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In the present work, we extend the results of a previous investigation on the dynamics of
electrons under the action of an inverse free-electron-laser scheme (Almansa et al., Phys.
Plasmas, vol. 26, 2019, 033105). While the former work examined electrons as single test
particles subject to the combined action of a modulated wiggler plus a laser field, we now
look at electrons as composing a particle beam, where collective space-charge effects are
relevant and included in the analysis. Our previous work showed that effective acceleration
is achieved when the initial velocities of the particles are close enough to the phase
velocity of the beat-wave mode formed by the laser and the wiggler fields. Electrons are
then initially accelerated by a ponderomotive uphill effect generated by the beat mode and,
once reaching the phase velocity of the beat, undergo a final strong resonant acceleration
step resembling a catapult effect. The present work shows that, under proper conditions,
space-charge effects play a similar role as the initial (or injected) velocity of the beam.
Even if acceleration is absent when space charge is neglected, it may be present and
effective when charge effects are taken into account. We also discuss how far the space
charge can grow without affecting the sustainability of the acceleration process.

Keywords: plasma simulation, plasma dynamics, intense particle beams

1. Introduction

Recent results show that efficient electron acceleration can be achieved as one combines
an inverse free-electron-laser (IFEL) scheme (Courant, Pellegrini & Zakowicz 1985; van
Steenbergen et al. 1996; Ho et al. 2013; Duris et al. 2014; Singh et al. 2022) with a
preceding ponderomotive (Shukla et al. 1986; Mendonça 2001; Macchi 2013) step, both
stages formed with the very same laser and static wiggler fields (Almansa et al. 2019).
The ponderomotive stage requires a wiggler whose amplitude is modulated along the
device’s axial direction, defined by the co-aligned orientation of both wiggler and laser
wave vectors.

As electrons are injected, the non-uniform wiggler enables pre-acceleration by means
of an uphill effective ponderomotive potential (Mulser & Bauer 2010; Burton et al. 2017;
Ruiz & Dodin 2017; Almansa et al. 2018). Electrons are then resonantly pushed forward
by the peaks of the beat wave formed by laser and wiggler, and ultimately accelerated in
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a catapult fashion to higher velocities than the phase velocity of the beat wave and much
higher final energies than the initial. We note that the non-uniform shape of the wiggler
both promotes acceleration and allows particles to escape at the far end of the accelerating
region. These features contrast with the case of uniform fields where particles remain
trapped – undergoing a mixing process – once they fall into the field’s troughs (Evstatiev,
Morrison & Horton 2005).

As an initial approach, especially if the complexities of the ponderomotive uphill
acceleration are considered, one disregards collective effects involving the accelerating
electrons and the concomitant back reaction of these particles on the original
electromagnetic fields. This is justified if one works with a rarefied electron population,
which under these circumstances behaves as a test particle conglomerate.

On the other hand, if one thinks of relatively high-density beams used, for instance,
in material processing devices (Davidson & Qin 2001), collective self-consistent effects
should be considered.

The purpose of the present analysis is precisely to add collective effects to the
description of electron acceleration in the IFEL device described above.

The transverse self-consistent beam dynamics has been largely analysed and understood
when beams are transported at constant axial speeds in the absence of accelerating fields.
In the present case, we need to take into account the presence of driving non-uniform
electromagnetic fields along the axial direction, as commented above. The beam will still
be transported along the axis but with varying velocity and density resulting from its
non-homogeneous longitudinal profile. Therefore, the theory for uniform transport along
the axial direction shall be adapted accordingly to describe how acceleration, collective
effects and non-uniform transport relate to each other.

In the following sections, we will introduce the laser and wiggler fields, focusing on their
respective polarizations and profiles along the axial direction of the IFEL device. With the
rapidly varying fields duly introduced and now adding the slowly varying space-charge
collective fields, we shall develop the proper ponderomotive Hamiltonian describing the
averaged electron dynamics. In the final step, we solve the self-consistent collective system
formed by particles and fields and compare the results with the dynamics of test particles
moving under the same circumstances.

The overall analysis is carried out under the assumption that the smooth ponderomotive
averaged dynamics is stationary, depending only on the longitudinal and transverse spatial
coordinates of a cylindrical geometry.

2. General formalism
2.1. Laser and wiggler fields

As mentioned in the Introduction and discussed in Almansa et al. (2019), the acceleration
scheme investigated here depends on the combination of laser and wiggler fields
in an IFEL device arrangement where electrons draw energy from a pre-existing
finite-amplitude laser mode. We consider the focal region of the electromagnetic fields
to be sufficiently larger than the beam radius, so that we can discard transverse features
in both the wiggler and the laser. Dissipative forces, like radiation reaction, are in general
comparatively small and also neglected here (Landau & Lifschitz 1965; Vranic et al. 2014;
Russman, Marini & Rizzato 2022).

In the static wiggler case, the uniformity condition on transverse dimensions has been
discussed in more detail in Almansa et al. (2019) and allows us to take the respective vector
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potential field Aw in the form of a right-handed circularly polarized mode

Aw = Aw0 e−(x2/σ 2) ŷ + iẑ
2

eiθw + c.c., (2.1)

where Aw0 represents the peak amplitude of a slowly modulated wiggler displaying a
rapidly varying phase θw = kwx; one enforces the slow modulation condition demanding
kwσ � 1, with kw as the wiggler wave vector and 2σ as its extension around x = 0.

As for the dynamical laser field Al(x), we will not only require an initially large
cross-section, but also that its cross-section remains mostly unchanged along the axial
direction. This requirement is equivalent to excluding transverse laser beam expansion,
therefore holding constant the laser intensity at the central alignment of the system
(Elmore, Elmore & Heald 1985). Introducing σ⊥laser as the laser cross-sectional radial
dimension, L as the system longitudinal length and kl as the laser wavevector then, in
the absence of dissipative forces involving the laser particle interaction, one can use the
slowly modulated wave equation for the laser to show that, if L � klσ

2
⊥laser

, the laser beam
does not appreciably expand transversely. One should also require L > σ⊥laser to enforce
a beam geometry for the laser, from which follows the expected necessary condition
klσ⊥laser � 1 indicating that the cross-sectional dimension should be much larger than the
laser wavelength.

Working with a left-handed polarized signal, the above set of conditions allows us to
write

Al(x, t) = Al0
ŷ − iẑ

2
eiθl + c.c., (2.2)

with the laser amplitude constant and the fast phase written in the form θl ≡ klx − ωlt +
φslow(x). We shall consider a sufficiently underdense electron beam such that ωl/kl ≈ c,
with ωl as the laser fast frequency and c as the speed of light. The added slowly varying
phase correction φslow due to the beam’s presence can be neglected.

2.2. Collective fields
Let us finally discuss the presence and actions of space-charge collective fields in our
model. This is a new feature which is non-existent in the previous single-particle view,
where collective effects are absent and where the only low-frequency field results from the
ponderomotive action of the laser and wiggler fields preceding the catapulting acceleration
discussed earlier.

In our case, we consider a continuous dense particle beam with cylindrical symmetry,
where collective low-frequency space-charge fields are generated due to particle–particle
interaction.

The primary low-frequency collective field to be considered is the space-charge
potential. This low-frequency collective mode has an axial and, importantly, a transverse
dependency resulting from the interplay between the finite cross-sectional area of the
beam and the boundary conditions surrounding the system. The space-charge potential
is denoted by

ϕ = ϕ(r, x), (2.3)

where we recall the assumed cylindrical geometry characterized by the absence of the
azimuthal angle. We shall also consider a thin beam configuration for which the aspect
ratio |∇⊥| � |∂/∂x| applies, so the potential can be obtained from a purely transverse
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form of the Poisson equation

∇2
⊥ϕ = −qn/ε0, (2.4)

with x seen as a parametric variable, ε0 as the vacuum permittivity, q as the particle’s
charge and n = n(x, r) as the beam density which will be detailed shortly.

We also observe that the thin beam geometrical aspect remains valid while the
displacement of any beam particle along the longitudinal axis x corresponds to a much
smaller transverse displacement. This condition, in general, requires high axial relativistic
speeds which alone could be sufficient to validate the use of the Poisson equation in its
transverse form (Vay 2008; Londrillo, Gatti & Ferrario 2014).

For the given beam density, (2.4) will be solved under the boundary condition ϕ(x, r =
rw) = 0, where rw denotes the radius of a conducting wall surrounding the system, which
is sufficiently larger than the beam dimensions.

For the purposes of the present investigation, we shall take beams of homogeneous
density and sharply defined slowly varying boundary at rb = rb(x), a pair of assumptions
that will be justified shortly.

Under these conditions, and recalling the restriction to stationary dynamical regimes,
the following expression can be obtained for the beam density at any point along the axial
direction:

n(x) = Q0

πrb(x)2vx(x)
, (2.5)

where Q0 ≡ πrb(0)2n(0)vx(0) measures the unnormalized injected charge flow at x = 0,
and where we introduce the slowly varying axial beam velocity vx which will be taken as
approximately constant over any transverse area of the thin beam. Note that the electron
flow, as defined by Q0, implies a smooth, steady-state particle inflow at the beam injection
point.

Along the longitudinal axis, however, the density must undergo any necessary changes
in order to preserve the constant current flow. With this adjustment, for a given set
Q0, rb(x), vx(x), the resulting transversely homogeneous beam density, obtained from
expression (2.5), can be inserted in the Poisson equation (2.4), whose solution provides
the potential ϕ acting on any point along and across the beam in the form

ϕ(x, r ≤ rb(x)) = v2
φQ0

4πvx(x)

(
1 + 2 ln

(
rw

rb(x)

)
− r2

rb(x)2

)
, (2.6)

where vφ is the carrier phase velocity. From now on, we progressively switch the
formalism to dimensionless variables, starting with (kw + kl)(x, y, z) → (x, y, z), (kw +
kl)ct → t, qϕ/mc2 → ϕ and n/nc → n (where m is the particle mass). Speeds are therefore
normalized by the speed of light; in particular, the normalized carrier phase velocity reads
kl/(kw + kl). Moreover, nc is introduced as the critical density for wave propagation in the
beam: nc = ε0mω2

l /q2. We use nc as a convenient parameter to fully render Q0 seen in
expression (2.5) into a non-dimensional form.

Note that, since the beam may have a considerable velocity along the axial coordinate, a
closely related field to ϕ should be introduced: the axial component of the vector potential,
Ax. In contrast to the vector potentials connected to the laser and wiggler fields, Ax is a
slowly varying field with its source arising from the equally slowly varying axial current
density jx = qnvx.
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From the same stationary thin beam assumptions, now, along with the wave equation
for the vector potential and with expression (2.6), one obtains

∇2
⊥Ax = −qμ0nvx = ∇2

⊥ϕvx/c2, (2.7)

where μ0 is the vacuum permeability. Equation (2.7) translates into the non-dimensional
form as

Ax = ϕvx, (2.8)

with qAx/mc → Ax, similarly as discussed in Davidson & Qin (2001), and we apply the
same normalization condition to the laser and wiggler fields to obtain the overall rule
qA/mc → A for the vector potential.

Examining expressions (2.6) and (2.8) we thus see that, under the present assumptions,
the slowly varying beam potentials – and the beam itself – are entirely characterized and
governed by the variable beam speed and variable beam radius. Our next step is to work
out the appropriate self-consistent dynamical equations that will allow us to calculate these
quantities.

2.3. Particle and beam dynamics
Now that we have an initial sketch for the basic structure of the EM fields, we proceed
to the next step, where the particle and beam dynamics are investigated. This section
establishes the theoretical framework essential for the numerical simulations presented
in the following section.

Particles are subjected to the action of the rapidly varying laser (Al) and wiggler (Aw),
alongside the space-charge related fields ϕ and Ax self-consistently acting upon the whole
beam.

We start by looking into the dynamics of a particle with canonical momentum p with
the help of the respective dimensionless Hamiltonian (H/mc2 → H)

H =
√

1 + (p − A)2 + ϕ, (2.9)

where A = Al + Aw + Axx̂.
As discussed earlier, potentials ϕ and Ax appearing in expression (2.9) do not depend

on the fast phases θl,w and in this sense are thus slowly varying functions of axial and
transverse coordinates. Since we are considering a narrow beam which essentially sees
plane electromagnetic waves aligned with the axis, we conclude, from the Hamiltonian
equation ṗ⊥ = −∇⊥H, that p⊥ is a slowly varying coordinate as well.

Our interest is to proceed further in the quest for a fully averaged Hamiltonian capable
of describing the ponderomotive dynamics leading to particle trapping and the ultimate
resonant – or catapult – acceleration, as commented earlier. We will also see that the
averaged variables obtained from the ponderomotive procedure are of central importance
to constructing the slowly varying self-consistent fields acting on the particles.

In order to obtain the average form, we proceed along the ensuing general lines.
We shall first recall that although the transverse momentum p⊥ is a slowly varying

variable, neither the full Hamiltonian H nor the axial momentum px are – a fact resulting
from the presence of the fast varying phases θl and θw in the canonical dynamics. For a
generic variable g we thus write

g = ḡ + δg, (2.10)

where ḡ represent the fast phase average of g, and δg represents the rapidly varying
fluctuations of g due to the presence of the fast phases.
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We then shift the scalar potential to the left-hand side of expression (2.9), take the square
of both sides of the resulting equality and write all variables in the form (2.10), observing
that δg = 0.

The final result can be cast as

H̄ =
√

1 + (p̄x − Ax)2 + p2
⊥ + (δpx)2 − (δH)2 + A2

l0 + A2
w(x) + ϕ, (2.11)

where we point out the presence of the averaged quadratic fluctuations related to the axial
momentum and to the Hamiltonian itself. Both are crucial for the full description of the
dynamics, and we see that, in addition, we will indeed need the vector potential Ax along
the x−axis and the space-charge potential ϕ, which can be calculated from (2.4) and (2.7),
respectively.

Calculation of the fluctuations terms δpx and δH are based on the canonical integration
of Hamiltonian (2.9) over the fast time scales dictated by wave frequencies and wave
vectors, with slow variables kept fixed. The procedure is long and deferred to Appendix A.

The various steps leading to the average Hamiltonian emerge in Appendix, and in the
conveniently approximated expression (B2)

H̄approx ≡ H0 + H2, (2.12)

which is reached if one uses the assumption that the energy associated with the
longitudinal motion is much larger than the one associated with the transverse dynamics.
In practice, we shall assume p̄x � ϕ, |p⊥| in dimensionless forms, and expand the full H̄
up to quadratic terms in r and p⊥. Here, H0 does not contain r and p⊥, and H2 is quadratic
in both variables. We point out that it is precisely the quadratic dependence of H̄approx on
r that allows the use of transversely homogeneous beams as required by expressions (2.5)
and (2.6). Spatially quadratic potentials generate spatially linear forces that, in turn, sustain
uniformity in the geometry analysed here (Davidson & Qin 2001).

In addition, the energetic contribution of H2 to the full Hamiltonian is closely related
to the potential term proportional to Q0, as seen in (B5) of Appendix B. In this context,
to maintain consistency with our initial assumptions of a thin beam geometry resulting
from velocities along the axis being greater than velocities transverse to the axis, we shall
therefore consider limited values for Q0, which is the condition discussed earlier in the
context of (2.4). This condition is further discussed following expression (B5).

We next suppress the overbar on average quantities in order to ease off the notation, and
solve the dynamics that arises from Hamiltonian (2.12) under a stationary regime, as stated
earlier, in two steps. We first focus on the zeroth-order contribution to Happrox, H0(x, px),
with ϕ to be calculated from expression (2.6) at r = 0. From this zeroth order we readily
obtain the canonical pair of equations

dpx/dx = (1/vx) dpx/dt = −(1/vx)∂H0/∂x, (2.13)

vx = dx/dt = ∂H0/∂px, (2.14)

eventually leading to a radially independent expression for vx = vx(x), which we will thus
take as our approximation for the beam velocity.

We see, however, that, in order to accomplish the calculation of vx, we need expressions
for dvx/dx and drb/dx as well, since both arise from the space derivative ∂ϕ/∂x present in
∂H0/∂x of (2.13).

A derivation of dvx/dx from vx in (2.14) is straightforward, despite its lengthiness. To
calculate drb/dx, which appears in (2.13) as well as in dvx/dx, we need, however, to make
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use of the second term of Happrox, H2, quadratic in the canonical variables r and pr. The
strategy is to obtain the canonical equations for dr/dx and dpr/dx and evaluate both at
r = rb and p = pb, with ‘b’ designating the beam boundary.

All in all, we need to numerically solve a system of four coupled dynamical differential
equations: one for px(x), one for vx(x), one for rb(x) and, finally, one for pb(x). We refer
to this procedure as the ponderomotive approach to the problem. We point out that the
ponderomotive approach results in the simultaneous calculation of both the longitudinal
speed of the beam and the beam envelope (one cannot calculate one without calculating the
other). Under the ponderomotive approximation, all particles have the same longitudinal
velocity and are surrounded by the common smooth envelope of radius rb.

As soon as the slowly varying potentials ϕ and Ax are obtained in terms of vx and rb as in
(2.6), we shall proceed to the next step where we relax the ponderomotive approximations
involving the effects of laser and wiggler fields on the beam particles. At this point, we
can compare the exact dynamics with the averaged ponderomotive approximation, as well
as investigate the strong resonant acceleration as particles fall into the troughs formed by
the beating of wiggler and laser. In all instances, the role of space charges can be duly
identified and analysed.

It should be understood that, when the exact dynamics of single particles deviates from
the corresponding ponderomotive approximation, the very idea of a smooth beam is to be
taken with caution. We will examine this issue and argue that the smooth beam model is
still useful even when acceleration regime due to particle trapping and kicking starts to
set in.

3. Numerical analysis

The clearest role of space-charge effects is arguably in the beam’s cross-sectional
spread along the longitudinal axis. In the absence of any collective effects, the beam
reverts to a collection of non-interacting test particles that can even be longitudinally
accelerated while still preserving the initial transverse dynamics. As one ‘turns on’ the
charge parameter Q0, collective effects and beam spread should be seen.

To discuss the effects of space charge addressed in previous sections, we fix a set
of parameters with both the laser field and wiggler amplitudes given by Al,0 = Aw,0 =
1.2, (indicative of a moderately relativistic regime of interaction), σ = 100, vφ = √

0.9,
vy(0) = vz(0) = 0, x(0) = −10σ and rw = 150. We consider the parameters r(0), vx(0),
and Q(0) ≡ Q0 as free variables to explore the main effects arising from space charge.

In figure 1, we examine a geometrical cut across the beam longitudinal midplane to
examine the evolution of the upper and lowermost points of the beam envelope along
the longitudinal axis x. Discrete choices for the initial beam radii and charges are made,
and we keep the initial velocity constant at vx(0) = 0.86. The dashed blue line represents
Q0 = 0.001 in both panels, and the solid red line likewise represents Q0 = 0.06. Note that,
for a better insight into the beam’s dynamics and geometry, we represent the beam radius
growth symmetrically as the beam uniformly expands.

When the initial radius equals rb(0) = 30, as shown in panel (a), we can see that if
the charge is small, the opening of the beam radius is also small, as expected. However,
when the initial charge is relatively large, we observe a significant variation in the beam
radius, which at the end of the interaction, with x ≈ 1000, has a final radius measuring
approximately rb(xf ) = 90; 3 times its initial size.

As one increases the initial beam radius, the charge becomes distributed over a larger
cross-sectional area, which results in less significant space-charge effects than in the
previous case. Indeed, when Q0 = 0.001, there is virtually no variation in the particles’
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(b)(a)

FIGURE 1. Envelope evolution in the x direction as a function of initial charge flow Q0 = 0.001
(dashed blue line) and Q0 = 0.06 (solid red line), initial velocity vx(0) = 0.86 and with radii
r(0) = 30 (a) and r(0) = 60 (b).

radii, and when Q0 = 0.06 the beam still expands up to an observable larger radius
rb(xf ) = 90, but with this latter value now representing only a small incremental fraction
of its initial size.

Looking at the longitudinal and transverse scales, we point out that the beam envelope
smoothly evolves in a much slower rate than it advances along the longitudinal axis, which
corroborates the thin beam approach promulgated earlier. We note that not even the length
scale associated with the wiggler field’s envelope affects the ponderomotive dynamics as
particles run through the region x ∼ 0 with relativistic speeds.

To better understand the effects of both electromagnetic and space-charge fields, a
number of individual particles obeying the full dynamics dictated by the newly considered
collective effects plus the full wiggler and laser fields can also be included in the
simulations. As commented earlier, we deem the ponderomotive approximation to be
correct as long as the test particle orbits agree with their averaged counterpart.

A collection of 60 test particles is randomly but uniformly distributed over the initial
respective cross-sectional area on the plane ( y, z), and their dynamics is henceforth
described by the full Hamiltonian (2.9). To mimic the symmetry seen in figure 1, particles
launched in the lower (upper) quadrants of the plane ( y, z) are represented below (above)
the rb = 0 axis. Figure 2 reveals how the various radial orbits of the particles evolve along
the axis. The various grey curves represent regularly expanding orbits, solid red curves
represent beam boundaries and the purple curve represents the central orbit. The sinuous
orbits (seen in panel figure 2(e) and discussed below) are represented in blue. We set
rb(0) = 60 and vx(0) = 0.86, with Q0 = 0.001 in panels (a,b), Q0 = 0.06 in panels (c,d)
and Q0 = 0.12 in panels (e, f ).

In panel (a), we can observe that the test particles flow homogeneously within the region
bounded by an approximately constant envelope. The slight inter-crossings of particle
trajectories seen are due to the high-frequency jitter driven by the laser and wiggler fields
and does not affect our model for the smooth collective space-charge fields.

Complementarily, in panel (b) we refer to the time history of all test particles’ respective
velocities, including the central particle – we call them vtest

x – which again reveals the
uphill acceleration. Translating the highly oscillating exact velocity vtest

x into its time
average form, one can see either from our previous work (Almansa et al. 2019), or from
the green curve representing the average velocity, that the latter closely follows the
upper envelope of the exact vtest

x , with a slightly more pronounced dip at x = 0. The dip
is, however, much less profound than the one associated with the exact velocities vtest

x ,
which keeps vx well above the breakup level vx = 0, an essential ingredient for thin beam
modelling. Particles are accelerated as they enter the region of the first peak in panel (b),
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 2. Case of Q0 = 0.001 in (a,b), Q0 = 0.06 in (c,d) and Q0 = 0.12 in (e, f ); here,
vx0 = 0.86 and vx on the vertical axes represents both the test particles’ velocities and the
ponderomotive velocities, obtained from averaging over fast oscillations (green curve) and from
(2.12) (black dashed curve). The envelope of the beam is depicted in red. Regular grey curves
in the spatial panels r(x) × x depict the uniformly expanding, non-catapulting beam particles.
In contrast, the sinuous blue curves appearing in panel (e) represent the catapulted, highly
accelerated particles observed on the right upper side of panel ( f ).

decelerated as they approach the coordinate x = 0, accelerated again near the second peak
and decelerated once more to be finally ejected with the very same initial velocity.

At these lowest levels of space charge, and for the considered injection velocity, the
overall conclusion is that the beam behaves as in the previously studied case (Almansa
et al. 2019) where the particle motion is mostly aligned with the longitudinal axis and the
final catapulting acceleration is totally absent.

In panel (c) we can now observe the particle flow evolution when the initial charge
is significantly larger, with Q0 = 0.06. Notwithstanding the more substantial charge value
leading to a final envelope twice as large as the previous one, the flow is still homogeneous,
and our initial assumptions are once again corroborated. In addition, we note from panel
(d) that all particles are approximately co-moving with the very same velocity, which
again advocates in favour of a unique value for the beam velocity, even for the larger Q0.
We also note the presence of the uphill acceleration but the absence of the catapulting
dynamics. Thus, at this level of the charge factor Q0, the transverse dynamics already
exhibits the action of collective effects, but the forward dynamics remains unaffected. Also
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in panel (d) we add an inset for this case of a larger Q0. The green curve is derived from
averaging the rapid oscillations of a test particle’s velocity at r = 0 while the dashed black
line directly results from integrating the equations derived from the Hamiltonian given
by (2.12). The agreement of the ponderomotive approximation and the time averaging is
still solid. In addition, the corresponding panel (c) reveals that, under the same regime,
the radius rb obtained from the ponderomotive approach agrees very well with the exact
radial dynamics of test particles launched at the beam border, which can also be seen as
an important feature validating the theory.

Then, as we move to panels (e, f ), the even larger space-charge effects for Q0 = 0.12 not
only further expand the beam envelope but introduce the catapulting dynamics as well. We
just recall that, in the absence of space-charge effects (Almansa et al. 2019), the catapult
acceleration was solely driven by the velocity of the injected particles, which panel (a)
shows to be insufficient in this case. We thus see that the charge flow parameter Q0 is also
a determining factor for acceleration.

We then argue that those particles near the beam border are the first ones to undergo the
acceleration process. The background beam core remains largely unaffected, orbits remain
dominantly homogeneous without inter-crossing and the beam velocity is dominantly the
same for the whole beam. This is a peculiar regime where one can examine the orbits
of individual accelerating particles, still using with confidence our collective model to
represent the self-consistent space-charge effects.

In fact, with the collective model we can examine the dynamics as a function of the
beam radial coordinate, looking at the r-dependent terms of H2 in expression (2.12), let us
call it H2r

H2r = Q0r2(x)
r2

b(x)
(1 − v2

x (x))
vx(x)

. (3.1)

From the expression above, we can see that H2r becomes more significant near the beam’s
largest radii. From a perturbative expansion point of view, let us then examine the role
of H2r for particles precisely at the border r(x) = rb(x). We consider a beam of particles
moving forward with a velocity vx > 0, which must be less than unity as it is normalized
to the speed of light. If the uphill acceleration is present, even if small, as vx tries to
reach higher speeds at any of the two peaks seen in the velocity plots of figure 2(b) for
instance (Almansa et al. 2019), the ‘potential energy’ H2r starts to act as its own magnitude
decreases, delivering a forward extra kick proportional to Q0 that helps to pull particles
into resonance with the beat mode formed by laser and wiggler. This is seen in figure 2( f )
as the clearly distinct group of highly accelerated particles with speeds close to c, whose
no longer homogeneous spatial orbits correspond to the highly sinuous curves near the
boundary at rb(x), visible as the blue curves in panel (e).

On the other hand, if the uphill acceleration is not significant, typically for lower
injection velocities, the downhill valley seen in figure 2 decreases vx, augments, therefore,
H2 and may even reflect particles backward. This is precisely what is seen in figure 3. The
beam’s central body continues to move forward after x = 0, but some of the particles
are already seen moving backward. It is important to emphasize that in the absence
of space-charge effects with Q0 → 0, the whole beam would keep moving forward.
This last case of figure 3 should be seen with reserve since, although Q0 is small,
the longitudinal speeds are originally smaller too. These conditions break the beam’s
longitudinal smoothness at x = 0 and put us on the verge of the validity of our thin beam
approximations, but nevertheless provide a first approach to the case where reflection is
present. We also point out that rw in figure 3(a) was expanded to rw = 5000 in order to
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(b)(a)

FIGURE 3. Case of Q0 = 0.12 and vx0 = 0.68. (a) Evolution of test particle trajectories with
the red curves representing the evolution of the beam envelope, and (b) evolution of test particle
velocities. In both panels, test particles are depicted in grey, with the purple curve denoting the
central particle at r(x) ≈ 0. Black arrows in (b) indicate the direction the particles are moving in.

(b)(a)

FIGURE 4. Time evolution of velocity for particles at the border of the beam distribution
assuming different initial charge flows. Panel (a) shows the full velocity, and panel (b) depicts the
averaging over the rapid oscillations observed in the test particle’s velocity. In both panels, the
dotted green line represents the carrier phase velocity. The figures demonstrate that, for higher
charge flow, the final velocity of the test particle changes from unperturbed at Q0 = 0.001 (black
curve) to perturbed at Q0 = 0.06 (red curve) and finally to accelerated at Q0 = 0.12 (blue curve).

accommodate the beam; the expansion of the conducting wall radius has very little effect
on the dynamics since the potentials depend only logarithmically on rw.

In summary, the H2 term contributes a forward extra kick if the uphill acceleration is
present and a backward extra kick if the uphill acceleration is negligible.

We examine the charge flow effect on particles at the border of the beam distribution
looking at their velocity evolution, as depicted in figure 4. Panel (a) shows the full temporal
evolution and panel (b) the corresponding time average. The time average equals the
ponderomotive description if one is far enough from the resonance. The figure shows
that, when the beam charge flow is low or near zero, i.e. Q0 = 0.001, the final velocity of
the particle remains unchanged from its initial state, as indicated by the solid black curve.
However, for a charge flow of Q0 = 0.06 (red curve), particles at the border experience
a significant increment in velocity as they traverse the region where the wiggler field is
intense, as predicted by (3.1). However, the increment is not large enough to bring the
particle into resonance with the carrier beat wave and the particle eventually returns to its
initial state. For a charge flow of Q0 = 0.12 (blue curve), the space charge is finally strong
enough to accelerate some particle into resonance, from which point they are strongly
kicked and further accelerated by the beat wave.

In figure 5, we examine a particle beam with an initial radius r0 = 60 and different
initial velocities, vx0 = 0.82, 0.84 and 0.86, depicted by the green squares, blue triangles
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FIGURE 5. Saturation of energy gain as a function of initial beam velocity. Green squares, blue
triangles and red dots represent particles with initial velocities vx0 = 0.82, vx0 = 0.84 and vx0 =
0.86, respectively. Solid curves are fitting curves to guide the eye.

and red points, respectively. In the figure, the energy gain, denoted as γ̃ (tf ) − γ0, is plotted
against the initial charge Q0, where the mean energy, γ̃ , at the final time t = tf is defined
as γ̃ (tf ) = (1/n)

∑n
i=1 γi(tf ). The figure shows that the energy gain tends to saturate as one

increases the initial charge. Saturation occurs at different points for each initial velocity:
for vx0 = 0.86, saturation occurs approximately at Q0 = 0.4, for vx0 = 0.84 at Q0 = 0.6
and for vx0 = 0.84, saturation is only observed for larger charges above Q0 = 1.2.

The saturation behaviour is attributed to a shifting position of the resonant particle group
as the initial charge escalates. At zero charge, no resonance is present under the present
circumstances. However, as Q0 grows, at a certain point particles on the beam border rb
are first kicked with the exact amount of energy into resonance, which results from the fact
that the kick’s amplitude, proportional to r2, is the most intense at the border. This is the
case previously discussed along with figure 2( f ).

From this point on, as Q0 keeps growing the resonance locus plunges deeper towards
the central region of the beam in order to preserve the extra-kick amplitude given by the
product Q0r2. In this cyclic behaviour, as a new group of particles goes into resonance, the
previous adjacent group falls off resonance. This interchange between limited resonant
particle groups explains the complex dynamics manifested in the figure. In particular, it
explains why the energy gain remains the same once installed; the carriers of the energy
gain change in position but not in number.

The solid curves represent fitting curves to guide the eye. Fluctuations in the values are
related to the particle’s initial position, which, in turn, is determined randomly.

4. Conclusions

In the present paper, we studied the role of self-consistent space-charge effects on the
acceleration of particle beams under the external action of laser and wiggler fields in an
IFEL configuration (Almansa et al. 2019).

The work extends previous results on the acceleration of single isolated particles and
examines the role of the beam density in the process.

If one initially suppresses charge densities, efficient acceleration can be reached for
convenient choices of the particle’s initial velocity, the wiggler and laser intensities and
the phase velocity of the beat mode formed by laser and wiggler.

As the charge density of the beam increases, one would perhaps expect a detrimental
effect on acceleration. What we saw, however, is that charge effects are less obvious.

In the more conventional case, where uphill acceleration effects are absent or sufficiently
small, it is true that endowing the system with a non-zero charge density does indeed break
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the beam flow sooner than in the single-particle case. However, when uphill effects are
present and sufficiently strong, space-charge effects actually help the forward catapulting
acceleration.

We modelled the laser field as a non-expanding beam, which is an appropriate model
when the radiation beam’s cross-section area is large enough. It is, however, a matter of
rising interest to use applications involving tightly focused radiation beams where the wave
front is small and involves non-planar geometries (Singh et al. 2022), a topic that presents
itself as a relevant extension of the present analysis.

Our analysis focuses on tenuous and sufficiently short electron beams in which the radial
dynamics is moderate enough to dispense with the need for external focusing mechanisms.
Higher-density beams for which factor Q0 is larger, or even much longer beams, may
require the mentioned external control (Davidson & Qin 2001), which opens yet another
front where the appropriate techniques shall be added to the present line of analysis.

Acknowledgements

Editor L.O. Silva thanks the referees for their advice in evaluating this article.

Funding

We acknowledge support from CNPq, Brasil.

Declaration of interests

The authors report no conflict of interest.

Appendix A

The normalized full Hamiltonian that self-consistently describes the dynamics of an
interacting particle beam with an electromagnetic field generated by a laser and wiggler
can be expressed as

H =
√

1 + ( px − Ax)2 + ( py − Ay)2 + ( pz − Az)2 + ϕ. (A1)

The Hamiltonian H and the momentum components px,y,z are each decomposed into
two parts: the average components, symbolized by H̄ and p̄x,y,z, and the high-frequency
components, symbolized by δH and δpx,y,z. Thus, we can express H and px,y,z as H =
H̄ + δH and px,y,z = p̄x,y,z + δpx,y,z, respectively.

To derive the average Hamiltonian component H̄ = H − δH, with H specified in (A1),
we square this equation. We recognize the slow variations of py, pz, Ax and ϕ, and take
note that cross-terms pyAy and pzAz average to zero. Furthermore, we observe that the δpy,z
terms are null, resulting from the Hamiltonian’s independence from y and z. With these
considerations, we obtain (2.11), wherein δH and δpx are defined as follows:

δH =
∫ (

∂H
∂t

)
fast

dt, (A2)

δpx = −
∫ (

∂H
∂x

)
fast

dt, (A3)

where subscript fast indicates that we are keeping only the fast quantities. Noting that we
can write Ay = Aw cos θw + Al cos θl and Az = Aw sin θw − Al sin θl, where θw = kwx and
time appears explicitly in θ = x − vφt and θl = vφ(x − t). Consequently, we have dθ =
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(vx − vφ) dt and dθl = vφ(vx − 1) dt. While other variables might implicitly change with
time, these changes are negligible on the slow time scale of our study.

Given these considerations, the variation of high-frequency Hamiltonian δH is given by

δH = Al0
(
pz sin θl + py cos θl

)
Γ (vx − 1)

− vφAl0Aw cos θ

Γ (vx − vφ)
, (A4)

and the variation of high-frequency momentum δpx is defined as

δpx = − Al0Aw cos θ

Γ (vx − vφ)
− Aw( py cos θw − pz sin θw)

Γ vx

+Al0( py cos θl + pz sin θl)

Γ (vx − 1)
, (A5)

where Γ ≡ √
1 + (p̄x − Ax)2 + p2

⊥ + A2
l0 + A2

w and Aw = Aw0e−x2/σ 2 . Subsequently, by
squaring both δH and δpx, taking the average values and performing subtraction, we get

(δpx)2 − (δH)2 = δ1 + δ2, (A6)

where we define, for further purposes,

δ1 = A2
l0A2

w(1 − v2
φ)

2( px − Ax − vφΓ )2
, (A7)

and

δ2 = A2
wp2

⊥
2( px − Ax)2

. (A8)

Appendix B

We can approximately write H̄ (given by (2.11)) as the sum of two terms, H0 and H2,
where H0 mainly accounts for the longitudinal dynamics (we neglect the small transverse
terms here) while H2 relies on the transverse coordinates r and p⊥ to take charge of the
corresponding dynamics.

To separate these terms, we introduce a ‘label’ to identify terms in H̄ that depend on r
and p⊥. Then, we multiply these terms by a factor ε without any physics significance.

Following this, a series expansion around ε = 0 allows us to isolate these terms
depending on the perpendicular direction from the rest. Finally, setting ε back to 1, we
recover our initial Hamiltonian, now separated into the desired components.

Consequently, expanding H̄ around ε = 0 results in

H̄ ≈ Happrox = H̄
∣∣
ε=0 + ε

∂H̄
∂ε

∣∣∣∣
ε=0

= H0 + εH2, (B1)

which, assuming (2.6) to be expressed as ϕ = ϕ0 + εϕ2, ϕ0 = (Q0v
2
φ/4πvx)(1 +

2 ln(rw/rb)) and ϕ2 = −Q0v
2
φr2/4πvxr2

b, can be expanded up to first order in ε as

H̄ ≈
√

h0 + ϕ0 + ε

(
h1

2
√

h0
− Q0v

2
φ

4πvx

r2

r2
b

)
, (B2)
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with
h0 = 1 + ( px − Ax0)

2 + A2
l0 + A2

w + δ1, (B3)

and

h1 = p2
⊥ + Q0v

2
φ

2π
( px − Ax0)

r2

r2
b

+ δ2, (B4)

where the corresponding longitudinal vector potential is given by Ax0 = vxϕ0. Observing
that we only need the equation for px, which arises from H0 on the x−axis, then we restrict
the calculation of δ1 to the lowest order in r and yet obtain excellent agreement with the
simulations, whereas δ2 is naturally higher order due to its dependence on p⊥.

Now, introducing Γ0 = √
h0, then H0 = Γ0 + ϕ0. Comparing (B1) and (B2) and noting

that vxΓ0 = px − Ax0 to the lowest order, we identify the term

H2 =
(

1 + Ā2
w

2v2
xΓ

2
0

)
p2

⊥
2Γ0

− Q0(1 − v2
x )

vx

r2

r2
b
. (B5)

Equation (B5) is the sum of the transverse kinetic H2pr and the transverse potential energy
H2r expressed in (3.1). As the beam moves along its longitudinal path, the initial transverse
energy converts into its kinetic form, so a good measure of the transverse energy is given
by the term containing Q0. In addition, since the thin beam aspect ratio needs the transverse
energy to be smaller than the longitudinal one Γ = √

1/(1 − v2
x ), we thus restrict Q0 to

the range Q0 < Γ 3vx.
The charge Q0 can be large if vx is very close to 1, but for moderate injection velocities

vx � 1 one must observe the more restrictive but overall safer condition Q0 < 1.
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