] and [28], and the notation used in each of these 
differs. As a result my choice of notation is a, sometimes sorry, compromise 
and care should be taken when consulting the references. Let G be a group and 
let A' be a field. The group ring, K(G), of G over K is the set of elements of 
KG which have finite support, i.e., are nonzero in only finitely many places. 
Multiplication of two group ring elements a, b is given by 

(2) ab(g) := J2 *00*(v) 
uv-g 

and addition is defined componentwise, 

(a + b)(g):=a(g) + b(g). 

https://doi.org/10.4153/CJM-1989-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-044-8


ORTHOCOMPLEMENTED MODULAR LATTICES 983 

An ordering on a group G is a total ordering, ^ of the underlying set of the group 
which is preserved by the multiplication of the group. That is, if x,y,s,t G G 
with x ^ y and sût then xs Û yt. The definition of the product of two group 
ring elements given above does not make sense for arbitrary elements of KG, 
because in general the sum in (2) above will not be finite. However, if G is 
ordered, i.e., admits an ordering, then one can consider those elements of KG 

with well ordered support. This set forms a field under the same operations (cf. 
[37]), called the power series field of G over K, which we shall write K((G)). 

PROPOSITION (2.5.1). If G is a * group and K is a *field then the group ring 
admits an involution * given by 

f*(g) :=/(**)*. 

(We have used the symbol '*' both for the involution on G and for the 
involution on K. The use of the symbol '*' will be restricted to the statement 
and proof of this proposition after which we will revert to the use of ' * ' for all 
involutions.) 

Proof Let a,b e K(G). Then, for g G G, 

(a* + b*)(g) = a*(g) + b*(g) 

= a(g*T+b(g*)* = (a(g*) + b(g*))* 

= ((a + b)(g*)T = (a + b)*(g). 

Also, 

(abf(g) = [ab(g*)T 

^2 <*(u)b(v) 
Luv=g* 

= J2 [a(u)b(v)}\ 

= ^ b(y)*a(u)* 
uv=g* 

= Y, Kv*Va(u*V 
v*u*=g 

= Yl ^*(v>*(w*) 
b*a*(g). 

This operation can be defined on all of KG and it is easy to see that the propo-
erties of an involution hold whenever multiplication is defined and associative. 
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For an infinite group the power series field does not admit this involution. If it 
did then the '*' of a well ordered subset of G would again be well ordered. It 
is relatively easy to show that there are always well ordered sets whose '*' is 
not well ordered, just manufacture an element of the group which is positive, 
> e, but whose '*' is negative (this is a simple exercise) and take powers of 
it. However, this naive approach does give some insight into the situation. The 
involution yields a second ordering of the group, 

s <* t if and only if s* < f. 

We can construct a power series field using this ordering. If the constructions 
with respect to these two different orderings are isomorphic (over the group 
ring) then one can try to define an involution on the power series field by first 
applying the involution and then the inverse of the isomorphism. There is no 
reason to believe that such an isomorphism will exist in general. But if G is 
a free group then such an isomorphism does exist, at least for the subfield 
generated by K(G), which is what we are interested in. This follows easily from 
the main theorem of [23], see the comment on page 343 of [28]. And from 
this it is fairly easy to establish that the map described above is an involution. 
The argument presented here does not explicitly use this device, even though 
this is what is going on behind the scenes. We will use a cleaner but perhaps 
less illuminating proof based on universality arguments. These come from an 
updated version of Lewin's Theorem 2 of [28]. Bergman's work on coproducts 
over noncommutative fields allows us to state the theorem more generally. Let 
K[x,x~{] be the free K ring on {x,x~1} satisfying the identities, 

xk = kx, for all k G K 

xx~x — x~lx = 1. 

LEMMA (2.5.2). K(G) = U^AT*,*""1] | x G X), where G is free on X. 

Proof. K[x,x~l] is a principal (left and right) ideal domain (this follows 
easily from the fact that the polynomial ring K[x] is) and hence a fir, cf. 2.2 of 
[9]. Hence, R := U ^ l * , * - 1 ] ) is a fir, cf. 5.3.2 of [7]. Every r G R can be 
written, 

n 

for some k\,..., kn G K, g\,..., gn G G, n G N, as can every element of K(G). 
The freeness of G and elementary calculations show that 

n n 
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is a ring homomorphism and the universality properties of R guarantee that its 
an isomorphism. 

THEOREM (2.5.3). Let K be a field and let G be a free group then G can 
be ordered and the subfield of K((G)) generated by K(G) is isomorphic to the 
universal field of fractions of K(G). 

Proof This is precisely Theorem 2 of [28] except the restriction to commu­
tative fields has been lifted. In [28] the commutativity of the underlying field 
is used essentially in only four places. Once it is used to assert that K(F) is a 
fir, where F is a free group, and hence has a universal field of fractions (line 
12, page 340, [28]). It is used again in the proof of lemma 1 to again obtain 
that K(G) is a fir, where G is a subgroup of a free group and hence free itself, 
this time so that the full matrices over K(G) are closed under the formation of 
diagonal sums. It is used in the proof of Lemma 4, but again it is only used to 
establish that K(Hj), / = 1,2 are firs for the free groups H\, H2. Finally it is 
used in the proof of Proposition 6, again all that is needed is that K(G) is a fir. 
But (2.5.2) allows us to make these assertions for noncommutative K as well. 

PROPOSITION (2.5.4). Let K be a * field and let G — Yl"=l Gj be a product of 
* groups each of whose group reduct is free, (hence G can be ordered by ordering 
each Gj and using the lexicographic ordering, cf. [7]). Then the involution which 
exists on K(G) by virtue of (2.5. 1) extends to an involution on the subgroup of 
K((G)) generated by K(G). 

Proof Before beginning the proof proper let us make some key observations. 
First, 

Wfl G ' ) ^KiG) 

naturally, and hence 

W ( r i G ' ) ) ^K«G»> 

naturally as well, for each k ^ n. More generally, if F is a subfield of 
K((UL\ G>)) t h e n F(Gk+\) Q K((G)) naturally, and hence F((Gk+{)) Ç K((G)) 
naturally as well. Formally, 'naturally' means that the inclusion extends the 
usual inclusions of the groups under consideration into products of which they 
are factors. 

For k û n let 

Ko :=K, 

Kk '-=Kk-\{Gk)i 
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where Kk-X{Gk) is the subfield of Kk-X((Gk)) generated by Kk-{(Gk). By (2.5.3), 
Kk is a universal field of fractions for Kk-\(Gk) which sits naturally inside 
K((G)). Our hypothesis is that the involution on K(G) restricted to AXlXd ^ ' ) 
extends uniquely to one on Kk-\. 

By (2.5.1), any involutions on Kk-\ and G 'lift' uniquely to one on Kk-\(Gk), 
and it is easily seen that if we take the involutions to be the ones provided by, 
for Kk-\, the inductive hypothesis and, for Gk, the statement of the theorem, 
that this involution agrees with the restriction of the involution on K(G) to 
K(YlL\Gi)- S i n c e Kk is universal for Kk-{(Gk) it follows by (2.4.2) that Kk 

admits a unique involution extending the one on Kk-\(Gk). If we take k = 1 and 
interpret II/=i(G/) as the empty product we obtain the one element group. The 
hypothesis is then trivially true, for it says that the involution induced on K by 
the restriction of the involution on K(G) to K extends uniquely to an involution 
ox\K. 

We have to show more than this. Let us call the subfield of K((G)) generated 
by K(G\ K(G). We must show that L, the subfield of K{G) generated by K(H) 
is a sub*field of K(G), where H is an arbitrary sub*group of G. The existence 
of an involution on K{G) makes this proof easy but it does not appear to follow 
from any universality arguments. Let A be an arbitrary subset of K(G) and 
define, 

A~x :={a~l :a£A}, 

A" :={a* :aeA}, 

A2 :={ab : a,b G A}, 

2A :={a + b : a,b G A}. 

LEMMA (2.5.5). If A = A* then 

2A = (2A)*, 

A2 = (A2)*, 

and 

A'1 = (A-ly. 

Proof Only the last part even requires comment. The fact that inverses are 
unique in a field implies that in any *field the 'identity' x~u — jc*_l, holds. 

We shall build L recursively: 

Définition (2.5.6). Let 

Lo := K(H) 
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and 

LM :-(2L /)
2U((2L,)2r1 . 

LEMMA (2.5.7). For each i, the support of Li is contained in H and Li — L*. 

Proof. This is obviously true for L0. If L/ = L* then by (2.5.4), L*+1 = Li+X. 
The elements of K(G) with support in H form a field. Since the definition of 
Li+i only involves closing L, under the operations of this field, the support of 
L/+i is contained in H whenever the support of L; is. 

THEOREM (2.5.8). The subfield ofK(G), L, generated by K(H) is a sub*field 
of K{G), for any sub*group H of G. 

Proof Clearly L = US iL/-

(2.6) Skew Polynomial Rings (cf. pages 52, 53 [9]). Let F be a field and a an 
automorphism of F. The skew polynomial ring F[t\ a] has as underlying set the 
set of all formal power series in t, i.e., all expressions of the form 

n 

^2fit1, / ,ef ,«6N. 

Addition is defined as usual, and multiplication with t by an element of F from 
the left is as well. However, if / G F then 

tf := a(f)t. 

One multiplies two power series together in the normal way using this rule to 
bring occurrences of t to the right end of products. The following result is stated 
at the bottom of page 53 of [9]. 

THEOREM (2.6.1). The skew polynomial ring F[t;o] has a rational field of 
fractions F(t\ a), called the skew polynomial field. 

PROPOSITION (2.6.2). If F is a *field and a is a * automorphism of F then the 
involution on F extends to one on F(t\ a) by sending t to t~x. 

Proof. This result is similar to Proposition (2.5.1). The skew polynomial field 
is constructed in essentially the same manner as the power series field of the 
group ring of an ordered group, cf. [9]. One allows not just finite series but also 
infinite series with only finitely many negative coefficients i.e., all series of the 
form, 

oo 

a= ^ait1. 
i=—n 

https://doi.org/10.4153/CJM-1989-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-044-8


988 MICHAEL S. RODDY 

Here again there is an obvious candidate for the '*' of such a series, 

oo 

i=—n 

And again, this is not an element of the field. By remark (2) of (2.3) we know 
that F(t\(j) is the universal field of fractions of F[t\a] and formally we will 
use a universality argument to extend an involution on a ring, A, containing 
F[t;a], to one on F(t\o). But of course the induced underlying isomorphism, 
over A, implements the natural involution just as it does for the power series 
field. The intermediate ring we will consider is the ring consisting of all finite 
series, allowing negative as well as positive powers of t, i.e., 

A := I ^2 ait1 : ax eF,n G N I . 

It is clear in general that if B Ç A Ç K are rings and if K is rational field of 
fractions for B then K is a rational field of fractions for A. Hence by (2.4.2) any 
involution on A will extend to one on F(t\ a). For a G A a s above define, 

n 

a* := Y, *"''(*?)'"''• 
i=—n 

We need only show that * is an involution on A to prove the result. First let us 
show that *o* = idA. We have, 

n 

- J2 tr'-'V-'CO)'-'-0 = a-
i——n 

Compatibility with addition is also easy to establish, let 
n 

b = Y, ^ 
i=—n 

then 
n 

(a + b)*= 2((a/+*/)6* 
i——n 

n 

i——n 

n 

= 2(ff-,'(a;) + a-,'(6;))r'' 
i—~n 

n n 

i—~n i——n 

= a* + b*. 
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It remains to show that for û , / ?eAwe have 

{ab)* = b*a*. 

The commutation rule tm — a{m)t gives, 

(j-'wr1 = rx[tcj-\m)}rx = rl[mt]rl = rlm. 

Let 

In 

ab \— 2_j citl-

i=—2n 

Direct computation gives 

ckt
k = J2 a^bit} = YL a^^tk 

i+j=k i+j=k 

and so, 

Hence, 

Ck = XI ai(j1^' 
i+j=k 

and 

— 2/7 — 2/7 

(ab)* = Y, t~kc*k = £ o-'W 
k—2n k—2n 

so the —fc'th coefficient of {ab)* is 

a-k(c*k) = a-k('£ia
i(bj)a*) 

\+j=k ' 

= Ç ^-k(b*)a-k(a*). 
i+j=k 

Now, 

/7 

/ = — A 7 

A7 

7 
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and let 

In 

b*a* = J2 d'f 
i=-2n 

Then, 

d-kr
k = ]T <r\b*jt-i<ri(ai[)ci) 

j+i=k 

j+i—k 

And so the — Fth coefficient of b*a* is 

7+1'=* 

y+ /=* 

which is what we wished to prove. 

(2.7) Hermitian Forms on ^Fields. In this section we will give methods of 
creating Hermitian forms for * fields. The notation is the hardest thing about the 
proofs of the two results in this section. 

THEOREM (2.7.1). Let R be a *ring and suppose F is a rational R-field, 
then F is a *field and any nondegenerate Hermitian form on R extends to a 
nondegenerate Hermitian form on F. 

Proof. The involution on R extends to one on F by (2.4.2). Let (a / 7 . . . , an;* ) 
be a form on R and suppose there exist a\,..., an G F so that 

n 

^a*aai = 0. 

We will prove that there exist &,-,..., frw G R so that 
n 

5>,*a.A-=0, 
i=\ 

and so that b, = 0 if and only if at — 0. This will be done by proving the 
following statement inductively. 
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For each /:, 0 û k Û n, there exists a sequence b(k)\,..., b{k)n G F so that 

n 

(/) j ] *(*);«/&(*)/= o, 

(ii) b(k)i — 0 if and only if a(k)j = 0, 

(i/7) b(k)u...,b(k)keR. 

Proof. The sequence a\,...,an works for k — 0. Suppose /?(/:) i , . . . , b(k)n 

satisfies (i), (ii), (iii). Since F is rational there exist p,q G R with q ^ 0 and 
b(k)k+\ — pq~l. Now define, 

fc(*+l)i:=b(k)iq. 

Clearly (ii) and (iii) are satisfied. For (i) we have, 

n 

]T M*+i)*«,M£+i), 
/=1 

n 

= ^2q*b(k)*ajb(k)jq 

= q*(j^b(k)*aMk)l)q = 0. 

Given a field £ the polynomial ring in (the indeterminate a) is written £[a]. If 
E is a *field then assigning a* — a induces a unique nondegenerate involution on 
E[a]. For the remainder of this section we shall refer to E[a] as a *ring with this 
understanding. The construction we are interested in here is the transcendental 
extension of a *field. We can write E[a] as E[a;id£] then the transcendental 
extension of E in a is, by definition, the skew polynomial field E(a) = E(a; idE). 

LEMMA (2.7.2). Let E be a field and let (ct\,..., a*• ;* ) be a Hermitian form 
on E. Then * extends to an involution * on E(a) and (c*i, ai1..., cfy, a;* ) z's a 
hermitian form on E(a). 

Proof By (2.6.2) and (2.7.1) it is enough to show that (c*i,..., aw_i, a/?;* ) 
is a nondegenerate form on £[a]. Assume a\,...,an G £[a] with 

«- i 

^ a*(Xjaj + anaan — 0. 
/= i 

Each a/ is a polynomial in a with coefficients in £. Let m be the maximum 
degree of the polynomials an\ ^ / ^ «. There are two cases to consider. 
First we will assume that the degree of an is less than m and that m > 0. Let 
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/ ( l ) , . . .i(k) be the indices for which the degree m is attained, and let /?,(/) be 
the coefficient of am in a^j). Then the coefficient of a2m in 

n-\ 

i=\ 

is 

k 

h : = z2bî(j)aKj)b,(j)' 

But the highest degree attainable by the polynomials a*naan is 2(m — 1)+1 < 2m. 
We can therefore conclude that b = 0. But since the form is nondegenerate on 
E,bt(j) = 0 for each y, contrary to our assumption that the degree m is attained. 

The second possibility is that the degree of an is m. (This includes the case 
m — 0, i.e., each <?, is constant.) In this case we observe that the degree of 

n-\ 

is less than or equal to 2m. But the degree of a*naan is 2m + 1. It is therefore 
not possible for these two polynomials to add together to give 0. 

We now wish to apply this lemma to a transcendental extension of higher 
dimension. Formally, we will consider a k-dimensional transcendental extension 
to be the composition of k, 1-dimensional transcendental extensions. This, with 
(2.5.2) yields the following. 

COROLLARY (2.7.3). Let F := E(ai,... ,an) be an n — 1 dimensional tran­
scendental extension of a *field E. Then the involution on E extends to one on 
F so that (1, <*2,..., ocn;* ) is a nondegenerate form on F. 

3. The main theorem. 

(3.1) A *Group proposition. The objective of this subsection is to demon­
strate the existence of a special six generated, thirty six relator, *group with an 
unsolvable word problem. We start by recalling some notation. Let (G,Rel) be a 
group presentation. The corresponding presented group is written FG(G | Rel). 
If Rel — 0 then we just omit it and if G and Rel are listed we may omit the set 
brackets. We may also consider the free *group on the same presentation which 
we will write F*G(G | Rel). The result we will prove is 

PROPOSITION (3.1.1). There exists a finitely presented * group 

G* — F * G ( x i , . . . ,*6 | « i , . . . , W3Ô) 
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so that the finitely presented * group 

G** = F*G(x*XU. . . ,4*6 | «I, . . . , "36) 

embeds in G*, and so that G** has an unsolvable word problem. (Of course, 
this necessarily means that each Uj is a *group word on the *groups words 
XjXi , . . . yX^Xfi. ) 

The peculiarity of this presentation is the fact that the generators of G** are 
of the form x*x, x G G*. It is this that will allow us to use (1.9.3) to code the 
unsolvability of G** into the elements of a Hermitian form. 

Let FG(n), n ^ w, be the free group on n generators. The commutator sub­
group of FG(2) is isomorphic to FG(u) and is normal. If N is a normal subgroup 
of FG(n) then the normal subgroup, No, of FG(UJ) generated by N has the prop­
erty that N0nFG(n) = N. It follows from this that if FG(n)/N has unsolvable 
word problem then, considering No as a subgroup of FG(2), we can conclude 
that FG(2)/No also has an unsolvable word problem. Since there exists a finitely 
generated twelve relator group with unsolvable word problem [10], we can con­
clude: 

LEMMA (3.1.2). There exists a two generated, twelve relator group with un­
solvable word problem. 

Let this group be FG(x\,X2 \ n,...,/"i2)« We give a simple application of 
Lemma 12.52, page 344, of [41]. 

LEMMA (3.1.3). Let E = FG(S \ D) be a finitely presented group and let 

Ê :=FG(S,t\D,r{Xitxr\i e / ) , 

where the x-t are words on S. Let w be a word on S. If t~xwt — w in E then the 
group element of E determined by w is in the subgroup of E generated by the 
xt. 

LEMMA (3.1.4). The group G := FG(x\JX21t \ U) has an unsolvable word 
problem where U consists of the relations; 

([/,) x-1rjxirj-l(=l), / = 1 , 2 , ; = 1 , . . . , 1 2 , 

and 

(U2) rlrjtrj-l(=l), y = l , . . . , 12. 

Proof- There exists a group homomorphism 

FG(xux2 | Ui)^FG(xux2 | r i , . . . , r 1 2 ) 
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whose kernel corresponds to the normal subgroup, N, generated by {r\,..., r1 2}. 
But since each r, is central in FG{x\1X2 \ U\), N is just the subgroup of 
FG(x\,X2 | U\) generated by {/*i,...,n2}- Let w be a group word on the 
letters x\,X2, then w = 1 in FG(x\,X2 | r\,...,r\2) if and only if w G N in 
FG(x\,x2 I U\). We will apply (3.1.3) to E = FG(x\,X2 \ U\). Hence consider 
the group Ê = FG(x\,X2, t \ U), and group word w on x\,X2. Then, 

w = 1 in FG(*i,x2 I r i , . . . , n 2 ) 

implies 

w G iV in £ = FG(A,,X 2 | £/I) 

implies 

r ! wf = w in F = FG{xux2,t \ U). 

Conversely, by (3.1.3), 

Cxwt = w in £ = FG(xi,x2,t \ U) 

implies 

w eN in F = FG(JCI,JC2 | U\) 

implies 

w = 1 in FG(x\ ,X2 \ n , . . . , r^) . 

A solution to the word problem for FG(x\1X21t \ U) would therefore yield a 
solution to the word problem for FG(x\,X2 \ n , . . . , r^) , which does not exist. 

To ease notation let us rename the generators of G,s 1,^2^3 and define S := 
{^1,^2,^3}. Let Gopp = (5* I U*) (the *'s are, for now, just suggestive) be the 
opposite group of G and let 

Go := G U Gopp = FG(S U S* \ U U U*). 

Before going on with the construction let us note: 

LEMMA (3.1.5). Go is a * group and as a * group has presentation 

F*G(S I U). 

Proof. This is an application of (2.2.4). 
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For / = 1,2,3 let Ft :— FG{ai,bi,Ci,di) and let (SJ,S*)G0 be the subgroup of 
Go generated by {s^s*}. Define 

</>/ : (shsf)Go-+Fj 

by 

Sj —• atCibidi 

s* —tbidiuiCi. 

For this to make sense we must first establish that (SJ,S*)GQ is free on {57, s*}. 
Since all the relations in U are commutators we know that there is a homo-
morphism from G onto the free abelian group on 3 generators. Symmetrically, 
there is a homomorphism from Gopp onto the free abelian group on 3 generators. 
Hence there is a homomorphism from Go into the coproduct of the free abelian 
group on 3 generators with itself. The image of (SJ,S?)G0 is the free group on 
{.?/,£*} and it follows that (si^s*)G0 is also free on {$;,£*}. This establishes that 
<j>i exists as a group homomorphism. Now any nontrivial group relation (one not 
following from the group axioms) between the elements of 

(ai Ci hi di, hidiai ct )p. 

would be a nontrivial relation holding between the elements of/7/, because for 
neither of the generators is it the case that when one is multiplied by itself, the 
other, or the other's inverse, does any cancellation takes place. It follows that 

(atCibidi, bidiaiCi)F. 

is free on <3/C//?z(i/, ^(i/^Q, and we have 

LEMMA (3.1.6). Each </>/ is a group embedding. 

Definition (3.1.7). Define 

Gn^GoJjFi, 

G2:=G1IJF2, 

G 3 : = G 2 ] j F 3 . 
> 

Replace the elements of the generating set S U S* of G with the generators 
a,i,bi,Ci,di, of F/,/ = 1,2,3, and make the appropriate substitutions in the 
relations U U U* to obtain the presentation 

({ahbhchdi\i= 1,2,3} I UUU*). 
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(The notation JJ^. means to amalgamate the subgroup (S/,S*)G0, identifying it 
with its image under the embedding </>;.) 

LEMMA (3.1.8). 

(3) G3=FG({ahbhchdhi = 1,2,3} \UUU*) 

and the map 

ai-+Ci, 

bi —> dt 

extends to an involution on G3. As a * group 

(4) G3=F*G(aua2,a3,bub2lb3\U). 

Proof. A presentation of Gi is 

FG(aubucudus2,s3,s2,s^ \ UUU*), 

where each occurrence of 51 in U is replaced by a\C\b\d\ and each occurrence 
of s\ is replaced by b\d\a\C\. Similarly G2 is obtained by making the appro­
priate subscript 2 substitutions, and G3 by making the appropriate subscript 3 
substitutions. This gives 

G3=FG({anbncndn i = 1,2,3} | UUU*), 

where each occurrence of si in U is replaced by aiCibidi and each occurrence of 
sf is replaced by fr/d/a/c,-. Thus (3) is a presentation of G3. To prove the second 
part we make two observations. First (3.1.5) gives us a presentation of Go as a 
*group, and (2.2.3) gives us a presentation of each Ft as a *group (since the free 
group on 4 generators can be thought of as the coproduct of the free group on 2 
generators with its opposite). Secondly, Lemma (2.2.1) applied to the variety of 
groups lets us put these presentations together to obtain the * group presentation 
(4). 

Proof (of (3.1.1)). We let G* be the *group G3 defined above, (4), with 
JCI := tfi, x2 := b2, x3 :— a2, X4 := b2, x$ := a3, and x^ := b3. Then G** is Go 
as a *group, cf. (3.1.5). The unsolvability of G and the fact that G embeds as a 
group in Go implies that the word problem for G** is unsolvable. 

Let us close this section by making two minor observations. We only use the 
fact that the elements of U are all commutators and hence, Lemmas (3.1.3), 
(3.1.4), in order to establish that <j>t is an embedding for each /, which we really 
do need. Perhaps there is an easier way to do this but I can't see how to do it. 
Let me emphasize that this fact is not used directly anywhere else. Secondly, 
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we have explicitly calculated the number of generators, 6, and relations, 36, 
which are at present required. This will not effect the number of generators 
the final finite MOL presentation will have, but it will effect the number of 
relations in this presentation, and this will be of importance in situations to be 
handled in a second paper. Any reduction in the number of relations needed for 
an unsolvable group word problem, or an obviation of Lemma (3.1.4), could 
significantly reduce this number. 

(3.2) The Construction. In this section we will mimic Mclntyre's construction, 
as presented in Section 6.5 of [7], in the * field setting. 

Definition (3.2.1). Let 

Fx :=F*G(xu...,x6),FY := F*G(yu . . . , j6) , 

G:=FxxFY, 

and let 

Fx*x :=FG(x*xu.. .,X%X6),FY*Y := FG(y*y\,..., y£y6), 

Go '-—Fx*x X/Y*Y-

Let U be a finite subset of Fx*x (obstensibly, U is the set of relations defining 
the * group of Proposition (3.1.1)), and let H be the sub*group of Go Ç G 
generated by the words 

x*xxuy*xyu...,xlx6,ylys, 

and U. Let N be the normal (as a subgroup) sub*group of Go generated by U. 

LEMMA (3.2.2). N = Fx*x H/ / . 

Proof. Observe that N is the normal subgroup of Fx*x generated by UUU*. 
With this in mind the lemma is just Lemma 6.5.1 of [7]. 

Since 

F*G(x\,... ,*6) = FG(xu... ,*6,**,. . . ,*£), 

and since every free group can be ordered, cf. page 22, [7], Fx can be ordered. By 
the same token FY can be ordered, and hence G can be ordered lexicographically. 
So we can form Q((G)), the power series field of the group ring Q(G), of G 
over the rational numbers. From (2.5.4) we know that the subfield of Q((G)) 
generated by Q(G) is a *field. Call this *field K. Let L be the *subfield of K 
generated by Q(H) which exists and whose support is contained in H by (2.5.5). 
We take the field coproduct of Z copies of K, amalgamating L, to obtain the 
field D. By (2.4.4), D is a *field. Mapping the z"th copy of K to the (/ + l)'st 
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identically, for all /, induces an automorphism a of D, and by (2.4.3) and the 
definition of the field coproduct, 

LEMMA (3.2.4). a is a * automorphism of D. 

We form the skew polynomial ring D[t;cr] and its field of fractions D(t;a). 
From (2.6.2) we know that D(t; a) admits an involution extending that of D and 
sending t to r l . Let £ be a thirteen dimensional transcendental extension of 
D(t; a) in the indeterminates fc, • • •, /3i4- Note that Fx*x is 'embedded' in E via 
the following list of 'containments', 

(5) fx*x QFxÇGÇKoÇ D{t\&) Ç E. 

LEMMA (3.2.5). For w G Fx*x Q E; 

w EN 

if and only if 

wt = tw eD(t\a) Ç E. 

Proof In light of our (3.2.2) this is just 6.5.2 of [7]. 

We want to disguise t as an element of the form x*x as well, so we define 
r := t+ 1. 

LEMMA (3.2.6). For w G Fx*x in E; 

w eN 

if and only if 

WT*T — T*TW in E. 

Proof We will shown that for any k e Ko, 

JCT*T — r*rk 

implies 

kt = tk. 

This with (3.2.5) gives one direction; the other direction of the implication 
follows immediately from (3.2.5). 

kr*r =k(t + Tl + 2) and r*rk = (t + Cx + 2)k. 

https://doi.org/10.4153/CJM-1989-044-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-044-8


ORTHOCOMPLEMENTED MODULAR LATTICES 999 

If these are equal then k(t +1 l) = (t + t [)k and 

a(k)t + (j-\k)Cx =kt + krl. 

Or, multiplying on the right by t and rearranging, 

(cr(k) - o-\k))t2 = k- a~\k). 

This implies that k = a~lk or that ok — k, from which it follows that kt = tk. 

From (2.7.3) we know that (1, /?2,. • •, /Ï14;* ) is a Hermitian form for an OC on 
L(Eg4). This is not the Hermitian form that we want though. The MOL generated 
by the corresponding frame does not capture enough. We modify the form to 
capture more. 

Definition (3.2.8). Define a 2 , . . . , «14 by setting 

at := f3ixf/2Xi/2, for / even, 2Û i Û 12, 

<*/ : = Piy*i-\)/2y{i-D/2, for i odd, 3 ^ / S 13, 

and 

«14 := PUT*T. 

PROPOSITION (3.2.9). (1, a2j..., or^;* ) w âf Hermitian form on E. The *group 
generated by the form elements 0C2,..., « o , as a sub* group of the multiplicative 
group of E, is isomorphic to Go Ç D(t\à). The isomorphism is defined by the 
obvious association of generators given above, explicitly, 

(6) ***/ —> a2/ 

y?yi—>(X2i+i> 

Furthermore, if w is a * group word on the generators of Go then w commutes 
with t in Go if and only if the image of w under this isomorphism commutes 
with a\4. 

Proof The first part follows directly from (1.9.3). Before starting the second 
part let us make two simple observations. If a subgroup of a *group contains 
along with each generator its '* ' , then it is a sub*group. Secondly, if two *groups 
are isomorphic as groups, and if the '*' of each element of a generating set of 
the first *group is sent to the ' * ' of its image in the second then the isomorphism 
is a *group isomorphism. These facts will be used below without comment. 

Let Ex be the multiplicative *group of £ , and let Gp be the sub*group of 
Ex generated by /32,.. . ,/?i4, and consider the copy of Go sitting inside Ex, 
cf. (5). The sub*group of ex generated by these *groups is isomorphic to the 
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product Gp x Go. This is because the field extensions are transcendental. Now, 
the relations. 

xixiyjyj = yjyjxîxn / j = 1 , . . . , 6 

are the relations of a presentation of the *group Go and these translate via the 
map (6) to the relations 

for / even and j odd, 2 ^ i,j ^ 13, which are easily seen to hold because the 
/3/'s are all central. Thus the map (6) extends to a *group homomorphism. Its 
inverse is given by the restriction of the projection from Gp x Go onto Go, to 
the *group generated by a2,..., 0:13. The final part of the claim follows from 
the centrality of the /3/'s and from (3.2.6). 

(3.3) The Proof of the Main theorem. We have observed in Section (1.10) that 
the free MOL on an orthogonal «-frame, Frm(n), is three generated. We begin 
by giving three sets of ring relations which hold between the elements of the 
Hermitian form of (3.2.9). 

(Oi) ctiOtj = ajaj, i even, j odd, 2 ^ /, j ^ 13. 

Let vi,...,V36 be the words obtained by substituting each occurrence of x*Xj 
with a2] in the words Hi, . . . , u^ of Proposition (3.1.1) and define, 

(02) v/a14 = a14v/ 

and 

(03) a2ja2j+ia{4 = aHa2Ja2j+u j = 1 , . . . , 6. 

We let 0 : = 0>! U 0 2 UO3. 

THEOREM (3.3.1). Frm(14,0) has an unsolvable word problem. 

Proof. The proof is essentially Freese's (2.6) of [16]. Let R<$> be the coordi­
na t ing ring of Frra( 14,0), cf. (1.10.1), and (1,^2? • • • ,^14;* ) the associated 
Hermitian form. Since the ring E together with the form of (3.2.9) satisfy the 
relations O there are, by (1.10.1), unique homomorphisms, 

/:Frm(14,0)->L(44), 

/ : R<& —+ £, 

so that for all r G R®, 

/ ( ( l , r , r , 0 , . . . , 0 ) / ? o ) = l ( l , / ( r ) , / ( r ) , 0 , . . . , 0 ) £ , 
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and 

/(ft/) = ah 2 ^ i è 14. 

The relations <I>o are the defining relations of the (isomorphic copy of the) group 
Go, cf. (3.2.9). Therefore the restriction of/ to the multiplicative group generated 
by Q.2i • • • ? ft 14 in /?o is a * group isomorphism. 

Define F , / / and Af in /?$ analogously to Fx*x, # and N of (3.2.1) via the 
isomorphism given in (3.2.9) and the one given above. We claim that for w G F 
in R$> we have, 

w eN 

if and only if 

Wfti4 = fti4W. 

IfweN then it is easily seen that w G H, cf. (2.1) of [16] and (3.2.2). Now, 
from Oi, <E>2 of O and the definition of / / , for any h EH, 

/ifti4 = £luh. 

Hence, wfti4 = ft^w. Conversely, if 

wfti4 — fti4>v in R<& 

then 

wa\4 — (X14W in f(R<&). 

Then, using the group isomorphism of (3.2.9), we have 

wt = tw in E. 

It follows from (3.2.5) that 

w £ N in E. 

But we have gone from the *group F in R$> to the *group Fx*x in E via the 
composition of two * group isomorphisms, and since N Ç F in R® was also 
defined via this composition we can conclude that w G N in /?# as well. 

A solution to the word problem for Frra(14,0) would therefore yield a solu­
tion to the word problem for the *group G** = F/N, of (3.1.1), which does not 
exist. 
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THEOREM (3.2.2). There exists a ^-generated finitely presented MOL with un-
solvable word problem. 

(3.4) Concluding remarks. It is relatively easy to see that this construction will 
work, and Theorem (3.2.2) hold, for any variety of MOL's, which captures the 
orthocomplemented projective geometries of a sufficiently high dimension, (here 
14). However, in the situation of varieties generated by projective geometries we 
can prove more, namely that the free word problem is unsolvable. Though this 
is quite easy it requires the development of further techniques and will be done 
in a second paper. (Roughly, we have to mimic the second half of Freese's proof 
[16] by finding a projective configuration with which we can 'pull unsolvability' 
back into a free algebra.) Unfortunately I have been unable to adapt the argument 
to the free MOL, the problems with this will also be discussed. It should also 
be noted that the argument for four generators is significantly easier than the 
three generator case we have presented here. One can take the Mclntyre-Cohn 
construction, more or less, as it stands because the extra generator means one 
doesn't have to code all the information into the elements of a Hermitian form. 
For dimension-generator counting reasons this construction will be of use in the 
«-distributive case and we will also outline this argument in the second paper. 

The variety of algebras which replaced the MOLs as the most promising set­
ting for 'quantum logic' are the orthomodular lattices, abbreviated OML, intro­
duced by Husimi [24]. Although there is a *semigroup coordinatization theorem 
for OMLs, Foulis [15], it seems unlikely that the techniques developed here will 
yield unsolvability in this variety. But, there are also varieties with reasonable 
equational bases which capture the Hilbert space examples more tightly than 
the OMLs. For example, the orthoarguesian identities, [26], [18], and equations 
which are related to the existence of states, [33], [32], describe such varieties. 
It is not inconceivable that there exists a tractable variety of ortholattices which 
contains the Hilbert space examples and for which the techniques above can be 
applied. Unsolvability would then exist in all the varieties between this variety 
and the modular algebras, and that would be an important negative result. Let 
me close by listing the two open problems mentioned in this paragraph. 

Problem 1. Is the free word problem for MOLs solvable? 

Problem 2 (cf. problem 25, [26]). Is there a variety of OML's which contains 
the classical Hilbert space examples and for which a strong enough coordi­
natization theory exists that the above techniques can be adapted to yield an 
unsolvable word problem? 
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