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ON C'-ALGEBRAS WITH THE APPROXIMATE n-TH ROOT
PROPERTY

A. CHIGOGIDZE, A. KARASEV, K. KAWAMURA AND V. VALOV

We say that a C*-algebra X has the approximate n-th root property (n ~£ 2) if
for every a € X with ||a|| < 1 and every e > 0 there exits b 6 X such that ||6|| < 1
and \\a — bn\\ < t. Some properties of commutative and non-commutative C*-algebras
having the approximate n-th root property are investigated. In particular, it is shown
that there exists a non-commutative (respectively, commutative) separable unital
C-algebra X such that any other (commutative) separable unital C*-algebra is a
quotient of X. Also we illustrate a commutative C*-algebra, each element of which
has a square root such that its maximal ideal space has infinitely generated first Cech
cohomology.

1. INTRODUCTION

All topological spaces in this paper are assumed to be (at least) completely regu-
lar. A compact Hausdorff space is called a compactum for simplicity. By C*-algebra
and homomorphisms between C"-algebras, we mean unital C*-algebras and unital
•-homomorphisms. For a space X and an integer n ^ 2, we consider the following
conditions (|| • || denotes the supremum norm):

(*)„ For each bounded continuous function / : X -> C and each e > 0, there

exists a continuous function g: X -* C such that \\f - gn\\ < e.

(**)„ For each bounded continuous function f': X —»• C and each e > 0, there

exist bounded continuous functions gi,--.,gn: X -> C such that f = Yl9t
and ||<7j — <7j|| < e for each i, j . 1=1

We say that the space C*(X) of all bounded complex-valued functions on X has the
approximate n-th root property if X satisfies condition (*)„. The results in this paper
were inspired by the following theorem established by Kawamura and Miura [10]:

THEOREM 1 . 1 . Let X be a compactum with dim^f < 1 and n a positive integer.
Then the following conditions are equivalent.
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(1) C{X) has the approximate n-th root property.

(2) X satisfies condition (**)„.

(3) the first Cech cohomology ^(X; Z) is n-divisible, that is, each element of
Hl{X;Z) is divided by n.

Let A(n) denote the class of all completely regular spaces satisfying condition (*)„
and Ai(n) is the subclass of A(n) consisting of spaces X with dimX ^ 1.

In Section 2 we investigate some properties of the classes A(n) and A\{n). In
particular, the following theorem is established.

THEOREM 1 .2 . Let n be a positive integer and let K. denote one of the classes
A{n) and Ai(n). Then, for every cardinal r ^ w, there exists a compactum XT 6 K of
weight ^ r and a IC-invertible map JK. • XT -4 IT.

Here, a map h: X —> Y is said to be invertible for the class K. (or simply, IC-invertible)
if for every map g: Z —• Y with Z e K. there exists a map g: Z -t X such that g = ho~g.

Theorem 1.2 implies the next corollary.

COROLLARY 1 . 3 . Let n be a positive integer and let K, be one of the classes
A(n) and A\ (n). Then, for every r ^ u, there exists a compactum X 6 K. of weight T
which contains every space from K. of weight < r.

It is easily seen that the modification of condition (*)„, obtained by requiring both /
and g to be of norm < 1, is equivalent to (*)„. This observation leads us to consider the
following classes of general (non-commutative) C*-algebras. We say that a C*-algebra
X satisfies the approximation n-th root property if for every a € X with ||a|| < 1 and
every e > 0 there exists b e X such that \\b\\ ^ 1 and \\a - bn\\ < e. The class of all
C*-algebras with the approximate n-th root property is denoted by AV(n). Let AV\{n)
be the subclass of AP{n) consisting of C*-algebras of bounded rank ^ 1 (recall that
bounded rank of C*-algebras is a non-commutative analogue of the covering dimension
dim, see [5]). We also consider the class %V{n) of C*-algebras X with the following
property: for every invertible element a £ X with ||a|| < 1 and every e > 0 there exists
b&X such that ||6|| < 1 and \\a - bn\\ < e.

In the sequel, AV(n)s denotes the class of all separable C*-algebras from AP(n).
The notations AVi(n)s and 7iV(n)s have the same meaning.

Recall now the concept of 5R-invertibility introduced in [2], where 5ft is a given class
of C*-algebras. A homomorphism p: X —> Y is said to be ^.-invertible if, for any homo-
morphism g: X -> Z with Z € R, there exists a homomorphism g~: Y —> Z such that
g — g op. We also introduce the notion of a universal C*-algebra for a given class 3t as
a C*-algebra Y € 3? such that any other C*-algebra from 3? is a quotient of Y.

Section 3 is devoted to the classes AV{n), AVx{n) and UV(ri). The results of this
section can be considered as non-commutative counterparts of the results from Section 2.
For example, Theorem 1.4 below is a non-commutative version of Theorem 1.2.
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THEOREM 1 .4 . Let n be a positive integer and let K. be one of the classes
AV{n), AV\{n) and /HV{n). Then there exists a K-invertible unital *-homomorphism
p: C*(Foo) -> ZK of C*(FOO) to a separable unital C- algebra ZK 6 K, where C'^^) is
the group C* -algebra of the free group on countable number of generators.

It is well-known that every separable C*-algebra is a surjective image of C*(Foo).
Therefore, if 3? is a class of separable C*-algebras and p: C*(Foo) -* Y& is a R-invertible
homomorphism with Y& € SR, then Y& is universal for the class 3J. Hence, Theorem 1.4
implies that each of the classes AV{n)s, AV\{n)s and HV(n)s has a universal element.

Let us note that there exists a non-commutative C*-algebra which belongs to any
one of the classes AV(n)s, AV\{n)s and 7iV(n)s. Indeed, let X = M(m) be the algebra
of all TO x m complex matrixes, where m ^ 2 is a fixed integer. By [1], the bounded rank
of any A € X is 0. Moreover, using the canonical Jordan form representation, one can
show that if A € X and n ^ 2, then A can be approximated by a matrix B € X with
C" = B for some C € X. Hence, the class X is a common part of AV{n)a, AVi(n), and
WP{n)s. This implies that the universal elements of AV{n)s, AVi{n)3 and WP{n)s are
also non-commutative.

Section 4 deals with square root closed compacta, compacta X such that, for every
/ € C(X), there is g € C(X) with / = g2. It is known that if X is a first-countable
connected compactum, then X is square-root closed if and only if X is locally connected,
d\mX < 1 and //^(A^Z) is trivial, see [6, 8, 10, 12]. A topological characterisation
of general square root closed compacta is still unknown. Here we show that a square
root closed compactum X with dimX < 2, constructed based on the idea of Cole ([13,
Chapter 3, Section 19], and Karahanjan [9] has infinitely generated first Cech cohomology
Hl(X;"L). This space is the limit of an inverse system (XQ,7r£ : a < wi) starting with
the unit disk in the plane and such that each map 7r£: X$ —> Xa is invertible with
respect to the class of square root closed compacta. A similar construction yields a one-
dimensional such compactum. This illustrates that the topological characterisation of
(not necessarily first countable) square root closed compacta would be rather different
than the one for first-countable compacta mentioned above. Also, the invertibility of
the maps 7rf allows us to obtain a universal element for the class of square root closed
compacta with arbitrarily fixed weight.

2. SOME PROPERTIES OF THE CLASSES A{n) AND A\{n)

LEMMA 2 . 1 . Let X be the limit space of an inverse system {Xa,p^ : a, 0 € A] of
compacta. Then, for every f G C{X) and every e > 0, tiere exists a € A and g 6 C(Xa)
such that gopa is e-close to f, where pa: X —> Xa is the a-th limit projection.

PROOF: We take a finite cover UJ of f(X) consisting of open and convex subsets
of C each of diameter < e. Since X is compact, we can find a and an open cover
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7 = {Uj : j = 1, . . . , m} of Xa such that Pal{l) is a star-refinement of the cover f~l(ui).
Without loss of generality, we can assume that each Uj is functionally open in Xa, that is,
Uj = hj1 ((0,1]) for some function hj: Xa -t [0,1]. For any j we fix a point Xj € PZl(Uj)

and the required function g: Xa -> C is defined by g(y) = V ] hj(y)f(xj). D

COROLLARY 2 . 2 . Let /C be one of the cJasses >4(n) and -4i(n). If X is the limit
space of an inverse system {Xa,p% : a,/3 € A} of compacta with each Xa € K, then
XeK.

PROOF: This is a direct application of Lemma 2.1 for the class A(n). Since the
limit space of any inverse system of at most one dimensional compacta is of dimension
^ 1, the validity of our corollary for A(n) yields its validity for A\(n). D

We say that a class of spaces K is factorisable if, for every map / : X —> Y of a
compactum X € K,, there exists a compactum Z € fC of weight w(Z) ^ w(Y) and maps
TT: X -» Z and p: Z -»• Y such that / = pon.

PROPOSITION 2 . 3 . Any one of the classes A(n) and A\(n) is factorisable.

PROOF: We consider first the class A(n). Fix a map / : X —• Y of a compactum
X € A{n) and assume w(Y) ^ r. Obviously, we can assume X is of weight w(X) > r
and Y is compact. By induction, we construct sequences of compacta Xk, dense subsets
Mk C C(Xk) of cardinality ^ r and maps irk: X ->• X*, p£+1: A"fc+i -> Xfc, A: ^ 0,
satisfying the following conditions:

(0) X0 = Y, 7T0 = / ,

(1) p*+1 o Trk+i = 7Tfc, tu(Xjt) ^ r and M* separates points of Xk (k > 0);

(2) For every h € Mk and every e > 0, there exists g € Mk+i such that

The weight of the function space C(Y) is < r, so C(K) contains a dense subset
Mo of cardinality < T, separating points of y. Suppose the spaces Xi, the sets M< and
the maps 71̂ , p{_!, i ^ k, have been constructed for some k. Since AT € A(n), for each
/i € Mk and each positive rational number r G Q+, there exists g(h,r) e C(X) with
\\honk -g{h,r)n\\ < r. Let 7rfc+1: X ->Xkx (R)^*^* x (R)M* be the diagonal product
of 7Tfc and all maps g(h, r) and h o nk, where h £ Mk, r 6 Q+. Let Xfc+i = 7rfc+1(X)
and p*+1: >ft+i -» X* be the natural projection onto Xk. Since Mfc separates points of
Xk (condition (1)), 7Tfc+1 is an embedding and hence every g(h, r) can be represented as
gk+i(h,r) O7rfc+i with gk+i(h,r) € C{Xk+l). Because tu(Xjt+i) ^ r, C(ATA+i) contains a
dense subset Mk+\ of cardinality ^ r containing all gk+i(h, r), h e Mk, r e Q+ and also
separating points of Xk+\. Obviously, Xk+i, Mk+\ and 7ii+i satisfy conditions (1) and
(2). Let Z be the limit of the inverse sequence {X^p^1 : k = 1,2...}, p: Z -> Y the
first limit projection and n: X -> Z the limit of the maps irk. Also let pk: Z —> Xk be
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the fc-th limit projection. By Lemma 2.1, for every h G C(Z) and every e > 0, there
exists m and gm G C{Xm) such that ||/i - gm °pm\\ < e /3 . Now, take hm G Mm with
||5m - hm\\ < e / 3 . According to our construction, | | / im o p™+1 - g"|| < e/3 for some
g G M m + i . Hence, \\h — (gopm+1)

n|| < e. Finally, by Lemma 2.1, we see Z € A(n).

For the class A\ (n) we need the following modifications of the previous proof: all
Mfc, A; ^ 0, are dense subsets of C(Xk) of cardinality \Mk\ ^ r satisfying conditions
(1) and (2), where the compactum Xk is of dimension ^ 1 for each k ^ 1. It suffices
to demonstrate the construction of X\ and M\. Using the above notations, take the
diagonal product qi: X —> Y x CM° *Q + x CM° of n0 = f and all maps g(h, r) and ho TT0,
where /i G Mo and r e Q + . Let also Zi = </ipO and q0: Z\ —t Y be the natural
projection. Then, w(Zi) ^ r and, by the Mardesic factorisation theorem [11], there
exists a compactum X\ of weight ^ T and d imXi ^ 1, and maps TTI : X —¥ X\ and
q2: Xi ->• Zx with gi = g2 " f i . Obviously, every <?(/i, r) can be represented as gi(h, r)owi

with gi(/i, r) G C ( X i ) . We denote p \ = q0 o q2 and choose a dense subset Mx C C{X\)

such that |Mi | < r and Mi contains every g\(h, r) with h E Mo and r G Q + , and
separates points of Xx. In this way we obtain the spaces Xk with dimX* < 1. The last
inequalities imply tha t the limit space Z is also of dimension ^ 1. Moreover, by Lemma
2.1, Z satisfies (*)„, so Z G Ai(n). D

COROLLARY 2 . 4 . Let K, be one of the classes A(n) and Ai{n). Then every
space X G K, has a compactiScation Z G K with w(Z) = w(X).

PROOF: Obviously, X £ K, implies 0X G /C. Let Y be an arbitrary compactification
of X with w(Y) — w(X) and let / : pX -» Y be the extension of the identity on X.
Then, by Proposition 2.3, there exists a compactum Z G K. and maps g: /3X -> Z and
h: Z —> Y with h o g = f and w(Z) = w(X). It remains only to observe that Z is a
compactification of X. D

PROPOSITION 2 . 5 . Let K be one of the classes A{n) and A\(n). Then every
compactum X G /C can be represented as the limit space of an w-spectrum {Xa,p^ :
a, 0 G A} of metrisable compacta with each Xa G K..

PROOF: Because of similarity of the arguments, we consider only the class A(n).
First, represent X as the limit space of an w-spectrum {Xa,p% : a, 0 G A} and introduce
the relation L on A2 consisting of all (a, 0) G A2 such that a ^ 0 and for each / G C{Xa)
and e > 0 there is g G C{Xp) with | | / op£ - £n|| < e. The relation L has the following
properties:

(i) for every a G A there exists 0 G A with (a, /3) G L:

(ii) if (a, 0) G Z- and 0 ^ 7, then (a, 7) G L;

(iii) if {a*} is a chain in A with each {ak,0) G L, then (a, 0) G Z,, where
a = sup{afc}.
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Indeed, to show (i), we take a countable dense subset Ma C C(Xa) and, as in
Proposition 2.3, for every h G Ma and r G Q+ choose g{h,r) € C(X) with \\h
°po- 9(h, r)n\\ < r. Notice that, for each / e C(X), there is a 7 G A and <p G C(X^)
such that f — (popy. Applying this to g(h, r), we can find (3 G A, P > a, such that for
each (h,r) G MQ x Q+, we have g(h,r) = ge(h,T) opp, where gp{h,r) e C{Xp). Then
(a, £) G L. Property (ii) follows directly and (iii) follows from Lemma 2.1 and the fact
that Xa is the limit space of the inverse sequence generated by Xak and the projections
Pak

k
+1 • Xat+1 —> XOjfc, A = 1,..., because a is supremum of the chain {a*}.
By [3, Proposition 1.1.29], the set A = {a 6 A : (a,a) G L} is cofinal and w-closed

in A. Obviously, Xa G A{n) for each a € A and X is the limit of the inverse system
{Xa,pi:a,fi€A}. D

PROOF OF THEOREM 1.2: We consider the family of all maps {ha: Ya ->• IT}O6A
such that each Ya is a closed subset of V with Ya G K.. Let Y be the disjoint sum of
all Ya and the map h: Y -* V coincides with ha on every Ya. We extend h to a map
7i: 0Y -> Ir. Since /3K € /C, by Proposition 2.3, there exists a compactum X of weight
^ r and maps p: 0Y —• X and / : X -> 1IT such that X € JC and f op = h.

Let us show that / is /C-invertible. Take a space Z € IC and a map g: Z -* V.
Considering (3Z and the extension g: pZ -> IT of 5, we can assume that Z is compact.
We also can assume that the weight of Z is ^ r ( otherwise we apply again Proposition
2.3 to find a compact space T G K, of weight ^ r and maps g\\ Z —> T and #2: T1 —>• IT

with 52 ° 5i = Pi and then consider the space T and the map 52 instead, respectively,
of Z and g). Therefore, without loss of generality, we can assume that Z is a closed
subset of IT. According to the definition of Y and the map h, there is an index a G A
such that Z — Ya and g = ha. The restriction p | Z: Z —• X is a lifting of <7, that is,
/ o ( p | Z ) = <7. D

3. C'-ALGEBRAS WITH THE APPROXIMATE n-TH ROOT PROPERTY

In this Section we investigate the behaviour of the classes AV(n), AVi(n) and
HV(n) with respect to direct systems and then use the result to prove the existence of
universal elements in the classes AV(n),, AVi(n), and WP{n),.

When we refer to a unital C*-subalgebra of a unital C"-algebra we always assume
that the inclusion is a unital •-homomorphism. The product in the category of (unital)
C"-algebras, that is, the f°-direct sum, is denoted by I l { ^ : * e ^ } - F°r a given set Y
and a cardinal number r, the symbol expT Y denotes the partially ordered (by inclusion)
set of all subsets of Y of cardinality not exceeding r.

Recall that a direct system S = {Xa, i%, A} of unital C*-algebras consists of a
partially ordered directed indexing set A, unital C*-algebras Xa, a € i , and unital *-
homomorphisms i£: Xa -¥ Xp, defined for each pair of indexes a, 0 G A with a ^ /?, and
satisfying the condition i£ = ij o i£ for each triple of indexes a, /3,7 G A with a ^ 0 ^ 7.
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The (inductive) limit of the above direct system is a unital C*-algebra which is denoted

by l i m 5 . For each a G A there exists a unital *-homomorphism ia: Xa -> l imS which

will be called the a-th limit homomorphism of <S.

If A' is a directed subset of the indexing set A, then the subsystem {Xa,i%, A'} of

S is denoted S \A'.

Let r ^ u) be a cardinal number. A direct system S = {Xa,i^,A} of unital

C*-algebras Xa and unital *-homomorphisms if: Xa —> X$ is called a direct C* -system

[4] if the following conditions are satisfied:

(a) A is a r-complete set, that is, for each chain C of elements of the directed

set A with \C\ ^ r , there exists an element sup C in A. See [3] for details.

(b) The density d(Xa) of Xa is at most r , for each a £ A.

(c) The a- th limit homomorphism ia: Xa -> lim<S is an injective *-homomor-
phism for each a £ A.

(d) If B = {at: t € T} is a chain of elements of J4 with |T | < r and a = sup B,

then the limit homomorphism lim{i£(: t G T}: l im(5 | B) —>• Xa is an
isomorphism.

PROPOSITION 3 . 1 . ([4, Proposition 3.2]) Let T be an infinite cardinal num-

ber. Every unital C*-algebra X can be represented as the limit of a direct C*-system

Sx — {Xa,i^,A} where the index set A = e x p T y for some (any) dense subset Y of X

with \Y\ = d(X).

LEMMA 3 . 2 . ([4, Lemma 3.3]) If Sx = {Xa, if, A} is a direct C*-system, then

l imSx = l){ia(Xa): a € A}.

The next proposition is a non-commutative version of Corollary 2.2.

PROPOSITION 3 . 3 . Let K. be one of the classes AV(n), AVi{n) and HV{n).

If X is the limit of a direct system <S = {Xa, if, A} consisting of unital C*-algebras and

unital *-inclusions with Xa G K. for each a, then X G K.

PROOF: We consider first the case K. = AV(n). Let a G X with ||a|| ^ 1 and e > 0.
Since U{Xa: a G A} is dense in X (we identify each ia(Xa) with Xa), there exist a and
y G Xa with \\a - y\\ < e/4. Then, ||y|| < ||o|| +e /4 ^ 1 +e/4 , so ||(y/l +e/4) | | < 1.
Since Xa G AV{n), there is b e Xa with ||(y/l +e/4) - 6n|| < e/2 and \\b\\ ^ 1. Then
\\a - bn\\ < \\a - {y/1 + e/4)\\ + ||(y/l + e/4) - 6n|| < e. Hence, X G ^P(n) . The above
arguments work also for the class /KV{n) because of the fact that the set of invertible
elements of a C*-algebra is open. Indeed, for an invertible element a of X, the above fact
allows us to choose y in the above argument as an invertible element of X. Consequently,
y/(l + e/4) is invertible in Xa and, since Xa G W ( n ) , there is b G Xa with the required
properties. Because the limit of any direct system consisting of C*-algebras with bounded
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rank ^ 1 has a bounded rank ^ 1 [5, Proposition 4.1], the above proof remains valid for
the class AVi{n). D

As in the commutative case (see Proposition 2.5), we can establish a decomposition
theorem for the classes AV(n), AVi(n) and HV(n).

PROPOSITION 3 . 4 . Let K be one of the classes AV(n), AVi(n) and WP(n).
The following conditions are equivalent for any unital C*-algebra X:

(1) X£K.

(2) X can he represented as the direct limit of a direct C^-system {Xa,i^, A}
satisfying the following properties:

(a) Tie indexing set A is coGnal and u>-closed in the uj-complete set expw Y
for some (any) dense subset Y of X such that \Y\ = d(X).

(b) Xa is a (separable) C*-subalgebra of X with Xa G K, a G A.

PROOF: A similar statement holds for the class of all C*-algebras of bounded rank
^ n (see [5, Proposition 4.2]). So, it suffices to consider the classes AV(n) and HV{n).
We suppose K. = AV(n). The implication (2) => (1) follows from Proposition 3.3.

In order to prove the implication (1) => (2) we first consider a direct C^-system
Sx = {Xa,i^,A} with the properties indicated in Proposition 3.1. Each Xa is identified
with ia{Xa). We next introduce the following relation L C A2:
(a, P) G A2 if and only if a ^ 0 and for each x e XQ with ||x|| ^ 1 and each e > 0 there
exists y G Xp such that ||y|| ^ 1 and ||x — yn\\ < e.

Let us show that L satisfies the following conditions:

(i) for every a £ A there exists /3 e A with (a, /?) e L:
(ii) If (a, /?) G L and /? s$ 7, then (a, 7) G L\

(iii) if {a*} is a chain in A with each (a*,/?) G L, then (a,/?) G L, where
a = sup{a*}.

To verify (i), we take a G A and a countable set M C Xa which is dense in the
unit ball Ba = {x G Xa : \\x\\ ^ l } . Since X G AV{n), for each x e M and each
r G Q+, we may take (and fix) y(x,r) G X with | | i - y(x,r)n|| < r and ||y(x, r)|| ^ 1.
By Lemma 3.2, every y(x,r) belongs to some Xa(XtT). Since A is w-complete, according
to [3, Corollary 1.1.28], there exists 0 G A such that j3 ^ a and 0 > a(x,r) for each
x G M and r G Q+. Then, Xp contains all y{x,r) and (a, 0) G L. Condition (ii) follows
directly because @ ^ 7 implies Xp C X^. Let us establish condition (iii). If a is the
supremum of the countable chain {a*}, then Xa is the direct limit of the direct system
generated by the C*-subalgebras XQk, k = 1,2,Idots, and the corresponding inclusion
homomorphisms. This fact and (at,/3) G L for all k yield (a, 0) G L.

Since L satisfies the conditions (i)-(iii), we can apply [3, Proposition 1.1.29] to
conclude that the set A = {a G A : (a,a) G L) is cofinal and w-closed in A. Note
that (a, a) G L precisely when Xa G AV(n). Therefore, we obtain a direct C^-system
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S'x = {Xa,%,A} consisting of C'-subalgebras Xa G AV{n) of X. Clearly \j^S'x = X.

This completes the proof for the class AV(n). The case K. = AV{n) is similar. D

P R O O F OF T H E O R E M 1.4: Let B = {ft: C*(Foo) -> Xt: t e T } denote the set of
all unital *-homomorphisms on C*(Foo) such that Xt G K. We claim that the product
Y\{Xt: t € T} belongs to £ . This is obviously true if K. is either AV{n) or ~HV(n). Since
the bounded rank of this product is ^ 1 provided each Xt is of bounded rank ^ 1 [5,
Proposition 3.16], the claim holds for the class AV\(n) as well. The *-homomorphisms
ft, t e T, define the unital •-homomorphism / : C ^ ) -»• l\{Xt: t € T} such that
" t ° / = ft for each i e T , where ?rt: n ( -^e • t € T} -+ Xt denotes the canonical projection
•-homomorphism onto Xt. By Proposition 3.4, Y[{Xt • t €T} can be represented as the
limit of the C^-system <S = {Ca, ia, A} such that Ca is a separable unital C*-algebra with
Ca G K. for each a € A. Suppressing the injective unital *-homomorphisms i^: Ca —>

C$, we may assume, for notational simplicity, that CQ's are unital C*-subalgebras of
JT{^«: t 6 T } . Let {ak: k € w} be a countable dense subset of C*(Foo). By Lemma
3.2, for each k e w there exists an index a* € A such that / (a*) € CQjk. Since 4̂ is
w-complete, there exists an index a0 € A such that a0 ^ a* for each k £ UJ. Then
/(a*;) e C a t C Cao for each fc G w. This observation coupled with the continuity of /
guarantees that / ( C ^ F * , ) ) = / ( d { o t : k e u}) C cl{/({af c : A; G w})} C clCQo = CO0.

Let ZK — Cao and define the unital *-homomorphism p: C*(Foo) -+ ZJC as / ,

regarded as a homomorphism of C*(Foo) into Zn- Note that / = i o p, where

i: Z/c = Cao "~~* Yl{Xt '• t £T} stands for the inclusion.

By construction, we see ZK G K,. Let us show that p: C*(Foo) —> ZK is /C-invertible.

For a given unital *-homomorphism g: C*(Foo) -> X, where X is a separable unital

C*-algebra with X G K., we need to establish the existence of a unital *-homomorphism

h: ZK. -» X such that g = hop. Indeed, by definition of the set B, we conclude

that g = ft: C'fFoo) -> Xt — X for some index t G T. Observe that g = ft = nt

of = 7T(Oiop. This allows us to define the required unital *-homomorphism h: ZK.-* X

as the composition h = 7rt o i. Hence, p is JC-invertible. D

4. EXAMPLE

In this section, we show that a construction due to B. Cole (see [13, Chapter 3,
Section 19]) and M. Karahanjan [9, Thoerem 5] yields a square root closed compactum
X such that Hl(X;Z) is infinitely generated. In the sequel, we shall omit the coefficient
group Z. We shall need the following theorem which is a consequence of [7, Theorem
3.2].

THEOREM 4 . 1 . Let f: X —• Y be an open surjective map between compacta.

Then f: Hl{Y) -^ Hl(X) is a monomorphism.
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Now we outline the construction due to B. Cole. This is based on the exposition in

[13, Chapter 3, Section 19, p. 194-197]. Let X be a compactum and define

Sx = { (x, ( * / ) / € C ( ; Q ) : /(*) = */ for each / € C{X)} cXx &W

Note that Sx is a closed subset of X x n { / P 0 I / e C(X)} and hence is a compactum.
Also, it is easy to see that Sx is a pull-back in the following diagram:

Sx

where F: X -»• C is defined by F(x) = ( / ( * ) ) / e C m ( s e X), and 5 : is

defined by S((zf)feC(X)) =

Let 7r: SX —* X be the map defined by TT[(X, (z/)/eC(X))] = x for all I E X . Then
n is an open map with zero-dimensional fibers. The critical property of Sx and n is the
following:

(*) for any / G C(X) there exists g € C(X) such that f on — g2.

Indeed, define 5: Sx -»• C by ^[(i, (z/)/ec(x))] = */•

Note that (*) implies:

(•*) n is invertible with respect to the class of square root closed compacta.

Starting with a compactum Xo, by transfinite induction we define an inverse spec-

trum {Xa,n^: X0 -» Xa : a ^ 0 < w j as follows. If 0 = a + 1 then A> = SXa

and ?ro = 7r: Xp = 5xQ —> XQ is the map defined above. If /? is a limit ordinal, then

*0 = lim(Xa, TT% : X7 ->• Xa : a ^ 7 < /?) and, for a < 0, let jrf = Iim(7r2: Xy -»• XQ :

7 < /9)t~ . ^
We let Xn = limA"Q. The a-th limit projection is denoted by ira : Xn —* Xa. As

the length of the above spectrum is uii, the spectrum is factorising in the sense that each

/ € C(Xfi) is represented as / = fQ o na for some a < w\ and /„ E C(Xa). since its

length is U\. This implies that C(Xn) is square root closed due to the property (*).

In what follows, the unit disk in the complex plane { 2 € C : | z | ^ l } i s denoted by

A.

THEOREM 4 . 2 . C(An) is square-root closed, dimAn ^ 2, .//'(An) is infinitely

generated and 2-divisible.

Notice that for each square root closed compactum X, H1(X) is 2-divisible. Hence,

in view of the discussion above, we need only to show that i/i(An) is infinitely generated.

To show this, we need the following.
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THEOREM 4 . 3 . Hl (SA) is infinitely generated.

Note that Theorem 4.2 immediately follows from Theorems 4.1 and Theorem 4.3.
The proof of Theorem 4.3 is divided into two parts.

S T E P 1. If Hl(SA) is finitely generated then H^SA) = 0.

STEP 2. H1{SA)^0.

Now we shall accomplish Steps 1 and 2.

PROPOSITION 4 . 4 . Let Y be a closed subspace of a compactum X such that
there exists a retraction r: X -*• Y. Let also i: Y <-> X be the inclusion. Then there
exist an embedding i: Sy *—• Sx and a retraction r: Sx —> Sy such that the following
diagram is commutative.

Sy

7iy

Sy

TTy

PROOF: Define i by

*[(». (*7»)«ec(y))] = M
where £/ = rjf\Y for all / 6 C(X). Define r by

where T)g = Sgor for all g € C{Y). D

Now we are ready to accomplish Step 1. Let Am = {z € C: \z\ ^ 1/rn} C A. Let
rn: An —t An+i be the radial retraction and in: An+i •-> An be the inclusion. Consider
the following sequence of commutative diagrams.

An ^ ~ An+1

It follows easily form the commutativity of the diagram that lim< SAn is homeo-
morphic to the inverse limit of the sequence
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Since each fiber 7rn '(0) is 0-dimensional, we have dimlin^ S&n = 0. This implies
that Hl(\imS&n) = \imH1(SAn) = 0, which is equivalent to the following observation.

PROPOSITION 4 . 5 . For eaci a € Hl{S^) = Hl(SA), there exists an ri such
that (n o •••oin) ' (a) = 0 .

Let An be the annulus defined by An = {z e C | ( l /m+ 1) ^ \z\ ^ 1/m}, so that
An = {0} U (u{Aj | j > n}). Let ft: A = Ai —̂  A2 be the homeomorphism which
maps Aj to Aj+i (j ^ 1) by "radial homeomorphisms" and such that /i(0) = 0. Then
the following diagram is commutative

An.
h\

+ 1

Define hn: 5An -> 5An+1 by /in[(i, (u/)/6C(An))j = {h{x), (vg)geC(An+l)), where
vg — UgOh, g € C(An+i). Note that hn is a homeomorphism.

PROPOSITION 4 . 6 . The following diagram is commutative.

PROOF: For each (xn+1, (z/)/ec(A,,+1)) e 5An+1 we have

where u/ = z/|An = 2/oin, / G C(An), and

where t;/ = u/o/, = 2(/oh)oin = z/o(hoin)- On the other hand,

ftn+l[(^n+l,(z/)/GC(An+1))j = (ft(xn+l), (u

where u9 = zgoh, 9 € C(An+2), and

where vf = ufoin+1 = Z{/nn+i)oh = 2/°(in+io/,)- Since fto in = in+1 o ft, we conclude that
the diagram is commutative. u

The above lemma provides a commutative diagram in cohomologies:
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(t) K
'n+l

Let <j> = h\oi\: Hl(S&) -* HX(SA)- Since r\ o ix — idsA we have i* o r\ — i

and hence </> is an epimorphism. We use diagram (f) to obtain the following diagram, in
which all vertical arrows are isomorphisms.

The above diagram together with Proposition 4.5 imply that, for each a e
there exists n such that <£"(a) = 0. If ^ ( S A ) were finitely generated, we then would
have Hl (5A) = 0 because of the following observation.

PROPOSITION 4 . 7 . Let A be a finitely generated Abelian group. If there exists
an epimorphism f: A -> A such that for any a & A there exists n with fn{a) = 0, then
A is trivial.

PROOF: Note that / ® 1Q: A ® Q -¥ A <g> Q is an epimorphism of a vector space
A <g> Q, which is finite-dimensional over Q. Hence / ® 1Q is an isomorphism with the
property in the hypothesis. This implies rank.A = 0 and therefore A is a finite Abelian
group. Then / is an isomorphism and therefore .4 = 0. D

Thus Step 1 is completed and we proceed to Step 2.
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PROPOSITION 4 . 8 . For a continuous function f e C(X), let
Sf = {(x,z) : f(x) - z2 for each x G X) C X x C. Let also irf. Sf -* X be the
projection. Then the natural mappf: Sx -* Sj, (x,(zg)geC(X)) •-> (x,zf) is open. Thus
we have the following diagram.

sx

PROOF: Consider gi, g2, • • •, gn S C{X) and open subset Ux C X,
Vf,V9l,...,V9n c C. It suffices to show that

Pf[(Ux x V, x Vgi x ••• xVgn x n ;
C ) n 5 ^ ]

is open in 5/ . Take a point

(X, Zf, {Zgi)?=1, {Zg)g*f,gi gn) G UX X Vf X Vgi X • • • X Vgn X T\ C

and choose e > 0 such that B(zf,e) = {w 6 C: \w — zj\ < e} C Vf and B(zgi,e)
C Vgi for alii = 1,2,..., n. Let a = f(x), aj = gi(x), i = 1,2,..., n. There exists 6 > 0
such that if \b — a\ < 6 and \bi — Oj| < <5, i = 1, . . . , n, then the equations

- 6 = 0

have solutions zb and zjj respectively such that \zt, — Zf\ < e, \zbi — zSi\ < e. Choose a
neighbourhood N of x such that \f(y) — f(x)\ < 6 and |<fc(y) — gi(x)\ < 6 for all y e Â
and i = 1, . . . , n. We claim that

NxB(zj,e)CpfUuxxVfxVgix-..xVgnx
L g

Indeed, for each pint {y,w) e N x B(zf,e) C N x Vf we have |#(y) - ^(x) | < 5,
i = 1,2,..., n by the choice of AT. Then we can find Zi € B(zgi,e) such that zf = gi(y).
Now for arbitrary choice of zg, where <7 # / , <7i, <72, • • • > 5n with zg — g(x), we have

11—, Si.,/

https://doi.org/10.1017/S0004972700035012 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035012


[15] Approximate n-th root property 211

and pf \(y,w,{zi)"=l,(zg))\ = {y,w). This proves the claim and hence completes the

proof of the proposition. D

By Proposition 4.8 and Theorem 4.1, the statement of the Step 2 follows from the
next observation.

PROPOSITION 4 . 9 . There exists a mapping/: A -^ C such that H1 (Sf) / 0.

PROOF: Let f(x,y) = (—2jx| + y/l - y2, y) for all (x,y) € A. Then 5 / is homeo-
morphic to cylinder Sl x I. Q

This completes the proof of Theorem 4.2.

The above construction is carried out word by word for disks of arbitrary dimensions.
In particular, applying the above to the one-dimensional disk [—1,1], we have the fol-
lowing corollary which suggests that a topological characterisation of general square root
closed compacta could be rather different than the one for first-countable such compacta
by [8] and [12].

COROLLARY 4 . 1 0 . There exists an one-dimensional square root closed com-

pactum X with infinitely generated first Cech cohomology.

For an infinite cardinal r ^ ui, we consider (IT)n and the limit projection 7rn :
(IT)n -> HT- By the invertibility property (**) of w : Sx —> X for arbitrary compactum
X and the standard spectral argument, it follows easily that 7rn is also invertible with
respect to the class of square root closed compacta. Hence we have

PROPOSITION 4 . 1 1 . The square root closed compactum (IT)n contains every

square root closed compactum of weight < r .
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