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A characterization of the Fermat quartic K3 surface

by means of finite symmetries

Keiji Oguiso

Abstract

We characterize the Fermat quartic K3 surface, among all K3 surfaces, by means of its
finite group symmetries.

1. Introduction

The aim of this paper is to characterize the Fermat quartic surface, among all complex K3 surfaces,
in terms of finite group symmetries. Our main result is Theorem 1.2.

Throughout this paper, we shall work over the complex number field C. By a K3 surface, we mean
a simply connected smooth complex surface X which admits a nowhere vanishing global holomorphic
2-form ωX . As is well known, K3 surfaces form a 20-dimensional family and projective ones form
countably many 19-dimensional families [PS71]. Among them, one of the simplest examples is the
Fermat quartic surface:

ι : X4 := (x4
1 + x4

2 + x4
3 + x4

4 = 0) ⊂ P3.

From the explicit form, we see that X4 admits a fairly large projective transformation group,
namely,

F̃384 := (µ4
4 : S4)/µ4 = (µ4

4/µ4) : S4.

Here the symbol A : B means a semi-direct product(A being normal) and µI := 〈ζI〉 (where
ζI := e2πi/I) is the multiplicative subgroup of order I of C×. This group F̃384 is a solvable group of
order 43 ·4! = 29 ·3. The action of F̃384 is an obvious one, that is, µ4

4 or µ4
4/µ4 acts on X4 diagonally

and S4, the symmetric group of degree 4, acts as the permutation of the coordinates.
Let F̃128 be a Sylow 2-subgroup of F̃384. Then F̃128 is a nilpotent group of order 29. We have an

action of F̃128 on X4 which is a restriction of the action of F̃384. We call the action

ι384 : F̃384 × X4 −→ X4, respectively ι128 : F̃128 × X4 −→ X4,

defined here, the standard action of F̃384 (respectively of F̃128) on X4. Note that F̃384 has exactly
three Sylow 2-subgroups, corresponding to the three Sylow 2-subgroups (� D8) of S4. However,
they are conjugate to one another by the Sylow theorem, and their standard actions on X4 are
isomorphic to one another in the sense below. The group F̃128 is also interesting from the point of
view of Mukai’s classification of symplectic K3 groups [Muk88]. In fact, it is an extension of a Sylow
2-subgroup F128 of the Mathieu group M23 by µ4 (see also § 2).

Definition 1.1. We call a finite group G a K3 group (on X) if there is a faithful action of G on X,
say, ρ : G×X −→ X. Let Gi be a K3 group on Xi acting by ρi : Gi ×Xi −→ Xi (i = 1, 2). We say
that (Gi,Xi, ρi) are isomorphic if there are a group isomorphism f : G1 � G2 and an isomorphism
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Fermat quartic surface

ϕ : X1 � X2 such that the following diagram commutes.

G2 × X2
ρ2 �� X2

G1 × X1

f×ϕ

��

ρ1 �� X1

ϕ

��

The aim of this paper is to show the following main theorem.

Theorem 1.2.

(i) Let G be a solvable K3 group on X acting by ρ : G × X −→ X. Then |G| � 29 · 3. Moreover,
if |G| = 29 · 3 (= 1536), then Pic(X)G = ZH, (H2) = 4 and (G,X, ρ) � (F̃384,X4, ι384), the
standard action of F̃384 on the Fermat quartic surface X4.

(ii) Let G be a nilpotent K3 group on X acting by ρ : G × X −→ X. Then |G| � 29. Moreover, if
|G| = 29, then Pic(X)G = ZH, (H2) = 4 and (G,X, ρ) � (F̃128,X4, ι128), the standard action
of F̃128 on X4.

The most basic class of finite groups is the class of cyclic groups of prime order. This class is
extended to the following sequences of important classes of groups of rather different nature:

(abelian groups) ⊂ (nilpotent groups) ⊂ (solvable groups);
(quasi-simple non-commutative groups) ⊂ (quasi-perfect groups).

Here a quasi-simple non-commutative group (respectively a quasi-perfect group) is a group which
is an extension of a simple non-commutative group (respectively a perfect group) by a cyclic group
(from the right).

From the point of view of these sequences, our theorem is regarded as both an analogy and a
counterpart of previous work of Kondo [Kon99] for the quasi-perfect K3 group M20 : µ4, which is also
the group of maximum order among K3 groups, and work of Zhang and the author [OZ02] for the
quasi-simple non-commutative group L2(7)×µ4. (See also [KOZ05].) In terms of the coarse moduli
space M4 of quasi-polarized K3 surfaces of degree 4, our theorem says that the large stabilizer
subgroups F̃384 and F̃128 identify the point corresponding to the Fermat K3 surface (naturally
polarized by ι) in M4. However, our theorem claims much more, because we do not assume a priori
a degree of invariant polarization. Indeed, as in [OZ02], the determination of the degree of invariant
polarization is one of the key steps in our proof (Proposition 3.3 and § 6). For this step, as in [Kon99]
and [OZ02], we apply Kondo’s embedding theorem [Kon98, Lemmas 5 and 6] (see also Theorem 6.3
and Corollary 6.4), which is based on fundamental work about even lattices due to Nikulin [Nik80b],
especially [Nik80b, Theorem 1.12.2]. (See also [Nik80b, Remark 1.14.7 and Proposition 1.14.8] for
relevant observations.) On the other hand, our theorem can also be viewed as a characterization
of a 2-group F̃128 by means of geometry. It might be worth noticing the following table in [Har99,
p. 11] of the number p(n) of isomorphism classes of 2-groups of order 2n:

n 1 2 3 4 5 6 7 8 9

p(n) 1 2 5 14 51 267 2328 56092 10494213

Section 2 is a summary of known results, relevant to us, about K3 groups from Nikulin [Nik80a]
and Mukai [Muk88]. In § 3, we reduce our main theorem to three propositions (Propositions 3.1,
3.2, and 3.3). In §§ 4, 5 and 6, we prove these three propositions.
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2. Some basic properties of K3 groups after Nikulin and Mukai

A systematic study of K3 groups started by Nikulin [Nik80a, Nik80b] and further developed by
Mukai [Muk88], Xiao [Xia96], Kondo [Kon98] and others. In this section, we recall basic results,
relevant to us, about K3 groups from Nikulin [Nik80a] and Mukai [Muk88].

Let X be a K3 surface and G be a K3 group acting on X by ρ : G × X −→ X. Then G has a
natural one-dimensional representation on H0(X,Ω2

X) = CωX defined by g∗ωX = α(g)ωX , and we
have the exact sequence, called the basic sequence:

1 −→ GN := Ker α −→ G
α−→ µI −→ 1.

The basic sequence was first introduced by [Nik80a]. We call GN the symplectic part and µI

(respectively I) the transcendental part (respectively the transcendental value) of the action
ρ : G × X −→ X.

By the basic sequence, the study of K3 groups is divided into three parts: study of symplectic
K3 groups GN , study of transcendental values I, and study of possible extensions of
symplectic parts by transcendental parts.

Example 2.1. The group F̃384 = (µ4
4 : S4)/µ4 fits into the following exact sequence:

1 −→ µ4
4/µ4 −→ F̃384

p−→ S4 −→ 1.

Then the group 〈(1324), (34)〉 � D8 is a Sylow 2-subgroup (one of three) of S4 and p−1(〈(1324), (34)〉)
is a 2-Sylow subgroup (one of three) of F̃384. We fix F̃128 as this subgroup. The basic sequences of
the standard actions of F̃384 and of F̃128 on the Fermat K3 surface X4 are as follows:

1 −→ F384 := (F̃384)N −→ F̃384
α−→ µ4 −→ 1,

1 −→ F128 := (F̃128)N −→ F̃128
α−→ µ4 −→ 1.

The orders of the symplectic parts F384 and F128 are 384 = 27 ·3 and 128 = 27 respectively. Moreover,
both basic sequences split: F̃384 = F384 : µ4 and F̃128 = F128 : µ4. Here the splittings are given by
α(diag(1, 1, 1, ζ4)) = ζ4.

The next theorem due to Nikulin [Nik80a] is the first important result about the symplectic
part.

Theorem 2.2 [Nik80a]. Let g ∈ GN . Then ord g � 8. The fixed locus Xg is a finite set (if g �= 1)
and the cardinality |Xg| depends only on ord g as in the following table:

ord(g) 1 2 3 4 5 6 7 8

|Xg| X 8 6 4 4 2 3 2

Let Ω := {1, 2, . . . , 24} be the set of 24 elements and P(Ω) be the power set of Ω, i.e. the
set of all subsets of Ω. As is classically known (see for instance [CS99, ch. 10]), P(Ω) has a very
remarkable subset St(5, 8, 24), called the Steiner system. St(5, 8, 24) is defined to be a subset of
P(Ω) consisting of eight-element subsets such that, for each five-element subset B of Ω, there is
exactly one A ∈ St(5, 8, 24) such that B ⊂ A. Such subsets St(5, 8, 24) of P(Ω) are known to be
unique up to AutΩ = S24 and satisfy |St(5, 8, 24)| = 759. We fix one such St(5, 8, 24). The Mathieu
group M24 of degree 24 is then defined to be the stabilizer group of St(5, 8, 24):

M24 := {τ ∈ Aut(Ω) = S24 | τ(St(5, 8, 24)) = St(5, 8, 24)}.
It is well known that M24 is a simple (sporadic) group of order 210 · 33 · 5 · 7 · 11 · 23 that acts
5-transitively on Ω (e.g. [CS99]). The Mathieu group M23 of degree 23 is the stabilizer group of
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one point, say 24 ∈ Ω, i.e. M23 := {τ ∈ M24 | τ(24) = 24}. Also M23 is a simple group and is of
order |M23| = |M24|/24 = 27 · 32 · 5 · 7 · 11 · 23. By definition, both M24 and M23 act naturally on Ω.

Being inspired by a curious coincidence between Nikulin’s table in Theorem 2.2 and the character
table of the natural action of M23 on Ω, Mukai [Muk88] finally obtained the following very beautiful
theorem.

Theorem 2.3 [Muk88, main theorem]. Let K be a finite group. Then K is a symplectic K3 group
on some K3 surface X if and only if K is isomorphic to a subgroup of M23 having at least 5-orbits
on Ω (under the action induced by the action of M23 on Ω). Moreover, with respect to the inclusion
as abstract groups, there are exactly 11 maximal such groups. The groups M20 and F384 are those
of the two largest orders, which are |M20| = 960 and |F384| = 384.

Later, Xiao [Xia96] and Kondo [Kon98] gave alternative proofs respectively. In the course of the
proof, Xiao shows that there are exactly 80 isomorphism classes of symplectic K3 groups (as abstract
groups). In our proof of the main result (Theorem 1.2), we shall also exploit an idea of Kondo’s
alternative proof (§ 6).

We emphasize the following consequence.

Corollary 2.4. The group F128 is isomorphic to a Sylow 2-subgroup of M23.

Proof. By Example 2.1 and Theorem 2.3, we have F128 < M23. Moreover, since |F128| = 27 and
|M23| = 27 · k ((2, k) = 1), the result follows from the Sylow theorem.

Next we recall the basic properties of the transcendental part µI of a K3 group on X from
[Nik80a] and [MO98]. By ϕ(I), we denote the Euler function of I, i.e. ϕ(I) = |Gal(Q(ζI)/Q)|. Note
that ϕ(I) is even unless I = 1, 2. As observed in [Nik80a], X is projective if I � 2.

In the rest of § 2, we assume that X is projective.
Let NS(X) be the Néron–Severi lattice of X and T (X) the transcendental lattice, i.e. the

orthogonal complement of NS(X) in H2(X, Z) with respect to the cup product:

T (X) := {x ∈ H2(X, Z) | (x,NS(X)) = 0}.
Then, NS(X)⊕ T (X) is a sublattice of finite index of H2(X, Z) (by the projectivity of X). T (X) is
also the minimal primitive sublattice of H2(X, Z) such that the scalar extension by C contains the
class of ωX (by the Lefschetz (1, 1)-theorem). Since b2(X) = 22, we have 2 � rankT (X) � 21.

Theorem 2.5 ([Nik80a], see also [MO98] for parts (ii) and (iv)).

(i) GN acts on T (X) as identity.

(ii) Set G/GN = 〈g modGN 〉 � µI . Then, there is a natural isomorphism

T (X) � Z[ζI ]⊕n, n =
rankT (X)

ϕ(I)

as Z[ζI ]-modules. Here, Z[ζI ]-module structure on T (X) is given by f(ζI)x := f(g∗)x.

(iii) ϕ(I)|rank T (X). In particular, ϕ(I) � 20 and I � 66. Moreover, I = 1, 2, 3, 4, 6 if ϕ(I) � 2 and
I = 5, 8, 10, 12 if ϕ(I) = 4.

(iv) I �= 60. Conversely, each I such that ϕ(I) � 20 and I �= 60 is realized as a transcendental
value of some K3 group. There are exactly 40 such I. (For the explicit list, see [MO98].)

As we reviewed above, both symplectic part and transcendental part are now well understood.
However, the K3 groups, i.e. all the geometrically possible extensions of 80 symplectic parts by 40
transcendental parts, are not yet classified completely. Work on this problem is now in progress in
[IOZ04].

We close § 2 by recalling the following group-theoretical nature of F128 from [Xia96].
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Proposition 2.6.

(i) The order structure of F128 is as follows:

order 1 2 4 8

cardinality 1 35 76 16

(ii) The commutator subgroup [F128, F128] of F128 is isomorphic to C2 × D8, where Cn is a cyclic
group of order n and D2n is a dihedral group of order 2n.

(iii) F128 has a subgroup isomorphic to the binary dihedral group of order 16:

Q16 := 〈a, b | a8 = 1, a4 = b2, b−1ab = a−1〉.

3. Reduction of the Main Theorem to three propositions

In this section, we reduce the main theorem (Theorem 1.2) to the following three propositions 3.1, 3.2
and 3.3.

Proposition 3.1. Let X be a projective K3 surface. Assume that Q16 is a symplectic K3 group
on X. Then the following hold:

(i) NS(X)Q16 = ZH, where H is an ample class on X;

(ii) if, in addition, (H2) = 4, then the polarized K3 surface (X,H) is unique up to isomorphism. In
particular, (X,H) � (X4,H4), where X4 is the Fermat quartic K3 surface and H4 := ι∗OP3(1)
under the natural inclusion ι : X4 ⊂ P3.

Proposition 3.2.

(i) Let G be a K3 group on X such that GN � F384. Then the transcendental value I of G is
either 1, 2, or 4.

(ii) Let G be a solvable K3 group on X. Then |G| � 29 · 3. Moreover, if |G| = 29 · 3, then the
symplectic part GN is necessarily isomorphic to F384 and the transcendental part is isomorphic
to µ4.

(iii) Let G be a K3 group on X such that GN � F128. Then the transcendental value I of G is
either 1, 2, or 4. In particular, G is a 2-group and nilpotent.

(iv) Let G be a nilpotent K3 group on X. Then |G| � 29. Moreover, if |G| = 29, then the symplectic
part GN is necessarily isomorphic to F128 and the transcendental part is isomorphic to µ4.

Proposition 3.3. Let X be a K3 surface. Assume that X admits a K3 group G of order 29. Then
X is projective and NS(X)G = ZH, where H is an ample class such that (H2) = 4.

We shall prove these three propositions in §§ 4, 5 and 6 respectively. In the rest of this section,
we show that these propositions imply the main result (Theorem 1.2).

Proof that Propositions 3.1, 3.2 and 3.3 imply Theorem 1.2
Let Y be a K3 surface admitting a K3 group F such that |F | = 29 · 3. Let G be a Sylow 2-subgroup
of F . Then |G| = 29 and G is a nilpotent group. (Here we recall that any p-group is nilpotent.) Then,
by Proposition 3.2(iv), GN � F128 and I = 4. In particular, Y is projective by I � 2. Recall that
Q16 is a subgroup of F128 by Proposition 2.6(iii). Then, we have embeddings: Q16 < F128 < G < F .
Thus

NS(Y )F ⊂ NS(Y )G ⊂ NS(Y )F128 ⊂ NS(Y )Q16 = ZH.
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Here we use Proposition 3.1(i) for the last equality. Since NS(Y )F contains an ample invariant class,
say

∑
g∈F g∗h, h being ample on Y , we have

NS(Y )F = NS(Y )G = NS(Y )F128 = NS(Y )Q16 = ZH.

Thus, F < Aut(Y,H). Moreover, (H2) = 4 by Proposition 3.3. Hence, ϕ : (Y,H) � (X4,H4)
by Proposition 3.1(ii). Then, under the isomorphism F � ϕ−1 ◦ F ◦ ϕ, we have ((Y,H), F ) �
((X4,H4), F ). So, we may identify ((X,H), F ) = ((X4,H4), F ). Under this identification, we have

F < Aut(X4,H4) > F̃384 > F384.

Note that Aut(X4,H4) is a finite group. This is because Aut(X4,H4) is a discrete algebraic subgroup
of PGL(P3), whence, finite. Thus, [Aut(X4,H4) : F384] � 4 by Proposition 3.2(i) and Theorem 2.3.
Hence |Aut(X4,H4)| � 27·3×4 = 29·3. Since |F̃384| = |F | = 29·3, we then obtain F = Aut(X4,H4) =
F̃384. This implies the assertion (i) of the main theorem (Theorem 1.2).

Next, we shall show the assertion (ii) of the main theorem. Let X be a K3 surface admitting a
K3 group G such that |G| = 29. Then, by repeating the same argument as above, we can identify
((X,H), G) = ((X4,H4), G). Since Aut(X4,H4) = F̃384, our G is a subgroup of F̃384. Since |F̃384| =
29 · 3 and |G| = 29, it follows that G is one of three Sylow 2-subgroups F̃128 of F̃384, which are
conjugate to one another in F̃384. This implies the result.

Remark 3.4. As a byproduct, we have obtained that Aut(X4,H4) = F̃384. One can also derive this
equality through a more direct calculation along the same lines as in [Shi88]. We also notice that
ρ(X4) = 20 and, by [SI77], the full automorphism group Aut(X4) is an infinite group.

4. Polarized K3 surface of degree 4 with a symplectic Q16-action

In this section, we shall prove Proposition 3.1.

Definition 4.1. The binary dihedral group Q4m of order 4m is defined by

Q4m := 〈a, b | a2m = 1, am = b2, b−1ab = a−1〉.
The group Q4m is realized as a linear subgroup of GL(2, C) as〈

a :=
(

ζ2m 0
0 ζ−1

2m

)
, b :=

(
0 ζ4

ζ4 0

)〉
= {an, anb | 0 � n � 2m − 1}.

Lemmas 4.2 and 4.4 (the same as Proposition 3.1(i)) explain the reason why we pay special
attention to the particular group Q16.

Lemma 4.2. Any projective representation of Q4m is induced by a linear representation, i.e. for any
group homomorphism ρ : Q4m −→ PGL(n, C) := GL(n, C)/C×, there is a group homomorphism
ρ̃ : Q4m −→ GL(n, C) such that ρ = p ◦ ρ̃, where p : GL(n, C) −→ PGL(n, C) is the quotient map.

Proof. This should be well known, but, the proof is so direct and easy that we shall give it here. We
write [X] = X mod C× for X ∈ GL(n, C). First we remark that Q4m = 〈a, b | am = b2, b−1ab = a−1〉.
This is because am = b2 and b−1ab = a−1 imply that a−m = b−1amb = b−1b2b = b2 = am, whence
a2m = 1. Let ρ(a) = [A] and ρ(b) = [B]. Then, [Am] = [B2] and [B−1AB] = [A−1]. That is,
Am = αB2 and B−1AB = βA−1 in GL(n, C) for some α, β ∈ C×. By replacing the representative
A by A/

√
β, one has B−1AB = A−1. Next, by replacing the representative B by

√
αB, one obtains

B−1AB = A−1 and Am = B2. Therefore we have a group homomorphism ρ̃ : Q4m −→ GL(n, C)
defined by ρ̃(a) = A and ρ̃(b) = B. This ρ̃ satisfies ρ = p ◦ ρ̃.
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Remark 4.3. Consider the dihedral group D8 := 〈a, b | a4 = b2 = 1, b−1ab = a−1〉. Then the map

ρ(a) =
(

ζ8 0
0 ζ−1

8

)
, ρ(b) =

(
0 ζ4

ζ4 0

)

defines a projective representation ρ : D8 −→ PGL(2, C). However, this is not induced by any linear
representation D8 −→ GL(2, C).

Lemma 4.4. Let X be a projective K3 surface admitting a symplectic K3 group Q16. Then
rankT (X) = 2 and NS(X)Q16 = ZH for some ample class H.

This lemma is proved after Proposition 4.5 and Lemma 4.6.
The following very important proposition is due to Mukai [Muk88].

Proposition 4.5. Let X be a projective K3 surface admitting a symplectic K3 group G. Then the
following hold:

(i) we have

rankH2(X, Z)G =
1
|G|

(
24 +

8∑
n=2

m(n)f(n)
)
− 2,

where m(n) is the number of elements of order n in G and f(n) is the number of fixed points
in Theorem 2.2;

(ii) we have rankH2(X, Z)G � 3. Moreover, if rankH2(X, Z)G = 3, then rankT (X) = 2 and
NS(X)G = ZH for some ample class H.

Proof. Consider the action of G on the total cohomology group

H∗(X, Z) = H0(X, Z) ⊕ H2(X, Z) ⊕ H4(X, Z).

Then, by the representation theory, one has

rankH∗(X, Z)G =
1
|G|

∑
g∈G

tr(g∗|H∗(X, Z)).

By the Lefschetz fixed point formula, each summand satisfies

tr(g∗|H∗(X, Z)) = e(Xg).

Here e(∗) is the topological Euler number of ∗. Combining these two equalities with Theorems 2.2
and 2.5, one gets the result.

We also state the following lemma.

Lemma 4.6. The order structure of Q16 is as follows:

order 1 2 4 8

cardinality 1 1 10 4

Proof. This follows directly from the description of Q16.

Proof of Lemma 4.4. Let us return to Lemma 4.4. By Proposition 4.5 and Lemma 4.6, we calculate
that

rankH2(X, Z)Q16 = 1
16(24 + 8 · 1 + 4 · 10 + 2 · 4) − 2 = 3.

This completes the proof of Lemma 4.4.

Recall that the standard action of F128 on X4 is a symplectic action on the polarized K3 surface
(X4,H4) and that Q16 < F128. Now, the next proposition completes the proof of Proposition 3.1.
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Proposition 4.7. Polarized K3 surfaces (X,H) of degree 4 which admit a symplectic K3 group
Q16 (which keeps H invariant) are unique up to isomorphism as polarized K3 surfaces.

Proof. Since rankNS(X)Q16 = 1 and H ∈ NS(X) is primitive (by (H2) = 4 and by the evenness of
the intersection numbers), we have NS(X)Q16 = ZH. Then |H| has no fixed components. Indeed,
the fixed part of |H| must also be Q16-invariant, while NS(X)Q16 = ZH. Therefore, the ample linear
system |H| is free by [Sai74]. Note that dim|H| = 3 by the Riemann–Roch formula and by (H2) = 4.
Then |H| defines a morphism

Φ := Φ|H| : X −→ P3 = |H|∗; x �→ {
D ∈ |H| ∣∣ D 
 x

}
.

This Φ is either

(I) an embedding onto a (smooth) quartic surface W = (4), or

(II) a finite double cover of an irreducible, reduced quadratic surface W = (2).

Since H is Q16-invariant in Pic(X) � NS(X), the divisor g∗D is linearly equivalent to D whenever
D ∈ |H| and g ∈ Q16. Thus, the group Q16 induces a Φ-equivariant, projective linear action on the
image W . By Lemma 4.2, this action is also induced by a linear co-action of Q16 on H0(X,OX (H)) =⊕4

i=1 Cxi.
In order to complete the proof, it suffices to show the two assertions, that case (II) cannot happen

(Lemma 4.9) and that the image W is uniquely determined up to projective transformations of P3

in case (I) (Lemma 4.11).
In both assertions, we need the following classification of the complex irreducible linear repre-

sentations of Q16 = 〈a, b | a4 = b2, b−1ab = a−1〉.
Lemma 4.8. A complex irreducible linear representation of Q16 is isomorphic to one of the following
seven representations:

ρ1,1 : a �→ 1, b �→ 1, ρ1,2 : a �→ 1, b �→ −1,
ρ1,3 : a �→ −1, b �→ 1, ρ1,4 : a �→ −1, b �→ −1,

ρ2,1 : a �→
(

ζ8 0
0 ζ−1

8

)
, b �→

(
0 ζ4

ζ4 0

)
,

ρ2,2 : a �→
(

ζ3
8 0
0 ζ−3

8

)
, b �→

(
0 ζ4

ζ4 0

)
,

ρ2,3 : a �→
(

ζ4 0
0 ζ−1

4

)
, b �→

(
0 1
1 0

)
.

Proof. These seven representations are clearly irreducible and well defined. Moreover, any two are
inequivalent as linear representations (by looking at the trace of the matrices). Since 16 = 12·4+22 ·3,
these are all.

Lemma 4.9. Case (II) in the proof of Proposition 4.7 cannot happen.

Proof. In what follows, assuming to the contrary that case (II) happens, i.e. the image W is a
quadratic surface, we shall derive a contradiction.

Claim 4.10.

(a) W is non-singular.

(b) The induced action by Q16 on W is faithful.
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Proof. Note that a quadratic surface is normal if it is irreducible and reduced. Since Φ is a finite
double covering, it is also a Galois covering. Let τ be the covering involution. Then W = X/τ . Since
W is a rational surface, τ∗ωX = −ωX . Thus, if P ∈ Xτ , then there is a local coordinate (xP , yP )
at P such that τ∗(xP , yP ) = (xP ,−yP ). Hence, W is non-singular. The kernel of the natural map
Aut(X,H) −→ Aut(W,OW (1)) is a subgroup of 〈τ〉. Since τ∗ωX = −ωX , we have Q16 ∩ 〈τ〉 = {1}.
This means that the induced action of Q16 on W is faithful.

Let us return to the proof of Lemma 4.9. Let us consider the irreducible decomposition of
the co-action of Q16 on H0(X,OX (H)) � C4. Note that the representations ρ2,1 and ρ2,2 are
transformed by the outer automorphism a �→ a3 and b �→ b of Q16. Recall also that the action must
be faithful by Claim 4.10(b). Thus, we may assume without loss of generality that ρ2,1 appears in
the decomposition. Under this assumption, there are four possible decompositions: (i) ρ2,1 ⊕ ρ2,1,
(ii) ρ2,1 ⊕ ρ2,2, (iii) ρ2,1 ⊕ ρ2,3, (iv) ρ2,1⊕ (two one-dimensional irreducible representations).

In cases (i) and (ii), a4 = id in PGL(4, C), a contradiction to Claim 4.10(b).
Consider the case (iii). Then the action of Q16 on H0(X,OX (H)) is given by

a =




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 ζ4 0
0 0 0 ζ−1

4


 , b =




0 ζ4 0 0
ζ4 0 0 0
0 0 0 1
0 0 1 0


 ,

under a suitable basis 〈xi〉4i=1 of H0(X,OX (H)). Let us consider the defining equation F2(x1, x2,
x3, x4) ∈ Sym2H0(X,OX (H)) of W . Then, F2 is both a-semi-invariant and b-semi-invariant,
i.e. a(F2) = σ(a)F2 and b(F2) = σ(b)F2. This σ defines a one-dimensional representation of Q16.
Thus a(F2) = ±F2 and b(F2) = ±F2. If a(F2) = F2, then F2 = αx1x2 + βx3x4 by the explicit
matrix form of a. Since b(F2) = ±F2, we have then F2 = αx1x2 or βx3x4. However, this contradicts
the smoothness of W . If a(F2) = −F2, then F2 is of the form F2(x3, x4) and again contradicts the
smoothness of W . Thus, the case (iii) cannot happen, either.

Finally consider the case (iv). In this case, the action of Q16 on H0(X,OX (H)) is given by

a =




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 ±1 0
0 0 0 ±1


 , b =




0 ζ4 0 0
ζ4 0 0 0
0 0 ±1 0
0 0 0 ±1


 ,

under a suitable basis 〈xi〉4i=1 of H0(X,OX (H)). Let us consider the defining equation F2 of W .
Then as before a(F2) = ±F2 and b(F2) = ±F2. If a(F2) = −F2, then F2 = F2(x3, x4) and W is
singular, a contradiction. Consider the case where a(F2) = F2. By the explicit form of a, we have
F2 = αx1x2+f2(x3, x4). Since W is non-singular, we have α �= 0 and f2 �= 0. Since b(x1x2) = −x1x2,
we have b(f2) = −f2. Thus, again by the explicit form of b, it follows that F2 = αx1x2 + βx3x4 for
some non-zero constants α, β. After replacing xi by their multiples and the order of x3 and x4 if
necessary, we finally normalize the equation of W as F2 = x1x2 + x3x4 and we have:

a =




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 1 0
0 0 0 1


 or




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 −1 0
0 0 0 −1


 , and b =




0 ζ4 0 0
ζ4 0 0 0
0 0 1 0
0 0 0 −1


 .

Then, it follows that W a = W a2
= W a4

= {Pi}4
i=1 =: S, where P1 = [1 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0],

P3 = [0 : 0 : 1 : 0] and P4 = [0 : 0 : 0 : 1]. Since the actions of Q16 on X and on W are Φ-equivariant
and since Φ is a finite morphism of degree 2, it follows that a2 and a4 act on T := Φ−1(S) as identity.
Thus Xa2

= Xa4
= T . On the other hand, |Xa2 | = 4 and |Xa4 | = 8 by Theorem 2.2, a contradiction.

This completes the proof of Lemma 4.9.
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Lemma 4.11. Assume that case (I) in the proof of Proposition 4.7 happens, i.e. that Φ : X � W =
(4) ⊂ P3. Then W = (x4

1 + x4
2 + x3

3x4 + x3x
3
4 = 0) in suitably chosen homogeneous coordinates

of P3.

Proof. Set W = (F4(x1, x2, x3, x4) = 0). We note that Φ-equivariant action of Q16 on W is symplec-
tic and faithful. As in Lemma 4.9, we consider the irreducible decomposition of the co-action of Q16

on H0(X,OX (H)). Again as before, we may assume that ρ2,1 appears in the decomposition. Under
this assumption, there are four possible decompositions: (i) ρ2,1⊕ρ2,1, (ii) ρ2,1⊕ρ2,2, (iii) ρ2,1⊕ρ2,3,
(iv) ρ2,1⊕ (two one-dimensional irreducible representations).

As before, cases (i) and (ii) are ruled out by a4 = id in PGL(4, C).

Claim 4.12. Case (iii) does not happen.

Proof. Assume that case (iii) happens. Then the action of Q16 on H0(X,OX (H)) is given by

a =




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 ζ4 0
0 0 0 ζ−1

4


 , b =




0 ζ4 0 0
ζ4 0 0 0
0 0 0 1
0 0 1 0


 ,

under a suitable basis 〈xi〉4i=1 of H0(X,OX (H)). Since det a = 1 and a∗ωW = ωW , it follows that
F4 is a-invariant. Then, by the explicit form of a, the equation F4 must be of the following form:

F4 = αx2
1x

2
2 + βx1x2x3x4 + f4(x3, x4).

However the point [1 : 0 : 0 : 0] is then a singular point of W , a contradiction.

In what follows, we shall consider case (iv). Note that



ζ8 0 0 0
0 ζ−1

8 0 0
0 0 −1 0
0 0 0 −1


 =




ζ5
8 0 0 0
0 ζ3

8 0 0
0 0 1 0
0 0 0 1


 =




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 1 0
0 0 0 1




5

in PGL(4, C). So, replacing a by a5 (for instance, by using an outer automorphism of Q16 defined
by a �→ a5, b �→ b) if necessary, we may assume that a is either

a1 :=




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 1 0
0 0 0 1


 or a2 :=




ζ8 0 0 0
0 ζ−1

8 0 0
0 0 1 0
0 0 0 −1


 .

In each case

b =




0 ζ4 0 0
ζ4 0 0 0
0 0 ±1 0
0 0 0 ±1


 .

Claim 4.13. We have a �= a1.

Proof. Assume that a = a1. Then, as before, by det a1 = 1 and a∗ωW = ωW , it follows that F4 is
a-invariant. Thus F4 must be of the following form:

F4 = αx2
1x

2
2 + βx1x2f2(x3, x4) + f4(x3, x4).

However, [1 : 0 : 0 : 0] is then a singular point of W , a contradiction.
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So, a = a2. By det a2 = −1, we have a(F4) = −F4. By the explicit form of a2, the equation F4

is of the following form:

F4 = αx4
1 + βx4

2 + γx3
4x3 + δx4x

3
3 + εx1x2x3x4.

If α = 0, then β = 0, because F4 is b-semi-invariant. However, [1 : 0 : 0 : 0] is then a singular
point of W , a contradiction. Thus α �= 0. For the same reason, we have β �= 0. If γ = 0, then
[0 : 0 : 0 : 1] is a singular point of W . If δ = 0, then [0 : 0 : 1 : 0] is a singular point of W .
Thus γ �= 0 and δ �= 0.

If det b = 1, then b(F4) = F4. Thus α = β and ε = 0. Then, applying a suitable linear transform
like x1 �→ cx1, x2 �→ cx2, x2 �→ dx2, x3 �→ ex3, one can normalize the equation of W as in
Lemma 4.11.

If det b = −1, then b(F4) = −F4. Thus α = −β and ε = 0. Then, one can again normalize the
equation of W as in Lemma 4.11. This completes the proof of Lemma 4.11.

We have now completed the proof of Proposition 4.7 (and therefore that of Proposition 3.1).

5. Solvable K3 groups and nilpotent K3 groups

In this section, we shall prove Proposition 3.2. Throughout this section, we denote by G a K3 group
acting on X and by

1 −→ GN −→ G
α−→ µI −→ 1

the basic sequence.

The next proposition is a special case of a more general fact in [IOZ04] and is crucial for our
proof.

Proposition 5.1. Assume that I = 3. Let g be an element of G such that α(g) = ζ3.

(i) Set ord g = 3k. Then (k, 3) = 1. In particular, the basic sequence splits if I = 3.

(ii) Assume that ord g = 6. Let P ∈ Xg. Then there is a local coordinate (x, y) at P such that
either g∗(x, y) = (ζ−1

6 x, ζ3
6y) (type 1 in the notation of [IOZ04]) or g∗(x, y) = (ζ−5

6 x, ζ6y)
(type 5). Let m1, m5 be the numbers of points of type 1 and of type 5. Then (m1,m5) is either
(2, 0), (4, 1) or (6, 2).

(iii) Assume that ord g = 12. Let P ∈ Xg. Then there is a local coordinate (x, y) at P such
that either g∗(x, y) = (ζ−1

12 x, ζ5
12y) (type 1), g∗(x, y) = (ζ−3

12 x, ζ7
12y) (type 3), or g∗(x, y) =

(ζ−9
12 x, ζ12y) (type 9). Let m1, m3 and m9 be the numbers of points of types 1, 3 and 9,

respectively. Then (m1,m3,m9) is either (1, 0, 0) or (2, 1, 1).

Proof. For the convenience the reader, we shall give a proof for this special case. A more general
treatment will be found in [IOZ04].

Let us show part (i). If otherwise, k = 3 or 6 by g3 ∈ GN and by Theorem 2.2. So, it suffices
to show that k �= 3. Assume k = 3. Then ord g = 9 and Xg ⊂ Xg3

. Since Xg3
is a six-point set by

Theorem 2.2, Xg is also a finite set. Let P ∈ Xg. Then, since ord g = 9, g∗ωX = ζ3ωX , and P ∈ Xg

is isolated, there is a local coordinate (x, y) at P such that either g∗(x, y) = (ζ−1
9 x, ζ4

9y) (type 1),
g∗(x, y) = (ζ−2

9 x, ζ5
9y) (type 2) or g∗(x, y) = (ζ−7

9 x, ζ9y) (type 7) holds. Let m1, m2 and m7 be the
numbers of fixed points of types 1, 2 and 7. Then, by the holomorphic Lefschetz fixed point formula,
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one has:

1 + ζ−1
3 =

2∑
i=0

(−1)itr(g∗|H i(OX))

=
m1

(1 − ζ−1
9 )(1 − ζ4

9)
+

m2

(1 − ζ−2
9 )(1 − ζ5

9 )
+

m7

(1 − ζ−7
9 )(1 − ζ9)

.

Note that the minimal polynomial of ζ9 over Q is x6 + x3 + 1 = 0. Now, a direct calculation shows
that there is no solution (m1,m2,m7) of the equation above even in Q.

Let us give a proof of part (ii). In the same manner as in part (i), one obtains a list of possible
local actions of g at P ∈ Xg as described in part (ii). Then, again by the holomorphic Lefschetz
fixed point formula, one has:

1 + ζ−1
3 =

m1

(1 − ζ−1
6 )(1 − ζ3

6 )
+

m5

(1 − ζ−5
6 )(1 − ζ6)

.

In addition, since Xg ⊂ Xg2
and Xg2

is an eight-point set by Theorem 2.2, one has m1 + m5 � 8.
Finding all the non-negative integer solutions (m1,m5) in this range, we obtain the result.

The proof of part (iii) is similar.

The next lemma completes the assertions (i) and (iii) of Proposition 3.2.

Lemma 5.2.

(i) If GN � F128, then I = 1, 2 or 4.
(ii) If GN � F384, then I = 1, 2 or 4.

Proof. Let us show part (i) of the lemma. We may assume that X is projective. Since Q16 < F128 by
Proposition 2.6, one has rankT (X) = 2 by Lemma 4.4. Thus I = 1, 2, 4, 3 or 6 by Theorem 2.5. If
I = 6, then µ3 < µI and H := α−1(µ3) is a K3 group such that HN = F128 and I = 3. So, it suffices
to show that I �= 3. Assume that I = 3. Then, by Proposition 5.1, G = F128 : 〈g〉 where α(g) = ζ3

and ord(g) = 3. Since [F128, F128] � C2×D8 by Proposition 2.6 and since the commutator subgroup
is a characteristic subgroup, we have a new K3 group K := (C2×D8) : 〈g〉 such that KN � C2×D8

and I = 3. Let cg be the conjugate action of g on C2 ×D8. Since C2 ×D8 has exactly one subgroup
isomorphic to C2 ×C4, we have a new K3 group H = (C2 ×C4) : 〈g〉 such that HN = C2 ×C4 and
I = 3. Since C2 ×C4 contains exactly four order-4 elements, cg fixes one of them, say τ . Since there
are then exactly two involutions σ such that C2 ×C4 = 〈σ, τ〉, the conjugate action cg also fixes one
such σ. Hence, H = (C2 ×C4)× 〈g〉. Consider the element h = τg. Then ordh = 12 and α(h) = ζ3.
Let Mi be the set of type i points of Xh in Proposition 5.1(iii). Then, by Proposition 5.1(iii), one
of Mi is a one-point set, say M = {P}. Since H is commutative, we have a(P ) = P for all a ∈ HN .
However, one would then have

C2 × C4 = HN < SL(TX,P ) � SL(2, C),

a contradiction to the fact that finite abelian subgroups of SL(2, C) must be cyclic.
Let us show part (ii) of the lemma. Note that F384 = 〈F128, τ〉 for some element τ of order 3,

and the Sylow 2-subgroups of F384 are exactly F128, τ−1F128τ and τ−2F128τ
2. For the same reason

as in part (i), it suffices to show that I �= 3. Assume that I = 3. Then, by Proposition 5.1,
G = F384 : 〈g〉 where α(g) = ζ3 and ord(g) = 3. Consider a Sylow 3-subgroup H of G containing τ .
Since |G| = 29 · 32, we have |H| = 32. Since |GN | = 29 · 3, there is an element h ∈ H such that
α(h) = ζ3. This element h also acts by the conjugate on the set {F128, τ

−1F128τ, τ
−2F128τ

2} of
Sylow 2-subgroups of GN . Thus, replacing h by hτ i if necessary, we have h−1F128h = F128, and
obtain a new K3 group K = 〈F128, h〉. Since α(h) = ζ3 and h is an element of a 3-group H, we have
ord h = 3 and K = F128 : 〈h〉 by Proposition 5.1(i). However, this contradicts Lemma 5.2(i).
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In the rest of this section, we prove parts (ii) and (iv) of Proposition 3.2.

Proof of Proposition 3.2(ii)
The next proposition was obtained by [Muk88] in the course of his proof of Theorem 2.3. For the
notation of groups, we follow [Muk88].
Proposition 5.3 [Muk88, Proposition 5.2 and Theorem 5.5]. Let GN be a solvable symplectic K3
group. Then, GN and its order (indicated by [∗]) is one of the following:

(I) 2-group [2n, 0 � n � 7];
(II) 2 · 3-group [2n3, 0 � n � 7]; moreover, if it is nilpotent, then GN is isomorphic to C3, C6 or

C2 × C6;
(III) 9 | |GN | and GN is one of C2

3 [9], A3,3, C3 × S3[18], S3 × S3, C
2
3 : C4, A4 × C3[36], N72,M9,

A4,3[72], A4 × A4[144], A4,4[288];
(IV) 5 | |GN | and GN is one of C5[5],D10(= C5 : C2)[10], C5 : C4[20], C4

2 : C5[80], C4
2 : D10[160];

(V) 7 | |GN | and GN is one of C7[7], C7 : C3[21].

Let us show Proposition 3.2(ii) dividing into the five cases (I)–(V) in Proposition 5.3. By
Proposition 5.3, we may assume that I � 2. Then X is projective as well.

First we consider the case where GN lies in cases (III), (IV) or (V).
Lemma 5.4.

(a) If GN is in case (III), then I � 12.
(b) If GN is in case (IV), then I � 12.
(c) If GN is in case (V), then I � 6.

Proof. First we shall show part (a) of the lemma. Choose a subgroup C2
3 � 〈τ1, τ2〉 < GN . Then,

by Proposition 4.5, one has

rankH2(X, Z)GN � rankH2(X, Z)〈τ1 ,τ2〉 =
24 + 6 × 8

9
− 2 = 6.

Thus rankT (X) � 5 and we have I � 12 by Theorem 2.5.
The proofs of part (b) (respectively (c)) are similar if we choose a subgroup C5 (respectively C7)

in GN :

rankH2(X, Z)GN � rankH2(X, Z)C5 =
24 + 4 × 4

5
− 2 = 6;

rankH2(X, Z)GN � rankH2(X, Z)C7 =
24 + 3 × 6

7
− 2 = 4.

Thus, when GN is in cases (III), (IV), or (V), we see that |G| = |GN | · I < 29 · 3 unless GN is
one of

(i) C4
2 : D10, (ii) A4 × A4, (iii) A4,4.

In case (i), we have C4
2 : C5 � H < GN . Here the order structure of H, which is also a subgroup

(with no order-10 element) of the affine transformation group F4
2 : GL(4, F2), is as follows:

order 1 2 5

cardinality 1 15 64
Then, one has

rankH2(X, Z)GN � rankH2(X, Z)H =
24 + 8 · 15 + 4 · 64

80
− 2 = 3.

Thus, rankT (X) = 2 and I � 6. Hence |G| < 160 · 6 = 960 < 29 · 3.
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Similarly, in case (ii), using the order structure of GN = A4 × A4 below

order 1 2 3 6

cardinality 1 15 80 48

one can calculate

rankH2(X, Z)GN =
24 + 8 · 15 + 6 · 80 + 2 · 48

144
− 2 = 3.

Thus, rankT (X) = 2 and I � 6. Hence |G| < 144 · 6 = 864 < 29 · 3.
Note that A4 × A4 < A4,4 (:= (S4 × S4) ∩ A8). Then, from the calculation above, we also

find that I = 1, 2, 3, 4 or 6 for GN = A4,4 (case (iii)). Note that |A4,4| · 4 = 1152 < 29 · 3, but
|A4,4| · 6 = 1728 > 29 · 3. However, we can show the following lemma.

Lemma 5.5. If GN � A4,4, then I �= 3, 6.

Proof. As in Lemma 5.2, it suffices to show that I �= 3. Assume that I = 3. Then, by Proposition 5.1,
G = A4,4 : 〈g〉 where α(g) = ζ3 and ord(g) = 3. Since [A4,4, A4,4] � A4 × A4 and since the
commutator subgroup is a characteristic subgroup, we have a new K3 group H := (A4 × A4) : 〈g〉
such that HN � A4 ×A4 and I = 3. Note that A4 = C2

2 : C3 so that HN = A4 ×A4 = C4
2 : C2

3 . Let
H3 be a Sylow 3-subgroup of H containing C2

3 . Since |H| = 24 · 33, we have |H3| = 33. Note that
H3 acts on HN by the conjugate, say ρ. Since C4

2 is the normal Sylow 2-subgroup of HN (and thus
a characteristic subgroup of HN ), the conjugate action ρ makes C4

2 stable, and we have a group
homomorphism

ρ : H3 −→ Aut(C4
2 ) � GL(4, F2).

Here |GL(4, F2)| = 26 ·32 ·5 ·7. Thus, there is a non-trivial element h ∈ Ker ρ. Since C2
3 (= H3∩HN )

acts on C4
2 faithfully, this h satisfies α(h) = ζ3 (after replacing h by h−1 if necessary). Moreover,

ord(h) = 3n (by h ∈ H3), and we have ord(h) = 3 by Proposition 5.1. Thus, we obtain a new
K3 group K = C4

2 × 〈h〉 such that KN = C4
2 and I = 3. Let σ be an involution in C4

2 . Then hσ
is of order 6 and satisfies α(hσ) = ζ3. Let Mi be the set of type i fixed points of Xhσ described
in Proposition 5.1(ii). Then, by Proposition 5.1(ii), one of Mi is an at most two-point set, say
M = {P,Q}. Since K is commutative, we have a({P,Q}) = {P,Q} for all a ∈ KN . Then, one would
have an index-2 subgroup C3

2 < KN (= C4
2 ) such that C3

2 < SL(TX,P ) � SL(2, C), a contradiction
to the fact that finite abelian subgroups of SL(2, C) must be cyclic.

Next, we consider the case (I), i.e. the case where GN is a 2-group. Set |GN | = 2n. By Theorem 2.3
and Corollary 2.4, we have GN < F128 (as abstract groups). In particular, n � 7 and if n = 7, then
GN � F128. So, by taking Lemma 5.2 into account, it suffices to show that |G| < 29 if n � 6.

Let us first consider the case where GN has an order-8 element, say τ . In this case, we have

rankH2(X, Z)GN � rankH2(X, Z)〈τ〉 =
24 + 8 × 1 + 4 × 2 + 2 × 4

8
− 2 = 4.

Thus, I � 6 and we have |G| � 26 · 6 < 29.
Next we consider the case where GN has no element of order 8. Then, we have the following

order structure of GN :

order 1 2 4

cardinality 1 2k + 1 2m

where k + m = 2n−1 − 1. Moreover, k � 17 by GN < F128 and by Proposition 2.6(i).
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If n = 6, then k + m + 1 = 25 and one has

rankH2(X, Z)GN =
24 + 8(2k + 1) + 4 · 2m

26
− 2 = 2 +

24 + 8k
26

< 5, i.e. � 4.

Here the last inequality is because k � 17. Hence, rankT (X) � 3 and we have I � 6. Thus
|G| � 26 · 6 < 29.

If n = 5, then k + m = 15 and k � 15. Thus, one has

rankH2(X, Z)GN =
24 + 8(2k + 1) + 4 · 2m

25
− 2 = 2 +

24 + 8k
25

< 7, i.e. � 6.

Hence, rankT (X) � 5 and we have I � 12. Thus |G| � 25 · 12 < 29.
Assume that n � 4. Then, if |G| � 29, we have I � 25 = 32. In this case, one can check that

ϕ(I) � 12 (see, for instance, the explicit list in [MO98]). Then, |GN | � 2 by the next lemma.
We have then |G| � 2 · 66 < 29.

Lemma 5.6. Let G be a K3 group on X. If ϕ(I) � 12, then |GN | � 2.

Proof. By ϕ(I) � 12 and by Theorem 2.5, we have rankT (X) � 12. Let g be a non-trivial element
of GN . Then g∗|T (X) = id and g fixes at least one ample class. Thus,

tr(g∗|NS(X)) � 1 + (−1) · (22 − rankT (X) − 1) = rankT (X) − 20.

We also note that this inequality is strict if ord g = 3. Combining this with the topological
Lefschetz fixed point formula, one has

|Xg| = e(Xg) = 2 + tr(g∗|NS(X)) + tr (g∗|T(X)) � 2 rankT (X) − 18 � 6.

Thus, g is an involution by Theorem 2.2 and by the remark above. Then, GN � Cn
2 for some n

and one has by Proposition 4.5

rankH2(X, Z)GN =
24 + 8(2n − 1)

2n
− 2 = 6 +

16
2n

.

Since rankT (X) < rankH2(X, Z)GN , we have then

6 +
16
2n

> 12, i.e. n = 0, 1.

Finally we consider the case (II), i.e. the case where GN is of order 2n · 3. Then n � 7 and
if n = 7, we have GN � F384 by Theorem 2.3. The case n = 7 is settled by Lemma 5.2. Let H
be a Sylow 2-subgroup of GN . Then |H| = 2n. By the argument in case (I) and by the fact that
H2(X, Z)GN ⊂ H2(X, Z)H , we have I � 6 if n = 6 and I � 12 if n = 5. Then |G| < 29 · 3 for
n = 5, 6. Assume that n � 4. Then, if |G| (= |GN | · I) � 29 · 3, then we have I � 32 and ϕ(I) � 12.
Then, by Lemma 5.6, we would have |GN | � 2, a contradiction. Thus |G| < 29 · 3 as well. Now we
have completed the proof of Proposition 3.2(ii).

Proof of Proposition 3.2(iv)
Since G is nilpotent, GN is also nilpotent. The previous argument for the solvable case already
settled the case when GN is in case (I) of Proposition 5.3. If a nilpotent group GN is in case (II) of
Proposition 5.3, then |GN | � 12 and

rankH2(X, Z)GN � rankH2(X, Z)C3 =
24 + 6 · 2

3
− 2 = 10.

Thus, rankT (X) � 9 and ϕ(I) � 8. This implies I � 30 (see e.g. an explicit list in [MO98]).
We have then |G| � 12 · 30 < 29. If GN is in cases (III), (IV) or (V) of Proposition 5.3, then
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GN is either C5, C7 or C2
3 . (Recall that a nilpotent group must be the direct product of its Sylow

subgroups.) Thus |GN | � 9. Hence by Lemma 5.4, we have |G| � 9·12 < 29 as well. Now we are done.

6. Invariant polarization of a maximal nilpotent K3 group
In this section, we shall prove Proposition 3.3 along similar lines to [Nik80b, Remark 1.14.7], [Kon99]
and [OZ02]. In each approach, the orthogonal complement of the invariant lattice [Nik80a] plays a
crucial role.

First, we recall some basic facts on the Niemeier lattices needed in our arguments. As in [OZ02],
our main reference concerning Niemeier lattices and their relations with Mathieu groups is [CS99,
chs. 10, 11, 16, 18].

Definition 6.1. The even negative definite unimodular lattices of rank 24 are called Niemeier
lattices. There are exactly 24 isomorphism classes of the Niemeier lattices and each isomorphism
class is uniquely determined by its root lattice R, i.e. the sublattice generated by all the roots, the
elements x with x2 = −2. Except for the Leech lattice, which contains no root, the other 23 lattices
are the over-lattices of their root lattices.

We denote the Niemeier lattice N and its root lattice R by N(R). Among the 24 Niemeier
lattices, the most relevant one for us is N(A⊕24

1 ). Two other Niemeier lattices N(A⊕12
2 ) and N(A⊕8

3 )
will also appear in our argument.

Let N = N(R) be a non-Leech Niemeier lattice. Denote by O(N) (respectively by O(R)) the
group of isometries of N (respectively of R) and by W(N) = W(R) the Weyl group generated by
the reflections given by the roots of N . Here O(N) < O(R) and W(N) is a normal subgroup of
both O(N) and O(R). The invariant hyperplanes of the reflections divide N ⊗ R into finitely many
chambers. Each chamber is a fundamental domain of the action of W(R). Fix a basis R := {ri}24

i=1

of R consisting of simple roots. The quotient group S(N) := O(N)/W(R) is then identified with a
subgroup of the full symmetry group S(R) := O(R)/W(R) of the distinguished chamber C := {x ∈
N ⊗R | (x, r) > 0, r ∈ R}, or a bit more concretely, S(N) and S(R) are subgroups of a larger group
S24 as:

S(N) = {g ∈ S(R) | g(N/R) = N/R} < S(R) = Autgraph(R) < Autset(R) = S24,

where the action of S(R) on N/R (⊂ R∗/R) is induced by the natural action on R∗/R. Here and
hereafter, we denote by M∗ the dual lattice of a non-degenerate lattice M and regard M naturally
as a submodule of finite index of M∗.

The groups S(N) are explicitly calculated in [CS99, chs. 18, 16]. (See also [Kon98].) We need
the following proposition.

Proposition 6.2 [CS99, chs. 18, 16]. Let N be a non-Leech Niemeier lattice. Then, we have:

(1) S(N) = M24 if N = N(A⊕24
1 );

(2) S(N) = C2.M12 if N = N(A⊕12
2 );

(3) S(N) = C2 : (C⊕3
2 : L3(2)) if N = N(A⊕8

3 ); and

(4) for other N , S(N) is a subgroup of either C2.S6 or C3.S6.

Let us add a few remarks about the groups in Proposition 6.2(i)–(iii).
In case (i), i.e. the case where N = N(R) and R = A⊕24

1 , we observe that

C24 := N/R � F⊕12
2 ⊂ R∗/R =

24⊕
i=1

F2ri � F⊕24
2 .

Here ri := ri/2mod Zri. We note that R = {ri}24
i=1 forms a Dynkin diagram of type A⊕24

1 .
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Let P(R) be the power set of R. Then, we can identify P(R) with R∗/R by the following
bijective correspondence:

ι : P(R) 
 A ↔ rA :=
1
2

∑
rj∈A

rj (mod R) ∈ R∗/R = (A⊕24
1 )∗/A⊕24

1 .

In what follows, we freely identify these two sets, and we define |x| (x ∈ R∗/R) to be the
cardinality of ι−1(x).

Then, under the identification by ι, it is well known that ∅,R ∈ C24 and that if A ∈ C24

(A �= R, ∅) then |A| is either 8, 12, or 16. We call A ∈ C24 an Octad (respectively a Dodecad) if
|A| = 8 (respectively 12). Note that B ∈ C24 with |B| = 16 is of the form R−A for some Octad A.
It is also well known that the set of Octads forms a Steiner system St(5, 8, 24) of R and generates
C24 as an F2-linear space. In this case, the embeddings S(N) < S(R) < S24 explained above coincide
with the natural inclusions M24 < S24 = S24 for N = N(A⊕24

1 ).
In the second case, the Mathieu group M12 = S(N)/C2 acts naturally on the set of 12 connected

components of the Dynkin diagram A⊕12
2 and C2 interchanges the two vertices of all the components.

We also note that |M12| = 26 · 33 · 5 · 11.
In the third case, we identify (non-canonically) the set of eight connected components of the

Dynkin diagram A⊕8
3 with the three-dimensional linear space F⊕3

2 over F2 by letting one connected
component be 0. The group C2 : (C⊕3

2 : L3(2)) is the semi-direct product, where C2 interchanges
the two edges of all the components, C⊕3

2 is the group of parallel transformations of the affine space
F⊕3

2 and L3(2) (� L2(7)) is the linear transformation group of F⊕3
2 .

As in [Kon99] and [OZ02], the next embedding theorem due to Kondo [Kon98] is an important
ingredient in our proof.

Theorem 6.3 [Kon98, Lemmas 5 and 6]. Let K be a symplectic K3 group on X. Set L := H2(X, Z),
LK := {x ∈ L |h(x) = x (∀h ∈ K) } and LK := {y ∈ L | (y, x) = 0 (∀x ∈ LK) }. Then, the following
hold:

(i) there is a non-Leech Niemeier lattice N such that LK ⊂ N . Moreover, the faithful action of
K on LK extends to an action on N so that LK � NK and that NK contains a root, say r0.
Here the sublattices NK and NK of N are defined in the same way as LK and LK of L;

(ii) take R so that r0 ∈ R. Then, the group action of K on N preserves the distinguished Weyl
chamber C with respect to R, and the naturally induced homomorphism K → S(N) is injective.

Corollary 6.4 [Kon98]. Under the notation of Theorem 6.3, one has:

(i) rankNK = rankLK + 2;
(ii) (LK)∗/LK � (NK)∗/NK , in particular, |det NK | = |det LK |.
Proof. The assertion (i) follows from rank NK = 24 − rankNK , rankLK = 22 − rankLK , and
NK � LK . Since L and N are unimodular and since the embeddings LK ⊂ L and NK ⊂ N are
primitive, we have natural isomorphisms (LK)∗/LK � (LK)∗/LK and (NK)∗/NK � (NK)∗/NK by
[Nik80b, Proposition 1.6.1]. Now the result follows from LK � NK . For the last equality, we may
just note that |detM | = |M∗/M | for a non-degenerate lattice M .

We are now ready to prove Proposition 3.3. Let G be a K3 group on X such that |G| = 29.
We denote by K := GN the symplectic part and by I the transcendental value. By Proposition 3.2,
K = F128 (as abstract groups) and I = 4. In particular, X is projective. We have also rankLK = 3
by K = F128 > Q16 and by Proposition 3.1(i). Thus, rankT (X) = 2 and NS(X)G = NS(X)K = ZH
for some ample class H. As in Theorem 6.3, we set L := H2(X, Z). We shall fix these notations
until the end of this section.
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It remains to show (H2) = 4. This will be completed in Lemma 6.11.
Let us first determine the Niemeier lattice N for our K.

Lemma 6.5. The Niemeier lattice N in Theorem 6.3 for K is N(A⊕24
1 ).

Proof. By Theorem 6.3(ii), |S(N)| must be divided by |K| = 27. Thus, N is either N(A⊕24
1 ),

N(A⊕12
2 ) or N(A⊕8

3 ) by Proposition 6.2. Suppose that the second case occurs. Since K fixes at least
one element in R by Theorem 6.3(i), we have K < M12. However, this is impossible, because |K| = 27

but |M12| = 26 · k ((2, k) = 1). Suppose that the third case occurs. Again for the same reason as
above, we have K < C2.L3(2). However, this is impossible, because |K| = 27 but |C2.L3(2)| = 24 ·k′

((2, k′) = 1). Now we are done.

From now on we set N := N(A⊕24
1 ), R := A⊕24

1 and take R = {ri}24
i=1 as in Theorem 6.3(ii).

By Proposition 6.2, Theorem 6.3(ii) and Lemma 6.5, we have

K < M24 < S24 = Autgraph(R) = Autset(R).

Lemma 6.6. The orbit decomposition type of K on R is [1, 1, 2, 4, 16].

Proof. Note that rankRK = rankNK = 5 by rankLK = 3 and by Corollary 6.4(i). Thus R
is divided into exactly five K-orbits. Since K is a 2-group and K fixes at least one element by
Proposition 6.2(i), the orbit decomposition type is of the form [1, 2b, 2c, 2d, 2e]. We may assume that
0 � b � c � d � e. In addition, 1 + 2b + 2c + 2d + 2e = |R| = 24. It is now easy to see that
(b, c, d, e) = (0, 1, 2, 4).

By Lemma 6.6, after renumbering of the elements of R, we have

RK = 〈s1, s2, s3, s4, s5〉
where

s1 = r1, s2 = r2, s3 = r3 + r4, s4 = r5 + · · · + r8, s5 = r9 + · · · + r24.

Lemma 6.7. We have

NK =
〈

s1, s2, s3,
s1 + s2 + s3 + s4

2
,
s5

2

〉
.

In particular, (NK)∗/NK � Z/4 ⊕ Z/8 ⊕ Z/8.

Proof. Since RK ⊂ NK ⊂ (R∗)K = 〈s1/2, s2/2, s3/2, s4/2, s5/2〉, the lattice NK is generated by RK

and by the (representatives of) K-invariant elements of C24. Let us find out all such elements in C24.
In what follows, we freely identify C24 with a subset of P(R) by ι, as explained after Proposition 6.2.
By the shape of the orbit decomposition (Lemma 6.6), there is no K-invariant Dodecad. Moreover,
for the same reason, if there is a K-invariant Octad, then it must be

(r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8)/2 = (s1 + s2 + s3 + s4)/2,
i.e. {r1, r2, r3, r4, r5, r6, r7, r8}.

Let us show that this is indeed an Octad, i.e. an element of C24. Recall that the set of Octads of C24

forms a Steiner system St(5, 8, 24) of R. Then, there is an Octad A ∈ C24 containing a five-element
set {r1, r5, r6, r7, r8}. Note that

K({r1, r5, r6, r7, r8}) = {r1, r5, r6, r7, r8}
by Lemma 6.6 and by s1, s4 ∈ RK . Then, by the Steiner property, we have A = g(A) for all g ∈ K.
Thus, this A is a K-invariant Octad. So (s1 + s2 + s3 + s4)/2, which is the only possible candidate
A, is indeed a K-invariant Octad.
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Since the length-16 element of C24 is the complement of an Octad, it follows that {r9, r10, . . . , r16}
is the unique length-16, K-invariant element of C24. Hence

NK =
〈

s1, s2, s3, s4, s5
s1 + s2 + s3 + s4

2
,
s5

2

〉
,

that is,

NK =
〈

s1, s2, s3,
s1 + s2 + s3 + s4

2
,
s5

2

〉
.

The intersection matrix of NK with respect to this basis is

−




2 0 0 1 0
0 2 0 1 0
0 0 4 2 0
1 1 2 4 0
0 0 0 0 8


 ,

and the elementary divisors of this matrix are (1, 1, 4, 8, 8). This implies the result.

Lemma 6.8.

(i) (LK)∗/LK � Z/4 ⊕ Z/8 ⊕ Z/8. In particular, |det LK | = 28.

(ii) If x ∈ LK , then (x2) ≡ 0mod 4.

Proof. The assertion (i) follows from Lemma 6.7 and Corollary 6.4(ii). By rankLK = 3 and by (i),
we can choose an integral basis 〈f1, f2, f3〉 of (LK)∗ so that 〈4f1, 8f2, 8f3〉 forms an integral basis
of LK . For x = x1 · 4f1 + x2 · 8f2 + x3 · 8f3 (xi ∈ Z), one has

(x2) = 4x1(x, f1) + 8x2(x, f2) + 8x3(x, f3) ∈ 4Z.

This implies the second assertion.

Lemma 6.9. With respect to a suitable integral basis 〈v1, v2〉 of T (X), the intersection matrix of
T (X) becomes of the following form:(

4m 0
0 4m

)
for some m ∈ Z.

Proof. By Theorem 2.5, we have an isomorphism T (X) � Z[
√−1] as Z[

√−1]-modules. Since
√−1

acts on the integral basis 〈e1 := 1, e2 :=
√−1〉 of Z[

√−1] as e1 �→ e2, e2 �→ −e1, the group
G/K = 〈g mod K〉 � µ4 acts on the corresponding integral basis 〈v1, v2〉 of T (X) by g∗(v1) = v2

and g∗(v2) = −v1. Thus (v1, v2) = (g∗(v1), g∗(v2)) = (v2,−v1), and (v1, v2) = 0. Similarly, (v1, v1) =
(g∗(v1), g∗(v1)) = (v2, v2). The result now follows from these two equalities and Lemma 6.8(ii).

Lemma 6.10. Set l := [LK : ZH ⊕ T (X)]. Then l = 1 or 2. Moreover, if l = 2, then

LK = Z

〈
H + v1 + v2

2
, v1, v2

〉
.

Here 〈v1, v2〉 is an integral basis of T (X) as in Lemma 6.9.

Proof. The proof is identical to [Kon99, p. 1248] and [OZ02, p. 177].

The next lemma completes the proof of Proposition 3.3.

Lemma 6.11. We have (H2) = 4.
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Proof. By Lemma 6.8(ii), we can write (H2) = 4n for some positive integer n. We need to show
that n = 1. Let m be a positive integer in Lemma 6.9.

First consider the case where l = 2 (here l is the index defined in Lemma 6.10). In this case, we
have by Lemma 6.8(i)

4 · 28 = l2 · detLK = (H2) · detT (X) = 4n · 16m2.

Thus nm2 = 16. Moreover, by (H + v1 + v2)/2 ∈ LK and by Lemma 6.8(ii), we have

n + 2m = ((H + v1 + v2)/2)2) ≡ 0mod 4.

Thus (m,n) = (2, 4) and the intersection matrix of LK (with respect to the basis in Lemma 6.10)
becomes 

8 4 4
4 8 0
4 0 8


 .

However, the elementary divisors of this matrix are (4, 4, 16), a contradiction to Lemma 6.8(i).
Next consider the case where l = 1. In this case, we have

28 = det LGN = (H2) · det T (X) = 4n · 16m2.

Thus nm2 = 4 and (m,n) is either (1, 4) or (2, 1). Assume that (m,n) = (1, 4). Then, the intersection
matrix of LK = ZH ⊕ T (X) (with respect to the basis 〈H, v1, v2〉) becomes

16 0 0
0 4 0
0 0 4


 .

However, the elementary divisors of this matrix are (4, 4, 16), a contradiction to Lemma 6.8(i). Thus
(m,n) = (2, 1) and we are done.
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