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Abstract
We obtain here sufficient conditions for increasing concave order and location independent more riskier order of
lower record values based on stochastic comparisons of minimum order statistics. We further discuss stochastic
orderings of lower record spacings. In particular, we show that increasing convex order of adjacent spacings between
minimum order statistics is a sufficient condition for increasing convex order of adjacent spacings of their lower
records.

1. Introduction

Let 𝑋 be a continuous random variable with distribution function 𝐹, survival function �̄� = 1 − 𝐹 and
quantile function 𝐹−1(𝑝) = inf{𝑥 ∈ R | 𝐹 (𝑥) ≥ 𝑝}, 𝑝 ∈ (0, 1). For 𝑘 = 1, . . . , 𝑛, let 𝑋𝑘:𝑛 be the 𝑘th
order statistic from an independent and identically distributed (i.i.d.) random sample 𝑋1, 𝑋2, . . . , 𝑋𝑛,
drawn from 𝑋 . A large body of literature has been devoted to the study of order statistics, which
includes numerous characterizations of probability distributions and applications to a wide range
of problems, such as statistical estimation, inferential procedures and analysis of censored samples.
Order statistics are also important in the context of life testing and reliability models, where they
describe lifetimes of 𝑘-out-of-𝑛 systems. Reviews on theoretical results and applications can be found
in the books by Arnold et al. [3], David and Nagaraja [23], and the two volume by Balakrishnan and
Rao [8,9].

Let 𝑋1, 𝑋2, . . . be a sequence of independent random variables having the same distribution as 𝑋 .
Then, we say that 𝑋 𝑗 is a lower record value if it is less than all the previous values of the sequence.
Lower record values appear in a natural way in many practical situations. In meteorological analysis, for
example, they describe sequences of successive coldest temperatures. In portfolio management, lower
record values describe sequences of successive lowest stock market figures, which is of great interest
to investors and financial institutions. Similar applications can be given in industrial stress testing,
seismology or sporting events. Some important references on records include the books by Ahsanullah
[2], Arnold et al. [4] and Nevzorov [32]. The indices at which the lower record values occur are given
by the record times {𝐿𝑛}𝑛≥1, where 𝐿1 = 1 and

𝐿𝑛 = min{ 𝑗 : 𝑗 > 𝐿𝑛−1, 𝑋 𝑗 < 𝑋𝐿𝑛−1 }, 𝑛 ≥ 2.
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We denote 𝑅 𝑗 = 𝑋𝐿 𝑗
as the 𝑗 th lower record value of the sequence. As the record times of the

sequence {𝑋𝑖}𝑖≥1 are the same as those for the sequence {𝐹 (𝑋𝑖)}𝑖≥1 and that 𝐹 (𝑋) has a uniform
distribution, it is clear that the distribution of 𝐿𝑛, 𝑛 ≥ 1, does not depend on 𝐹.

It has been observed in the literature (see Charalambides1, [22]) that 𝑅 𝑗 can be represented as a
minimum order statistic from a sequence of i.i.d. random variables whose sample size is random, that
is, 𝑅 𝑗 = 𝑋1:𝐿 𝑗

. Because 𝑋1:𝑛 is independent of the event {𝐿 𝑗 = 𝑛}, for 𝑛 ≥ 𝑗 [32] p. 114, the distribution
of 𝑅 𝑗 = 𝑋1:𝐿 𝑗

can be represented as a countable mixture, mixing the distribution of the 𝑗 th record
time with the distribution of minimum order statistic. One purpose of this paper is to use this mixture
representation to provide sufficient conditions for stochastic orderings of records based on stochastic
orderings of minimum order statistics. Some other results on stochastic comparisons of record values can
be found in Kochar [28,29], Ahmadi and Arghami [1], Khaledi and Shojaei [26], Khaledi et al. [27] and
Zhao and Balakrishnan [37]. As record values are particular cases of generalized order statistics (GOS),
some results on stochastic comparisons of GOS are valid for record values as well (see, e.g., [11,15]).

We first briefly introduce the stochastic orders that are pertinent to the work in this paper.

Definition 1. Let 𝑋 and𝑌 be two random variables with respective distribution functions 𝐹 and𝐺, and
let �̄� = 1 − 𝐹 and �̄� = 1 −𝐺, be the corresponding survival functions. We say that 𝑋 is smaller than 𝑌

(a) in stochastic order, denoted by 𝑋 ≤st 𝑌, if �̄� (𝑥) ≤ �̄� (𝑥), for all 𝑥;
(b) in increasing concave order, denoted by 𝑋 ≤icv 𝑌, if∫ 𝑡

−∞

𝐹 (𝑥) 𝑑𝑥 ≥

∫ 𝑡

−∞

𝐺 (𝑥) 𝑑𝑥, for all 𝑡;

(c) in increasing convex order, denoted by 𝑋 ≤icx 𝑌, if∫ +∞

t
�̄� (𝑥) 𝑑𝑥 ≤

∫ +∞

t
�̄� (𝑥) 𝑑𝑥, for all 𝑡;

(d) in dispersive order, denoted by 𝑋 ≤disp 𝑌, if

𝐹−1(𝑝) − 𝐹−1(𝑞) ≤ 𝐺−1(𝑝) − 𝐺−1(𝑞), for all 0 < 𝑞 < 𝑝 < 1;

(e) in location independent riskier order, denoted by 𝑋 ≤lir 𝑌, if
∫ 𝐹−1 (𝑝)

−∞

𝐹 (𝑥) 𝑑𝑥 ≤

∫ 𝐺−1 (𝑝)

−∞

𝐺 (𝑥) 𝑑𝑥, for all 𝑝 ∈ (0, 1).

For various properties and applications of these orders, we refer the readers to the books by Shaked
and Shanthikumar [33], Belzunce et al. [17] and Müller and Stoyan [31]. It is well-known that 𝑋 ≤st 𝑌
implies 𝑋 ≤icx 𝑌 and 𝑋 ≤icv 𝑌 and that 𝑋 ≤icv 𝑌 if and only if −𝑋 ≥icx −𝑌 . It is also well-known that
𝑋 ≤disp 𝑌 implies 𝑋 ≤lir 𝑌 . When the random variables 𝑋 and 𝑌 have a common left endpoint of their
supports, then 𝑋 ≤disp 𝑌 implies 𝑋 ≤st 𝑌 , and 𝑋 ≤lir 𝑌 implies 𝑋 ≤st 𝑌 (see [36]). It will be useful in
the sequel to note (see [25]) that 𝑋 ≤lir 𝑌 if and only if

𝐻 (𝑢) =
1
𝑢

∫ 𝑢

0
(𝐹−1(𝑡) − 𝐺−1(𝑡)) 𝑑𝑡 is non-increasing in 𝑢 ∈ (0, 1). (1)

Using (3.B.6) in Shaked and Shanthikumar [33], it is easy to see that

𝑋 ≤disp 𝑌 ⇐⇒ (𝐹−1(𝑝) − 𝑋)+ ≤st (𝐺
−1(𝑝) − 𝑌 )+, for all 𝑝 ∈ (0, 1), (2)

1Charalambides, in fact, represents the distribution of the 𝑘th upper record value as a countable mixture, mixing the distribution of the 𝑘th record
time with the distribution of the maximum order statistics.
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where (𝑥)+ = max{𝑥, 0}. Moreover, since 𝑋 ≤lir 𝑌 ⇔ −𝑋 ≤ew −𝑌,where ≤ew denotes the excess wealth
order (see Section 3.C.1 of [33]), it follows from Theorem 4.A.43 in [33] that

𝑋 ≤lir 𝑌 ⇐⇒ (𝐹−1(𝑝) − 𝑋)+ ≤icx (𝐺−1(𝑝) − 𝑌 )+, for all 𝑝 ∈ (0, 1). (3)

Using the same argument, it follows from Proposition 3 in Belzunce [13] that when the random
variables 𝑋 and 𝑌 have a common right endpoint of their supports, then 𝑋 ≤lir 𝑌 implies 𝑋 ≥icv 𝑌 . In
particular, if 𝑢𝑋 and 𝑢𝑌 denote the right endpoints of the supports of 𝑋 and 𝑌, it follows that

𝑋 ≤lir 𝑌 and 𝑢𝑋 = 𝑢𝑌 =⇒ 𝐸 [𝑌 ] ≤ 𝐸 [𝑋], (4)

a result that will be used in Example 3.
Let 𝑋1, 𝑋2, . . . be a sequence of independent random variables having the same distribution as 𝑋

and let 𝑌1, 𝑌2, . . . be another sequence of independent random variables having the same distribution as
𝑌 . Let 𝑅𝑠 (𝑋) and 𝑅𝑠 (𝑌 ), 𝑠 ≥ 1, be the corresponding 𝑠th lower record values of the two sequences.
Sufficient conditions on 𝑋 and𝑌 under which 𝑅𝑠 (𝑋) and 𝑅𝑠 (𝑌 ) are ordered by the orders ≤st, ≤icv, ≤disp
and ≤lir can be immediately derived from well-known results for generalized order statistics and for
upper records (see Section 3.7.2 in the book by Belzunce et al., [17], for a review). In particular, it
follows from Theorem 4.14 in Balakrishnan et al. [11] that 𝑋 ≤icv 𝑌 implies 𝑅𝑠 (𝑋) ≤icv 𝑅𝑠 (𝑌 ), and from
Theorem 5.2(a) in Belzunce et al. [14] that 𝑋 ≤lir 𝑌 implies 𝑅𝑠 (𝑋) ≤lir 𝑅𝑠 (𝑌 ) for 𝑠 ≥ 1. Note, however,
that when the conditions 𝑋 ≤icv 𝑌 and/or 𝑋 ≤lir 𝑌 do not hold, the orderings 𝑅𝑠 (𝑋) ≤icv 𝑅𝑠 (𝑌 ) and/or
𝑅𝑠 (𝑋) ≤lir 𝑅𝑠 (𝑌 ) are still possible. This motivates us to study new sufficient conditions (weaker than
𝑋 ≤icv 𝑌 and 𝑋 ≤lir 𝑌 ) under which the lower record values 𝑅𝑠 (𝑋) and 𝑅𝑠 (𝑌 ) are ordered for a certain
range of values of 𝑠. The new sufficient conditions, which are stated in Section 2, are given in terms of
comparisons of minimum order statistics. As 𝑋 ≤icv 𝑌 (respectively, 𝑋 ≤lir 𝑌 ) implies 𝑋1:𝑛 ≤icv 𝑌1:𝑛
(respectively, 𝑋1:𝑛 ≤lir 𝑌1:𝑛), for 𝑛 = 1, 2, . . . , and the reverse implications do not hold, our results can
be useful for comparing lower records in terms of ≤icv and ≤lir when 𝑋 and 𝑌 fail to be ordered. Let us
now present an example of two random variables 𝑋 and 𝑌 such that 𝑋 �icv 𝑌 and 𝑋1:2 ≤icv 𝑌1:2.

Example 1. For 𝑖 = 1, 2, let 𝑍𝑖 ∼ 𝑊 (𝛼𝑖 , 𝛽𝑖), 𝛼𝑖 > 0, 𝛽𝑖 > 0, be two Weibull random variables with
survival functions 𝐹𝑖 (𝑡) = 𝑒−(𝑡/𝛼𝑖)

𝛽𝑖 , 𝑡 > 0, and expectations 𝐸 [𝑍𝑖] = 𝛼𝑖Γ(1 + 1/𝛽𝑖). It is well-known
(see Table 1.1 in [31]) that

𝛽1 ≤ 𝛽2 and 𝐸 [𝑍1] ≤ 𝐸 [𝑍2] implies 𝑍1 ≤icv 𝑍2. (5)

Consider, in particular, 𝑋 ∼ 𝑊 (1, 1
3 ) and 𝑌 ∼ 𝑊 (2, 1). Because
∫ 100

0
[1 − 𝑒−𝑥

1/3
] 𝑑𝑥 = 94, 95

and ∫ 100

0
[1 − 𝑒−𝑥/2] 𝑑𝑥 = 98,

it follows that 𝑋 �icv 𝑌 . Moreover, it is easy to see that 𝑋1:2 ∼ 𝑊 ( 1
8 ,

1
3 ) and 𝑌1:2 ∼ 𝑊 (1, 1) with

expectations 𝐸 [𝑋1:2] = 3
4 and 𝐸 [𝑌1:2] = 1. Thus, it follows from (5) that 𝑋1:2 ≤icv 𝑌1:2.

Next, we provide an example of two random variables 𝑋 and 𝑌 such that 𝑋 �lir 𝑌 and 𝑋1:2 ≤lir 𝑌1:2.

Example 2. Let 𝑋1 and 𝑋2 be uniform random variables, 𝑋1 ∼ 𝑈 ( 1
4 ,

1
2 ) and 𝑋2 ∼ 𝑈 ( 1

2 , 1), with
distribution functions 𝐹1 (𝑥) and 𝐹2 (𝑥), respectively. Now, let 𝑋 be a random variable with distribution
function 𝐹 (𝑥) = 3

4𝐹1(𝑥) +
1
4𝐹2 (𝑥) and 𝑌 be a standard uniform random variable, 𝑌 ∼ 𝑈 (0, 1). Because
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Figure 1. 𝐻1:2(𝑢) as a function of 𝑢 for Example 3.

𝑋 and 𝑌 have a common right endpoint of their supports and 𝐸 (𝑋) = 15
32 < 𝐸 (𝑌 ) = 1

2 , it follows from
(4) that 𝑋 �lir 𝑌 . The distribution function 𝐹1:2 of 𝑋1:2 is

𝐹1:2 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 𝑥 < 1/4

1 − (
7
4
− 3𝑥)2, 1/4 ≤ 𝑥 < 1/2

1 −
1
4
(1 − 𝑥)2, 1/2 ≤ 𝑥 < 1

1, 𝑥 ≥ 1.

Figure 1 shows that the function

𝐻1:2(𝑢) =
1
𝑢

∫ 𝑢

0
(𝐹−1

1:2 (𝑡) − 𝐺
−1
1:2 (𝑡)) 𝑑𝑡

decreases in 𝑢 ∈ (0, 1), which implies from (1) that 𝑋1:2 ≤lir 𝑌1:2.

Another purpose of this paper is to provide sufficient conditions for the comparison of spacings
between minimum order statistics drawn from samples of different sizes and for the comparison of
spacings of lower records. The time elapsed between two consecutive records is sometimes as important
as the record itself and it is related to the variability of the random variable. Given two i.i.d. samples of
𝑋 of sizes 𝑛 and 𝑛 + 𝑘, 𝑘 ≥ 1, the number Δ1,𝑛,𝑘 = 𝐸 [𝑋1:𝑛 − 𝑋1:𝑛+𝑘 ] is a measure of variability of the
left-tail of 𝑋 . As

Δ1,𝑛,𝑘 = 𝐸 [𝑋1:𝑛 − 𝑋1:𝑛+𝑘 ] =
∫ 1

0
𝐹−1(𝑡) 𝑑 (𝐴(𝑡) − 𝐵(𝑡)),

where 𝐴(𝑡) = 1 − (1 − 𝑡)𝑛, 𝐵(𝑡) = 1 − (1 − 𝑡)𝑛+𝑘 and 𝐴𝐵−1(𝑡) is convex, Δ1,𝑛,𝑘 belongs to the class
𝐶1 of risk measures studied by Sordo [35]. As these measures are consistent with dispersive order of
𝑋 and 𝑌 (Theorem 8 in [35]), a natural question that arises is under what conditions 𝑋1:𝑛 − 𝑋1:𝑛+𝑘 and
𝑌1:𝑛−𝑌1:𝑛+𝑘 are stochastically ordered? We address this question in Section 3, where it is also established
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that increasing convex order (respectively, increasing concave order) of adjacent spacings of 𝑋 and 𝑌
is a sufficient condition for increasing convex order (respectively, increasing concave order) of adjacent
spacings of their records. Some other works dealing with stochastic comparisons of spacings of GOS
and records are due to Hu and Zhuang [24], Belzunce et al. [16,18] , Zhao et al. [38] and Zhuang and Hu
[39]. Stochastic comparisons of relative spacings have also been discussed in the literature by Belzunce
et al. [19] and Castaño-Martínez et al. [21]. Applications of stochastic comparisons of minimum order
statistics in welfare theory have been illustrated recently by Castaño-Martínez et al. [20].

2. Sufficient conditions for orderings of lower records

In this section, we use the fact that 𝑅𝑠 can be represented as a mixture of minima to provide sufficient
conditions for the stochastic comparison of lower records. The first result shows that the increasing
concave order of 𝑋1:𝑛 and 𝑌1:𝑛 implies the increasing concave order of the lower records 𝑅𝑠 (𝑋) and
𝑅𝑠 (𝑌 ), for 𝑠 = 𝑛, 𝑛 + 1, . . ..

Theorem 1. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and𝑌1, 𝑌2, . . . be i.i.d.
as𝑌 with continuous distribution function𝐺. If 𝑋1:𝑛 ≤icv 𝑌1:𝑛, then 𝑅𝑠 (𝑋) ≤icv 𝑅𝑠 (𝑌 ), for 𝑠 = 𝑛, 𝑛+1, . . .

Proof. From Lemma 5 in Castaño-Martínez et al. [20], if 𝑋1:𝑛 ≤icv 𝑌1:𝑛, then 𝑋1:𝑠 ≤icv 𝑌1:𝑠, for 𝑠 ≥ 𝑛.
The result follows from the fact that 𝑅𝑠 (𝑋) = 𝑋1:𝐿𝑠

, where 𝐿𝑠 is a random variable with support
{𝑠, 𝑠 + 1, 𝑠 + 2, . . .}, and the known property that increasing concave order is closed under mixtures
(Theorem 4.A.8.b in [33]). �

Remark 1. By applying Theorem 4 to−𝑋 and−𝑌 instead of to 𝑋 and𝑌 , which transforms lower records
to upper records and increasing concave order to increasing convex order, it follows that 𝑋𝑛:𝑛 ≤icx 𝑌𝑛:𝑛
implies �̃�𝑠 (𝑋) ≤icx �̃�𝑠 (𝑌 ), for 𝑠 = 𝑛, 𝑛 + 1, . . . where �̃�𝑠 denotes the 𝑠th upper record value. This result
strengthens Theorem 4.14 in Balakrishnan et al. [11] which is for the case 𝑛 = 1.

Next, to provide sufficient conditions for comparisons of lower records in location independent riskier
order, we need the following lemma.

Lemma 1. Let 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛. If 𝑋𝑘:𝑛 ≤lir 𝑌𝑘:𝑛, then 𝑋𝑘:𝑛+𝑟 ≤lir 𝑌𝑘:𝑛+𝑟 , for all 𝑟 ≥ 1.

Proof. The condition 𝑋𝑘:𝑛 ≤lir 𝑌𝑘:𝑛 is equivalent (see, e.g., Eq. (6) in [36]) to∫ 𝑝

0
(𝐹−1

𝑘:𝑛 (𝑝) − 𝐹
−1
𝑘:𝑛 (𝑡)) 𝑑𝑡 ≤

∫ 𝑝

0
(𝐺−1

𝑘:𝑛 (𝑝) − 𝐺
−1
𝑘:𝑛 (𝑡)) 𝑑𝑡, 𝑝 ∈ (0, 1), (6)

where 𝐹−1
𝑘:𝑛 (𝑡) and 𝐺−1

𝑘:𝑛 (𝑡) are the quantile functions of 𝑋𝑘:𝑛 and 𝑌𝑘:𝑛, respectively. As

𝐹−1
𝑘:𝑛 (𝑡) = 𝐹−1(𝛽−1

𝑘,𝑛−𝑘+1 (𝑡), 𝑡 ∈ (0, 1),

where 𝛽𝑖, 𝑗 is Pearson’s incomplete beta function (and similarly for 𝐺−1
𝑘:𝑛 (𝑡)), we see, by change of

variable 𝑥 = 𝛽−1
𝑘,𝑛−𝑘+1 (𝑡), that (6) is equivalent to

∫ 𝛽−1
𝑘,𝑛−𝑘+1 (𝑝)

0
(𝐹−1(𝛽−1

𝑘,𝑛−𝑘+1 (𝑝)) − 𝐹
−1(𝑥)) 𝑑𝛽𝑘,𝑛−𝑘+1 (𝑥)

≤

∫ 𝛽−1
𝑘,𝑛−𝑘+1 (𝑝)

0
(𝐺−1(𝛽−1

𝑘,𝑛−𝑘+1 (𝑝)) − 𝐺
−1(𝑥)) 𝑑𝛽𝑘,𝑛−𝑘+1 (𝑥), 𝑝 ∈ (0, 1).
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This shows that 𝑋𝑘:𝑛 ≤lir 𝑌𝑘:𝑛 is equivalent to

∫ 𝑝

0
(𝐹−1(𝑝) − 𝐹−1(𝑥)) 𝑑𝛽𝑘,𝑛−𝑘+1 (𝑥)

≤

∫ 𝑝

0
(𝐺−1(𝑝) − 𝐺−1(𝑥)) 𝑑𝛽𝑘,𝑛−𝑘+1 (𝑥), 𝑝 ∈ (0, 1) (7)

or, equivalently,

∫ 𝑝

0
(𝐺−1(𝑝) − 𝐺−1(𝑥) − 𝐹−1(𝑝) + 𝐹−1(𝑥)) 𝑑𝛽𝑘,𝑛−𝑘+1 (𝑥) ≥ 0, 𝑝 ∈ (0, 1).

Given 𝑟 = 1, 2, . . ., the function

ℎ(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
(𝑛 + 𝑟)!(𝑛 − 𝑘)!
𝑛!(𝑛 + 𝑟 − 𝑘)!

(1 − 𝑥)𝑟 , 𝑡 ∈ (0, 𝑝],

0, 𝑡 ∈ (𝑝, 1),

is non-negative and decreasing. It then follows from Lemma 7.1(b) in Chapter 4 of Barlow and Proschan
[12] that

∫ 𝑝

0
(𝐺−1(𝑝) − 𝐺−1(𝑥) − 𝐹−1(𝑝) + 𝐹−1(𝑥))ℎ(𝑥) 𝑑𝛽𝑘,𝑛−𝑘+1 (𝑥) ≥ 0, 𝑝 ∈ (0, 1).

As (𝑑𝛽𝑘,𝑛+𝑟−𝑘+1/𝑑𝛽𝑘,𝑛−𝑘+1)(𝑥) = ℎ(𝑥), we obtain

∫ 𝑝

0
(𝐹−1(𝑝) − 𝐹−1(𝑥)) 𝑑𝛽𝑘,𝑛+𝑟−𝑘+1 (𝑥)

≤

∫ 𝑝

0
(𝐺−1(𝑝) − 𝐺−1(𝑥)) 𝑑𝛽𝑘,𝑛+𝑟−𝑘+1 (𝑥), for all 𝑝 ∈ (0, 1),

which, using (7) again, is the same as 𝑋𝑘:𝑛+𝑟 ≤lir 𝑌𝑘:𝑛+𝑟 . �

The next result shows that location independent riskier order of 𝑋1:𝑛 and 𝑌1:𝑛 is a sufficient condition
for location independent riskier order of lower records 𝑅𝑠 (𝑋) and 𝑅𝑠 (𝑌 ), for 𝑠 = 𝑛, 𝑛 + 1, . . .. Observe,
however, that as location independent riskier order is not, in general, closed under mixtures, we cannot
use the same argument as in Theorem 4 for establishing this result.

Theorem 2. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and𝑌1, 𝑌2, . . . be i.i.d.
as𝑌 with continuous distribution function𝐺. If 𝑋1:𝑛 ≤lir 𝑌1:𝑛, then 𝑅𝑠 (𝑋) ≤lir 𝑅𝑠 (𝑌 ), for 𝑠 = 𝑛, 𝑛+1, . . .

Proof. Let 𝐹1:𝑛 (𝑥) be the distribution function of 𝑋1:𝑛. Then, we can express

𝐹1:𝑛+𝑟 (𝑥) = ℎ𝑟 (𝐹1:𝑛 (𝑥)), 𝑟 = 1, 2, . . . ,

where ℎ𝑟 (𝑡) = 1 − (1 − 𝑡) (𝑛+𝑟 )/𝑛, 0 ≤ 𝑡 ≤ 1, is an increasing concave function such that ℎ𝑟 : [0, 1] →
[0, 1], ℎ𝑟 (0) = 0 and ℎ𝑟 (1) = 1. Now, let 𝑠 = 𝑛, 𝑛 + 1, . . .. As 𝑅𝑠 (𝑋) = 𝑋1:𝐿𝑠

, where 𝐿𝑠 is a random
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variable with support {𝑠, 𝑠 +1, 𝑠 +2, . . .}, the distribution function 𝐹𝑅𝑠
(𝑥) of 𝑅𝑠 (𝑋) can be expressed as

𝐹𝑅𝑠
(𝑥) =

∞∑
𝑟=0

𝐹1:𝑠+𝑟 (𝑥)𝑃[𝐿𝑠 = 𝑠 + 𝑟]

=
∞∑
𝑟=0

ℎ𝑟 (𝐹1:𝑠 (𝑥))𝑃[𝐿𝑠 = 𝑠 + 𝑟]

= 𝐻𝑠 (𝐹1:𝑠 (𝑥)), (8)

where

𝐻𝑠 (𝑡) =
∞∑
𝑟=0

ℎ𝑟 (𝑡)𝑃[𝐿𝑠 = 𝑠 + 𝑟], 𝑠 = 𝑛, 𝑛 + 1, . . . , (9)

is an increasing concave function such that 𝐻𝑠 : [0, 1] → [0, 1], 𝐻𝑠 (0) = 0 and 𝐻𝑠 (1) = 1. Moreover,
since 𝑋1:𝑛 ≤lir 𝑌1:𝑛, it follows from Lemma 6 that 𝑋1:𝑠 ≤lir 𝑌1:𝑠 , for 𝑠 = 𝑛, 𝑛 + 1, . . .. Now, by applying
Theorem 2.1(ii) in Shaked et al. [34], it follows that

∫ 𝐹−1
1:𝑠 (𝑝)

−∞

𝐻𝑠 (𝐹1:𝑠 (𝑥)) 𝑑𝑥 ≤

∫ 𝐺−1
1:𝑠 (𝑝)

−∞

𝐻𝑠 (𝐺1:𝑠 (𝑥)) 𝑑𝑥, 𝑝 ∈ (0, 1), 𝑠 = 𝑛, 𝑛 + 1, . . . ,

which can be rewritten as
∫ 𝐹−1

1:𝑠 (𝐻
−1
𝑠 (𝑝))

−∞

𝐻𝑠 (𝐹1:𝑠 (𝑥)) 𝑑𝑥

≤

∫ 𝐺−1
1:𝑠 (𝐻

−1
𝑠 (𝑝))

−∞

𝐻𝑠 (𝐺1:𝑠 (𝑥)) 𝑑𝑥, 𝑝 ∈ (0, 1), 𝑠 = 𝑛, 𝑛 + 1, . . . .

Using (8), this is equivalent to

∫ 𝐹−1
𝑅𝑠

(𝑝)

−∞

𝐹𝑅𝑠
(𝑥) 𝑑𝑥 ≤

∫ 𝐺−1
𝑅𝑠

(𝑝)

−∞

𝐺𝑅𝑠
(𝑥) 𝑑𝑥, ∀𝑝 ∈ (0, 1), 𝑠 = 𝑛, 𝑛 + 1, . . . ,

which implies 𝑅𝑠 (𝑋) ≤lir 𝑅𝑠 (𝑌 ), 𝑠 = 𝑛, 𝑛 + 1, . . ., as required. �

Remark 2. In particular, by taking 𝑛 = 1 in Theorem 7, we have that 𝑋 ≤lir 𝑌 implies 𝑅𝑠 (𝑋) ≤lir 𝑅𝑠 (𝑌 ),
for 𝑠 ≥ 1. This also follows, by using the same argument as in Remark 5, from Theorem 5.2.(a) in
Belzunce et al. [14].

3. Increasing convex ordering of spacings of partial minima and lower records

In this section, we provide sufficient conditions for stochastic comparisons of spacings of partial minima
and lower records. For establishing the main results, we need the following lemma.

Lemma 2. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹. Then, for 1 ≤ 𝑗 < 𝑚
and 𝑝 ∈ (0, 1),

[𝐹−1(𝑝) − 𝑋1:𝑚 | 𝑋1: 𝑗 = 𝐹−1(𝑝)]
𝑑
= (𝐹−1(𝑝) − 𝑋1:𝑚− 𝑗 )

+,

where 𝑑
= denotes “equal in distribution”.
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Proof. Given 𝑦 ≥ 0, we have

𝑃(𝐹−1(𝑝) − 𝑋1:𝑚 ≤ 𝑦 | 𝑋1: 𝑗 = 𝐹−1(𝑝)) = 𝑃(𝑋1:𝑚 ≥ 𝐹−1(𝑝) − 𝑦 | 𝑋1: 𝑗 = 𝐹−1(𝑝))

= (�̄� (𝐹−1(𝑝) − 𝑦))𝑚− 𝑗

= 𝑃((𝐹−1(𝑝) − 𝑋1:𝑚− 𝑗 )
+ ≤ 𝑦),

where the second equality follows from the fact that

𝑃(𝑋1:𝑚 > 𝑥 | 𝑋1: 𝑗 = 𝐹−1(𝑝)) =

{
(�̄� (𝑥))𝑚− 𝑗 , 𝑥 < 𝐹−1(𝑝)
0, 𝑥 ≥ 𝐹−1(𝑝).

�

Now, we show that if 𝑋 and 𝑌 are ordered in dispersive order, then 𝑋1:𝑛 − 𝑋1:𝑛+𝑘 and 𝑌1:𝑛 −𝑌1:𝑛+𝑘 are
ordered in the usual stochastic order.

Theorem 3. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and 𝑌1, 𝑌2, . . . be
i.i.d. as 𝑌 with continuous distribution function 𝐺. If 𝑋 ≤disp 𝑌 , then

𝑋1:𝑛 − 𝑋1:𝑛+𝑘 ≤st 𝑌1:𝑛 − 𝑌1:𝑛+𝑘 , for 𝑛 ≥ 1 and 𝑘 ≥ 1.

Proof. It is easy to see that 𝑋 ≤disp 𝑌 holds if and only if 𝑋1:𝑘 ≤disp 𝑌1:𝑘 , for 𝑘 = 1, 2, . . .. From (2), it
follows that

(𝐹−1(𝑝) − 𝑋1:𝑘 )
+ ≤st (𝐺

−1(𝑝) − 𝑌1:𝑘 )
+, for all 𝑝 ∈ (0, 1) and 𝑘 ≥ 1,

where we have used the fact that 𝐹−1
1:𝑘 (𝑝) = 𝐹−1(1 − (1 − 𝑝)1/𝑘 ). Let 𝑦 > 0, 𝑛 ≥ 1 and 𝑘 ≥ 1. Then, by

using Lemma 9, we see that

𝑃(𝑋1:𝑛 − 𝑋1:𝑛+𝑘 ≤ 𝑦) =
∫ 1

0
𝑃(𝐹−1(𝑝) − 𝑋1:𝑛+𝑘 ≤ 𝑦 | 𝑋1:𝑛 = 𝐹−1(𝑝)) 𝑑𝛽1,𝑛 (𝑝)

=
∫ 1

0
𝑃((𝐹−1(𝑝) − 𝑋1:𝑘 )

+ ≤ 𝑦) 𝑑𝛽1,𝑛 (𝑝)

≥

∫ 1

0
𝑃((𝐺−1(𝑝) − 𝑌1:𝑘 )

+ ≤ 𝑦) 𝑑𝛽1,𝑛 (𝑝)

= 𝑃(𝑌1:𝑛 − 𝑌1:𝑛+𝑘 ≤ 𝑦),

where the inequality follows from (2). This proves the required result. �

Remark 3. For random variables with equal left-end support points, the dispersive order implies the
usual stochastic order (see Theorem 3.B.13 in [33]). Therefore, a natural question that arises is whether
the assumption 𝑋 ≤disp 𝑌 in Theorem 10 can be replaced by 𝑋 ≤st 𝑌 . In general, the answer is no. To see
this, let us consider two Power random variables 𝑋 ∼ Pow(1) and𝑌 ∼ Pow(2), with respective survival
functions �̄� (𝑥) = 1− 𝑥 and �̄� (𝑥) = 1− 𝑥2, 𝑥 ∈ (0, 1). Then, 𝑋 ≤st 𝑌 but 𝑋 �disp 𝑌 (see Theorem 3.B.14
in [33]). Straightforward calculations show that

𝐸 [𝑋1:1 − 𝑋1:2] = 1
6 > 𝐸 [𝑌1:1 − 𝑌1:2] = 2

15 . (10)

Therefore, 𝑋1:1 − 𝑋1:2 �st 𝑌1:1 − 𝑌1:2.

Next, we provide sufficient conditions for increasing convex ordering of spacings of partial minima
and lower records. The following theorem shows that location independent riskier order of 𝑋1:𝑛 and 𝑌1:𝑛
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is a sufficient condition for increasing convex order of the spacings 𝑋1: 𝑗 − 𝑋1:𝑘 and 𝑌1: 𝑗 −𝑌1:𝑘 , whenever
𝑘 − 𝑗 ≥ 𝑛.

Theorem 4. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and 𝑌1, 𝑌2, . . . be
i.i.d. as 𝑌 with continuous distribution function 𝐺. Furthermore, let 𝑛 ≥ 1. If 𝑋1:𝑛 ≤lir 𝑌1:𝑛, then

𝑋1: 𝑗 − 𝑋1:𝑘 ≤icx 𝑌1: 𝑗 − 𝑌1:𝑘 , for 𝑗 ≥ 1 and 𝑘 − 𝑗 ≥ 𝑛.

Proof. Let 1 ≤ 𝑗 < 𝑘 . Using Lemma 9, we can write

𝑃(𝑋1: 𝑗 − 𝑋1:𝑘 > 𝑦) =
∫ 1

0
𝑃(𝐹−1(𝑝) − 𝑋1:𝑘 > 𝑦 | 𝑋1: 𝑗 = 𝐹−1(𝑝)) 𝑑𝛽1, 𝑗 (𝑝)

=
∫ 1

0
𝑃[(𝐹−1(𝑝) − 𝑋1:𝑘− 𝑗 )

+ > 𝑦] 𝑑𝛽1, 𝑗 (𝑝)

=
∫ 1

0
�̄�(𝐹−1 (𝑝)−𝑋1:𝑘− 𝑗 )+ (𝑦) 𝑑𝛽1, 𝑗 (𝑝), 𝑦 > 0.

The assumption 𝑋1:𝑛 ≤lir 𝑌1:𝑛 implies, via Lemma 6, that 𝑋1:𝑟 ≤lir 𝑌1:𝑟 , for 𝑟 ≥ 𝑛. By (3), this is
equivalent to

(𝐹−1
1:𝑟 (𝑝) − 𝑋1:𝑟 )

+ ≤icx (𝐺−1
1:𝑟 (𝑝) − 𝑌1:𝑟 )

+, for all 𝑝 ∈ (0, 1).

Upon using the fact that 𝐹−1
1:𝑟 (𝑝) = 𝐹−1(1 − (1 − 𝑝)1/𝑟 ), we see that 𝑋1:𝑟 ≤lir 𝑌1:𝑟 is equivalent to

(𝐹−1 (𝑝) − 𝑋1:𝑟 )
+ ≤icx (𝐺−1(𝑝) − 𝑌1:𝑟 )

+, for all 𝑝 ∈ (0, 1) and 𝑟 ≥ 𝑛. This implies that∫ +∞

𝑠

�̄�(𝐹−1 (𝑝)−𝑋1:𝑟 )+ (𝑦) 𝑑𝑦 ≤

∫ +∞

𝑠

�̄� (𝐺−1 (𝑝)−𝑌1:𝑟 )+ (𝑦) 𝑑𝑦, for all 𝑠 > 0.

Therefore,∫ 1

0

∫ +∞

𝑠

�̄�(𝐹−1 (𝑝)−𝑋1:𝑘− 𝑗 )+ (𝑦) 𝑑𝑦 𝑑𝛽1, 𝑗 (𝑝) ≤

∫ 1

0

∫ +∞

𝑠

�̄� (𝐺−1 (𝑝)−𝑌1:𝑘− 𝑗 )+ (𝑦) 𝑑𝑦 𝑑𝛽1, 𝑗 (𝑝),

for all 𝑠 > 0 and 𝑝 ∈ (0, 1), which implies 𝑋1: 𝑗 − 𝑋1:𝑘 ≤icx 𝑌1: 𝑗 − 𝑌1:𝑘 , for 𝑘 − 𝑗 ≥ 𝑛. �

Remark 4. For random variables with equal left-end support points, the location independent riskier
order implies the usual stochastic order (see Theorem 6 in [36]). It is natural to wonder whether the
assumption 𝑋1:𝑛 ≤lir 𝑌1:𝑛 in Theorem 12 can be replaced by 𝑋1:𝑛 ≤st 𝑌1:𝑛. The same counterexample
as in Remark 11 can be used to show that the answer is no. Recall that 𝑋 ∼ Pow(1) and 𝑌 ∼ Pow(2).
Clearly 𝑋1:𝑛 ≤st 𝑌1:𝑛. However, since 𝑋1:𝑛 and 𝑌1:𝑛 have the same finite support, 𝑋1:𝑛 �lir 𝑌1:𝑛 (see
Corollary 7 in [36]). Moreover, it follows from (10) that 𝑋1:1 − 𝑋1:2 �icx 𝑌1:1 − 𝑌1:2.

The following theorem shows that increasing convex order (respectively, the increasing concave
order) of adjacent spacings between minimum order statistics is a sufficient condition for increasing
convex order (respectively, the increasing concave order) of adjacent spacings of their records.

Theorem 5. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and 𝑌1, 𝑌2, . . . be
i.i.d. as 𝑌 with continuous distribution function 𝐺. If

𝑋1:𝑛 − 𝑋1:𝑛+1 ≤icx 𝑌1:𝑛 − 𝑌1:𝑛+1, for all 𝑛 ≥ 𝑖, (11)

then
𝑅 𝑗 (𝑋) − 𝑅 𝑗+1(𝑋) ≤icx 𝑅 𝑗 (𝑌 ) − 𝑅 𝑗+1(𝑌 ), for all 𝑗 ≥ 𝑖. (12)

The result remains true if ≤icx is replaced by ≤icv in both (11) and (12).
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Proof. First, we prove the result for the increasing convex order. Let us rewrite (11) and (12) in a more
convenient form. Let 𝑛 ≥ 𝑖 and denote by �̄�𝑋 ∗

1:𝑛
(𝑦) the survival function of 𝑋1:𝑛−𝑋1:𝑛+1. Then, condition

(11) is equivalent to ∫ ∞

𝑠

(�̄�𝑌 ∗
1:𝑛
(𝑦) − �̄�𝑋 ∗

1:𝑛
(𝑦)) 𝑑𝑦 ≥ 0, for all 𝑠. (13)

Using Lemma 9, we see that

�̄�𝑋 ∗
1:𝑛
(𝑦) =

∫ 1

0
𝑃(𝐹−1(𝑝) − 𝑋1:𝑛+1 > 𝑦 | 𝑋1:𝑛 = 𝐹−1(𝑝))𝑛(1 − 𝑝)𝑛−1 𝑑𝑝

=
∫ 1

0
𝑃((𝐹−1(𝑝) − 𝑋)+ > 𝑦)𝑛(1 − 𝑝)𝑛−1 𝑑𝑝

=
∫ 1

0
𝐹 (𝐹−1(𝑝) − 𝑦)𝑛(1 − 𝑝)𝑛−1 𝑑𝑝, 𝑦 ≥ 0. (14)

Similarly,

�̄�𝑌 ∗
1:𝑛
(𝑦) =

∫ 1

0
𝐺 (𝐺−1(𝑝) − 𝑦)𝑛(1 − 𝑝)𝑛−1 𝑑𝑝, 𝑦 ≥ 0. (15)

Substituting (14) and (15) in (13) and changing the order of integration by Fubini’s theorem, we see
that (11) is equivalent to

𝐼 (𝑠, 𝑛) ≥ 0, for all 𝑛 ≥ 𝑖, for all 𝑠, (16)

where we have denoted

𝐼 (𝑠, 𝑛) =
∫ 1

0

(∫ ∞

𝑠

(𝐺 (𝐺−1(𝑝) − 𝑦) − 𝐹 (𝐹−1(𝑝) − 𝑦)) 𝑑𝑦

)
(1 − 𝑝)𝑛−1 𝑑𝑝.

Now, let 𝑗 ≥ 𝑖 and denote by �̄�𝑅∗
𝑗
(𝑦) the survival function of 𝑅 𝑗 (𝑋) − 𝑅 𝑗+1(𝑋). Then, condition (12)

is equivalent to ∫ ∞

𝑠

(�̄�𝑅∗
𝑗
(𝑦) − �̄�𝑅∗

𝑗
(𝑦)) 𝑑𝑦 ≥ 0, for all 𝑠. (17)

Now, upong using the fact that [𝑅 𝑗+1(𝑋) | 𝑅 𝑗 (𝑋) = 𝐹−1(𝑝)]
𝑑
= [𝑋 | 𝑋 < 𝐹−1(𝑝)], we have

�̄�𝑅∗
𝑗
(𝑦) =

∫ 1

0
𝑃(𝐹−1(𝑝) − 𝑅 𝑗+1(𝑋) > 𝑦 | 𝑅 𝑗 (𝑋) = 𝐹−1(𝑝)) 𝑑 (1 − 𝛾 𝑗 (− log(𝑝)))

=
∫ 1

0

𝐹 (𝐹−1(𝑝) − 𝑦)

𝑝
𝑑 (1 − 𝛾 𝑗 (− log(𝑝))), 𝑦 ≥ 0, (18)

where we have used the fact that the distribution function of 𝑅 𝑗 is given by

𝐹𝑅 𝑗
(𝑥) = 1 − 𝛾 𝑗 (− log(𝐹 (𝑥))), 𝑥 ∈ R, 𝑗 ≥ 1,

with

𝛾 𝑗 (𝑥) =
∫ 𝑥

0

𝑡 𝑗−1

( 𝑗 − 1)!
𝑒−𝑡 𝑑𝑡, 𝑥 ≥ 0;
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see Arnold et al. [4]. As 𝑅 𝑗 (𝑈) = 𝑈1:𝐿 𝑗
, where𝑈 ∼ 𝑈 (0, 1), the density of 𝑅 𝑗 (𝑈) can be expressed as

𝑓𝑅 𝑗 (𝑈 ) (𝑝) = 𝑑 (1 − 𝛾 𝑗 (− log(𝑝)))

=
∑
𝑚≥ 𝑗

𝑓𝑈1:𝑚 (𝑝)𝑃(𝐿 𝑗 = 𝑚)

=
∑
𝑚≥ 𝑗

𝑚(1 − 𝑝)𝑚−1𝑃(𝐿 𝑗 = 𝑚),

and so
𝑑 (1 − 𝛾 𝑗 (− log(𝑝)))

𝑝
=
∑
𝑚≥ 𝑗

∑
𝑟 ≥𝑚

𝑚(1 − 𝑝)𝑟−1𝑃(𝐿 𝑗 = 𝑚).

Substituting this expression in (18) and then changing sums to integral (justified by dominated
convergence theorem), we have

�̄�𝑅∗
𝑗
(𝑦) =

∑
𝑚≥ 𝑗

∑
𝑟 ≥𝑚

𝑚𝑃(𝐿 𝑗 = 𝑚)
∫ 1

0
𝐹 (𝐹−1(𝑝) − 𝑦)(1 − 𝑝)𝑟−1 𝑑𝑝. (19)

Similarly, we have

�̄�𝑅∗
𝑗
(𝑦) =

∑
𝑚≥ 𝑗

∑
𝑟 ≥𝑚

𝑚𝑃(𝐿 𝑗 = 𝑚)
∫ 1

0
𝐺 (𝐺−1(𝑝) − 𝑦)(1 − 𝑝)𝑟−1 𝑑𝑝. (20)

Now, upon substituting (19) and (20) in (17) and changing the order of integration by Fubini’s
theorem, we see that (12) is equivalent to∑

𝑚≥ 𝑗

∑
𝑟 ≥𝑚

𝑚𝑃(𝐿 𝑗 = 𝑚)𝐼 (𝑠, 𝑟) ≥ 0, for all 𝑠. (21)

As 𝑗 ≥ 𝑖, it is clear that (16) implies (21), which proves the required result for the increasing convex
order.

To prove that the result remains true if ≤icx is replaced by ≤icv in both (11) and (12), note that

𝑋1:𝑛 − 𝑋1:𝑛+1 ≤icv 𝑌1:𝑛 − 𝑌1:𝑛+1, for all 𝑛 ≥ 𝑖,

is equivalent to ∫ 𝑠

−∞

(�̄�𝑌 ∗
1:𝑛
(𝑦) − �̄�𝑋 ∗

1:𝑛
(𝑦)) 𝑑𝑦 ≥ 0, for all 𝑠,

whereas
𝑅 𝑗 (𝑋) − 𝑅 𝑗+1(𝑋) ≤icv 𝑅 𝑗 (𝑌 ) − 𝑅 𝑗+1(𝑌 ), for all 𝑗 ≥ 𝑖,

is equivalent to ∫ 𝑠

−∞

(�̄�𝑅∗
𝑗
(𝑦) − �̄�𝑅∗

𝑗
(𝑦)) 𝑑𝑦 ≥ 0, for all 𝑠.

The proof for the increasing concave order follows upong replacing the integral between 𝑠 and ∞ by
the integral between −∞ and 𝑠 along the proof for the increasing convex order. �

Remark 5. In particular, from Theorems 12 (with 𝑛 = 1) and 14 (with 𝑖 = 1), we see that 𝑋 ≤lir 𝑌
implies 𝑅 𝑗 (𝑋) − 𝑅 𝑗+1(𝑋) ≤icx 𝑅 𝑗 (𝑌 ) − 𝑅 𝑗+1(𝑌 ), for 𝑗 ≥ 1. This also follows by applying Corollary 4.1
in Belzunce et al. [18] to −𝑋 and −𝑌 instead of to 𝑋 and 𝑌 , which transforms upper records to lower
records and excess wealth order to location independent riskier order.
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Using arguments similar to those used in the proofs of Theorems 12 and 14, we can obtain the
following result, for which we omit the proof for the sake of conciseness.

Theorem 6. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and 𝑌1, 𝑌2, . . . be
i.i.d. as 𝑌 with continuous distribution function 𝐺. Let 𝑗 ≥ 1. If 𝑅 𝑗 (𝑋) ≤lir 𝑅 𝑗 (𝑌 ), then

𝑅𝑠 (𝑋) − 𝑅𝑚 (𝑋) ≤icx 𝑅𝑠 (𝑌 ) − 𝑅𝑚 (𝑌 ), for 𝑠 ≥ 1 and 𝑚 − 𝑠 ≥ 𝑗 .

Remark 6. We use the same counterexample as in Remarks 11 and 13 to show that the assumption
𝑅 𝑗 (𝑋) ≤lir 𝑅 𝑗 (𝑌 ) cannot be replaced, in general, by 𝑅 𝑗 (𝑋) ≤st 𝑅 𝑗 (𝑌 ). It is well-known that if 𝑉 ∼

Pow(𝛼), with 𝛼 > 0, their corresponding lower records can be expressed as 𝑅𝑛 (𝑉) =
∏𝑛

𝑖=1𝑉𝑖 , with
{𝑉𝑖}𝑖≥1 being independent random variables with the same distribution as𝑉 (see [4]). Then, 𝐸 [𝑅𝑛 (𝑉)] =
(𝐸 [𝑉])𝑛 = (𝛼/(𝛼 + 1))𝑛 and

𝐸 [𝑅1 (𝑉) − 𝑅2(𝑉)] =
𝛼

(𝛼 + 1)2 .

Now, let 𝑋 ∼ Pow(1), 𝑌 ∼ Pow(2) and 𝑗 = 1. It is then easy to check that 𝑅1(𝑋) ≤st 𝑅1(𝑌 ), but

𝐸 [𝑅1(𝑋) − 𝑅2(𝑋)] = 1
4 > 𝐸 [𝑅1(𝑌 ) − 𝑅2(𝑌 )] = 2

9 ,

which implies that 𝑅1(𝑋) − 𝑅2(𝑋) �icx 𝑅1(𝑌 ) − 𝑅2(𝑌 ).

4. Further remarks

In the proof of Theorem 7, we have used the property that the distribution function of 𝑅𝑠 (𝑋) can be
expressed as an increasing and concave distortion of the distribution function of 𝑋1:𝑠 . This fact can also
be utilized to establish ordering conditions for lower record values in terms of some other stochastic
orderings. For illustrating this point, for example, we present the following results.

Definition 2. Let 𝑋 and 𝑌 be two non-negative random variables with respective distribution functions
𝐹 and 𝐺, and let �̄� = 1 − 𝐹 and �̄� = 1 − 𝐺, respectively, be their survival functions. We say that 𝑋 is
smaller than 𝑌

(a) in total time on test transform order, denoted by 𝑋 ≤ttt 𝑌, if
∫ 𝐹−1 (𝑝)

0
�̄� (𝑥) 𝑑𝑥 ≤

∫ 𝐺−1 (𝑝)

0
𝐺 (𝑥) 𝑑𝑥, for all 𝑝 ∈ (0, 1);

(b) in quantile mean inactivity time order, denoted by 𝑋 ≤qmit 𝑌 , if

∫ 𝐹−1 (𝑝)

0 𝐹 (𝑥) 𝑑𝑥∫ 𝐺−1 (𝑝)

0 𝐺 (𝑥) 𝑑𝑥
decreases in 𝑝 ∈ (0, 1).

For references on these orders, see Kochar et al. [30] and Arriaza et al. [6]. We then have the following
result.

Theorem 7. Let 𝑋1, 𝑋2, . . . be non-negative i.i.d. as 𝑋 with continuous distribution function 𝐹. Similarly,
let 𝑌1, 𝑌2, . . . be non-negative i.i.d. as 𝑌 with distribution function 𝐺. Furthermore, let 𝑛 ≥ 1.

(a) If 𝑋1:𝑛 ≤ttt 𝑌1:𝑛, then 𝑅𝑠 (𝑋) ≤ttt 𝑅𝑠 (𝑌 ), for 𝑠 = 𝑛, 𝑛 + 1, . . .;
(b) If 𝑋1:𝑛 ≤qmit 𝑌1:𝑛, then 𝑅𝑠 (𝑋) ≤qmit 𝑅𝑠 (𝑌 ), for 𝑠 = 𝑛, 𝑛 + 1, . . ..

https://doi.org/10.1017/S026996482100053X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482100053X


204 N. Balakrishnan et al.

Proof. First, we observe that �̄�1:𝑠 (𝑥) = ℎ∗𝑠 (�̄�1:𝑛 (𝑥)), with ℎ∗𝑠 (𝑡) = 𝑡𝑠/𝑛 being an increasing convex
function for 𝑠 ≥ 𝑛, such that ℎ∗𝑠 : [0, 1] → [0, 1], ℎ∗𝑠 (0) = 0 and ℎ∗𝑠 (1) = 1. Then, using Theorem 1 and
Remark 2 in [5], we have 𝑋1:𝑠 ≤ttt 𝑌1:𝑠 and 𝑋1:𝑠 ≤qmit 𝑌1:𝑠 , for 𝑠 ≥ 𝑛, respectively.

On the other hand, let 𝑠 ≥ 𝑛. It then follows from (8) that

�̄�𝑅𝑠
(𝑥) = 𝐻∗

𝑠 (�̄�1:𝑠 (𝑥)),

with 𝐻∗
𝑠 (𝑡) = 1 − 𝐻𝑠 (1 − 𝑡) (where 𝐻𝑠 is as in (9)) is an increasing convex function such that 𝐻∗

𝑠 :
[0, 1] → [0, 1], 𝐻∗

𝑠 (0) = 0 and 𝐻∗
𝑠 (1) = 1. Then, the required results follow from Theorem 1 and

Remark 2 of Arriaza and Sordo [5]. �

A further observation regarding 𝑘th lower records is the following. In the continuous case, 𝑘th lower
record values obtained from 𝑋 ∼ 𝐹, denoted by 𝑅 (𝑘)

𝑗 (𝑋) (or 𝑅 (𝑘)
𝑗 (𝐹)), are distributed exactly as a

sequence of ordinary lower records from the distribution 𝐹𝑘:𝑘 (𝑥) = (𝐹 (𝑥))𝑘 , 𝑅 𝑗 (𝐹𝑘:𝑘 ). Using similar
arguments as those used in the proofs of Lemma 6, Remark 8 and Theorem 16, we can then state the
following results.

Theorem 8. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and𝑌1, 𝑌2, . . . be i.i.d.
as 𝑌 with continuous distribution function 𝐺. If 𝑋𝑘:𝑘 ≤lir 𝑌𝑘:𝑘 , then 𝑅 (𝑘′)

𝑗 (𝑋) ≤lir 𝑅
(𝑘′)
𝑗 (𝑌 ), for 𝑗 ≥ 1

and 1 ≤ 𝑘 ′ ≤ 𝑘 .

Theorem 9. Let 𝑋1, 𝑋2, . . . be i.i.d. as 𝑋 with continuous distribution function 𝐹, and 𝑌1, 𝑌2, . . . be
i.i.d. as 𝑌 with continuous distribution function 𝐺. Let 𝑗 ≥ 1 and 𝑘 ≥ 1. If 𝑅 (𝑘)

𝑗 (𝑋) ≤lir 𝑅
(𝑘)
𝑗 (𝑌 ), then

𝑅 (𝑘′)
𝑠 (𝑋) − 𝑅 (𝑘′)

𝑚 (𝑋) ≤icx 𝑅
(𝑘′)
𝑠 (𝑌 ) − 𝑅 (𝑘′)

𝑚 (𝑌 ), for 𝑠 ≥ 1, 𝑚 − 𝑠 ≥ 𝑗 , 1 ≤ 𝑘 ′ ≤ 𝑘.

One more remark before ending this work. Balakrishnan and Mi [7] and Balakrishnan et al. [10]
have shown that the ordering satisfied by the two underlying distributions implies the ordering of the
maximum likelihood estimates of the parameters arising from samples from the two distributions. A
similar question can be asked in the present context about the estimation of distributional parameters
based on lower record values having been observed from the two distributions. This is an open problem
that we plan to consider as our future work.
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