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In [1] L. Fuchs and 1. Halperin have proved that a regular ring R is iso-
morphic to a two-sided ideal of a regular ring with identity. ([1] Theorem 1).
Their methed is to imbed the regular ring R in the ring of all pairs (a, p) with
a< R and p from a suitable commutative regular ring S with identity such that
R is an algebra over S. Thus S may be seen as the ring of R — R endomor-
phisms of the additive group of R. The following question is naturally raised :
Is it true that the ring of all R — R endomorphisms of a rugular ring is a
commutative regular ring? The main purpose of this paper is to answer this
question affirmatively. (Theorem 1). After established this theorem we can
follow the method in [1] to solve the problem in the title.

1. Endorphisms of R*.

Let R" be the additive group of a given ring R with R as left and right
operator domains, and let ® be the ring of all endomorphisms of R", that is
the ring of all R — R endomorphisms of the additive group R. R has the identity
1 which is the identity mapping of R". Also let us denote by 0, # and T re-
spectively the zero endomorphism, 7#: @ —» na, where a is an element in R and

#n is an integer, ¢: a - ac, where ¢ is an element in the center C of R.

LemMa 1. If R has the identity 1, then R is isomorphic to the center C of
R.

Proof. Let p be an element of B. Then for any element a in R we have
av=(al)p=allp) and ap =(1la)p={(lp)a. Thus ¢=1p is in the center C of
R and ap=ac=ca. Conversely let ¢ be an element in C, then ¢: @ - ac is an

endomorphism of R". p - 1p sets up a ring isomorphism between R and C.

Lemma 2. If R*=R, then R is commutative.
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Proof. Let p, v be a pair of elements in . We will show that a(pr) =
a(rp) for any element ¢ in R. As R®=R it is sufficient to show that (bc)(p7)
= (bc)(cp) for any pair of elements b, ¢ in R, and this is easily shown using

the fact that p, - are R — R endomorphisms.
LemMa 3. If R is a regular ring, then R is commutative.

Proof is clear by Lemma 2.
For an element p in R denote the kernel and the image of p by
R.=p"0)={aeR|ap=0},
R,={aplac R}.
R, and R, are ideals in R. If p is idempotent then R= R, D 17,,.

The converse is not always true, that is R= R,® R, does not imply that p
is idempotent, and so, for the later use, we seek for the condition for p which
implies R=R,DR,.

LemMa 4. R=R,®R, if and only if the following conditions are satisfied:

%0° =0 implies xp=0. 1)
For any x € R there exists an element y = R such that

%0 =yp. (2)
Moreover the v in (2) is uniquely determined in I?P.

Proof. Condition (1) is equivalent to the condition R, N R, = (0) as is easily
shown. Condition (2) is equivalent to the condition R=R,+ R,. Indeed if
R=R,+ E, then any x € R may be written as x= % + x,0, where %0 =0 and
then xp = %0°. Conversely if the condition (2) is satisfied, any x= R may be
written as x = (x— yp) + yp, where y satisfies xp = yo>. Then (¥ — y0)p = %0 — y0
=0, which proves that R=R,+ R,. The proof of the last part is as follows:
First the y in (2) may be chosen from R, as %o =%¢" and yp =yp® imply that
%o = (z0)¢". Secondly the uniqueness of y: If xp =vp® = zp°, where y and z are
in R,, then (y —2)p*=0, which implies (y —2)o=0 by (1). As y and z are in
R, y=y'p, 2=2'p for some y', 22 € R. Then (¥ —2z')p>=0, and so again by (1)
(9 —2")p =0, that is y =z

LEmMMA 5. If pe R satisfies R= R,®R,, then for some s< R,

pap =p (3)

https://doi.org/10.1017/50027763000011867 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011867

IMBEDDING A REGULAR RING IN A RING WITH IDENTITY 63

00 = 0p (4)

oo =0 (5)

Proof. In Lemma 4 it is shown that K = R,® R, implies that, for any x & R
there exists uniquely determined y € R, with xo=y,". Define ¢ as 20 =y. As
is easily seen ¢ is an endomorphism of the additive group of R. For any

elements x, » in R we have
(xr)p = (xp)r = (y0>)r = (yr) o™

As R, is an ideal of R we have yr € R,, showing that (¥7)s = (x¢)z. Similarly
(r#)a=r(xs). Thus s R.

As the proofs of (3), (4) and (5) are similar we show only (5). To prove
(5) it is sufficient to show that x(gps) = %s for any x= R Put xs =y and x(sps)
=2z. Then, by the definition of s, we have xp =yp’, y& 1?,,, and (yp)o = z, that
is y0® = 20, where y and z are in R,. Then (¥ —2)p*=0, which implies y =z as

y and z are in R,. Thus we have xs = %(ops).

TueoreM 1. The ring R, ring of all endomorphisms of R*, of a regular

ring R is a commutative regular ring with identity.

Proof. Commutativity was already shown in Lemma 3. To prove the re-
gularity of R it is sufficient to prove R=R,® R, for any p < R, or equivalently,
by Lemma 4, (1) and (2) in Lemma 4. Suppose that xo=0. Then by the re-
gularity of R there exists y € R such that xp = (xp)y(xp). This implies xp =
(x0>)yx and as xp =0 we have that xo’=0 showing (1). Also xp= (xp)y(xp) =
(xyx)o® showing (2).

2. Imbedding a regular ring into a regular ring with identity.

Let R be an arbitrary ring.

Let S be a commutative subring of R, the ring of all R — R endomorphisms
of R*, and let R’ be the set of all ordered pairs (@, o) where a= R and p< S.
In R° define the equality, addition, and multiplication by

(a, p) = (b, 7) if and only if a=b and p=-r,
(@, p)+(b,t)=C(a+b, p+7),
(a, 0)(b, ) = (ab+ bp + ar, p7).

Then R® is a ring. Commutativity of S is used for the proof of associativity
of R%. If S has the identity then R® has the identity (0, I). The examples of
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S are as follows: (a) Z={%: a— na, nis an integer}, (b) C={¢l¢: a- ac
( =ca), ¢ is in the center C of R}, (¢) Z+C, (d) R when R is commutative.

Remark 1. RZ does not coincide with the classical imbedding R*. Indeed
when R is of bounded order RZ is of bounded order but R* is not of bounded
order.

R is imbedded in R® as an ideal by the mapping a— (a, 0). Our idea is to
give some properties to R® selecting a suitable S. This idea is essentially in-
cluded in [1], and the proof of the following theorem follows that in [1].

LemMa 6. If R and S are regular, then R® is regular.

Proof. Let (a, p) be any element in R°. We will seek for (b, s) such that
(a, 0)(b, 0)(a, o) = (a, p), that is

0ap = p,
aba+ (ba)p+ (ab)p+ d’c + bp® + alop) + alps) = a. (6)

As S is regular there exists a ¢ such that psp=p. For the second equality:
Let e be an idempotent in R such that @ = ae =ea. (The existence such an e
has been proved in [1] Lemma 2).

By the regularity of R there exists an element x such that
(a+ep)x(a+ep) =a+ep. (7)

Put y = exe, then, as is easily calculated, y satisfies (7) replacing ¥ by y. Put

b=y — es, then b satisfies (6).

TueoreMm 2. RF is a regular ring with identity if R is regular. R is im-
bedded in R* as an ideal.

Proof is clear from Theorem 1 and Lemma 6.
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