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Abstract

We study the counts of smooth permutations and smooth polynomials over finite fields.
For both counts we prove an estimate with an error term that matches the error term found in
the integer setting by de Bruijn more than 70 years ago. The main term is the usual Dickman
ρ function, but with its argument shifted.

We determine the order of magnitude of log (pn,m/ρ(n/m)) where pn,m is the probability
that a permutation on n elements, chosen uniformly at random, is m-smooth.

We uncover a phase transition in the polynomial setting: the probability that a polynomial
of degree n in Fq is m-smooth changes its behaviour at m ≈ (3/2) logq n.

2020 Mathematics Subject Classification: 05A05 (Primary); 11T06, 05A16 (Secondary)

1. Introduction

A permutation is said to be m-smooth if it has no cycles of length greater than m. Let

pn,m := Pπ∈Sn(π is m-smooth)

be the probability that a permutation from Sn chosen uniformly at random is m-smooth. Let

u := n

m

and let ρ : [0, ∞) → (0, ∞) be the Dickman function, defined via the delay differential
equation tρ′(t) + ρ(t − 1) = 0 for t > 1 with initial conditions ρ(t) = 1 for t ≤ 1. It is weakly
decreasing, and de Bruijn proved that it satisfies

ρ(u) = exp

(
−u log (u log u) + u + O

(
u log log u

log u

))
(1·1)

for u ≥ 3 [2]. Goncharov [7] established a connection between pn,m and ρ, showing that
pn,m ∼ ρ(u) as n → ∞ and u = O(1). In an impressive work, Manstavičius and Petuchovas
[13] established asymptotic estimates for pn,m in the entire range 1 ≤ m ≤ n, including the
estimate [13, theorem 4]

pn,m = ρ(u)

(
1 + O

(
u log (u + 1)

m

))
(1·2)
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which holds for n ≥ m ≥ √
n log n. Recently, Ford [6, theorem 1·17] proved that

ρ
( n

m

)
≤ pn,m ≤ ρ

(
n + 1

m + 1

)
(1·3)

holds uniformly for n ≥ m ≥ 1. This almost immediately leads to

pn,m = ρ(u) exp

(
O

(
u log (u + 1)

m

))
(1·4)

holding in n ≥ m ≥ 1 [8, proposition 1·8], extending (1·2). Theorems 1·1–1·2 below, whose
proofs borrow heavily from [13], improve on (1·4).

THEOREM 1·1. Uniformly for n ≥ m ≥ √
n log n we have

pn,m = ρ

(
n

m + 1
2

)(
1 + O

(
log (u + 1)

m

))
. (1·5)

Uniformly for
√

n log n ≥ m ≥ 1 we have

pn,m = ρ

(
n

m + 1
2

)
exp

(
O

(
u log2 (u + 1)

m2

))
.

We may combine both parts of Theorem 1·1 as

pn,m = ρ

(
n

m + 1
2

)
exp

(
O

(
log (u + 1)

m
+ u log2 (u + 1)

m2

))

uniformly for n ≥ m ≥ 1. We see pn,m ∼ ρ
(

n/(m + 1
2 )
)

holds when m/(n1/3( log n)2/3)
→ ∞.

The error term O( log (u + 1)/m) in (1·5) is of particular importance, as we now explain.
We say that a positive integer is y-smooth if all its prime factors are at most y, and we denote

�(x, y) := #{1 ≤ n ≤ x:n is y-smooth}.
Setting n′ := log x, m′ := log y and u′ := n′/m′, de Bruijn [4] showed that, in the range
n′ ≥ m′ ≥ n′5/8+ε, the estimate

�(x, y)

x
= ρ(u′)

(
1 + Oε

(
log (u′ + 1)

m′
))

holds. This error term, Oε

(
log (u′ + 1)/m′), is analogous to (1·5).

Remark 1. The main term ρ
(

n/(m + 1
2 )
)

of Theorem 1·1 arises indirectly. We first prove

an estimate with a more complicated main term, see Proposition 3·1. This term originally
appeared in [13, corollaries 3, 5], where it serves as an approximation to pn,m in a narrow
range and with a worse error term compared to Theorem 1·1. In Lemma 3·2 we simplify

the complicated main term and show it may be replaced by ρ
(

n/(m + ( 1
2 )
)

at a negligible
cost.
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Remark 2. Ford’s proof of (1·3) avoids complex analysis and it will be interesting to have a

similar argument estimating pn,m relative to ρ
(

n/(m + 1
2 )
)

.

Theorem 1·1 is weaker than (1·4) when m = o( log n). We complement it with

THEOREM 1·2. If 2 ≤ m ≤ n satisfies m = O( log n) then

pn,m =
( e

n

)u
exp

(
u

(
− log

(
1 − n− 1

m
)+ O

(
n− 1

m

m

)))
.

The proof of Theorem 1·2 relies on estimates from [13]. Theorem 1·2 is only claimed
for m ≥ 2, as it gives a wrong estimate if applied with m = 1. By Stirling’s approximation,
pn,1 = 1/n! � (e/n)nn−1/2 if m = 1.

From (1·4) and Theorem 1·2 we see that log pn,m ∼ log ρ(u) holds as n → ∞. Using
Theorems 1·1–1·2 we determine the order of magnitude of log (pn,m/ρ(u)):

COROLLARY 1·3. Define A via pn,m = ρ(u) exp (A). Uniformly for n ≥ m ≥ 1,

A � u log

(
1 + log u

m

)
.

1·1. Results for smooth polynomials

A polynomial over a finite field Fq is said to be m-smooth if all its irreducible factors
have degrees at most m. Let Mn,q be the set of monic polynomials of degree n over Fq. We
write pn,m,q for the probability that a polynomial from Mn,q chosen uniformly at random is
m-smooth. Manstavičius [11, theorem 2] proved that

pn,m,q = ρ(u)

(
1 + O

(
u log (u + 1)

m

))
holds in range n ≥ m ≥ √

n log n. Recently, the author proved that for fixed ε > 0, the ratio
pn,m,q/pn,m satisfies

pn,m,q

pn,m
= 1 + Oε

⎛⎝un
1+12|m

m min{m, log (u + 1)}
mq m+1

2 �

⎞⎠ (1·6)

for n ≥ m ≥ (2 + ε) logq n [8, theorems 1, 2]. The implied constant does not depend on q.
From (1·6) and Theorem 1·1 we immediately obtain

COROLLARY 1·4. Uniformly for n ≥ m ≥ √
n log n we have

pn,m,q = ρ

(
n

m + 1
2

)(
1 + O

(
log (u + 1)

m

))
.

Fix ε > 0. Uniformly for
√

n log n ≥ m ≥ (2 + ε) logq n we have

pn,m,q = ρ

(
n

m + 1
2

)
exp

(
Oε

(
u log2 (u + 1)

m2

))
.
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The rest of our results concern pn,m,q/pn,m. To obtain estimates with better range and error
than (1·6) we introduce a function Gq(z). The generating function of {pn,m,q}n≥0 is

Fq(z) :=
∏
P∈P

deg (P)≤m

(
1 −

(
z

q

)deg (P))−1

, (1·7)

where P =Pq is the set of monic irreducible polynomials over Fq. It is analytic in |z| < q.
The generating function of {pn,m}n≥0 is the entire function [13]

F(z) := exp

(
m∑

i=1

zi

i

)
. (1·8)

For |z| < q we define

Gq(z) := Fq(z)

F(z)
. (1·9)

The function Gq is studied in [8, lemma 2·1]. By [8, theorem 1·3] we have

pn,m,q

pn,m
= Gq(x)

(
1 + Oε

(
n

1+12|m
m min{m, log (u + 1)}

mq m+1
2 �

))
(1·10)

in the range n/( log n log3 log (n + 1)) ≥ m ≥ (2 + ε) logq n, where x = xn,m is the unique
positive solution to

m∑
i=1

xi = n. (1·11)

In that range, Gq(x) is very close to 1, see [8, lemmas 5·3-5·4]. We complement (1·10) with
a result for large m. We define ξ (u) ≥ 0 by eξ (u) = 1 + uξ (u).

THEOREM 1·5. If n ≥ m ≥ √
10n log n then

pn,m,q

pn,m
= Gq(eξ (u)/m)

(
1 + O

(
log (u + 1)

mq m+1
2 �

))
.

Using Theorem 1·5 we are able to drop the condition n/( log n log3 log (n + 1)) ≥ m
present in (1·10):

COROLLARY 1·6. The estimate (1·10) holds uniformly for n ≥ m ≥ (2 + ε) logq n.

We turn to smaller m. In the range (2 − ε) logq n ≥ m ≥ (1 + ε) logq n,

log Gq(x) �q,ε
n2

mqm
,
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see [8, lemma 5·4]. In [8, theorem 1·3] it is shown that pn,m,q/pn,m ∼ Gq(x) holds as n →
∞ as long as m ≥ (3/2 + ε) logq n. Our next result shows that pn,m,q/pn,m experiences a
transition when m is close to (3/2) logq n.

THEOREM 1·7. Fix a prime power q and ε > 0. There is a quantity A > 0 of order

A �q,ε
n3

mq2m

such that, for (2 − ε) logq n ≥ m ≥ (1 + ε) logq n we have, as n → ∞,

pn,m,q

pn,m
∼ Gq(x) exp ( − A).

In particular, if qm = nτ where τ ∈ (1, 2) then A �q,ε (n3−2τ /log n) and so A �q,ε 1 if
qm = O(n3/2/( log n)1/2).

Conventions. The letters C,c shall denote absolute positive constants which may change
between different instances. The notation A � B means |A| ≤ CB for some absolute constant
C, while A �a,b,... B means C may depend on the parameters in the subscript. We write
A �a,b,... B to indicate cB ≤ A ≤ CB holds for C, c > 0 that may depend on a, b, . . ..

2. Auxiliary estimates and functions
2·1. Saddle point review

By [13, theorem 2 and corollary 5], uniformly for n ≥ m ≥ 1 we have

pn,m =
exp

(∑m
i=1

xi

i

)
xn

√
2πλ

(
1 + O

(
u−1

))
, (2·1)

where x = xn,m is the saddle point defined as the unique positive solution to (1·11), and
λ = λn,m is defined as

λ =
m∑

i=1

ixi. (2·2)

LEMMA 2·1. Uniformly for n ≥ m ≥ 1, the following estimates hold: n1/m ≥ x � n1/m,
nm ≥ λ � nm and λ = nm(1 + O(1/ max{log u, n1/m})).
Proof. We study x. Considering only the i = m term in (1·11) gives x ≤ n1/m. If x < 1 then∑m

i=1 xi < m ≤ n, a contradiction, hence x ≥ 1. Consequently, by the definition of x, mxm ≥ n
holds, which implies

x ≥ n
1
m m− 1

m ≥ n
1
m e− 1

e .

We turn to λ. We have λ ≤ m
∑m

i=1 xi = nm. By [13, lemma 9],

λ = nm(1 + O(1/ log u)) (2·3)
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6 OFIR GORODETSKY

uniformly for u > 1. We also have xm ≤ n =∑m
i=1 xi < xm/(1 − x−1) and so

mn(1 − x−1) < mxm ≤
m∑

i=1

ixi = λ ≤ nm

implying λ = nm(1 + O(x−1)) = nm(1 + O(n−1/m)). The estimate (2·3) already shows λ �
nm when u ≥ C. If u < C then, since x ≥ 1, we find λ ≥∑m

i=1 i � nm.

2·2. Dickman function review

We define ξ : [1, ∞) → [0, ∞), a function of variable u ≥ 1, by

eξ (u) = 1 + uξ (u).

LEMMA 2·2 [9, lemma 1]. We have ξ ∼ log u as u → ∞, and ξ ′ = u−1(1 + O(1/ log u)) for
u ≥ 2.

LEMMA 2·3 [13, lemma 6]. If u > 1 we have log u < ξ ≤ 2 log u.

Let

I(s) =
∫ s

0

et − 1

t
dt

which defines an entire function. Observe that

I′(ξ ) = eξ − 1

ξ
= u,

and a short computation shows I′′(ξ ) = 1/ξ ′. The following lemma is proved by induction.

LEMMA 2·4. For any k ≥ 1 we have I(k)(s) = (esPk−1(s) − (−1)k−1(k − 1)!)/sk for a monic
polynomial Pk−1 of degree k − 1.

It has the following direct consequence.

COROLLARY 2·5. For any fixed k ≥ 1 we have I(k)(ξ ) = (1 + Ok(1/ log u))(eξ /ξ ) ∼ u as
u → ∞, and I(k)(ξ + it) �k min{u, eξ (u)/|ξ + it|} uniformly for t ∈R.

The function I arises when studying ρ and its Laplace transform.

LEMMA 2·6. [3, equation (1·9)] [1, equation (3·9)]. Let γ be the Euler–Mascheroni
constant. We have

ρ̂(s) :=
∫ ∞

0
e−svρ(v) dv = exp(γ + I( − s))

for s ∈C. Uniformly for u ≥ 1,

ρ(u) = 1√
2πI′′(ξ )

exp(γ − uξ + I(ξ )) (1 + O(u−1)). (2·4)

We have the following bounds on ρ̂.

https://doi.org/10.1017/S0305004124000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000355


Smooth permutations and polynomials revisited 7

LEMMA 2·7. [10, lemma 2·7] The following bounds hold for s = −ξ (u) + it:

ρ̂(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O
(

exp
(

I(ξ ) − t2u
2π2

))
if |t| ≤ π ,

O
(

exp
(

I(ξ ) − u
π2+ξ2

))
if |t| ≥ π ,

1
s + O

(
1+uξ

|s|2
)

if 1 + uξ = O(|t|).

2·3. T

We define the following function, holomorphic in the strip |�s| < 2πm:

T(s) :=
∫ s

0

et − 1

t

(
t
m

1 − e−t/m
− 1

)
dt.

The Bernoulli numbers Bi are defined by

s

1 − e−s
= 1 + s

2
+ s2

12
− s4

720
+ . . . =

∑
i≥0

Bi
si

i! .

This series converges for |�s| < 2π . It is known that Bi � i!/(2π)i. It is then easy to see,
from the estimate

∫ s
0 (et − 1)ti−1dt � |s|i−1(|es| + |s|) which holds for �s ≥ 0 and i ≥ 1, that

T(s) =
k∑

i=1

Bi

mii!
∫ s

0
(et − 1)ti−1dt + O

( |s|k(|es| + |s|)
(2πm)k+1

)
(2·5)

holds for k ≥ 0 and s = σ + it with σ ∈ [0, πm] and t ∈ [− πm, πm]. Applying (2·5) with
k = 1 we obtain

COROLLARY 2·8. [13, lemma 11]. For s = σ + it with σ ∈ [0, πm] and t ∈ [− πm, πm],∣∣∣T(s) + s

2m

∣∣∣� eσ

m
+ t2

m2
.

Applying (2·5) with k = 2 and s = ξ = ξ (u) we obtain

T(ξ ) = (u − 1)ξ

2m
+ eξ (ξ − 1) − ξ2

2 + 1

12m2
+ O

(
u log3 (u + 1)

m3

)
(2·6)

when ξ (u) ≤ πm holds.

LEMMA 2·9. Suppose ξ = ξ (u) ≤ πm. For any k ≥ 1 we have

T (k)(ξ ) = I(k)(ξ )

(
ξ/m

1 − e−ξ/m
− 1 + Ok

(
1

m

))

= eξ

2m

(
1 + Ok

(
1

log (u + 1)
+ log (u + 1)

m

))
. (2·7)

If additionally t ∈ [− πm, πm] then T (k)(ξ + it) �k eξ (u)/m.
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Proof. We have T ′(s) = I′(s)g(s/m) for g(z) := z/(1 − e−z) − 1. Repeated differentiation
shows

T (k)(s) = I(k)(s)g(s/m) + Ok

( k−1∑
i=1

m−i|I(k−i)(s)g(i)(s/m)|
)

. (2·8)

We suppose that s = ξ (u) + it and that the inequalities ξ (u) ≤ πm and |t| ≤ πm are satisfied.
From (2·8),

T (k)(s) = I(k)(s)g(s/m) + Ok

(
1

m

k−1∑
i=1

|I(k−i)(s)|
)

(2·9)

as our assumptions on s guarantee that g(i)(s/m) �i 1. We first suppose t = 0 and establish
(2·7). Using (2·9) and the definition of g, the first equality in (2·7) will follow if we show that
I(k−i)(ξ (u)) �k I(k)(ξ (u)), which is a consequence of Corollary 2·5. The second equality in
(2·7) follows from another application of Corollary 2·5. Finally, the claim for T (k)(s) (when
|t| ≤ πm) follows from (2·9) since |I(k)(s)| �k eξ (u)/|s| and |I(k−i)(s)| �k u (1 ≤ i ≤ k − 1)
by Corollary 2·5 and |g(s/m)| � |s|/m.

2·4. Hn

Let Hn := ∑n
i=1 (1/i) be the nth harmonic sum. By the Euler–Maclaurin formula,

Hn = log n + γ + 1

2n
+ O(n−2). (2·10)

3. Proof of Theorem 1·1
We break the theorem into a proposition and a lemma.

PROPOSITION 3·1. Uniformly for n ≥ m ≥ 1 we have

pn,m = ρ(u) exp

(
uξ (u)

2m

)
exp

(
O

(
u log2 (u + 1)

m2
+ 1

u

))
. (3·1)

If
√

n log n = O(m) then

pn,m = ρ(u) exp

(
uξ (u)

2m

)(
1 + O

(
log (u + 1)

m

))
. (3·2)

In [13, corollaries 3, 5], (3·1) is proved in the narrower range n ≥ m ≥ n1/3( log n)2/3.

LEMMA 3·2. Uniformly for n ≥ m ≥ 1 we have

ρ (u) exp

(
uξ (u)

2m

)
= ρ

(
u − u

2m

)
exp

(
O

(
u

m2
+ 1

m

))
(3·3)

and

ρ
(

u − u

2m

)
= ρ

(
n

m + 1
2

)
exp

(
O

(
u log (u + 1)

m2

))
. (3·4)
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We prove (3·1) in Section 3·1, and (3·2) in Sections 3·2–3·3. The proof of Lemma
3·2 is given in Section 3·4. To deduce Theorem 1·1, we combine (3·2) and Lemma
3·2 if m ≥ √

n log n, and (3·1) and Lemma 3·2 if m ≤ √
n log n. Here we use u/m2 +

1/m + u log (u + 1)/m2 � log (u + 1)/m when m ≥ √
n log n and 1/u + u/m2 + 1/m +

u log (u + 1)/m2 � u log2 (u + 1)/m2 when m ≤ √
n log n.

3·1. Proof of the first part of Proposition 3·1
Here we prove (3·1). If m = O( log (u + 1)) then (3·1) follows from (1·4). Hence we sup-

pose that m ≥ C log (u + 1) from now on. Similarly, if u = O(1) then (3·1) is already in (1·4),
so we suppose u ≥ C. We define a function

D(z) := z−n exp

(
m∑

i=1

zi

i

)
,

so that x defined in (1·11) solves D′(z) = 0, and (2·1) can be written as

pn,m = D(x)√
2πλ

(1 + O(u−1)). (3·5)

We can write log D(x) as

log D(x) = −n log x +
m∑

j=1

1

j
+ I(m log x) + T(m log x),

see [13, equation (40)] for the details. We set

ξ̃ := m log x

and define ũ ≥ 1 as

ũ := ẽξ − 1

ξ̃
.

In this notation, (3·5) implies (using (2·4) with ũ in place of u, and (2·10)) that

pn,m = ρ (̃u) exp
(
(̃u − u)̃ξ

)
exp

(
T (̃ξ )

) √m2I′′(ξ (̃u))

λ
exp

(
O
(

u−1 + ũ−1 + m−1
))

for u ≥ C. A short computation shows that u = I′(ξ ) = (I + T)′(̃ξ ) holds by the definition of
ξ , ξ̃ and x. Since T ′(t) ≥ 0 for t ≥ 0 we have ξ̃ ≤ ξ and so, by the monotonicity of I′(t) =
(et − 1)/t, it follows that

ũ = I′(̃ξ ) ≤ I′(ξ ) = u.

By [13, equation (22)],

ξ̃ = ξ + O

(
log (u + 1)

m

)
(3·6)
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uniformly in m ≥ log u > 0. From (3·6) we see that, uniformly in m ≥ log u > 0

ũ = u + O

(
u log (u + 1)

m

)
. (3·7)

We will be using (3·6) and (3·7) frequently. For m ≥ log u > 0 we have

λ = m2

ξ ′(u)

(
1 + O

(
log (u + 1)

m

))
by [13, equation (23)]. Hence, since I′′(ξ (u)) = 1/ξ ′(u),√

m2I′′(ξ (̃u))

λ
=
√

m2

λξ ′(̃u)
=
√

ξ ′(u)

ξ ′(̃u)
exp

(
O

(
log (u + 1)

m

))
for m ≥ C log (u + 1) > 0. Since ξ ′(t) � 1/t and ξ ′′(t) = −ξ ′(t)I(3)(ξ (t))/I′′(ξ (t))2 � 1/t2 for
t ≥ C,

ξ ′(u)

ξ ′(̃u)
= 1 + O

(
u − ũ

ũ

)
= exp

(
O

(
log (u + 1)

m

))
holds for m ≥ C log (u + 1) > 0 and u ≥ C and so√

m2I′′(ξ (̃u))

λ
= exp

(
O

(
log (u + 1)

m

))
,

when m ≥ C log (u + 1) > 0 and u ≥ C. At this point, we have established that

pn,m = ρ (̃u) exp
(
(̃u − u)̃ξ

)
exp

(
T (̃ξ )

)
exp

(
O

(
1

u
+ log (u + 1)

m

))
holds in our range. We have ξ̃ ≤ ξ ≤ 2 log u ≤ πm by Lemma 2·3 and our assumption m ≥
C log (u + 1). By (2·6), (3·6) and (3·7),

T (̃ξ ) = ũ̃ξ

2m
+ O

(
u log2 (u + 1)

m2
+ log (u + 1)

m

)
= uξ (u)

2m
+ O

(
u log2 (u + 1)

m2
+ log (u + 1)

m

)
in this range. We now have

pn,m = exp

(
uξ (u)

2m

)
ρ (̃u) exp

(
(̃u − u)̃ξ

)
exp

(
O

(
1

u
+ u log2 (u + 1)

m2

))
for m ≥ C log (u + 1), u ≥ C. Let r(t) = −ρ′(t)/ρ(t) be the negative of the logarithmic
derivative of log ρ. We have

ρ (̃u) = ρ(u) exp

(∫ u

ũ
r(t)dt

)
.

By integration by parts, we may write the integral in the exponent as∫ u

ũ
r(t)dt = (u − ũ)r(u) −

∫ u

ũ
(t − ũ)r′(t)dt.
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By [5, lemma 3·7], the estimates

r(v) = ξ (v) + O
(

v−1
)

, r′(v) = ξ ′(v) + O
(

v−2
)

(3·8)

hold uniformly for v ≥ 1. Hence, using (3·6) and (3·7),

ρ (̃u) exp ((̃u − u)̃ξ ) = ρ(u) exp ((u − ũ)(r(u) − ξ (u) + ξ (u) − ξ̃ )

−
∫ u

ũ
(t − ũ)(r′(t) − ξ ′(t) + ξ ′(t))dt)

= ρ(u) exp

(
O

(
1

u
+ u log2 (u + 1)

m2

)
−
∫ u

ũ
(t − ũ)ξ ′(t)dt

)
.

To conclude the proof, it remains to bound
∫ u

ũ (t − ũ)ξ ′(t)dt. Since ξ ′(t) � 1/t,∫ u

ũ
(t − ũ)ξ ′(t)dt �

∫ u

ũ

t − ũ

t
dt = ũ

(u

ũ
− 1 − log

(u

ũ

))
� ũ

(u − ũ)2

ũ2
� u log2 (u + 1)

m2

if m ≥ C log (u + 1), using (3·6) and (3·7). The proof of (3·1) is completed.

3·2. Preliminary lemmas for second part of Proposition 3·1
The following consequence of Cauchy’s integral formula is implicit in the proofs of [13,

theorems 2,4].

LEMMA 3·3. We have

pn,m = exp
(
Hm − γ

)
m

1

2π i

∫ −ξ+imπ

−ξ−imπ

eusρ̂(s)eT(−s)ds.

The following lemma is implicit in the proof of [13, theorem 4].

LEMMA 3·4. Suppose
√

n log n = O(m). Then

1

2π i

∫ −ξ+imπ

−ξ−imπ

eusρ̂(s)ds = ρ(u) + O

(
e−(u−1)ξ

n

)
.

A variant of the next lemma is implicit in the proof of [13, theorem 2].

LEMMA 3·5. Suppose
√

n log n = O(m) and 1 + uξ ≤ A ≤ mπ . Then

1

2π i

∫ −ξ+imπ

−ξ+iA
eusρ̂(s)

(
eT(−s)−T(ξ ) − 1

)
ds � e−uξ log (u + 1)

m
.

The same bound holds if we integrate from −ξ − imπ to −ξ − iA.

Proof. We have ρ̂′(s) = ρ(s)(e−s − 1)/s. Integration by parts shows that the integral is equal
to

1

2π i

eus

u
ρ̂(s)

(
eT(−s)−T(ξ ) − 1

) ∣∣∣s=−ξ+imπ

s=−ξ+iA

− 1

2π i

∫ −ξ+imπ

−ξ+iA

eus

u
ρ̂(s)

(
e−s − 1

s

(
eT(−s)−T(ξ ) − 1

)
− T ′( − s)eT(−s)−T(ξ )

)
ds.
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By Corollary 2·8, T( − s) − T(ξ ) is bounded in our range of integration. In fact, T( − s) −
T(ξ ) � (eξ + |�s|)/m. Hence, the third case of Lemma 2·7 shows that

1

2π i

eus

u
ρ̂(s)

(
eT(−s)−T(ξ ) − 1

) ∣∣∣s=−ξ+imπ

s=−ξ+iA
� e−uξ

n

which is acceptable. As for the integral, we rearrange it using the definition of T:

1

2π i

∫ −ξ+imπ

−ξ+iA

eus

u
ρ̂(s)

(
e−s − 1

s

(
eT(−s)−T(ξ ) − 1

)
− T ′( − s)eT(−s)−T(ξ )

)
ds

= 1

2π i

∫ −ξ+imπ

−ξ+iA

eus

u

e−s − 1

s
ρ̂(s)

(
eT(−s)−T(ξ )

−s
m

1 − es/m
− 1

)
ds.

By Corollary 2·8 and the Taylor expansion z/(1 − e−z) = 1 + z/2 + O(z2),

eT(−s)−T(ξ )
−s
m

1 − es/m
− 1 � |s|2

m2
+ eξ

m

in our range of integration. By the triangle inequality, the last integral is

� log (u + 1)

euξ

∫ −ξ+imπ

−ξ+iA

|ρ̂(s)|
|s|

( |s|2
m2

+ eξ

m

)
|ds|

� log (u + 1)

euξ

∫ −ξ+imπ

−ξ+iA

1

|s|2
( |s|2

m2
+ eξ

m

)
|ds| � log (u + 1),

meuξ

where in the second inequality we used the third case of Lemma 2·7.

LEMMA 3·6. Suppose 0 ≤ B ≤ A. Then, for every k ≥ 0,

1

2π i

∫ −ξ+iA

−ξ+iB

∣∣∣(s + ξ )keusρ̂(s)
∣∣∣ |ds| �k ρ(u)

(
u− k

2 e−cuB2 + Ak+1√u exp
(− u

ξ2 + π2

))
.

The same is true if we integrate from −ξ − iA to −ξ − iB. In particular, for B = 0 and
A ≤ exp (cku/( log (u + 1))2),

1

2π i

∫ −ξ+iA

−ξ−iA

∣∣∣(s + ξ )keusρ̂(s)
∣∣∣ |ds| �k ρ(u)u− k

2 .

Proof. Using the first two parts of Lemma 2·7, the triangle inequality shows that the
integral is

� e−uξ+I(ξ )
∫ A

B
|t|k

(
exp (− cut2) + exp

(− u

ξ2 + π2

))
dt

�k e−uξ+I(ξ )
(

u− k+1
2 exp (− cuB2) + Ak+1 exp

(− u

ξ2 + π2

))
,

and we now use (2·4).
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LEMMA 3·7. Fix k ≥ 0. Let μm := m!/((m/2)!2m/2) for even m. Suppose
√

n log n = O(m)
and Ck

√
log (u + 1)/u ≤ A ≤ exp (cku/( log (u + 1))2). Then, for even k,

1

2π i

∫ −ξ+iA

−ξ−iA
(s + ξ )keusρ̂(s)ds = (1 + Ok(u−1))ρ(u)μk(−1)

k
2 ξ ′ k

2

and for odd k,

1

2π i

∫ −ξ+iA

−ξ−iA
(s + ξ )keusρ̂(s)ds = (1 + Ok(u−1))ρ(u)μk+3(−1)

k+1
2 ξ ′ k+3

2
I(3)(ξ )

6
.

Proof. The contribution of A ≥ |�s| ≥ Ck
√

log (u + 1)/u is acceptable by Lemma 3·6. We
may now assume that A = Ck

√
log (u + 1)/u. Recall ρ̂(s) = exp (γ + I( − s)). We may

Taylor-expand I(ξ + it) using Corollary 2·5, obtaining that

1

2π i

∫ −ξ+iA

−ξ−iA
(s + ξ )keusρ̂(s)ds

= ik
eγ−uξ+I(ξ )

2π

∫ A

−A
tk exp

(
− t2

2
I′′(ξ ) + i

t3

6
I(3)(ξ ) + t4

24
I(4)(ξ ) + Ok

(
u|t|5

))
dt

= ik
eγ−uξ+I(ξ )

2π

∫ A

−A
tk exp

(− t2

2
I′′(ξ )

)(
1 + i

t3

6
I(3)(ξ ) + t4

24
I(4)(ξ ) − t6

72
I(3)(ξ )2)

×
(

1 + Ok

(
u|t|5 + u3|t|9

))
dt.

Substituting t2I′′(ξ ) = v2, recalling I′′(ξ (u)) = 1/ξ ′(u) and using (2·4), the last expression
can be written as

= ρ(u)(1 + Ok(u−1))ikξ ′k/2 1√
2π

∫ A/
√

ξ
′

−A/
√

ξ
′ vk exp (− v2/2)

×
(

1 + i
v3ξ ′3/2

6
I(3)(ξ ) + v4ξ ′2

24
I(4)(ξ ) − v6ξ ′3

72
I(3)(ξ )2

)(
1 + Ok

( |v|5 + |v|9
u3/2

))
dv.

To conclude we apply estimates of gaussian integrals:
∫ R
−R v2k+1 exp (− v2/2)dv is 0,∫

R
|v|k exp (− v2/2)dv �k 1 and

∫ R
−R v2k exp (− v2/2)dv = √

2πμ2k + Ok( exp (− R2/4)).

3·3. Proof of the second part of Proposition 3·1
Here we prove (3·2) using the material in Section 3·2. If 1 + uξ > mπ the result is already

included in the first part of Proposition 3·1, so we assume from now on that 1 + uξ ≤ mπ .
From Lemma 3·3 we have

pn,m = exp
(
Hm − γ

)
m

eT(ξ ) 1

2π i

∫ −ξ+imπ

−ξ−imπ

eusρ̂(s)eT(−s)−T(ξ )ds.
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We have exp (Hm − γ )/m = 1 + 1/(2m) + O(m−2) by (2·10), and

eT(ξ ) = e
uξ
2m

(
1 − ξ

2m
+ O

(
u log2 (u + 1)

m2

))

by (2·6). Hence,

pn,m = e
uξ
2m

(
1 + 1 − ξ

2m
+ O

(
u log2 (u + 1)

m2

))
1

2π i

∫ −ξ+imπ

−ξ−imπ

eusρ̂(s)eT(−s)−T(ξ )ds.

We separate the integral into 3 parts, S1 + S2 + S3, where

S1 = 1

2π i

∫ −ξ+imπ

−ξ−imπ

eusρ̂(s)ds,

S2 = 1

2π i

∫ −ξ+i(1+uξ )

−ξ−i(1+uξ )

(
eT(−s)−T(ξ ) − 1

)
eusρ̂(s)ds,

S3 = 1

2π i

(∫ −ξ−i(1+uξ )

−ξ−imπ

+
∫ −ξ+imπ

−ξ+i(1+uξ )

) (
eT(−s)−T(ξ ) − 1

)
eusρ̂(s)ds.

The integral S1 was estimated in Lemma 3·4 and it gives the main term ρ(u) as well an
absolute error of size � e−(u−1)ξ /n � e−uξ log (u + 1)/m. The integral S3 was estimated in
Lemma 3·5 and it contributes � e−uξ log (u + 1)/m. We now study S2. We use Lemma 2·9
to Taylor-expand eT(−s)−T(ξ ) − 1 = eT(ξ−it)−T(ξ ) − 1 at 0:

eT(−s)−T(ξ ) − 1 = −T ′(ξ )(s + ξ ) + (s + ξ )2

2

(
T ′′(ξ ) + T ′(ξ )2

)
− (T (3)(ξ ) + 3T ′(ξ )T ′′(ξ ) + (T ′(ξ ))3)

(s + ξ )3

6
+ O

(
u log (u + 1)

m
|s + ξ |4

)
(3·9)

for |�s| ≤ 1 + uξ . Applying Lemma 3·6 with k = 4, B = 0 and Lemma 3·7 with k = 1, 2, 3
and collecting the terms gives

S2 = ρ(u)

(
T ′(ξ )(1 + O( log (u + 1)−1)) − T ′′(ξ )(1 + O( log (u + 1)−1))

2u

+ O
( log (u + 1)

n
+ u log2 (u + 1)

m2

))
. (3·10)

All in all, since T ′(ξ ) and T ′′(ξ ) are both (u log (u + 1)/2m)(1 + ou→∞(1)) in our range by
Lemma 2·9,

pn,m = exp
( uξ

2m

)
ρ(u)

(
1 − log (u + 1)

2m
(1 + ou→∞(1)) + O

(
u log2 (u + 1)

m2

))
.

We are done, as we established, in stronger form, the second part of Proposition 3·1.
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3·4. Proof of Lemma 3·2
We first show (3·3). Let r(t) = −ρ′(t)/ρ(t) ≥ 0. We have

ρ(u) = ρ

(
u − u

2m

)
exp

(
−
∫ u

u− u
2m

r(t)dt

)
.

If u is bounded then the bound r(t) � 1 for t � 1 finishes the proof. If u ≥ C we may
differentiate r (it is differentiable for t ≥ 2) and obtain

ρ(u) = ρ

(
u − u

2m

)
exp

(
− ur(u)

2m
+
∫ u

u− u
2m

(
u − u

2m
− t

)
r′(t)dt

)
by integration by parts. To conclude, we use (3·8) to find

− ur(u)

2m
+
∫ u

u− u
2m

(
u − u

2m
− t

)
r′(t)dt = −uξ (u)

2m
+ O

(
u

m2
+ 1

m

)
.

It remains to show (3·4). Set t1 = n/(m + 1/2) and t2 = u − u/(2m). It suffices to bound
log (ρ(t2)/ρ(t1)). Observe t1 ≥ t2. We have

log ρ(t2) − log ρ(t1) =
∫ t1

t2
r(t)dt ≤ (t1 − t2) max

t∈[t2,t1]
r(t) � n

m3
log (u + 1) = u log (u + 1)

m2

since r(t) � log (t + 1) by (3·8) and Lemma 2·2. This completes the proof.

4. Proof of Theorem 1·2 and Corollary 1·3
Let

dm,m = − 1

m

m∑
j=2

1

j
, dm,i = �

(
i + i

m

)
(m − i)i!� (1 + i

m

) (1 ≤ i ≤ m − 1).

LEMMA 4·1. The estimate

pn,m = exp
(− u log n + u +∑m

i=1 dm,in1− i
m + E

)
√

2πnm

(
1 + O

(
1

max{log u, n1/m}
))

holds uniformly for n > m ≥ 1, where E is a quantity satisfying

E � n− 1
m

1 − n− 1
m

+
m
n

1 − (m
n

) 1
m

.

Lemma 4·1 is a minor improvement on [13, theorem 1], which treats m ≤ log n.
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Proof. Recall the definitions of x and λ given in (1·11) and (2·2). Following the proof of
[13, theorem 1]1 we have, borrowing the notation of [13, section 5],

pn,m = 1√
2πλ

exp
(− u log n + u +

m∑
i=1

dm,in
1− i

m + E
)(

1 + O
(
u−1))

for E = R
(
n− 1

m
)

where

R(z): =
∞∑

i=1

hiz
i − n

∞∑
i=m+1

biz
i

for certain coefficients hi and bi defined in [13, lemma 13] and estimated in [13, lemma 15].
In particular,

hi = i + m

i
bi+m

for i ≥ 1 and

bi � m
i
m

i

for i ≥ 1. In the first displayed equation of [13, lemma 15] it is shown that bi � i
i
m −1/m for

m + 1 ≤ i ≤ 2m − 1. It implies

bi � i − m

m

in the same range. Hence

R(z) �
m−1∑
i=1

i + m

m
|z|i +

∞∑
i=m

m

i
(m

1
m |z|)i + n

( 2m−1∑
i=m+1

i − m

m
|z|i +

∞∑
i=2m

1

i
(m

1
m |z|)i

)

�
m−1∑
i=1

|z|i +
2m−1∑
i=m

(
n(i − m)

m
+ m

i
m

)
|z|i +

∞∑
i=2m

n

i
(m

1
m |z|)i.

It follows that

R(n− 1
m ) � n− 1

m

1 − n− 1
m

+ n− 1
m

m(1 − n− 1
m )2

+
m
n

1 − ( m
n )

1
m

� n− 1
m

1 − n− 1
m

+
m
n

1 − ( m
n )

1
m

.

To conclude, we input the estimates for λ/(nm) given in Lemma 2·1.

1 We correct a few typos. The definition of D(x) in [13, p. 21] should be replaced by the one given in p. 4 of
that paper. The left-hand side of their equation (48) should be “log D(x)”. In the first displayed equation in
p. 22, the sum of hNzN should start at N = −r and not N = −r + 1. In the second displayed equation on p.
23, the factor n! that appears twice should be omitted.
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4·1. Proof of Theorem 1·2
Let

S :=
m−1∑
i=1

dm,in
1− i

m .

In view of Lemma 4·1 we have

pn,m =
( e

n

)u
exp(S + O( log n)) , (4·1)

when m = O( log n), and it remains to estimate S. We have

1

m − i
= 1

m

(
1 + O

(
i

m − i

))
,

1

�
(
1 + i

m

) = 1 + O

(
i

m

)
uniformly for 1 ≤ i ≤ m − 1. The estimate �(x + y)/�(x) ∈ [x(x + y)y−1, xy] for y ∈ (0, 1)
[14, equation (7)] implies

�
(
i + i

m

)
i! = 1

i

�
(
i + i

m

)
�(i)

= i
i
m

i

(
1 + O

(
1

m

))
.

Hence,

dm,i = i
i
m

mi

(
1 + O

(
i

m − i

))
.

Since ii/m = 1 + O(i log i/m) if i < m/ log (m + 1), we may write S as S = u(S1 + O(S2 +
S3)), where

S1 =
m−1∑
i=1

n− i
m

i
, S2 =

∑
1≤i< m

log (m+1)

n− i
m

i

i log (i + 1)

m
, S3 =

∑
m

log (m+1) ≤i≤m−1

(i/n)
i
m

m

i
.

We have

S1 = − log (1 − n− 1
m ) + O

(
1

nm

1

1 − n− 1
m

)

by bounding the tail of the Taylor series of − log (1 − n−1/m) by a geometric series with
ratio n−1/m. Similarly,

S2 � 1

m

1

n
1
m − 1

� n− 1
m

m

because the contribution of i ∈ [2k, 2k+1) to S2 is � (k + 1)n−2k/m/(m(1 − n−1/m)) and∑
k≥0 (k + 1)n−2k/m � n−1/m when m � log n. As for S3,

S3 � m
∑

m
log (m+1) ≤i≤m−1

1

i
max

m
log (m+1) ≤i≤m−1

(i/n)i/m � m log log (m + 2)n− 1
log (m+1)
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since i �→ (i/n)i/m decreases for i ≤ n/e. Both S3 and the error term in S1 are dominated by
our bound for S2. It follows that

S = u
(− log

(
1 − n− 1

m
)+ O

(n− 1
m

m

))
.

The error O( log n) in (4·1) is absorbed in the error term in S when m > 1, and we are done.

4·2. Proof of Corollary 1·3
We first consider n ≥ m > n/2. For m = n, pn,n = ρ(1) = 1, so we may assume m ≤ n − 1.

We have exact formulas: pn,m = 1 −∑n
i=m+1 1/i and ρ(u) = 1 − log u. Hence

pn,m − ρ(u) =
n∑

i=m+1

( log i − log (i − 1) − 1

i
) �

n∑
i=m+1

1

i2
�
∫ n

m

dt

t2
.

We are done since, in our range,∫ n

m

dt

t2
= 1

m
− 1

n
� n − m

m2
= u − 1

m
� log u

m
.

We now suppose n/2 ≥ m ≥ C log n. We shall need the lower bound [8, theorem A·1]

pn,m ≥ ρ(u)

(
1 + cu log u

m

)
(4·2)

which holds uniformly for n/2 ≥ m ≥ 1. We may assume n ≥ C, since for bounded n we just
want to show B2ρ(u) ≥ pn,m ≥ B1ρ(u) for constants B2 ≥ B1 > 1 which follows from (4·2)
and (1·4). If u is sufficiently large then it follows from Proposition 3·1 that, using the same
definition for A as in the statement of the corollary,

A � uξ (u)

m
� u log u

m
� u log

(
1 + log u

m

)
as needed. If u = O(1) then the same argument establishes A ≤ Cu log (1 + ( log u)/m) and
a matching lower bound in this range follows from (4·2).

Finally we suppose m = O( log n). From (1·1) we have( e

n

)u 1

ρ(u)
= exp

(
u

(
log

(
log u

m

)
+ O

(
log log u

log u

)))
. (4·3)

From Theorem 1·2 and (4·3),

u−1A = log

(
log n

m

)
− log

(
1 − n− 1

m

)
+ O

(
log log n

log n

)
.

If n is sufficiently large and 1 ≤ m ≤ C log n,

log

(
log n

m

)
− log (1 − n− 1

m ) = log

(
( log n)/m

1 − e−( log n)/m

)
� log

(
1 + log n

m

)
since t/(1 − e−t) ≥ 1 + c when t = ( log n)/m ≥ 1/C. This finishes the proof.
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Remark 3. When m = O( log n) the proof above shows more: setting t := ( log n)/m,

A = u

(
log

t

1 − e−t
+ O

(
log log (n + 2)

log (n + 2)

))
holds, where A is as in the statement of Corollary 1·3.

5. Proofs of results in the polynomial setting

We recall we can write Gq as

Gq(z) = exp

⎛⎝ ∞∑
i=m+1

aizi

i

⎞⎠ , (5·1)

where ai are nonnegative numbers, depending on q, that are described in [8, lemma 2·1] and
satisfy

ai � min{q−i/2�, qm−i}. (5·2)

5·1. Proof of Theorem 1.5

We suppose that n ≥ m ≥ √
10n log n. This guarantees 2m/3 > 1 + m( log 2)/3 ≥ 1 +

2u log u ≥ 1 + uξ = eξ , where we used Lemma 2·3 in the last inequality. Hence

eξ/m <
3
√

2. (5·3)

An application of Cauchy’s integral formula allows us to express pn,m as

pn,m = exp (Hm − γ )

m

1

2π i

∫ −ξ+imπ

−ξ−imπ

ρ̂(s)euseT(−s)ds, (5·4)

see [13, section 4]. In the same way,

pn,m,q = exp (Hm − γ )

m

1

2π i

∫ −ξ+imπ

−ξ−imπ

ρ̂(s)euseT(−s)Gq(e−s/m)ds, (5·5)

see e.g. [8, section 4]. Since Gq has radius of convergence equal to q, we must ensure that
eξ/m < q in order for the last integral to be valid, and this holds by (5·3). By taking a linear
combination of (5·4) and (5·5), and using (2·10) we have

pn,m,q − Gq(eξ/m)pn,m = Gq(eξ/m)
1 + O(m−1)

2π i
X

for

X :=
∫ −ξ+imπ

−ξ−imπ

ρ̂(s)euseT(−s)
(

Gq(e−s/m)

Gq(eξ/m)
− 1

)
ds.

Since pn,m � ρ(u) for m ≥ √
10n log n by (1·4), it follows that

pn,m,q

pn,m
= Gq(eξ/m)

(
1 + O

( |X|
ρ(u)

))
.
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We must show X � ρ(u) log (u + 1)/(mq(m+1)/2�). To bound X, we consider separately the
contribution of |�s| ≤ 1 + uξ and mπ ≥ |�s| ≥ 1 + uξ . We start with |�s| ≤ 1 + uξ . Let

H(s) := Gq(e−s/m)

Gq(eξ/m)
− 1, HT (s) := H(s)eT(−s)

so that the integrand in X is ρ̂(s)eusHT (s). We Taylor-expand HT (s) at s = −ξ , where it
attains 0: HT (s) = (s + ξ )b1 + O(|s + ξ |2b2) for

b1 = HT
′( − ξ ) and b2 = max|t|≤1+uξ

|HT
′′( − ξ + it)|.

Applying Lemma 3·6 with k = 2, B = 0 and Lemma 3·7 with k = 1, it follows that∫ −ξ+i(1+uξ )

−ξ−i(1+uξ )
ρ̂(s)eusHT (s)ds � (|b1| + b2)

ρ(u)

u
.

We now consider the contribution of πm ≥ |�s| ≥ 1 + uξ . We focus on mπ ≥ �s ≥ 1 + uξ ,
and negative �s is handled the same say. We have ρ̂(s) = 1/s + O(u log (u + 1)/|s|2) in this
range by the third part of Lemma 2·7. The contribution of O(u log (u + 1)/|s|2) is

�
∫ −ξ+iπm

−ξ+i(1+uξ )
|eus u log (u + 1)

s2
HT (s)||ds| � b3e−uξ ,

where

b3 = max|t|≤πm
|HT ( − ξ + it)|.

We study the last piece of the integral,∫ −ξ+iπm

−ξ+i(1+uξ )

eus

s
eT(−s)H(s)ds.

We write eT(−s) as 1 + (eT(−s) − 1). When s = −ξ + it for 1 + uξ ≤ t ≤ πm we have eT(−s) −
1 = O(|s|/m + |s|2/m2) by Corollary 2·8. Applying the triangle inequality we get∫ −ξ+iπm

−ξ+i(1+uξ )

eus

s
(eT(−s) − 1)H(s)ds � b4

∫ −ξ+iπm

−ξ+i(1+uξ )

∣∣∣∣eus

s

∣∣∣∣( |s|
m

+ |s|2
m2

)
|ds| � b4e−uξ ,

where

b4 = max|t|≤πm
|H( − ξ + it)|.

We estimate ∫ −ξ+iπm

−ξ+i(1+uξ )

eus

s
H(s)ds. (5·6)
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Using the notation in (5·1) and the bound in (5·2), it follows that

H(s) = log Gq(e−s/m) − log Gq(eξ/m) + O

(
u2 log2 (u + 1)

m2q2 m+1
2 �

)

=
2m∑

j=m+1

aj

j
(e−js/m − ejξ/m) + O

(
u2 log2 (u + 1)

mqm+1

)
. (5·7)

Hence the integral in (5·6) equals

=
2m∑

j=m+1

aj

j

∫ −ξ+iπm

−ξ+i(1+uξ )

eus

s
(e−js/m − ejξ/m)ds + O

(
u2 log2 (u + 1)e−uξ log (m + 1)

mqm+1

)
.

If u < 3 then Gq(eξ/m) − 1 � 1/(mq(m+1)/2�), implying Theorem 1·5 is already in (1·6).
From now on we assume u ≥ 3. We have the estimate∫ −ξ+iπm

−ξ+i(1+uξ )

e(u−j/m)s

s
ds � e−(u−j/m)ξ

(1 + uξ )|u − j/m| ,

which is valid for all 2m ≥ j ≥ 0 and u ≥ 3, and is established by integration by parts. It
follows that the integral (5·6) contributes

� u2 log2 (u + 1)e−uξ log (m + 1)

mqm+1
+

2m∑
j=m+1

aj

j

e−uξ

1 + uξ

ejξ/m

|u − j/m| � e−uξ

nq m+1
2 � .

Collecting the estimates,

X � ρ(u)

u
(|b1| + b2) + (b3 + b4)e−uξ + e−uξ

nq m+1
2 � . (5·8)

Recall we want to show X � ρ(u) log (u + 1)/(mq(m+1)/2�). We have e−uξ �k ρ(u)u−k for
any k by (2·4), showing that the last term in (5·8) is acceptable and that it suffices to show
bi � u log (u + 1)/(mq(m+1)/2�) for i = 1, 2, 3, 4.

Since T( − ξ + it) is bounded when |t| ≤ πm by Corollary 2·8, it follows that b3 � b4.
By (5·7) and the triangle inequality, b4 � u log (u + 1)/(mq(m+1)/2�). To bound b1 and b2

we use the fact that T and its derivatives are bounded by Lemma 2·9 in order to reduce the
problem to showing

H(i)(− ξ + it) � u log (u + 1)/(mq(m+1)/2�)

holds for i = 0, 1, 2. For i = 0 this is in (5·7), for i = 1 we have

H′(s) = −e−s/m

m

Gq
′(e−s/m)

Gq(eξ/m)
� |Gq

′(e−s/m)|
m

�
∑∞

i=m+1 aie(i−1)ξ/m

m
� u log (u + 1)

mq(m+1)/2�

and a similar computation holds for i = 2. This completes the proof of Theorem 1·5.
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5·2. Proof of Corollary 1·6
Fix ε > 0. We assume n ≥ m ≥ (2 + ε) logq n and we want to establish (1·10) in this range.

We already know (1·10) holds in n/( log n log3 log (n + 1)) ≥ m ≥ (2 + ε) logq n, so we may

suppose n ≥ m > n/( log n log3 log (n + 1)).
If n = O(1) then (1·10) becomes pn,m,q = pn,mGq(x) + On,ε(Gq(x)/q(m+1)/2�). To estab-

lish this, recall pn,m,q = pn,m + O(1/q(m+1)/2�) by [8, proposition 1·5] and observe that
Gq(x) = 1 + On,ε(1/q(m+1)/2�) by (5·1) and (5·2).

From now on we may suppose n is sufficiently large. In particular, n >
√

10n log n holds,
and n ≥ m > n/( log n log3 log (n + 1)) implies n ≥ m ≥ √

10n log n. We apply Theorem 1·5,
and see that it suffices to show that

Gq(x)

Gq(eξ (u)/m)
= 1 + O

(
u log2 (u + 1)

m2q m+1
2 �

)
(5·9)

holds for n ≥ m ≥ √
10n log n. First we verify that x <

3
√

2. Since x ≤ n1/m, it suffices to show
that 2m > n3, which follows from n ≥ m ≥ √

10n log n. Now that we know Gq converges
absolutely at x we proceed. The relation xm = eξ (1 + O( log (u + 1)/m)) from (3·6) implies

log Gq(x) − log Gq(eξ/m) =
∞∑

i=m+1

ai(xi − eξ i/m)

i
� u log2 (u + 1)

m2q m+1
2 �

using (5·2), and (5·9) follows by exponentiating.

5·3. Auxiliary computation

Recall Fq defined in (1·7). We define xq := xn,m,q < q as the unique positive solution to
zFq

′(z)/Fq(z) = n. The next lemma gives precise results on x − xq in certain ranges.

LEMMA 5·1. If n ≥ m ≥ 1 then xq ≤ x. Fix q and ε > 0. For n ≥ Cq,ε and m ∈
[(3/4) logq n, (2 − ε) logq n],

Cq,ε
min{n, qm}

qmm

(
1 − xq

q

)−1 ≥ x − xq ≥ cq
min{n, qm}2

qmnm
.

Proof. We shall use the form of Gq given in (5·1). Let f (z) := z( log F(z))′ =∑m
i=1 zi and

gq(z) := z( log Gq(z))′ =∑∞
i=m+1 aizi. By definition,

n = f (x) = f (xq) + gq(xq). (5·10)

Since f and gq have nonnegative coefficients, the first part of the lemma follows at once. We
now assume (2 − ε) logq n ≥ m ≥ (3/4) logq n. We use (5·10) to determine the size of x − xq.
By the mean value theorem,

0 ≤ x − xq = f −1(n) − f −1(n − gq(xq)) = gq(xq)

f ′(f −1(n − t))

for some t ∈ [0, gq(xq)], where f −1 is the inverse of f . Since f −1 and f ’ are monotone
increasing we have f ′(f −1(n − t)) ∈ [f ′(xq), f ′(x)] and so

x − xq ∈
[

gq(xq)

f ′(x)
,

gq(xq)

f ′(xq)

]
.

https://doi.org/10.1017/S0305004124000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000355


Smooth permutations and polynomials revisited 23

We have the trivial bounds 1 ≤ x ≤ n1/m �q 1 and so f ′(x) = λ/x �q nm by Lemma 2·1. We
also have

gq(xq) ≥ a2mx2m
q � q−mx2m

q

since ai ≥ 0 and a2m � q−m by [8, lemma 2·1]. It follows that

x − xq �q
x2m

q

qmnm
.

[12, lemma 2 and theorem 2] estimate xq and yield that, when 2 logq n ≥ m ≥ (3/4) logq n,

xm
q �q min{n, qm}, (5·11)

implying the desired lower bound on x − xq. To prove the upper bound, first observe that
m ≤ (2 − ε) logq n implies, via (5·11), that xq ≥ q1/2(1 + cq,ε) if n is sufficiently large, and
so

gq(xq) �
2m∑

i=m+1

xi
q

qi/2
+ qm

∑
i≥2m

xi
q

qi
�q,ε

x2m
q

qm

(
1 − xq

q

)−1

using the bounds in (5·2). To conclude we need to lower bound f ′(xq). We have f ′(xq) =
x−1

q
∑m

i=1 ixi
q �q mxm

q .

5·4. Proof of Theorem 1·7
Recall the functions F, Fq and Gq are defined in (1·8), (1·7) and (1·9). If m → ∞ and

u ≥ ( log log m)3 log m, Manstavičius proved in [11,12] that

pn,m,q = Fq(xq)

xn
q

√
2πλq

(
1 + Oq

(
m

n
+ m

qm

))
, (5·12)

where

λq := λn,m,q = z

(
zF′

q(z)

Fq(z)

)
′|z=xq .

We divide (5·12) by (2·1), and use the fact that λ is asymptotic to nm by Lemma 2·1 as long
as u → ∞, and

λq ∼ nm

(
1 + n

qm

(
1 − 1

q

))
(5·13)

by [12, theorem 2] as long as u → ∞ and m → ∞, to obtain

pn,m,q

pn,mGq(x)
∼
(

1 + n

qm

(
1 − 1

q

))−1/2 xnF(xq)Gq(xq)

xn
qF(x)Gq(x)

(5·14)

as n → ∞ if (2 − ε) logq n ≥ m > logq n. Letting

Hq(z) := log Fq(z) − n log z = log F(z) + log Gq(z) − n log z,
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we can write (5·14) as

pn,m,q

pn,mGq(x)
∼ exp

(
Hq(xq) − Hq(x)

) (
1 + n

qm

(
1 − 1

q

))−1/2

. (5·15)

By definition, H′
q(xq) = 0. By Taylor-expanding Hq at xq,

Hq(x) − Hq(xq) = H′′
q(t)

2
(x − xq)2

for some t ∈ [xq, x] (recall xq ≤ x by Lemma 5·1). In the range (2 − ε) logq n ≥ m > logq n
we have x �q xq �q 1 by Lemma 2·1 and (5·11). In the notation of (5·1),

t2Hq
′′(t) =

m∑
i=2

(i − 1)ti +
∞∑

i=m+1

(i − 1)ait
i + n > 0

is increasing for t > 0 since ai ≥ 0. It follows that

x2
qHq

′′(xq) �q Hq
′′(t) �q x2Hq

′′(x).

A short computation shows that x2
qHq

′′(xq) = λq holds by the definition of xq and λq. By

(5·13) it then follows that x2
qHq

′′(xq) �q nm when (2 − ε) logq n ≥ m > logq n. In the same

range we find that x2Hq
′′(x) = λ +∑∞

i=m+1 (i − 1)aixi �q,ε nm using Lemma 2·1 and the
bounds in (5·2). Hence Hq

′′(t) �q,ε nm and

Hq(x) − Hq(xq) �q,ε nm(x − xq)2 �q,ε
n3

mq2m
,

where we used Lemma 5·1 in the second estimate. Plugging this estimate in (5·15),
and observing that (1 + (n/qm)(1 − 1/q))−1/2 ∼ 1 holds in the range m ≥ (1 + ε) logq n
considered in Theorem 1·7, concludes the proof.

5·5. A variant

We prove a variant of Theorem 1·7 with the main term Gq(x) replaced by Gq(xq).

THEOREM 5·2. Fix q and ε > 0. For m ∈ [(3/4) logq n, (2 − ε) logq n] we have

pn,m,q

pn,m
≤ (1 + o(1))Gq(xq) exp

(
Cq,ε min{n, qm}2n

mq2m

(
1 − xq

q

)−2
)

,

pn,m,q

pn,m
≥ (1 + o(1))Gq(xq) exp

(
cq,ε min{n, qm}5

n2mq2m

)
(5·16)

as n → ∞. If furthermore n ≥ Cq,ε then

Cq,ε
min{n, qm}2

mqm

(
1 − xq

q

)−1 ≥ log Gq(xq) ≥ cq
min{n, qm}2

mqm
.

Proof. In very much the same way (5·14) is proved, we also have

pn,m,q

pn,mGq(xq)
∼ xnF(xq)Gq(xq)

xn
qF(x)Gq(xq)

(
1 + n

qm

(
1 − 1

q

))−1/2

(5·17)
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if u ≥ ( log log m)3 log m and m → ∞. Letting

H(z) := log F(z) − n log z,

we can write (5·17) as

pn,m,q

pn,mGq(xq)
∼ exp

(
H(xq) − H(x)

) (
1 + n

qm

(
1 − 1

q

))−1/2

.

By definition, H′(x) = 0. By Taylor-expanding H at x,

H(xq) − H(x) = H′′(t)
2

(x − xq)2

for some t ∈ [xq, x]. Since t2H′′(t) =∑m
i=2 (i − 1)ti + n is increasing in t, and x �q xq �q 1

by Lemma 2·1 and (5·11), it follows that

x2
qH′′(xq) �q H′′(t) �q x2H′′(x).

We have x2H′′(x) = λ � nm by Lemma 2·1 when (2 − ε) logq n ≥ m ≥ (3/4) logq n. Lemma
5·1 bounds x − xq. This gives the first part of (5·16) (we bound the factor (1 + (n/qm)(1 −
1/q))−1/2 by 1). We have x2

qH′′(xq) ≥ (m − 1)xm
q �q m min{n, qm} by (5·11), which leads to

the second part of (5·16) (we absorb (1 + (n/qm)(1 − 1/q))−1/2 in the exponential factor in
right-hand side of (5·16)).

It remains to estimate Gq(xq). For a lower bound we use log Gq(xq) ≥ a2mx2m
q /(2m) �

x2m
q /(mqm). Here we used ai ≥ 0 and a2m � q−m [8, lemma 2·1]. This is simplified using

(5·11). For the upper bound we use ai � min{q−i/2�, qm−i} and xq ≥ q1/2(1 + cq,ε) to obtain
log Gq(xq) �q,ε x2m

q /(mqm(1 − xq/q)). We again simplify xm
q using (5·11).
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