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Abstract

Substantive research in the Social Sciences regularly investigates signed networks, where edges between
actors are positive or negative. One often-studied example within International Relations for this type of
network consists of countries that can cooperate with or fight against each other. These analyses often
build on structural balance theory, one of the earliest and most prominent network theories. While the
theorization and description of signed networks have made significant progress, the inferential study of
link formation within them remains limited in the absence of appropriate statistical models. We fill this
gap by proposing the Signed Exponential Random Graph Model (SERGM), extending the well-known
Exponential Random Graph Model (ERGM) to networks where ties are not binary but positive or negative
if a tie exists. Since most networks are dynamically evolving systems, we specify the model for both cross-
sectional and dynamic networks. Based on hypotheses derived from structural balance theory, we formulate
interpretable signed network statistics, capturing dynamics such as “the enemy of my enemy is my friend”.
In our empirical application, we use the SERGM to analyze cooperation and conflict between countries
within the international state system. We find evidence for structural balance in International Relations.

Keywords: exponential random graph models; signed networks; structural balance theory; International relations; inferential
network analysis
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1. Introduction

In February 2022, Russia invaded Ukraine. This invasion shifted the relations that numerous Euro-
pean countries had with the belligerents. The EU member states, including previously Russia-aligned
countries such as Hungary, sanctioned Russia and provided support to Ukraine. Belarus, a close ally of
Russia, followed its partner into the conflict and was accordingly also sanctioned by the EU member
states. Turkey, a political and economic partner of both Ukraine and Russia, struggled to remain neutral
in the conflict and therefore sought to mediate between the belligerents. The Russian attack was thus
followed by geopolitical adjustments, demonstrating the importance of positive and negative ties in the
international network of states. This shows how pairwise cooperation and conflict between countries
are interdependent.

Political scientists have studied this interplay of positive and negative ties between states since the
early 1960s (Harary 1961). In this context, international relations are conceived as signed networks,
where the nodes are states and the edges are either positive, corresponding to bilateral cooperation,
negative, expressing bilateral conflict, or non-existent. Most of this research directly builds on structural
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balance theory, which postulates that triads are balanced if they include an odd number of positive
relations and unbalanced if that number is either even (“strong” structural balance; Cartwright and
Harary 1956; Heider 1946) or exactly two (“weak” structural balance; Davis 1967)1. Accordingly,
International Relations scholars have applied this theory from Social Psychology to the behavior of
states, studying whether specific triangular constellations correspond with its propositions (Doreian
and Mrvar 2015; Harary 1961; Healy and Stein 1973; McDonald and Rosecrance 1985) and what
implications structural balance has for community formation and system polarization (Hart 1974;
Lee, Muncaster, and Zinnes 1994). More recent studies seek to test whether structural balance affects
interstate conflict and cooperation in an inferential framework (Kinne and Maoz 2023; Lerner 2016;
Maoz et al. 2007).

Beyond this work, there is a wider, quickly growing literature in International Relations that
investigates networks with binary, i.e., non–signed, ties. Early key works here propose to conceptualize
International Relations as a network where states are nodes connected by dyadic ties consisting of
their political relations, and call attention to the new theoretical insights this perspective can offer (see
Hafner-Burton, Kahler, and Montgomery 2009; Maoz 2010; Maoz et al. 2006). These studies emphasize
the importance of endogenous network processes, such as brokerage, triadic closure, and structural
equivalence, in the formation of International Relations networks. In parallel, other research showed
that, empirically, studying such networks using methods that assume conditional independence risks
faulty statistical inferences and introduced more appropriate methods for the study of International
Relations networks (Cranmer and Desmarais 2016; Hoff and Ward 2004; Poast 2010).

The most prominent of these methods arguably are Exponential Random Graph Models (ERGMs),
as introduced to the Political Science and International Relations literature by Cranmer and Desmarais
(2011), which explicitly allow modeling and testing the empirical relevance of network effects. ERGMs
have been applied to study the endogenous network effects structuring alliance formation (Cranmer,
Desmarais, and Kirkland 2012a; Cranmer, Desmarais, and Menninga 2012b) and conflict between
countries (Campbell, Cranmer, and Desmarais 2018), but also military interventions (Corbetta 2013),
arms transfers (Thurner et al. 2019), and foreign direct investment ties (Schoeneman, Zhu, and
Desmarais 2022). An alternative method, the Stochastic Actor Oriented Model (SAOM, see Snijders
2017), has been employed to investigate the network dynamics driving alliances, arms transfers, bilateral
lending, and formal defense cooperation agreements (Kinne 2016; Kinne and Bunte 2020; Warren
2010). What all this work, however, has in common is its focus on binary networks where ties are either
present or absent. Latent variable-based methods that allow substantively focusing on exogenous, non-
network covariates while statistically accounting for unknown network effects have also increasingly
found use within International Relations and can be applied to non-binary, weighted networks (see
Dorff, Gallop, and Minhas 2020; Minhas et al. 2022; Minhas, Hoff, and Ward 2016)2. But these models,
in turn, do not permit explicitly testing the influence of network effects and, importantly, currently also
do not exist for signed networks.

The inferential study of signed networks, within but also outside of International Relations, so far has
thus mainly relied on logistic regression (Lerner 2016; Maoz et al. 2007) or perceiving the observations
as multivariate networks with multiple layers (Huitsing et al. 2012; Huitsing et al. 2014; Stadtfeld, Takács,
and Vörös 2020), where one level relates to the positive and another to the negative edges. While the
former approach disregards endogenous dependence, the latter only allows for dependence between the
separate observed layers of the network. Moreover, the multilayer approach does not adequately capture
that most interactions in signed networks are either positive, negative, or non-existent. In other words,
countries having negative and positive relations at the same time is unrealistic. Finally, the model closest

1See Wasserman and Faust (1994, Ch. 6.1) for an introduction.
2We do not have the space here to provide a comprehensive, more theory-oriented survey of work on International Relations

networks or to introduce alternative statistical methods for their inferential analysis in more detail. Victor, Montgomery, and
Lubell (2017) offer the former while recent, accessible examples of the latter are Cranmer, Desmarais, and Morgan (2020) and
De Nicola et al. (2023).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
4.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2024.21


Political Analysis 3

to ours is introduced by Yap and Harrigan (2015). This model, however, is purely cross-sectional and
constrained to networks of the same positive and negative density as the observed one. In other words,
an existing positive tie can only be removed if, elsewhere in the network, a new positive tie is created
at the same time. This restraint imposes an empirically often untenable assumption, complicates model
interpretation, and results in overconfident uncertainty quantification.

In the context of binary networks, Frank and Strauss (1986) proposed ERGMs as a generative model
for a network encompassing n actors represented by the adjacency matrixy = (yij)i,j=1,...,n, where yij = 1
translates to an edge between actors i and j and yij = 0 indicates that there is no edge. Henceforth, we use
lowercase letters for variables when referring to the realized value of a random variable, i.e., the observed
network y, and capitalize the name to indicate that they are stochastic random variables, for instance,
Y. Within this framework, Wasserman and Pattison (1996) formulate a probability distribution over all
possible y ∈ Y by a canonical exponential family model:

Pθ(Y = y) =
exp{θ⊺s(y)}

κ(θ) ∀ y ∈ Y, (1.1)

where Y is the set of all observable binary adjacency matrices among n fixed actors, s : Y → R
p is a

function of sufficient statistics weighted by the coefficients θ ∈Θ ⊆Rp, and κ(θ) ∶=∑ỹ∈Y exp{θ⊺s(ỹ)}
is a normalizing constant. Possible choices for the sufficient statistics s(y) of directed networks include
the number of edges and triangles in the network (see Lusher, Koskinen, and Robins 2012 for a detailed
overview of the model and other possible statistics). Depending on the specific sufficient statistics,
ERGMs relax the often unrealistic conditional independence assumption inherent to most standard
regression tools in dyadic contexts and allow general dependencies between the observed relations. In
many applications, auxiliary informationx exogenous to the network is available, which can also be used
in the sufficient statistics. For brevity of the notation, we omit the dependence of s on x. Due to this
ability to flexibly specify dependence among relations, account for exogenous information, the desirable
properties of exponential families, and versatile implementation in the ergm R package (Handcock
et al. 2008; Hunter, Goodreau, and Handcock 2008a), the ERGM is a core inferential approach in
the statistical analysis of networks. Methodological research in political science has further extended
this framework to accommodate continuous edges (Desmarais and Cranmer 2012), incorporate actor-
specific unobserved heterogeneity (Box-Steffensmeier, Christenson, and Morgan 2018), and to account
for the specific dynamics of substantive application cases such as court citation networks (e.g. Schmid,
Chen, and Desmarais 2022). Accordingly, it underlies much of the research on networks in International
Relations we discuss above (see, e.g., Cranmer, Desmarais, and Menninga 2012b; Thurner et al. 2019).

In this article, we show how (1.1) can be extended to signed networks under general dependency
assumptions and coin the term Signed Exponential Random Graph Model (SERGM) for the resulting
model. The SERGM provides an inferential framework to test the predictions of, e.g., structural balance
theory (Cartwright and Harary 1956; Heider 1946) without assuming that all observed relations are
independent of one another. This characteristic is of vital importance given that balance theory explicitly
posits that the sign of one relation depends on the state of other relations in the network. As the
introductory examples suggest, interdependence-driven sign changes occur rapidly between states,
necessitating endogenous network statistics to capture them adequately. Along these lines, Lerner (2016,
75) notes that “tests of structural balance theory” should not rely on “models that assume independence
of dyadic observations” and thereby flags the importance of developing an ERGM for signed networks.
We answer this call by introducing and, via the R package ergm.sign, providing statistical software in
R (R Core Team 2021) to implement the SERGM for static and dynamic networks, which is available in
the Supplementary Materials.

Here, we apply this new model to analyze cooperation and conflict between states in the decade 2000–
2010. Motivated by Maoz et al. (2007) and Lerner (2016), we use the SERGM, as well as Maoz et al.
(2007)’s approach with lagged triadic covariates, to investigate whether the formation of cooperative
and conflictual ties in this network is in line with structural balance theory. Results from the SERGM
indicate that this is the case. Countries are hence more likely to cooperate if they have the same partners
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or share common enemies. In contrast, testing structural balance via lagged statistics is found to fit less
well and produces results that are substantively different from those of the SERGM and offer, at best,
mixed support for structural balance theory.

We proceed as follows: In the consecutive section, we formally introduce the SERGM and a novel
suite of sufficient statistics for capturing network topologies specific to signed networks. In Section 3, we
detail how to estimate the parameters of the SERGM and quantify the uncertainty of the estimates. Next,
we apply the introduced model class to the interstate network of cooperation and conflict in Section 4.
Finally, we conclude with a discussion of possible future extensions.

2. The Model Formulation

First, we establish some notation to characterize signed networks. Assume that the signed adjacency
matrix y = (yij)i,j=1,...,n was observed between n actors. Contrasting the binary networks considered
in (1.1), the entries of this signed adjacency matrix yij are either “+”, “−”, or “0”, indicating a positive,
negative, or no edge between actors i and j. To ease notation, we limit ourselves to undirected networks
without any self-loops, i.e., yij = yji and yii = “0” holds for all i,j = 1,...,n. Nevertheless, the proposed
model naturally extends to directed settings. We denote the space encompassing all observable signed
networks between n actors by Y± and specify a distribution over this space analogous to (1.1) in the
following log-linear form:

Pθ(Y = y) =
exp{θ⊺s(y)}

κ(θ) ∀ y ∈ Y±. (2.1)

The function of sufficient statistics in (2.1) takes a signed network as its argument and determines the
type of dependence between dyads in the network. A theoretically motivated suite of statistics one can
incorporate as sufficient statistics follows in Section 2.1 but mirroring the term counting edges in binary
networks, we can use the count of positive ties in signed network y via

EDGE+(y) =∑
i<j

I(yij = “+”),

where I(⋅) is the indicator function. Along the same lines, one can define a statistic for the number of
negative edges EDGE−(y) and use both statistics as intercepts in the model.

We can extend (2.1) to dynamic networks, which we denote by Y1,...,YT for observations at t =
1,...,T, by assuming a first-order Markov dependence structure to obtain

Pθ(Yt = yt ∣Yt−1 = yt−1) =
exp{θ⊺s(yt,yt−1)}

κ(θ,yt−1)
∀ yt ∈ Y±. (2.2)

This mirrors the extension of binary ERGMs to Temporal ERGMs (TERGM, Hanneke, Fu, and Xing
2010). The sufficient statistics encompassed in s(yt,yt−1) capture within-network or endogenous
dependencies through statistics that only depend on yt and between-network dependencies when
incorporating yt−1. One instance of network statistics for between-network dependency is the stability
statistic for positive edges

STABILITY+(yt,yt−1) =∑
i<j

I(yij,t = “+”)I(yij,t−1 = “+”),

which can equivalently be defined for negative ties. Thus, we assume that the observed network is the
outcome of a Markov chain with state spaceY± and transition probability (2.2). Of course, we may also
include exogenous terms in (2.2), i.e., any pairwise- or actor-specific information external to yt (the
statistic defined in (2.8) is one possibility).

For the interpretation of the estimates, techniques from binary ERGMs can be adapted. To derive
a local tie-level interpretation, let θq with q ∈ {1,...,p} denote the qth entry of θ corresponding to the
qth sufficient statistic, sq(yt,yt−1). We further define yt = (yij,t)i,j=1,...,n for t = 1,...,T and denote the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
4.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2024.21


Political Analysis 5

network yt with the entry yij,t fixed at “+” by y+ij,t . Then, y−ij,t and y0
ij,t are established accordingly. Let

y(−ij),t refer to the networkyt excluding the entry yij,t . Due to the added complexity of signed networks,
the distribution of Yij,t conditional on Y(−ij),t is a multinomial distribution where the event probability
of entry “+” is:

Pθ(Yij,t = “+”∣Y(−ij),t = y(−ij),t,Yt−1 = yt−1) =
exp{θ⊺s(y+ij,t,yt−1)}

∑k∈{+,−,0} exp{θ⊺s(yk
ij,t,yt−1)}

. (2.3)

In the same manner, we can state the conditional probability of “−” and “0”. In accordance with change
statistics from binary ERGMs, we subsequently define positive and negative change statistics through

Δ0→+
ij,t (y(−ij),t,yt−1) = s(y+ij,t,yt−1)−s(y0

ij,t,yt−1)
Δ0→−

ij,t (y(−ij),t,yt−1) = s(y−ij,t,yt−1)−s(y0
ij,t,yt−1).

(2.4)

While the positive change statisticΔ0→+
ij,t (yt,yt−1) is the change in the sufficient statistics resulting from

flipping the edge value of yij,t from “0” to “+”, the negative change statistic Δ0→−
ij,t (yt,yt−1) relates to the

change from “0” to “−”. By combining (2.3) and (2.4), we can obtain the relative log odds of Yij,t to be
“+” and “−” rather than “0”:

log(
Pθ(Yij,t = “+”∣Y(−ij),t = y(−ij),t,Yt−1 = yt−1)
Pθ(Yij,t = “0”∣Y(−ij),t = y(−ij),t,Yt−1 = yt−1)

) = θ⊺Δ0→+
ij,t (y(−ij),t,yt−1)

log(
Pθ(Yij,t = “-”∣Y(−ij),t = y(−ij),t,Yt−1 = yt−1)
Pθ(Yij,t = “0”∣Y(−ij),t = y(−ij),t,Yt−1 = yt−1)

) = θ⊺Δ0→−
ij,t (y(−ij),t,yt−1).

(2.5)

This allows us to relate θ to the conditional distribution of Yij,t given the rest of the network and derive
two possible interpretations of the coefficients reminiscent of multinomial and logistic regression: the
conditional log-odds of Yik,t to be “+” rather than “0” are changed by the additive factor θp, if the value
of yij,t changing from “0” to “+” raises the pth entry of Δ0→+

ij,t (y(−ij),t,yt−1) by one unit, while the other
statistics remain unchanged. A similar interpretation holds for the negative change statistic.

Second, one can employ a global interpretation to understand the parameters on a network level.
Then, θq > 0 indicates that higher values of sq(yt,yt−1) are expected under (2.1) than under a
multinomial graph model, which we define as a simplistic network model where the value of each dyad
is “+”, “−” and “0” with equal probability. In the opposing regime with θq < 0, we expect lower values
than under this multinomial graph model.

2.1. From Structural Balance Theory to Sufficient Statistics
As discussed in the introduction, structural balance theory is a natural approach to signed networks.
But so far, inferential work on it remains limited and uses, as we show below, suboptimal measures
of its structural expectations. We thus shortly introduce the core logic of structural balance theory,
discuss previous measures of it, and then derive sufficient statistics from it for inclusion in the SERGM.
These statistics enable us to test the structural expectations formulated by structural balance theory in
a principled manner within the framework introduced in Section 2.

Theory.
The main implication of structural balance theory relates to the existence of triads between actors. Triads
are the relations between three actors (Wasserman and Faust 1994) and are generally called balanced if
they consist solely of positive ties (“the friend of my friend is my friend”) or one positive and two negative
ties (“the enemy of my enemy is my friend”). According to structural balance theory, this type of triad
should be observed more often than expected by chance in empirical signed networks. In contrast,
triads that include a single negative tie are structurally imbalanced as the node participating in both
positive relations has to cope with the friction of its two “friends” being opposed to each other. This
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actor should thus try to turn the negative tie into a positive tie to achieve a balanced constellation where
all three actors share positive connections. But if this proves impossible, the actor will eventually have
to choose a side, making one of its previously positive ties negative and resulting in structural balance.
In triads where relations between all three actors are negative, the actors at least have incentives to make
similar changes; these triads are thus also considered structurally imbalanced (Cartwright and Harary
1956; Heider 1946). In particular, two actors could reap benefits by developing a positive relationship,
pooling their resources, and ganging up on the third node. However, later work views these triads
without any positive ties as weakly balanced (Davis 1967; Heider 1958), as Davis (1967) notes that
enemies of enemies being enemies indicates structural imbalance only if there are two subsets of nodes
in the network. Triadic constellations with one negative relation are thus structurally imbalanced, should
be empirically rare, and, where they exist, tend to turn into balanced states. Where only one negative
tie exists, there is strong pressure to either eliminate it or create an additional one. And where there
are three negative ties, actors at least have a clear incentive to turn one of them into a positive relation
opportunistically, though their (im-)balance depends on the nature of the wider system (see also Easley
and Kleinberg 2010, Ch. 5).

Testing Structural Balance via Lagged Statistics.
In interstate relations, this theory implies that two countries that are on friendly terms with the same
other state should not wage war against each other. If three states all engage in conflict with each other,
two of them may also find it beneficial to bury their hatchet, focus on their common enemy, and pool
their resources against it. Along these lines, existing research asks whether two countries’ probability to
cooperate or to fight is affected by them sharing common friends or foes (Lerner 2016; Maoz et al. 2007).
In particular, these authors investigate whether having shared allies or enemies at time t−1 affects the
presence of positive and negative ties at t. The resulting “friend of my friend is my friend” statistic we
can incorporate in the sufficient statistics of (2.2) is:

CF+(yt,yt−1) =∑
i<j

I(yij,t = “+”)
⎛
⎝ ∑h≠i,h≠j

I(yih,t−1 = “+”)I(yjh,t−1 = “+”)
⎞
⎠
. (2.6)

Similar delayed statistics can be defined for all other implications of the theory by treating the
existence of common friends and foes as exogenous covariates. However, this approach comes with
both theoretical and methodological problems. It is unclear whether actors wait a period (a calendar
year in the case of Maoz et al. 2007 and Lerner 2016) to adjust their relations towards structural balance
and why they should do so as other applications of structural balance theory view these changes as
instantaneous (see, e.g., Kinne and Maoz 2023). If the countries do not wait for a period, this approach
can misrepresent the dynamics of signed networks as contradicting structural balance theory when they
do not.

To illustrate this point, the right side of Figure 1 visualizes three structurally imbalanced constella-
tions which Maoz et al. (2007) and Lerner (2016) uncover in the network of cooperation and conflict
between states: (a) The friend of a friend being an enemy, (b) the enemy of an enemy being an enemy,
and (c) the friend of an enemy being a friend. The left side of Figure 1 presents the triads at t−1 and t
that these constellations are potentially made up of as ties are not observed simultaneously. The links of
i and j to h were observed at t−1 but those between i and j at t. The structurally imbalanced triads on the
right side of Figure 1 thus consist of observations of the same triad made at two different points in time.
Crucially, the left side of Figure 1 shows that both of these observations can themselves be structurally
balanced. Exogenous measures of common friends and enemies can thus only capture the predictions
of structural balance theory if (i) actors i and j wait a period until they change their tie sign due to their
links to h and (ii) their links to h remain unchanged. Both of these conditions require strong assumptions
regarding how actors behave within a network. In particular, structural balance theory implies that the
edges between i, j, and h are interdependent. But its exogenous operationalization assumes two of these
edges as fixed while waiting to observe the third. An example shows that this is not just a theoretical
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Figure 1. Combining past and present ties can misrepresent structural (im-)balance: Triads observed at t−1 and t are balanced (left

side), combined triads are imbalanced (right side). Dashed lines indicate tie at t−1, solid ones at t. The dotted arrows show which ties

from t−1 and t contribute to the exogenous specification.

issue, but mischaracterizes empirically observed relations between states: The US and Iran had common
foes in 1978 but, in 1979, had become outright enemies themselves. The exogenous operationalization
of structural balance regards this situation as unbalanced, although it is an example of the scenario in
Figure 1b.

Testing Structural Balance via Endogenous Statistics.
Therefore, endogenous network terms are necessary to capture the endogenous network dynamics pos-
tulated by structural balance theory. We next define endogenous statistics that mirror each constellation
described by structural balance theory to test its predictions empirically. Building on the k-Edgewise-
Shared Partner statistic developed to measure transitive closure in binary ERGMs (Hunter 2007), we can
define k-Edgewise-Shared Friends, ESFk(y), and k−Edgewise-Shared Enemies, ESEk(yt), for signed
networks. The statistic ESFk(yt) counts the edges with k shared friends and ESEk(yt) those with k
shared enemies. We further differentiate these statistics based on the state of the edge at the center
of each triangular configuration and, e.g., write ESF+k (yt) and ESF−k (yt) as the version of the statistic
where the value of yij is “+” and “−”, respectively. Figure 2 illustrates the resulting four statistics.

Transformations of these statistics reduce to specific types of triangular configurations (Hunter
2007). However, as shown in Snijders et al. (2006), these statistics frequently lead to degenerate
distributions where most probability mass is put on the empty or full graph (Handcock 2003; Schwein-
berger 2011). Moreover, the implied avalanche effect, where changing the value of one tie yields a
considerable change in the probability of observing the respective network, is particularly pronounced if
the corresponding parameters are positive, as structural balance theory suggests. For binary ERGMs, it is
thus standard to employ a statistic of the weighted sum of statistics in which the weights are proportional
to the geometric sequence (Hunter and Handcock 2006; Snijders et al. 2006). We follow this practice
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Figure 2. Sufficient statistics for signed networks.

and define the geometrically weighted statistic for negative edgewise-shared enemies, as portrayed in
Figure 2a, with a fixed decay parameter α as

GWESE+(yt,α) = exp{α}
n−2
∑
k=1
(1−(1−exp{−α})k)ESE+k (yt). (2.7)

We establish the geometrically weighted variants of ESE−k (yt),ESF+k (yt), and ESF−k (yt) accordingly.
Each of these statistics reflects a specific type of triadic closure in signed networks as visualized in
Figure 2. To interpret the coefficient θGWESE+ one can consider the logarithmic relative change in the
probability according to (2.2) when increasing the number of common enemies of a befriended edge
by one and keeping all other statistics constant. If the befriended actors already had k prior common
enemies before this change, this relative change is given by

θGWESE+ (1−(1−exp{−α}))k .

Thus, if θGWESE+ > 0, each additional common enemy between two actors increases the probability of
observing a positive edge between them, although the increments become smaller for higher numbers
of common enemies. In other words, a positive coefficient is associated with a tendency toward balanced
triads. Hunter (2007) shows that these geometrically weighted statistics are equivalent to the alternating
k-triangle statistics proposed by Snijders et al. (2006).

These triadic structures fully capture the logic of structural balance as they allow us to study the
prevalence of triads where positive ties account for zero (Figure 2a), one (Figure 2b), two (Figure 2c), and
all three (Figure 2d) of the edges. According to this logic, we would expect the statistics GWESE+(yt)
and GWESF+(yt) to be higher in empirical networks than expected by chance, but not GWESE−(yt)
and, particularly, GWSF−(yt). If, on the other hand, the coefficients corresponding to GWESE−(yt) or
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GWESF−(yt) turn out to be positive in a network, this would offer empirical support for modifications
of structural balance theory that also see the constellation in Figure 2a as balanced (Davis 1967; Heider
1958) or combine it with insights about, e.g., opportunism or reputation (Maoz et al. 2007). Mirroring
the development of edge-wise shared enemy and friend statistics, it is also possible to compute dyad-
wise statistics that do not require i and j to share a tie.

Other Sufficient Statistics.
Besides these substantively informed statistics developed from structural balance theory, there are—as
in the binary case—numerous other statistics one may incorporate into the model. Some of these are
even necessary to isolate the effects of structural balance. In binary networks, closed triads where each
node is connected to the others are more likely to form if the involved actors are highly active due to
processes such as popularity. In the context of ERGMs, this phenomenon is captured by degree statistics
counting the number of actors in the network with a specific number of edges. For signed networks,
similar but more complicated processes may be at work and, to capture them, we define DEG+k (yt)
and DEG−k (yt) as statistics that, respectively, count the number of actors in the signed network yt
with degree k ∈ {1,...,n− 1} for “+”- and “−”-signed links, respectively. Since the degree statistics are
also prone to the degeneracy issues detailed above, we define geometrically-weighted equivalents for
the positive and negative degrees. One can also incorporate exogenous statistics for the propensity to
observe a positive tie, similar to (2.6), via the following statistic:

EXO+(yt) =∑
i<j

I(yij,t = “+”)xij,t, (2.8)

where xij,t can be any pairwise scalar information. Similar statistics can be defined for negative,
EXO−(yt), and any, EXO±(yt), ties. To test whether there is a tendency for homo- or heterophily
based on actor attribute x = (x1,...,xn) in the network, one may transform the nodal information to the
pairwise level by setting xij,t = ∣xi,t −xj,t ∣ or xij,t = I(xi,t = xj,t) for continuous and categorical attributes,
respectively.

3. Estimation and Inference

To estimate θ for a fully specified set of sufficient statistics, we maximize the likelihood of (2.2)
conditional on the initial network y0:

L(θ;y1,...,yT) =
T
∏
t=1

exp{θ⊺s(yt,yt−1)}
κ(θ,yt−1)

=
exp{θ⊺ (∑T

t=1 s(yt,yt−1))}
∏T

t=1κ(θ,yt−1)
. (3.1)

We can observe that this joint probability of the observed networks is still an exponential family, where
the sufficient statistic is the sum of the individual statistics, the normalizing constant is composed of
the product of the normalizing constants at each time point, and the canonical parameter is unchanged.
Evaluating the normalizing constant in (3.1), on the other hand, necessitates the calculation of
T ⋅ exp{n(n − 1)/2 log(3)} summands, making the direct evaluation of the likelihood prohibitive
even for small networks. Fortunately, these difficulties are known from the analysis of binary networks
and have been tackled in numerous articles (see, e.g., Strauss and Ikeda 1990; Hummel, Hunter, and
Handcock 2012; Snijders 2002; Hunter and Handcock 2006), which guide our estimation approach for
the SERGM.

To circumvent the direct evaluation of (3.1), we can write the logarithmic likelihood ratio of θ and a
fixed θ0 without a normalizing constant but an expected value

r(θ,θ0;y) = (θ−θ0)⊺(
T
∑
t=1

s(yt,yt−1))

− log(Eθ0 (exp{(θ−θ0)⊺(
T
∑
t=1

s(Yt,yt−1))})) .
(3.2)
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We approximate the expectation in (3.2) by sampling networks over time, denoted by Y(m) =
(Y(m)1 ,...,Y

(m)
T ) for the mth sample, whose dynamics are governed by (2.2) under θ0. Due to the

Markov assumption, it suffices to specify only how to sampleY(m)t conditional onyt−1 for t = 1,...,T via
Gibbs sampling3. In particular, we generate a Markov chain with state space Y± that, after a sufficient
burn-in period, converges to samples fromYt conditional onyt−1. Since we toggle one dyad in each iter-
ation of this procedure, the conditional probability distribution we sample from is the multinomial dis-
tribution stated in (2.3). In a setting where we sample Yij,t conditional ony(−ij),t andyt−1 with its present
value given by ỹij,t , we can restate this conditional probability for “+” in terms of change statistics:

Pθ(Yij,t = “+”∣Y(−ij),t = y(−ij),t,Yt−1 = yt−1) =
exp{θ⊺Δỹij,t→+

ij (y(−ij),t,yt−1)}

∑k∈{+,−,0} exp{θ⊺Δ
ỹij,t→k
ij (y(−ij),t,yt−1)}

.

This reformulation speeds up computation since, for most statistics, the calculation of global statistics
is computationally more demanding than the calculation of the change statistics defined in (2.4). Given
M sampled networks, we get

r(θ,θ0;y) ≈(θ−θ0)⊺(
T
∑
t=1

s(yt,yt−1))

− log( 1
M

M
∑
m=1

exp{(θ−θ0)⊺(
T
∑
t=1

s(y(m)t ,yt−1))}),
(3.3)

as an approximation of (3.2). However, according to standard theory of exponential families, the
parameter θ maximizing (3.3) only exists if the sum of all observed sufficient statistics∑T

t=1 s(yt,yt−1)
under θ0 is inside the convex hull spanned by the sum of the sampled sufficient statistics (see Theorem
9.13 in Barndorff-Nielsen 1978). Since this condition does not hold for arbitrary values of θ0, we modify
the partial stepping algorithm under a log-normal assumption on the sufficient statistics introduced by
Hummel, Hunter, and Handcock (2012) to dynamic signed networks for finding an adequate value for
θ0 (details can be found in the Supplementary Material). We seed our algorithm with θ0 maximizing
the pseudo-likelihood constructed through (2.3). To obtain estimates in the cross-sectional setting of
(2.1), we can use the same procedure by setting T = 1.

To quantify the sampling error of the estimates, we rely on the theory of exponential families stating
that the Fisher informationI(θ) equals the variance of∑T

t=1 s(Yt,yt−1) under the maximum likelihood
estimate θ̂. We can estimate the Fisher information by again sampling networks Y(1),...,Y(M) and
calculating the empirical variance of ∑T

t=1 s(y
(m)
t ,yt−1) for m = 1,...,M. Due to the employed MCMC

approximation, we follow standard practice of the ergm and coda packages (Handcock et al. 2008;
Plummer et al. 2006) and estimate the MCMC standard error by the spectral density at frequency
zero of the Markov chains of the statistics. For the final variance estimate, we sum up both types of
errors. By extending the bridge sampler introduced in Hunter and Handcock (2006) to the SERGM for
dynamic networks, we can also evaluate the AIC value of the model to carry out model selection (see
Supplementary Material). Moreover, we provide a simulation study in the Supplementary Materials to
assess the quality of the proposed estimation algorithm.

4. Testing Structural Balance in International Cooperation and Conflict

4.1. Motivation
We now employ the SERGM to investigate relations of cooperation and conflict in the interstate network
over the years 2000–2010. This application speaks directly to Maoz et al. (2007), Lerner (2016), and
the many other studies on structural balance in international relations cited above. We focus on this

3We detail the Gibbs sampler in the Supplementary Materials.
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period since it is the most current period for which we have comprehensive and reliable data on
interstate conflict and cooperation. While cooperation in the form of alliances remains important, there
is nowadays relatively little change in the alliance network from one year to another as “only a dozen
new alliances have emerged since 9/11” (Kinne 2020, 730). Instead, a new type of formal commitment
between states, defense cooperation agreements (DCA), has become widely used throughout the 1990s
and 2000s (see Kinne 2018, 2020). To ensure that we capture interstate cooperation in a meaningful
manner for the period we are interested in, we depart from previous studies of structural balance in
international relations and use DCAs instead of alliances to operationalize interstate cooperation. We
do so for several reasons.

First, as noted, the contemporary alliance network is basically static, experiencing little to no shifts
over time4. This is a challenge for estimation but, substantively, also severely limits the extent to which
alliance relations could be affected by conflict between states. In contrast, DCAs are both initiated
and terminated regularly (Kinne 2018). Second, contemporary alliance ties are often multilateral and
strongly institutionalized, meaning that if, e.g., a new member joined NATO, it would result in the
creation of several new alliance ties at once, but also that terminating these alliances, which have own
secretariats, headquarters, and command structures, is challenging and thus empirically rare5. Alliances
hence do not clearly correspond to dyadic ties and have a life of their own which restricts tie deletion.
In contrast, DCAs are bilateral and not as institutionalized, making them correspond much better to
positive dyadic ties which can be formed but also removed (Kinne 2018). Third, as opposed to alliances,
DCAs are also signed by countries that have a policy of neutrality, thus reducing the risk that some
ties are structural zeros, i.e., ineligible to be formed (Kinne 2020). And fourth, though some alliances
do mandate peacetime military cooperation, most alliances only become active during armed conflict6,
stipulating wartime cooperation between their members (Leeds et al. 2002). However, their goal is to
deter enemies from instigating conflict in the first place. In other words, states’ formal commitment to
cooperate, as demonstrated in an alliance, becomes realized only in a fraction of cases which are those
where the alliance’s main goal, deterrence, has failed. In contrast, DCAs specify states’ commitment to
and framework for peacetime, day-to-day defense cooperation regarding activities such as joint defense
policies, military exercises, the co-development of military technology, and bilateral arms transfers
(Kinne 2018, 2020). DCAs therefore present a better dynamic measure of regular, bilateral defense
cooperation between states for the 2000s than alliances do.

4.2. Model Specification
To measure cooperative, positively-signed interstate relations, we thus use the DCA data collected by
Kinne (2020) and consider a tie as existent and positive if a pair of states shares at least one active DCA
in year t. For conflictious negatively-signed relations, we follow Maoz et al. (2007) and Lerner (2016) by
using the Militarized Interstate Dispute (MID) Data provided by Palmer et al. (2022). MIDs are defined
as “united historical cases of conflict in which the threat, display or use of military force short of war by
one member state is explicitly directed towards the government, official representatives, official forces,
property, or territory of another state” (Jones, Bremer, and Singer 1996, 163). We consider a tie to be
existent and negative in year t if a pair of states has at least one MID between them7. Since we observe
dyads on a yearly basis, thus aggregating over time, we have some cases where two countries have both

4Alliances have been studied in earlier inferential work on International Relations networks, which focuses exclusively on
the 20th century (Cranmer, Desmarais, and Kirkland 2012a; Cranmer, Desmarais, and Menninga 2012b; Warren 2010).

5Only 2.4% of the alliance-dyad-years recorded by Leeds et al. (2002) for the period 2000–2010 are exclusively bilateral. And
out of the eight multilateral alliances responsible for the remaining 97.6%, only one has no corresponding institutionalized
organization.

6Leeds et al. (2002) report provisions stipulating coordination between alliance military planners for only four of the 24
alliances they have sufficient information to code this for in the period 200–2010.

7In contrast to some work on MIDs, we do not exclude low-level MIDs. This is because even these MIDs indicate some level
of conflict, and such state dyads would otherwise be coded as having no tie, indicating no engagement even though there is a
minor MID.
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a DCA and a MID. We treat these observations as positive ties because DCAs are arguably the more
enduring and meaningful relationship—some MIDs may last only a single or few days, be limited to
one event, and result from the actions of low-level decision-makers such as border guards. That being
said, our substantive results change very little when instead treating these observations as negative ties.
We plot the resulting interstate network, consisting of positive DCA- and negative MID-ties, in the
Supplementary Material.

To specify a SERGM for modeling this evolving network, we first follow Maoz et al. (2007) and Lerner
(2016) by including several exogenous covariates, namely i’s and j’s political difference in terms of their
polity scores, military capability ratio, the difference in wealth, and geographical distance. Note that
while we include these covariates for both positive and negative ties, it is possible to do this jointly (Abs.
Distance), separately (for instance, CINC Ratio), or even only for one tie direction. These variables’
sources are discussed in the Supplementary Material. Stemming from (2.2), we condition on the first
year for the estimation and hence effectively model the network between 2001 and 2010.

Regarding endogenous statistics, the SERGM includes, most importantly, the four triadic terms
developed above to capture the network’s tendency towards or against structural balance. Theoretically,
we would expect the coefficients concerning GWESE+(yt) and GWESF+(yt), but not GWESF−(yt),
to have positive and statistically significant coefficients. For GWESE−(yt), the expectation depends on
whether we believe the state system to consist of two or more groups (Davis 1967). The latter appears
more likely for the 2000s, and we may thus expect to observe a positive coefficient. Furthermore, we
include the positive and negative degree statistics to capture highly active nodes’ propensity to (not)
form more ties and statistics that count the number of positive and negative edges as well as how many
isolated nodes exist in each part of the network. Finally, stability terms are included to capture positive
and negative ties remaining from the previous period. We term this specification Model 1 and present
the results on the left side of Table 1.

We further compare Model 1 to a model specification where we replace the endogenous terms of
structural balance, as depicted in Figure 2, with the exogenous versions used by Maoz et al. (2007) and
Lerner (2016), stated in (2.6), where i’s and j’s ties with h are observed not contemporaneously but in
t−1. We denote the corresponding statistics by CF+(yt,yt−1) and CF−(yt,yt−1) to quantify the effect of
common friends on positive and negative ties, while the number of common enemies are CE+(yt,yt−1)
and CE−(yt,yt−1). Each of these exogenous measures corresponds to one of our triadic endogenous
statistics, e.g., CF+(yt,yt−1) to GWESF+(yt) and CE−(yt,yt−1) to GWESE−(yt). Otherwise, the two
models are identical, as Model 2 includes the other endogenous statistics specified in Model 1. We
can thus adjudicate whether operationalizing structural balance dynamics in an endogenous manner,
implying that they occur instantaneously, is preferable over the exogenous specification where these
dynamics occur with a one-period time delay.

4.3. Results
Below, we interpret the results of the endogenous network terms and their exogenous equivalents.
We discuss the coefficient estimates of the exogenous covariates in the Supplementary Material.
As expected, both the GWESF+(yt) and the GWESE+(yt) terms exhibit positive and statistically
significant coefficients, with neither confidence interval encompassing zero. These results align with
structural balance theory in that both “the friend of my friend” and “the enemy of my enemy” are
my friends. But we also find that the GWESF−(yt) and GWESE−(yt) coefficients are positive and
statistically significant, albeit with smaller effects and confidence intervals closer to zero than in the
case of the first two statistics. The positive effect of GWESE−(yt) indicates that there is a tendency
towards enemies of enemies being enemies in the studied interstate network. This echoes the point
that triangles with three negative ties are imbalanced only in systems with two subsets (Davis 1967), a
condition unlikely to hold in the international system during our period of observation. This result is
thus consistent with the verdict that, against early formulations of structural balance theory (Cartwright
and Harary 1956; Heider 1946), “if two negative relations are given, balance can be obtained either when
the third relationship is positive or when it is negative” (Heider 1958, 206). Observing a positive and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
4.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2024.21


Political Analysis 13

Table 1. Estimated coefficients and confidence intervals of the two model specifications

detailed above. Dashes indicate the exclusion of covariates in a model specification.ΔAIC

indicates the difference between the AIC values of Model 1 and the other model.

Model 1 Model 2

Coef. CI Coef. CI

Edges + −1.161 [−1.59, −0.732] −0.723 [−1.156, −0.29]

Edges − −1.190 [−2.333, −0.047] −0.474 [−1.597,0.649]

Isolates + −1.754 [−2.142, −1.366] −1.455 [−1.865, −1.045]

Isolates − 0.669 [−0.211,1.549] 0.442 [−0.456,1.34]

Stability + 7.447 [7.331,7.563] 7.501 [7.389,7.613]

Stability − 5.531 [5.261,5.799] 5.618 [5.349,5.887]

Abs. Polity Diff. + −0.022 [−0.03, −0.014] −0.017 [−0.025, −0.009]

Abs. Polity Diff. − 0.004 [−0.016,0.024] 0.011 [−0.009,0.031]

CINC Ratio + 0.186 [0.119,0.253] 0.200 [0.131,0.269]

CINC Ratio − −0.168 [−0.295, −0.041] −0.132 [−0.261, −0.003]

Abs. Distance ± −0.521 [−0.57, −0.472] −0.492 [−0.543, −0.441]

Abs. GDP Diff. + −1.039 [−2.652,0.574] −1.200 [−2.782,0.382]

Abs. GDP Diff. − 3.326 [0.517,6.135] 2.491 [−0.404,5.386]

GWESE+ (Fig. 2a) 0.618 [0.308,0.928] -

GWESE− (Fig. 2b) 0.514 [0.2,0.828] -

GWESF+ (Fig. 2c) 0.489 [0.415,0.563] -

GWESF− (Fig. 2d) 0.318 [0.175,0.461] -

GWD+ −2.214 [−2.575, −1.853] −2.618 [−2.985, −2.251]

GWD− −0.317 [−1.626,0.992] −1.028 [−2.333,0.277]

CF+ - 0.070 [0.054,0.086]

CF− - 0.075 [0.042,0.108]

CE+ - 0.367 [−0.037,0.771]

CE− - 0.307 [−0.207,0.821]

ΔAIC 0 334.282

statistically significant effect for GWESE−(yt) underlines the importance of overall network structure
for the predictions of structural balance theory.

We also find that friends of friends have an increased probability of being enemies as the effect of
GWESF−(yt) is positive and statistically significant. In the international relations of the 2000s, what
seems to hold is that both enemies of enemies and friends of friends are more likely to interact than
if they did not share relations with a common third state. Friends of friends being more likely to fight
than to have no relation at all suggests that shared relations may also indicate the “reachability” of one
state to another within a system where some dyads, e.g., that between Lesotho and Belize, have a very
low structural probability of ever being active (see, e.g., Quackenbush 2006). Triadic closure, regardless
of the sign, thus exists also in the network of cooperation and conflict between states. However, we
observe that the tendency towards such closure is stronger for structurally balanced relations than for
structurally imbalanced ones.
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14 Cornelius Fritz et al.

Figure 3. Goodness-of-fit assessment in the year 2010.

A comparison of the two model specifications shown in Table 1 allows us to ascertain whether
specifying the triadic relationships endogenously affects substantive results and model performance.
Here, it is visible that the AIC of the model with the endogenous statistics is lower than that with
their exogenous versions. Specifying interdependent dynamics in the interstate network via endogenous
covariates hence increases model performance compared to trying to capture them by including lagged,
exogenous variables.

More strikingly, Table 1 shows that the substantive results of the corresponding endogenous and
exogenous measures of structural balance dynamics differ significantly. Contrasting the results under
the endogenous and exogenous model specification, the latter offers much more limited support for
these notions. While the coefficient of CF+(yt,yt−1) is positive and statistically significant, its effect
size is still very close to zero. The “friends of friends are friends”-effect is thus found to be substantively
negligible in Model 2. In contrast, the coefficient of CE+(yt,yt−1) is positive and substantively larger,
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while its 95%-confidence interval includes zero, indicating that the model cannot statistically distin-
guish it from zero as its estimation is very imprecise. The statistics CF−(yt,yt−1) and CE−(yt,yt−1)
mirror their corresponding endogenous terms from Model 1 in that both exhibit positive coefficients
but, again, the first is substantively much smaller and the second one very imprecisely estimated. On the
whole, this comparison of an endogenous and an exogenous specification of the triadic configurations
motivated by structural balance theory thus shows that Model 1 is preferable over Model 2. The model
including endogenous terms thus not only provides better performance than that with their exogenous
counterparts but these terms are also estimated to be more influential and more precisely.

4.4. Model Assessment
To assess the fit of the estimated SERGM, we employ a graphical tool inspired by Hunter, Goodreau, and
Handcock (2008a) to evaluate whether it can adequately represent topologies of the observed network
not explicitly incorporated as sufficient statistics in (2.2). Therefore, we sample networks from (2.2),
compute the statistics, summarize them, and then compare this summary to the statistics evaluated on
the observed network. Heuristically, a model generating simulations that better reflect the observed
values also has a better goodness-of-fit. To cover signed networks, we investigate the observed and
simulated distributions of positive and negative degrees and edgewise-shared enemies and friends in
the interstate network.

We report the goodness-of-fit plots for Model 1 from Table 1 in Figure 3 for the year 2010. In each
subplot, a series of box plots displays the distribution of a given value of the statistic under consideration
over the networks simulated from the model via the Gibbs sampler detailed in Section 3. The red line
indicates where the statistic is measured in the observed network and should thus, ideally, lie close to the
median value of the simulated networks, i.e., the center of the box plots. In Figure 3, this is the case for
all four statistics, indicating that Model 1 under the estimated parameters generalizes well to network
topologies not explicitly incorporated in the sufficient statistics. We present the same selection of plots
for the other years in the Supplementary Materials, where we also use them for a comparison of Models
1 and 2.

Together, the results presented here indicate that the SERGM is able to uncover structural balance
dynamics in the interstate network and is preferable over approaches that seek to model signed interstate
networks under conditional independence, but also that further substantial research on structural
balance in international relations is needed. The Supplementary Material employs the SERGM to analyze
a cross-sectional network, representing enmity and friendship among New Guinean Highland Tribes
(Hage and Harary 1984) and shows its applicability when there is no observable temporal dependence
structure.

5. Discussion

We extended the core regression model for network data to dynamic and cross-sectional signed net-
works. Given the theoretical foundation of structural balance, we introduce novel endogenous statistics
that offer better performance than operationalizing them by lagged covariates, as commonly done in
previous research. Finally, we apply the method to recent data on militarized interstate disputes and
defense cooperation agreements and provide a software implementation with the R package ergm.sign.

From a substantive point of view, this research offers new insights on the empirical testing of
structural balance theory and challenges earlier inferential studies on the topic. How one captures
structural balance matters. We show that an approach relying on past observations of some ties within a
triad to measure structural balance as an exogenous variable can mischaracterize triadic (im-)balance.
We thus develop endogenous balance measures that can be used in the SERGM framework and show
empirically that these endogenous measures result in different substantive results as well as increased
model performance as compared to the exogenous ones. Most importantly, the exogenous measures
do not affect tie formation consistent with structural balance theory, whereas when employing the
endogenous ones, we find evidence in line with it. States are thus more likely to cooperate if they share
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common partners or are hostile to the same enemies. This indicates that there is structural balance
in interstate cooperation and conflict, at least when studying the 2000s. Future work in International
Relations should seek to build on and further investigate this result. As structural balance is directly
related to systemic polarity (see Lee, Muncaster, and Zinnes 1994), it may be worthwhile to test whether
our finding also holds for the bipolar Cold War period, or the multipolar Interwar years. And in light
of Maoz et al. (2007), it will be fruitful to investigate how structural balance interacts with the Kantian
triad of joint democratic status, trade interdependence, and international organizations (see Oneal and
Russett 1999), given how, so far, network approaches have mainly served to criticize this influential
International Relations perspective (see Campbell, Cranmer, and Desmarais 2018; Ward, Siverson, and
Cao 2007).

Moreover, the study of signed networks is not restricted to International Relations. Within Political
Science more generally, signed networks occur in positive and negative electoral campaigning (De
Nooy and Kleinnijenhuis 2013), parliamentarians’ voting behavior (Arinik, Figueiredo, and Labatut
2020), but potentially also bureaucracies and judicial politics. And beyond it, there are applications
to friendship and bullying between children (Huitsing et al. 2012; Huitsing et al. 2014), alliances and
conflicts between tribal (Hage and Harary 1984) or criminal groups (Nakamura, Tita, and Krackhardt
2020), and even to interactions within ecological networks (Saiz et al. 2017). In the setting of online
social media and multiplayer games, signed networks are also frequently studied (Bramson et al. 2022;
Leskovec, Huttenlocher, and Kleinberg 2010). Beyond International Relations and Political Science, the
SERGM will thus serve to advance research across all Social Sciences, allowing researchers to investigate
tie formation in networks of friendship and enmity between school children, gangs, or social media
accounts.

At the same time, we find that, generally, states appear more likely to interact, positively or negatively,
when they share friends or enemies. Substantively, this result suggests that, additional to structural
balance, something else is at play and may indicate that some state dyads are structurally very unlikely
to ever be active due to the countries’ distance, lack of economic development, and/or power projection
capabilities, mirroring research on politically “relevant” or “active” dyads (see Quackenbush 2006). But
this implied variation in “reachability” between states also points to the fact that structural balance
theory was developed on complete networks, where every possible tie is realized with either a negative or
a positive sign, while empirical networks are usually incomplete (see Easley and Kleinberg 2010, Ch. 5).
It thus lends some support to Lerner’s (2016) argument that tests of structural balance theory should not
examine states’ marginal probability to cooperate or fight, but instead their probability of cooperating
or fighting conditional upon them interacting. However, following Lerner’s (2016, Sec. 4.2.1) argument
on the use of ERGMs in conjunction with this conditional viewpoint, it becomes evident that (2.2) is
consistent with it. DefiningY∣±∣ with Y ∣±∣ij = 1 if Yij ≠ “0” as the random adjacency matrix describing any
type of interaction andY , be it positive or negative, one can derive the following conditional probability
distribution

Pθ (Yt = yt ∣Y∣±∣t = y
∣±∣
t ,Yt−1 = yt−1) =

exp{θ⊺s(yt,yt−1)}
κ̃(θ,yt−1,y

∣±∣
t )

∀ yt ∈ Y±, (5.1)

where κ̃(θ,yt−1,y
∣±∣
t ) = ∑ỹ∈Y± I(ỹ = y

∣±∣
t )exp{θ⊺s(ỹ,yt−1)}. The conditional distribution (5.1) is

thus a SERGM with support limited to networks where y∣±∣t is equal to the observed network and the
coefficients of (5.1) are unchanged. Therefore, (2.2) implies (5.1).

Alternatively, the lack of “reachability” of some dyads may indicate that dependency structures are
not fully global, even in international relations where all actors know each other. Major powers should
generally be able to reach all other states in the system and thus make their actions globally relevant,
but the reach and relevance of smaller states will be more locally limited. Since the general framework
of ERGMs in (1.1) relies on homogeneity assumptions implying that each endogenous mechanism
has the same effect in the entire network, model (2.2) might assume dependence between relations
where, in reality, there is none. One possible endeavor for future research would be to adapt local
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dependence (Schweinberger and Handcock 2015) to signed and dynamic networks. This approach
assumes complex dependence only within observed or unobserved groups of actors, thus solving the
obstacle of “reachability” between some countries in the network. At the same time, other extensions
of ERGMs are feasible under (2.1) and (2.2). Following Box-Steffensmeier, Christenson, and Morgan
(2018), we can capture unobserved actor heterogeneity in signed networks with two actor-specific
random effects, one governing the activity of positive and one of the negative ties. Moreover, the
first stage of the Generalized Exponential Random Graph Model of Desmarais and Cranmer (2012),
which originally models continuous ties in the bounded interval between 0 and 1, could be adapted
to continuous signed edges between −1 and 1. Since the transition from (2.1) and (2.2) is reminiscent
of the TERGM, one could assume a model in which three separate SERGMs govern the evolution of
previously positive, negative, and nonexistent ties akin to the STERGM introduced by Krivitsky and
Handcock (2014). And given ongoing debates on out-of-sample prediction for network data (Block
et al. 2022; Leifeld and Cranmer 2019, 2022), another venue for future research is the analysis of proper
scoring rules as introduced by Gneiting and Raftery (2007) to assess out-of-sample performance for
network models.
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