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Introduction
Consecutive squares are, of course, not equally spaced: the gap

increases by 2 each time. However, it is quite possible to select three equally
spaced squares, for example 1, 25, 49. Actually, such triples correspond to
Pythagorean triples in a pleasantly simple way, which we will describe.

One of the many assertions stated, but not proved, by Fermat, is the fact
that there is no instance of four equally spaced squares. This is known as
“Fermat's four squares theorem”. There is a fairly long history of attempted
proofs; in particular, a rather sketchy one by Euler has not been accepted as
conclusive. One of the earliest examples of a successful proof was given by
Pocklington [1]. Here I will present a simplified version of an elegant
method given much more recently in [2]. It seems that this article only
appeared in arXiv, a favoured repository for pre-publication papers. (Van
der Poorten may have intended to submit it to a journal, but regrettably he
died in 2010.)

Van der Poorten's strategy is to equate the statement to a pair of
Pythagorean-type identities, which is then shown to be “impossible” in the
sense that it is not satisfied by any choice of positive integers. Having
proved this result, we will then put it into its context by describing some
further impossible identities of a similar type.

Here we summarise a few elementary facts that we will use repeatedly.
Lemma 1: If  is a multiple of 4, then  and  are even.x2 + y2 x y

Proof: Clearly,  and  are both even or both odd. If  is odd, then
mod 4. So if  and  were odd, then  would be congruent to 2 mod 4.

x y x x2 ≡ 1
x y x2 + y2

Lemma 2: If  is a multiple of 3, then  and  are multiples of 3.x2 + y2 x y

Proof: If  is congruent to 1 or 2 mod 3, then  mod 3. So the only
way that  can be a multiple of 3 is for  and  to be both congruent
to 0 mod 3, so that  and  are multiples of 3.

a a2 ≡ 1
x2 + y2 x2 y2

x y

We willl also use the following fact, which is an obvious consequence
of unique prime factorisation: if , are coprime and , then and

are squares. Of course, this extends to a product of three pairwise coprime
numbers.

m n mn = c2 m
n

We recall some basic facts about Pythagorean triples. These are triples
 of positive integers, such as (3, 4, 5), satisfying . We

say that the triple is coprime (or primitive) if 1 is the greatest common
divisor of ,  and : it then follows that ,  and  are actually pairwise

(x, y, z) x2 + y2 = z2

x y z x y z
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coprime: any common divisor of two of them would divide the third one.
Also, two of ,  and  must be odd. By Lemma 1, these are not  and , so
in fact  and one of  and  (say ) are odd. The well-known characterisation
of coprime Pythagorean triples then states that there are coprime integers ,
 (one even, one odd) such that

x y z x y
z x y x

p
q

x = p2 − q2,  y = 2pq,  z = p2 + q2.
Further, if  mod 4, then  must be odd and  even, while if
mod 4, then  is even and  odd.

z ≡ 1 p q x ≡ 3
p q

Equally spaced squares
Suppose that  and , equivalently .

Then  and  are both even or both odd. If they are even, then  is a
multiple of 4, so  is also even. If  and  are odd, then  mod 4, so

, and  is also odd. So if the triple is coprime, then all three are odd.

a < b < c b2 − a2 = c2 − b2 a2 + c2 = 2b2

a c a2 + c2

b a c a2 + c2 ≡ 2
b2 ≡ 1 mod4 b

Triples of equally spaced squares correspond to Pythagorean triples in
the following way.

Theorem 1: The following statements are equivalent:
(i) , with ;a2 + c2 = 2b2 0 < a < b < c

(ii) ,  and , where  and .a = x − y b = z c = x + y x2 + y2 = z2 x > y > 0
Also, , ,  are coprime if, and only if, , ,  are coprime.a b c x y z

Proof: Given (ii), we have

a2 + c2 − (x − y)2 + (x + y)2 = 2 (x2 + y2) = 2z2 = 2b2.
Given (i), we have seen already that  and  are even. Let

,  and . Then ,
and .

c + a c − a
x = 1

2 (c + a) y = 1
2 (c − a) z = b a = x − z c = x + y

x2 + y2 = 1
2 (c2 + a2) = b2 = z2

If a prime  divides ,  and , then it divides ,  and . The converse
applies if . For the case , suppose that ,  and  are even. Then
 is even, so by Lemma 1,  and  are even.

p x y z a b c
p > 2 p = 2 a b c

z x y
Note that the common difference  equals : we denote this by .b2 − a2 2xy �

By way of illustration, we list the first few cases.

x, y, z a, b, c a2, b2, c2 �
4, 3, 5 1, 5, 7 1, 25, 49 24

12, 5, 13 7, 13, 17 49, 169, 289 120
15, 8, 17 7, 17, 23 49, 289, 529 240
24, 7, 25 17, 25, 31 289, 625, 961 336
21, 20, 29 1, 29, 41 1, 841, 1681 840
35, 12, 37 23, 37, 47 529, 1369, 2209 840
40, 9, 41 31, 41, 49 961, 1681, 2401 720
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The reader can easily check that in each case the next number in the
progression, obtained by adding  again, is not a square. As mentioned in
the Introduction, Fermat stated the following result.

�

Theorem 2: There is no instance of four equally spaced squares.

We will prove this by a simplified version of van der Poorten's method.
If there were four such squares, we could list them in the form ,

, , . So  and  would be squares. To prove
Theorem 2, we now establish:

x − 3n
x − n x + n x + 3n x2 − n2 x2 − 9n2

Theorem 3: For positive integers , it is not possible for both  and
 to be squares.

x, y x2 − y2

x2 − 9y2

Proof: We use the “method of descent”. Suppose that  and
, and that among such pairs , this is the one with

minimal.

x2 − y2 = z2

x2 − 9y2 = w2 (x, y) x

Then  and  are coprime: if a prime  divides both  and , then it also
divides  and , and all four could be divided by . Also,  is odd. If it were
even, then  would be a multiple of 4, and by Lemma 1,  and  would be
even.

x y p x y
z w p x

x2 y z

Next,  is even. If it were odd, then  and  would be even. Now
, so . But  and  is

congruent to 0 or 1 mod 4, so that  would be congruent to 2 or 3 mod 4,
which is not possible for squares.

y z w
z2 − w2 = 8y2 (1

2z)2 = (1
2w)2 + 2y2 2y2 ≅ 2 mod 4 (1

2w)2

(1
2z)2

Since , there exist coprime , such that  and
 (also , but we won't use this). Exactly one of

,  is even: we can choose later which one.

x2 = y2 + z2 p y = 2pq
x = p2 + q2 z = ± (p2 − q2)
p q

Since , there exist coprime  such that
and . One (say ) is a multiple of 3: let  and .
Then  and . One of ,  is even (either is possible, and
we are not free to interchange them!).

x2 = (3y)2 + w2 s1, t1 3y = 2s1t1
x = s2

1 + t2
1 t1 t1 = 3t s1 = s

y = 2st s = s2 + 9t2 s t

So : denote this number by . Then  and  represent two
different disjoint partitions of the prime factorisation of . By picking out
common prime factors, we see that there exist pairwise coprime , , ,
such that

pq = st N pq st
N

a b c d

p = ab,   q = cd,   s = ac,   t = bd.
Since , we havep2 + q2 = s2 − 9t2

a2 (c2 − b2) = d2 (c2 − 9b2) .
Since  and  are coprime and  divides , Euclid's lemma
shows that there exists  such that , so that also .
We will show that , so that in fact

d2 a2 d2 a2 (c2 − b2)
k c2 − b2 = kd2 c2 − 9b2 = ka2

k = 1

c2 − b2 = d2,  c2 − 9b2 = a2.

https://doi.org/10.1017/mag.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.58


204 THE MATHEMATICAL GAZETTE

So  is another pair of the type required, with , contradicting
the minimality of .

(c, b) c ≤ s < x
x

Now  and , so  divides  and
. We show next that  is odd: then  divides  and , so . If  is

even, choose the notation ,  so that  is even and  odd. Then  is even
and  odd. If instead  is even, take  to be even: then  is even and  odd. In
both cases,  is odd, hence  is odd.

8b2 = k (d2 − a2) 8c2 = k (9d2 − a2) k 8b2

8c2 k k b2 c2 k = ±1 t
p q p q b

c s q c b
c2 − b2 k

So . If , then . By Lemma 2, this implies
that  and  are multiples of 3 (so not coprime). Hence , as required.

k = ±1 k = −1 a2 + c2 = 9b2

a c k = 1

We now describe a companion result to Theorem 3, also given in [2]. In
fact, van der Poorten deduces Theorem 3 from Theorem 4 by deploying a
further round of Pythagorean triples. Our simplification has been to prove
Theorem 3 directly. Actually, neither of these theorems is stated explicitly in
[2], only Theorem 2. The proof of Theorem 4 is along similar lines, but the
details are quite different.

Theorem 4: For positive integers , it is not possible for both  and
 to be squares.

x, y x2 + y2

x2 + 4y2

Proof: Suppose that  and , and that among such
pairs , this is the one with  minimal. Then of course  and  are
coprime.

x2 + y2 = z2 x2 + 4y2 = w2

(x, y) z x y

We can dispose quickly of the case where  is even. Then , hence ,
is even, and we have , while . So

 is another pair of the required type, with ,
contradicting the minimality of z.

x w2 w
y2 + (1

2x)2 = (1
2w)2 y2 + 4 (1

2x)2 = z2

(y, 1
2x) y2 + (1

2x)2 < z2

So suppose that  is odd. For the moment, suppose that  mod 4.
Then there exist coprime , , with  even and  odd, such that
and  (also ). Also, there exist coprime , , with
even and  odd, such that  and . Let . Then

 and . If instead  mod 4, then the same identities
hold with  replaced by −x. In either case, we have pq = st and p2 − q 2 =
4s2 − t2 , so that .

x x ≡ 3
p q p q x = p2 − q2

y = 2pq z = p2 + q2 s1 t s1
t x = s2

1 − t2 2y = 2s1t s1 = 2s
x = 4s2 − t2 y = 2st x ≈ 1

x
p2 + t2 = q2 + 4s2

So there exist pairwise coprime , , ,  such thata b c d

p = ab,  q = cd,  s = ac,  t = bd.
Then

b2 (d2 + a2) = c2 (d2 + 4a2) .
By Euclid's lemma, there exists  such that , so that also

. We show that , so that  is a pair of the
required type with , where , since .

k d2 + a2 = kc2

d2 + 4a2 = kb2 k = 1 (d, a)
d2 + a2 = c2 c < z c ≤ s < y < z
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If  is a multiple of 3, then  is a multiple of 3. By Lemma 2, this
implies that  and  are multiples of 3, contradicting the fact that they are
coprime. So  is not a multiple of 3. Now  and

. By Euclid's lemma again,  divides both  and :
hence , as required.

k d2 + a2

d a
k k (b2 − c2) = 3a2

k (4c2 − b2) = 3d2 k a2 d2

k = 1

Some further impossible identities
We now describe a number of other impossible identities of

Pythagorean type, which will put Theorems 1, 3 and 4 into perspective. We
will avoid tedious repetition of words like “for integers , , ”: when we say
that an identity or statement is not posssible, it is to be understood that we
mean not possible for positive integer values of the variables.

x y z

We start with a very simple example. Theorem 1 identified (in different
notation) numerous examples of triples satisfying . By
contrast, we have:

x2 + y2 = 2z2

Theorem 5: The identity  is not possible.x2 + y2 = 3z2

Proof: Supposing that such triples exist, let this be the one with  minimal.
By Lemma2,  and  are multiples of 3. Hence  is a multiple of 9, so

, hence also , is a multiple of 3. So  is another such triple,
contradicting the minimality of .

z
x y x2 + y2

z2 z (1
3x, 1

3y, 1
3z)

z

The same actually applies with 3 replaced by any prime  that is
congruent to  mod 4. Lemma 2 generalises to such , using the well-
known fact [3, p. 126] that  is not congruent to a square mod , so that if
 is congruent to a square mod , then  is not.

p
−1 p

−1 p
a p −a

Meanwhile, given any positive integer , there are plenty of triples
satisfying . In fact, for any choice of  and , such a triple is
given by

a
x2 + ay2 = z2 p q

a = |p2 − aq2| ,  y = 2pq,  z = p2 + aq2.
The most famous example of an impossible identity is, of course, the

one featured in Fermat's so-called last theorem:  is impossible
for all . As is well known, Fermat claimed to have a proof, but did not
divulge it. However, he did prove the following pair of results, the first of
which implies the case  of the “last theorem”.

xn + yn = zn

n ≥ 3

n = 4

Theorem 6: The identity  is not possible.x4 + y4 = z2

Theorem 7: The identity  is not possible.x4 − y4 = z2

Here we just give the proof of Theorem 7, which is perhaps a little less
well known. A proof of Theorem 6 along similar lines can be seen in many
books, e.g. [3, p. 227].
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Proof of Theorem 7: Again we use the method of descent. Supposing that
such triples exist, let  be the one with  smallest. We show first that
and  are coprime. If some prime  divides both  and , then  divides ,
so  divides . Let ,  and . Then ,
contradicting the minimality of .

(x, y, z) x x
y p x y p4 z2

p2 z x = px1 y = py1 z = p2z1 x4
1 − y4

1 = z2
1

x
So  is a coprime Pythagorean triple. Either  or  is odd. We

consider the cases separately.
(y2, z, x2) y y

If  is odd, then there exist ,  such thaty u y

y2 = u2 − v2,  z = 2uv,  x2 = u2 + v2.
Then : this is another triple of the
required type with .

u4 − v4 = (u2 + v2) (u2 − v2) = (xy)2

u < x
Now suppose that  is odd. Then there exist coprime ,  such that z u v

y2 = 2uv,  z = u2 − v2,  x2 = u2 + v2.
There exist coprime ,  such that  and ,  are  and

 (one way round or the other). Then
p q x = p2 + q2 u v p2 − q2

2pq

( y
2)2

= 1
2uv = pq (p2 − q2) .

Since ,  and  are pairwise coprime, they are all squares:p q p2 − q2

p = a2,  q = b2,  p2 − q2 = c2.
Hence : this is a triple of the required type with .a4 − b4 = c2 a < x

These theorems (especially Theorem 7) deliver numerous further
impossible identities. We list some of them as corollaries.

Corollary 1: It is not possible for both  and  to be squares.x2 + y2 x2 − y2

Proof: This would imply that  is a square.x4 − y4 = (x2 + y2) (x2 − y2)

Corollary 2: It is not possible for both  and  to be squares.
Similarly for  and .

x2 + y2 x2 + 2y2

x2 − y2 x2 − 2y2

Proof: Suppose that  and . Then
and , contradicting Corollary 1. The second statement is similar.

x2 + y2 = z2 x2 + 2y2 = w2 z2 − y2 = x2

z2 + y2 = w2

Corollary 3: If  is a Pythagorean triple, then at most one of , ,  can
be a square. Further, ,  and  are not squares.

(x, y, z) x y z
xy xz yz

Proof: If  and , then , contradicting Theorem 6.
If  and  then , contradicting Theorem 7.
Similarly for the pair , . So at most one of the three can be a square. If

 are coprime, it follows that ,  and  are not squares. The same
follows in the general case, since then we have ,  and

x = a2 y = b2 a4 + b4 = z2

x = a2 z = b2 a4 + y2 = b4

y z
x, y, z xy xz yz

x = kx′ y = ky′
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 for some , where  are coprime.z = kz′ k x, y, z
Note that any one of the three can certainly be a square, as shown by the

triples (3, 4, 5), (9, 40, 41) and (7, 24, 25).
Conversely, Corollary 3 obviously implies Theorems 6 and 7.

Next, we deduce a pair of results companion to Theorems 6 and 7.

Theorem 8: The identity  is not possible.x4 + 4y4 = z2

Proof: Suppose that this is the example with  minimal. Then  is a
Pythagorean triple. We need to know that  and  are coprime. For primes

, this works exactly as in Theorem 7. We also require  to be odd. If it
is even, then so is . Let  and . Then : a
triple of the required type with .

z (x2, 2y2, z)
x2 2y2

p ≠ 2 x
z x = 2x1 z = 2z1 y4 = 4x4

1 = z2
1

z1 < z
 So there exist coprime  such that  and , so

. Hence there exist ,  such that  and , giving
, contrary to Theorem 7.

s, t x2 = s2 − t2 2y2 = 2st
y2 = st a b s = a2 t = b2

a4 − b4 = x2

Theorem 9: The identity  is not possible.x4 − 4y4 = z2

Proof: This is similar to the previous proof, but an extra trick is needed. We
actually show at the same time that  is not possible. Supppose
that , and that this is the triple of either type with  minimal.
Again we need to know that  is odd, so that  and  are coprime. If  is
even, let  and . Then , a triple of the second
type with . (If the minimal example is of the second type, similar
reasoning applies.)

4y4 − x4 = z2

x4 − 4y4 = z2 z
x x 2y2 x

x = 2x1 z = 2z1 4x4
1 − y4 = z2

1
z1 < z

So  is a coprime Pythagorean triple, and there exist coprime
 such that  and . This leads to ,

contrary to Theorem 6.

(z, 2y2, x2)
s, t y2 = st x2 = s2 + t2 x2 = a4 + b4

These Theorems generate corollaries analogous to the previous ones.

Corollary 4: It is not possible for both  and  to be squares.x2 + 2y2 x2 − 2y2

Corollary 5: It is not possible for both  and  to be squares.x2 + 2y2 x2 + 4y2

Corollary 6: If  is a Pythagorean triple with  even, then at most one
of  and  is a square. Hence  (the area of the triangle) is not a square.

(x, y, z) y
1
2y, x z 1

2xy

Proof: If  and , then , contradicting Theorem 8.
If  and , then , contradicting Theorem 9.

x = a2 1
2y = b2 a4 + 4b4 = z2

z = c2 1
2y = b2 c2 − 4b4 = x2

Conversely, Corollary 6 implies Theorems 8 and 9.

Stan Dolan has shown in [4] how one can prove Corollaries 3 and 6
(and hence Theorems 6, 7, 8 and 9) simultaneously, by an ingenious
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formulation, in terms of right-angled triangles, of the statement to be proved
by descent,

One might be tempted to conjecture that these theorems are special
cases of something much more general, perhaps that for any non-zero
integer ,  and  cannot both be squares. However, this idea
is laid to rest by the following example:

a x2 + y2 x2 + ay2

152 + 82 = 172,  152 + 1122 = 152 + 196 × 82 = 1132.

Could Theorems 3 and 4 have been deduced with less effort from
Theorems 7 and 9? Not as far as I can see.

Finally, we remark that Pocklington's method for Theorem 2 is achieved
by considering another quartic, .x4 − x2y2 + y4
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