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Abstract

Ixodes ricinus, commonly known as the castor bean tick and sheep tick, is a significant vector
of various diseases, such as tick-borne encephalitis and Lyme borreliosis. Owing to climate
change, the distribution and activity of I. ricinus are expected to increase, leading to an
increase in the number of diseases transmitted by this species. Most distribution models
and ecological niche models utilize macroclimate datasets such as WorldClim or CHELSA
to map the distribution of disease-transmitting ticks. However, microclimatic factors are cru-
cial for the activity and survival of small arthropods. In this study, an ecological niche mod-
elling approach was used to assess the climatic suitability of I. ricinus using both microclimatic
and macroclimatic parameters. A Mixed model was built by combining parameters from the
Soiltemp (microclimate) and Wordclim (macroclimate) databases, whereas a Macroclimate
model was built with the CHELSA dataset. Additionally, future suitabilities were projected
via the macroclimate model under the SSP3-7.0 and SSP5-8.5 scenarios. Macroclimate and
Mixed models showed similar distributions, confirming the current distribution of I. ricinus.
The most important climatic factors were seasonality, annual temperature range, humidity
and precipitation. Future projections suggest significant expansion in northern and eastern
Europe, with notable declines in southern Europe.

Introduction

As anthropogenic climate change becomes increasingly apparent through rising mean annual
temperatures and the significant increase in both the frequency and magnitude of extreme
weather events, investigations of the relationships between vector populations and climate
have garnered increased prominence (Kilpatrick and Randolph, 2012; Dantas-Torres, 2015;
Semenza and Suk, 2018; Rocklöv and Dubrow, 2020; Gilbert, 2021). Consequently, studying
how vectors interact with their climatic environment, with a focus on mechanistic and correla-
tive models, has gained additional importance for human health and welfare (Estrada-Peña,
2008; Li et al., 2012; Zhao et al., 2021).

Ixodes ricinus is one of the most important tick species in Europe because of its role as a
vector for Lyme disease and tick-borne encephalitis (Jaenson and Lindgren, 2011; Ostfeld and
Brunner, 2015; Estrada-Peña et al., 2016). The abiotic factors that affect the abundance and
distribution of I. ricinus have long been studied. Specifically, humidity and vegetation litter
layers have been noted as the most important requirements for the survival and host-seeking
activity of the species (Knülle and Rudolph, 1982; Gray et al., 2016; Van Gestel et al., 2022).
Geographical variation in temperature is another significant factor that has been suggested to
influence the timing of host-seeking activity and molting to the next life stage (Jaenson and
Lindgren, 2011; Gilbert et al., 2014). As a result of global warming, changes in precipitation
patterns and increasing temperatures could increase the mortality rate of I. ricinus, particularly
due to the potential increase in droughts and cold periods (Dautel et al., 2016). Conversely, the
occurrence of milder winters could create new distribution areas with altitudinal shifts, such as
mountainous regions and higher latitudes in Europe (Materna et al., 2008; Jaenson and
Lindgren, 2011; Martello et al., 2014; Hvidsten et al., 2020).

Ecological niche modelling (ENM) is a fundamental correlative method for investigating
the distribution of disease transmission vectors, including ticks (Raghavan et al., 2020;
Alkishe et al., 2021; Moo-Llanes et al., 2021). ENMs combine the locations of species
with environmental variables to construct a representative multidimensional niche of
the species (Warren and Seifert, 2011; Peterson and Soberón, 2012). In addition to predicting
the current potential niches of the species, ENMs are utilized to project possible future
distributions under global circulation model (GCM) scenarios (Carvalho et al., 2017;
Aguilar-Domínguez et al., 2021; Alkishe and Peterson, 2022). Although most distribution
models use macroclimatic parameters gathered from standardized weather stations, the con-
ditions of the microclimate can differ greatly from those of the macroclimate (Maclean et al.,
2021; Marcin et al., 2021); recently, there have been significant advances in including micro-
climatic parameters in distribution modelling (Lembrechts et al., 2019; Stark and Fridley,
2022). The microclimate might be more decisive than the macroclimate for small arthropods
such as ticks because they are much more exposed to conditions close to the ground and
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under litter, and conditions in the microclimate could greatly
affect the survival and activity of ticks (Randolph and Storey,
1999; Lauterbach et al., 2013; Boehnke et al., 2017; Volk et al.,
2022).

Several modelling studies have suggested possible changes in
the distribution areas of I. ricinus in the future, which could
increase the risk of dissemination of related diseases. The com-
mon conclusion drawn from these studies is that the range has
expanded to a large part of Europe, North Africa and the
Middle East (Porretta et al., 2013; Alkishe et al., 2017; Cunze
et al., 2022). However, a significant portion of the studies included
specimens from North Africa, which were later identified as
Ixodes inopinatus (Estrada-Peña et al., 2014). Therefore,
reevaluating previous occurrence records is extremely necessary.
Additionally, occurrence records from countries such as Turkey,
where I. ricinus was observed but generally was neglected in
these analyses, will provide important information about the cur-
rent and future distributions of the species. Additionally, most
previous studies except Cunze et al. (2022) on I. ricinus have
used CMIP5 and earlier GCMs to predict possible future climatic
suitabilities, and updated projections that use the latest GCMs will
provide better predictions.

The primary goal of this study was to predict climatically
favourable areas for I. ricinus under both current and future cli-
mate conditions via the Maxent approach by incorporating
microclimatic and macroclimatic variables. Tick presence data
were gathered from the current literature, and a Macroclimate
suitability model was built using the CHELSA bioclimatic dataset,
whereas a Mixed (microclimate and macroclimate) suitability
model was built by combining Soiltemp and WorldClim datasets.
The second aim was to estimate the possible future distributions
under projected GCMs using suitability models. To this end,
SSP3-7.0 and SSP5-8.5 GCMs for the 2011–2040, 2041–2070
and 2071–2100 periods, respectively, were used to carry out future
projections with the Macroclimate model. The results of this study
will be informative for evaluating the risk of tick-borne diseases
and predicting future threats posed by emerging diseases trans-
mitted by I. ricinus.

Materials and methods

Species distribution data

To infer the current and future distributions of I. ricinus, various
resources have been utilized to gather occurrence data: VectorMap
(www.vectormap.org), the Global Biodiversity Information
Facility (www.gbif.org) and scientific literature (Boehnke et al.,
2015; Estrada-Pena and De La Fuente, 2016; Krawczyk et al.,
2022). Occurrence points from Turkey were primarily derived
from Hekimoğlu (2022), who utilized both morphological and
molecular methods for sample identification. Additionally, field
sampling data from 2023 (n = 2, İstanbul) were included in the
final local dataset (n = 19).

The raw records were cleaned and refined by excluding local-
ities (1) where tick collection was conducted from birds, as the
presence of ticks on birds does not necessarily indicate that
ticks establish populations in those areas; (2) samples from
North Africa, as these have been redetermined as I. inopinatus
(Rollins et al., 2023), whereas I. inopinatus could be distributed
in southern Spain and Portugal, the absence of clear evidence dis-
tinguishing them from I. ricinus led us to retain the geographical
points of these countries in the analyses. (3) Locations from the
Mediterranean and Aegean regions of Turkey were excluded
because of a lack of confirmation in the scientific literature.
Following these steps, a preliminary set of 4668 geographic loca-
tion points was obtained.

Environmental variables

Microclimatic predictors from the Soiltemp (available at
https://zenodo.org/records/7134169) dataset were used to build
the first model (Lembrechts et al., 2020) with 30 arcsec (∼1 km)
resolution. The Soiltemp dataset includes bioclimatic temperature
variables similar to those of the WorldClim and CHELSA data-
sets. However, unlike these datasets, which use interpolated data
from standardized weather stations, the environmental data in
the Soiltemp dataset are interpolated from both observational
and experimental data gathered from dataloggers placed in micro-
climates (in soil) worldwide. Another advantage of Soiltemp is
that the most intense data gathering was carried out in Europe,
the main distributional area of I. ricinus. As the Soiltemp data
included only temperature-related parameters (the first 11 biocli-
matic variables), they were combined with precipitation para-
meters (bioclimatic vars 11–17), vapour pressure and surface
radiation parameters from the WorldClim dataset (Fick and
Hijmans, 2017) available at https://www.worldclim.org to con-
struct the input dataset. The WorldClim parameters were chosen
for combination because CHELSA and Soiltemp have some
compatibility issues in Maxent models. For the Macroclimate
model and projections, data were gathered from the CHELSA
dataset, which is a ready-to-use model output of estimates of
ERA-Interim climatic reanalysis downscaled with the CHELSA
algorithm and is available at https://CHELSAclimate.org (Karger
et al., 2022) with a 30 arcsec, (∼1 km) resolution. Climatic vari-
ables for the 1981–2010 period were used to build the base
Macroclimate model for the present. In addition to featuring mea-
surements for a more recent period, the CHELSA dataset includes
additional parameters that are biologically more relevant to Ixodes
ticks, such as growth degree days above 5°C (Gdd5) (Jaenson and
Lindgren, 2011; Gray et al., 2021), net primary productivity
(Npp), which is related to vegetation cover important for ticks,
growth season temperature (Gst) and growth season precipitation
(Gsp). Additionally, since bioclimatic factors 8, 9, 18 and 19 were
found to include some inconsistencies related to spatial artefacts
first found in the WorldClim dataset and present in the
CHELSA dataset (Escobar, 2020; Aguilar-Domínguez et al.,
2021; Alkishe and Peterson, 2022), these variables were not
used in datasets (Soiltemp, WorldClim and CHELSA). As the
Mixed model dataset also included some macroclimatic variables
(precipitation variables), the term ‘Mixed’ was chosen for differ-
entiation from the other dataset, which included only macrocli-
matic variables. For the two datasets, variables were clipped to
the area of interest between latitudes −20° and 65° and longitudes
20° and 65° WGS84. Geographic computations were performed
with QGIS (QGIS Geographic Information System, 2022), the
GDAL library in Python (Open Source Geospatial Foundation,
2022), and R version 4.2.2 (R Core Team, 2022).

Future projections

As future projections are not available for microclimatic variables,
GCMs available for the CHELSA dataset for three periods were
used to construct future projections with the Macroclimate
model selected for the CHELSA dataset: present-near future
(2011–2040), near future (2041–2070) and distant future
(2071–2100). The scenarios included SSP3-7.0 and SSP5-8.5 pro-
jections of UKESM1–0-LL (Sellar et al., 2019), MRI-ESM2-0
(Oshima et al., 2020), MPI-ESM1-2 (Mauritsen et al., 2019),
IPSL-CM6-LR (Boucher et al., 2020) and GFDL-ESM4 (Dunne
et al., 2020). Shared socioeconomic pathway (SSP) scenarios
improve representative concentration pathways (RCPs) by includ-
ing important socioeconomic parameters, such as urbanization,
population growth and climate change (Hausfather, 2020).
These datasets are also available at https://CHELSA-climate.org.
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Ecological niche models

Locations falling outside environmental rasters were removed
before building the models. To reduce spatial sampling bias and
to remove any unnoticed duplicates, the locations of I. ricinus
were thinned to 10, 20, 30, 40 and 50 km, and five different loca-
tion sets were obtained via the spThin package for R
(Aiello-Lammens et al., 2015). The resulting datasets were split
into a training set (70%), a cross-validation set for evaluating
the candidate models (25%), and an independent test set for
evaluating the final models (5%), which is crucial for revealing
the real predictive power of a model. To better predict the distri-
bution of a species, an accessible M space is needed (Soberon and
Peterson, 2005; Barve et al., 2011). To construct the M space, a
minimum convex polygon of a 100 km buffer area around the
location points was created for the models using the ellipsenm
package for R, which is available at https://github.com/
marlonecobos/ellipsenm (Cobos et al., 2019), and environmental
rasters were cut to this buffer area. For the Mixed model and the
Macroclimate model, three sets were created for each of them by
setting 0.9, 0.8 and 0.7 intervariable correlation thresholds using
the vifcor function in the usdm package for R (Naimi, 2017),
which eliminates variables from correlated pairs depending on
the variance inflation factor (VIF), and by consulting the evalua-
tions of the jackknife results of the preliminary Maxent models.
An additional dataset was prepared for the Macroclimate
model, depending on the previous models and jackknife results,
for a total of three variable sets for the Mixed model and four
sets for the Macroclimate model (Table 1).

ENMs were built according to the maximum entropy algo-
rithm (Phillips et al., 2006) and with the Kuenm R package
(Cobos et al., 2019), which includes Maxent version 3.4.4
(Steven et al., 2021). The first calibration models were built

with combinations of linear, quadratic, product and hinge features
(L, Q, P, H) with regularization parameters of 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4 and 5. To evaluate the models, a min-
imum threshold of 0.7 was set for the area under the curve
(AUC), a maximum threshold of 0.05 was set for the omission
rate, and a partial receiver operating characteristic (pROC) test
was used (Peterson and Soberón, 2012; Aguilar-Domínguez
et al., 2021). Further postanalysis model selection was carried
out by the Akaike information criterion corrected for small sam-
ple sizes (AICc), and models with ΔAICc values less than 2 were
selected as the final models (Warren and Seifert, 2011;
Nuñez-Penichet et al., 2021). These final models were used to
construct the final projections with 10 bootstrap replicates, and
they were also tested with the independent testing locations that
were set aside before model training and cross-validation.

Raster plots, which show the suitability of the distributions,
were binarized using the 10th percentile training presence logistic
threshold, which was taken from the Maxent results (Liu et al.,
2005; Kramer-Schadt et al., 2013). For the future projections, 6
consensus maps were calculated by taking the median of the
GCM scenarios for SSP3-7.0 and SSP5-8.5 for the periods
2011–2040, 2041–2070 and 2071–2100, respectively. To minimize
possible deviations due to the novelty of the conditions compared
with the original distribution area, the models were transferred to
future conditions without any projection under extreme novel
conditions (no extrapolation in the GCM scenarios) (Cobos
et al., 2019). For the Mixed and Macroclimate models, the
range (max val-min val) of the suitability maps of 10 bootstrap
replications was used to create uncertainty maps. To map the
uncertainty for future projections, we calculated the range of suit-
abilities between the different GCMs. Additionally, to determine
the places where conditions are more extreme than in the calibra-
tion area of the models, a mobility-oriented parity (MOP)

Table 1. The environmental predictors used in different sets in the microclimate model and macroclimate model are explained in the first column

Mixed Macroclimate

Set
1

Set
2

Set
3

Set
1

Set
2

Set
3

Set
4

Bio3a (isothermality) √ x x Bio3b (isothermality) √ √ √ √

Bio4a (temperature seasonality) √ √ √ Bio4b (temperature seasonality) √ √ x x

Bio6a (minimum temperature of the
coldest month)

√ √ √ Bio5b (maximum temp. of the
warmest month)

√ x x x

Bio7a (annual range of air
temperature)

√ x x Bio6b (minimum temperature of the
coldest month)

√ √ x x

Bio13c (precipitation amount of the
wettest month)

√ √ √ Bio7b (annual range of air
temperature)

√ √ √ √

Bio14c (precipitation amount of the
driest month)

√ √ x Bio13b (precipitation amount of the
wettest month)

√ √ √ √

Bio15c (precipitation seasonality) √ √ √ Bio14b (precipitation amount of the
driest month)

√ √ √ √

Sradc (Solar radiation) √ x x Bio15b (precipitation seasonality) √ √ √ √

Vaprc (water vapour pressure) √ √ √ Gdd5b (growing degree days heat
sum above 5°C)

√ √ x x

Gstb (mean temperature of the
growing season)

√ √ √ √

Gspb (precipitation amount of the
growing season)

√ √ √ √

Nppb (net primary productivity) √ √ √ x

Data Sources.
aSoiltemp.
bCHELSA.
cWorldClim.
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analysis was carried out, and the extrapolation risk of transfer
regions was calculated with the nearest 10% reference via the
MOP package for R (Owens et al., 2013; Alkishe et al., 2020;
Flores-López et al., 2022). Three types of MOP maps were created,
(1) representing how many variables in the region of projection
are non-analogous to those in the calibration area and where non-
analogous conditions were found towards (2) high values and (3)
low values of each variable were created for each GCM. All the
maps were created with QGIS software and R software.

Results

Model parameters

As models that used locations thinned to a greater distance than
20 km had AUC values less than 0.7, models created with 20 km
thinned locations were selected and had a total of n = 1001 loca-
tions (Fig. 1). Among these locations, ∼70% (n = 713) were used
to train the models, ∼25% (n = 238) were used for cross-
validation, and ∼5% (n = 50) were set aside for the final evalu-
ation tests. For the Mixed model, out of all 630 models, 627
were statistically significant, while only 24 passed the 0.05 omis-
sion rate criterion, and only one model from these fulfilled the
AICc. The final model was a linear product (LP) model with a
regularization multiplier of 0.5; this model used the second set,
with intercorrelations less than 0.8 and had an omission rate of
0.046, a pROC value of ∼0 and an AUC ratio of 1.16. The final
evaluations performed on the independent test set showed an
omission rate of 0.06, which is marginally above 0.05; on the
other hand, this means that the Mixed model correctly classified
approximately 47 points out of 50 points from the independent
test locations. The contributions of the 6 environmental variables

to the final Mixed model are shown in Table 2. The most import-
ant environmental variable was Bio4, the temperature seasonality
near the soil, with a contribution of 40.6%, followed by vapour
pressure, which contributed 36%, and Bio14 (precipitation
amount in the wettest month) and Bio15 (precipitation seasonal-
ity), both of which contributed 9.6%. Bio6, the near-soil min-
imum temperature of the coldest month, had a 3.3% contribution.

For the Macroclimate dataset, the AUC also fell below 0.7
beyond a 20 km thinning length in the models generated using
the CHELSA 1981–2010 dataset; thus, the 20 km thinned

Figure 1. All occurrence points of Ixodes ricinus after cleaning and thinning.

Table 2. Percent contribution of the environmental predictors to the models

Mixed Macroclimate

Predictor
Percent

contribution Predictor
Percent

contribution

Bio4a 40.6 Bio7b 52

Vaprc 36 Gspb 26.5

Bio14c 9.6 Bio15b 12.4

Bio15c 9.6 Bio3b 5.6

Bio6a 3.3 Gstb 1.4

Bio13c 0.9 Bio13b 1.1

Bio14b 1

Data Sources.
aSoiltemp.
bCHELSA.
cWorldClim.
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locations were also used in the models. Out of the 840 candidate
models, 757 were statistically significant, 49 passed the 0.05 omis-
sion rate criterion, and only one fulfilled both the omission rate
and AICc conditions. The final Macroclimate model was a linear
quadratic product hinge (LQPH) model combining all features
with a regularization multiplier of 2 that used the 4th variable
set (Table 2), which had a 0.7 upper intercorrelation threshold.
The model had an omission rate of 0.048 and a pROC of ∼0,
with an AUC of 1.14. Final evaluations with the independent
test revealed that the Macroclimate model had better results in
predicting the independent test results, with a final evaluation
omission rate of 0.041, which is even better than the cross-
validation omission rate of the same model. Although this result
is better than that of the final evaluations of the Mixed model, the
values are actually very close, as the 0.041 omission rate means
that it correctly assigned 48 out of the 50 independent test loca-
tions correctly. According to the Macroclimate model, the largest
contributor was Bio7 (annual range of air temperature), which
contributed 52% of the total contribution. This was followed by
Gsp (growth season precipitation), which contributed 26.5%,
whereas Bio3 (isothermality) contributed 5.6%.

Current and future predictions

For the current prediction maps, the binary thresholds were 0.27
and 0.28, respectively, with very similar 10th percentile training
presence logistic threshold values for both the Mixed and
Macroclimate models. The predicted areas of suitability
and uncertainty are shown in Fig. 2. Both the Mixed and
Macroclimate models predicted a wide distributional area that
covers much of Europe except for gaps in mountainous areas
and parts of southern Europe, especially Spain and Greece. The
climatically suitable regions mostly coincided with the current
distribution of I. ricinus. On the other hand, in western Asia,

suitable regions are located on the coast of the Black Sea. The
Mixed model revealed a wider suitable region in the Caucasus,
whereas the Macroclimate model for 1981–2010 predicted a smal-
ler suitable region in the southern Caspian Sea. Both models also
predicted a small suitable region on the coast of North Africa,
with the Mixed model showing a slightly larger area in North
Africa. On the other hand, the level of uncertainty is much greater
in southern Europe and North Africa.

The consensuses of the different GCM future projections are
shown in Figs 3 and 4, and each individual future projection is
included in Supplementary File 1. The predictions of SSP3-7.0
for the 2011–2040 period reveal significant expansion in eastern
and northern Europe, whereas there are some declines in south-
ern Europe, the Balkans and the Black Sea region. Interestingly,
despite being a more extreme scenario, the SSP5-8.5 projection
for 2011–2040 showed a smaller area of expansion, while the pat-
tern of decline was similar to that of the SSP3-7.0 scenario. The
level of uncertainty increases from western Europe to the periph-
eral regions where most of the expansion and decline occurs.
Future projections for 2041–2070 suggest the continuation of
increasing suitability in northeastern Europe, with the SSP3-7.0
scenario showing a spread that is slightly greater than that of
SSP5-8.5. Conversely, the decreases in the southern region are
greater in the SSP5-8.5 projection for 2041–2070. Distant future
projections for 2071–2100 show that this trend of decreased suit-
ability in south and increase in the north is expected to continue
in both scenarios, with the SSP5-8.5 projection depicting a very
extreme decline in the south, where most of the Mediterranean
and Balkans will not be suitable for I. ricinus.

Uncertainty and MOP results

For the present conditions, the uncertainty of the mixed model is
relatively low within the main distributional area of I. ricinus,

Figure 2. Maps of predicted suitable areas for I. ricinus and uncertainty from the ENM results. (A) Red areas show the suitable regions under current conditions
according to the Macroclimate model. (B) Uncertainty values of the Macroclimate model. (C) Green areas show the suitable regions under current conditions
according to the Mixed model. (D) Uncertainty values of the Mixed model.
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whereas the highest levels of uncertainty are observed at the mar-
gins (Fig. 2), particularly in the eastern Mediterranean, southern
Caucasus (Georgia), North African Coast, southwestern Spain
and western Scandinavia. Uncertainty attains the highest values
in the eastern Mediterranean and North Africa, outside the distri-
bution of I. ricinus. Therefore, the high suitability results in these
areas are not very reliable. For the Macroclimate model, although
the maximum level of uncertainty is greater than that of the
Mixed model, the overall level of uncertainty is lower, as shown
in Fig. 2. The general pattern of uncertainty is similar and
increases towards the margins. Specifically, east of the
Mediterranean, North Africa, west of Spain and western
Scandinavia present higher levels of uncertainty. Additionally,
the uncertainty in future projections is greater than that in present
projections. However, the pattern of uncertainty remains similar
to that at present, with western Europe (including France, the
United Kingdom and parts of Germany) experiencing the lowest
uncertainty levels, whereas higher uncertainty is evident around
the Mediterranean basin, the Balkans, western Spain and western
Scandinavia. The general level of uncertainty is very high in the
2071–2100 projections, particularly in the SSP5-8.5 projections;
additionally, there are more areas with extreme uncertainty,

suggesting that distant future projections (especially the worst-
case scenarios) are not very reliable for tick distribution models
(see Figs 3 and 4).

The MOP results closely mirror other uncertainties and are
included in Supplementary File 2. In the 2011–2040 and
2041–2070 SSP3-7.0 and SSP5-8.5 future projections, areas with
significant extreme extrapolation begin at the south of Anatolia
to Iran and the Middle East, North Africa and east of the
Caspian Sea. Almost all regions with significant extrapolations
fall outside the current and predicted future distribution range
of I. ricinus, except for small areas in southern Anatolia and
North Africa. For the 2071–2100 projections, in accordance
with the uncertainty maps, the areas with extreme extrapolation
are also dispersed to the coast of Mediterranean regions, including
Spain, Italy, Greece and Turkey, which is more prominent in the
SSP5-8.5 projection.

Discussion

Ixodes ricinus has high adaptability to European environments
and a tendency to expand its geographic range towards northern
altitudes, which is mostly explained by climate change (Materna

Figure 3. Side-by-side predicted suitable areas for I. ricinus and uncertainty values for the median of 5 GCM scenarios for SSP3-7.0 with differing degrees of loss and
gain compared with the current conditions (1981–2010) for the Macroclimate model.
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et al., 2008; Jaenson and Lindgren, 2011; Martello et al., 2014;
Garcia-Vozmediano et al., 2020; Hvidsten et al., 2020). This raises
the question of whether this expansion is likely to give rise to new,
distant foci for Lyme and TBE diseases. Environmental para-
meters play a significant role in influencing the distribution of
I. ricinus. Factors such as climatic conditions, habitat characteris-
tics, and landscape heterogeneity have been identified as key
determinants affecting the abundance and prevalence of this
tick species (Krasnov et al., 2007; Ruiz-Fons et al., 2012; Hauser
et al., 2018).

The Mixed model identified temperature seasonality as the pri-
mary environmental predictor, whereas the Macroclimate model
indicated that the annual temperature range was the most signifi-
cant contributor. These findings are consistent with those of pre-
vious studies. The annual temperature range, annual mean
temperature and annual precipitation were identified as the
most influential factors by Alkishe et al. (2017). Similarly, tem-
perature seasonality is considered a relevant factor according to
Cunze et al. (2022). The second most influential factor is vapour
pressure and growth season precipitation according to the Mixed
and Macroclimate models, respectively. The off-host survival of
ticks depends strongly on water availability since desiccation is

one of the most prominent causes of tick mortality and decreasing
questing activity (Perret et al., 2004; Tagliapietra et al., 2011;
Nolzen et al., 2022; Van Gestel et al., 2022). Factors such as higher
soil moisture content and increased cloud cover have been linked
to increased questing activity in I. ricinus (Medlock et al., 2008;
Lauterbach et al., 2013). Additionally, the distribution of I. ricinus
has expanded in the past three decades due to more favourable
biotic and abiotic conditions, which can be influenced by changes
in precipitation and an increase in mean winter temperatures
(Gray and Ogden, 2021). Other modelling studies have under-
scored the importance of precipitation as a significant factor in
the distribution of this species in both current and future projec-
tions (Alkishe et al., 2017; Cunze et al., 2022). Temperature has
been recognized in various studies as a crucial determinant of
the completion of the life cycle and duration of the host-seeking
activity of I. ricinus at northern latitudes (Lindgren et al., 2000;
Schwarz et al., 2012; Hauser et al., 2018). However, Gst (growth
season temperature) made a very small contribution to the final
Macroclimate models, and Gdd5 (degree days above 5°C) was
not included in the final selected models. Another discrepancy
with these previous studies is that the minimum temperature of
the coldest month (Bio6) contributed less than other variables

Figure 4. Side-by-side predicted suitable areas for I. ricinus and uncertainty values for the median of 5 GCM scenarios for SSP5-8.5 with differing degrees of loss and
gain compared with the current conditions (1981–2010) for the Macroclimate model.
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in the Mixed model; moreover, in the final selected models for
Macroclimate, Bio6 was not included because of correlation
thresholds. However, when Bio6 was included in the side models,
Bio6 was again behind other parameters, with a contribution
smaller than 3%. This might be due to the difference in the
CHELSA and Soiltemp datasets used in creating the models.
Additionally, the relationship between minimum temperature
and tick survival might be more complicated because of the buf-
fering effect of microclimatic factors such as snow cover and leaf
litter on tick survival and activity (Van Gestel et al., 2022). For
example, in situ measurements have shown that the humidity
and temperature in the understorey of forests where I. ricinus
resides are indeed much more mild and stable than those mea-
sured from standard weather stations (Boehnke et al., 2015).
Additionally, the increased winter mortality effect of removing
leaf litter and snow cover on Ixodes scapularis was documented
in experimental field plots (Volk et al., 2022).

It might be expected that microclimatic parameters are more
accurate for predicting the distribution of ticks because of the pro-
ven strong connection of tick survival with microclimatic abiotic
factors in the environment; however, the omission rates of the dis-
tribution models are very similar to those of the Macroclimate
model, which has a very slight edge. This could be attributed to
several factors. One explanation might be that the two microcli-
matic parameters that were included in the final mixed model
may not be good predictors; however, on the contrary, Bio4 was
the greatest contributor to the model, which supports the predict-
ive power of macroclimatic parameters. Notably, the Mixed model
also had very good predictive results. A more plausible explan-
ation might be that the Macroclimate model included additional
important parameters that improved the power of the model.
Gsp was the second most important contributor to the
Macroclimate model, which is not surprising given that most
tick species are active in the growing season. In addition, the
second most important parameter for the Mixed model was
water vapour pressure from WorldClim, a macroclimatic dataset.
The Soiltemp dataset includes only temperature-related variables,
and precipitation is the same for macro- and microclimate. Thus,
the inclusion of additional parameters related to water content
and humidity (crucial factors for ticks) at the microclimate level
would improve these models since relative humidity often varies
with microclimate, at least as much as temperature (Van Gestel
et al., 2022).

The models indicate that the region climatically suitable for I.
ricinus covers a large portion of Europe except southern Spain
and Greece and the coastal regions of the Black Sea in West
Asia. This outcome is consistent with the results of previous mod-
els of I. ricinus. On the other hand, model predictions revealed a
more constrained distribution in the southern regions of Europe,
especially in southern and western Anatolia; this is an expected
result, as we know that there is presently no record of I. ricinus
in this region (Hekimoğlu, 2022). The model also revealed a
small area of suitability on the North African coast; however,
the suitability of this region is not reliable due to the high degree
of uncertainty. Although some of the previous studies included I.
ricinus from North Africa, there is a high probability that some of
these records involved I. inopinatus, as recent genomic analysis
clearly demonstrated the presence of I. inopinatus in North
Africa (Younsi et al., 2020; Rollins et al., 2023). Nevertheless,
the absence of current and future distributions of I. ricinus in
the Mediterranean region cannot be ascribed solely to I. inopina-
tus. Although the distribution of I. inopinatus in different
European countries, such as Germany, Spain and Portugal, has
been suggested (Estrada-Peña et al., 2014; Chitimia-Dobler
et al., 2018; Hauck et al., 2019), genomic data have shown that
German samples are in fact I. ricinus (Rollins et al., 2023). In

this case, the taxonomic status of Mediterranean populations
should be reevaluated, as this could influence the projections of
I. ricinus in these areas. Considering the taxonomic reevaluation
mentioned above, many recent studies excluded North African
populations from their dataset (Cunze et al., 2022; Noll et al.,
2023). The findings of these studies largely align with our current
and future predictions. A large part of Europe constitutes the dis-
tribution area of the species, with the most suitable areas located
in Western Europe. While Mediterranean countries such as
France and Italy include suitable areas for the species, Portugal
and the northern part of Spain also appear suitable in the western
Mediterranean. Along the Black Sea coast, the most suitable areas
include coastal regions encompassing the northern part of
Turkey.

Future projections indicate a spread in northern and eastern
Europe, confirming other projections with different bioclimatic
datasets (Cunze et al., 2022; Noll et al., 2023). A consensus is
also reached with areas that will not be suitable in the future, par-
ticularly for the predicted habitat loss in Spain, Greece and the
Balkans (Cunze et al., 2022). Another outcome is that in the
present–near-future scenarios (2011–2040), the midway scenario
(SSP3-7.0) estimates a slightly wider new distributional area for
I. ricinus in northeastern Europe than does SSP5-8.5, a worse-case
scenario. This outcome is compatible with the previous future
projections by Porretta et al. (2013) and also Alkishe et al.
(2017), where midway scenarios also predicted a wider new region
of suitability in the near future. While the spread in the
2041–2070 scenarios is similar between the SSP3-7.0 and
SSP5-8.5 scenarios, the decline in the southern distributional
areas, including the Balkans and Mediterranean regions, is
much more prominent in SSP5-8.5 than in the other regions,
which is most likely due to the predictions of great declines in pre-
cipitation in this region. Distant future scenarios (2071–2100)
continue this increase in suitability towards the north, whereas
the decline in southern regions becomes much more excessive
(especially in the SSP5-8.5 scenario). On the other hand, the
level of uncertainty and the degree of extrapolation are also
extreme in these regions for this period, and thus, it would be
inaccurate to reach any assumption for this period. Several cli-
matic studies in recent decades since the early 2000s have deemed
the Mediterranean basin a climate change hotspot, with projec-
tions showing increased temperature and aridity, heightened vul-
nerability to drought and high temperatures and a greater
frequency of heat waves (Ulbrich et al., 2006; Giorgi and
Lionello, 2008; Naumann et al., 2018). Furthermore, the impacts
of recent climate change on increased drought frequency and
magnitude have already been documented in Mediterranean-
type climates (Hoerling et al., 2012; Feng et al., 2019). Current
projections indicate that the most suitable distribution areas for
the species in Turkey are the coasts of the Black Sea and the
Thrace region. However, while smaller suitable areas are also indi-
cated along the Mediterranean coast of the country, the uncer-
tainty in these predicted areas is again quite high. Future
projections suggest a loss of suitability on the southern coast
and, additionally, decline in certain localities, especially in the
inland areas of Thrace in the north. This pattern indicates that
expected climate changes in the Mediterranean Basin in the future
will result in a decrease in the distribution areas of this species in
Turkey, similar to the projections for Spain.

Ecological niche models are valuable tools for assessing the
possible presence and future distribution of parasite vectors; how-
ever, several caveats exist, and special care is needed when build-
ing distribution models. Major challenges are the potential bias
and limitations in the outputs of niche models, especially when
projecting to future scenarios (Peterson et al., 2018); therefore,
providing the necessary uncertainty values associated with these
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models is crucial. Additionally, ectoparasites, including ticks, par-
tially depend on their hosts for survival and transportation, pos-
ing other risks in modelling. Host species and their abundance are
among the most important factors influencing the distribution of
ticks to new areas and establishing populations. Moreover, the
large number of migrating birds increases the probability of the
geographic spread of I. ricinus and related diseases, emphasizing
the importance of considering avian hosts in disease epidemi-
ology (Waldenström et al., 2007; Ciebiera et al., 2019).
Although hosts play a crucial role in the transmission of ticks, sev-
eral limitations are associated with including hosts in modelling
studies. For example, I. ricinus is a three-host species that feeds
on different hosts during its life cycle (Hofmeester et al., 2016),
which can introduce complexity when multiple hosts are used
in modelling studies. Recent papers have presented contrasting
hypotheses regarding tick–host associations. Some suggest that
ticks select hosts on the basis of the environment, whereas others
propose that ticks select environments and feed on any available
host within those environments (Nava and Guglielmone, 2013;
Zhang et al., 2019; Ginsberg et al., 2022; Estrada-Peña et al.,
2023). Moreover, while it has been suggested that hosts can influ-
ence tick distribution at a smaller geographical scale, the distribu-
tion of ticks over a wide spatial scale is determined primarily by
direct climatic effects rather than by host presence (Cumming,
2002). Considering all these factors, understanding the interac-
tions between hosts, the environment and ticks is essential for
developing effective strategies to manage tick-borne diseases and
control their spread. On the other hand, a very recent study by
Fabri et al. (2024) revealed that I. ricinus depends much more
on abiotic factors than on the composition of its hosts.

Conclusion

This study aimed to update previous projections by reviewing
coordinates, utilizing new datasets and additionally implement-
ing microclimatic parameters to construct assistive models that
complement other distribution models that rely on macrocli-
matic parameters. According to the results, the Mixed model,
combining micro and macro parameters achieved similar levels
of accuracy with the Macroclimate model. However, the integra-
tion of microclimates in distribution models is still in its starting
phase, and the inclusion of additional microclimatic parameters
in available datasets, updating the presently available variables
with new data and also widening these models to other species
will be beneficial. For species distribution models, we still
depend on macroclimatic datasets since predictions of very fine-
grained parameters such as the microclimate in the future are
not yet available, and macroclimate data still provide good pre-
dictions at broader scales. Therefore, it is essential to continu-
ously replicate, validate and update previous models to better
predict the possible future distributions of disease-transmitting
ticks.
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