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We are concerned here with the existence of fixed or common fixed points 
of commuting monotone self-mappings of a partially ordered set into itself. 
Let X be a partially ordered set. A self-mapping / of X into itself is called an 
isotone mapping if x > y implies/(x) >/(;y). Similarly, a self-mapping/ of X 
into itself is called an antitone mapping if x > y implies/(x) < f(y). An element 
Xo 6 X is called well-ordered complete if every well-ordered subset with x0 as its 
first element has a supremum. An element x0 G X is called chain-complete 
if every non-empty chain C ç; X such that x > x0 for all x G C, has a supre­
mum. X is called a well-ordered-complete semi-lattice if every non-empty 
well-ordered subset has a supremum. X is called a complete semi-lattice if every 
non-empty subset of X has a supremum. X is called a well-ordered-complete 
lattice if X has a greatest element £ and a least element 0, and every non-empty 
well-ordered subset of X has a supremum and an infimum. We denote, for 
simplicity, 

Pf = {x:x G X, x < / ( x ) } , Ç/ = {x:x G X,f(x) < x}, 

and $f = PfC\ Qf, the fixed point set of / . For notations and terminologies 
not explained here, we refer to Birkhoff (2). In the following, we need the 
following strong form of Zorn's lemma due to Bourbaki (3): 

LEMMA (Bourbaki). Let S be a partially ordered set. If every well-ordered set 
in S has an upper bound, then S has a maximal element. 

THEOREM 1. Let X be a partially ordered set and F be a non-empty family of 
commuting isotone mappings of X into itself. If there exists a well-ordered 
complete element 

xo 6 Pi Pf, then n $/ ^ 0. 
f£F f£F 

Moreover, there exists a maximal common fixed point in the set 

Nxo = {x:x Ç X, x > xo}. 

Proof. Consider the set 5 = C\f^F PfC\ N. Since x0 G S, S is non-empty. 
Let W ç; 5 be any well-ordered subset. By hypothesis, c = sup W exists. 
Note that / (c) > f(x) > x for all x £ W; hence f(c) > c, showing that 6 £ S. 
From the above lemma, there exists a maximal element a 6 5. For any two 
mappings / , g G F, we have f(a) > a and g (a) > a. On the other hand, 
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g(f(a)) == f(g(a)) > / ( # ) implies/(a) G S. Since a is maximal, f(a) = a for 
a l l / G T7. Obviously a Ç Pi / Ç F $ ; is maximal in NXQ. 

COROLLARY 1. Let X be a well-ordered-complete semi-lattice and F be a non­
empty commutative family of isotone mappings of X into itself. If r\feF Pf ^ 0, 
then there exists an element a G C^/ZF $ / which is maximal in X. 

Remark 1. Theorem 1 reduces to a recent result of DeMarr (4, Theorem 1) 
if the well-ordered completeness of x0 in the hypothesis is replaced by the 
stronger assumption that x0 be chain-complete. 

Remark 2. If F consists of one single mapping, Corollary 1 extends a result 
of Abian and Brown (1, Theorems 2 and 3). I t should be noted that their 
results are proved without using any form of the Axiom of Choice. However, 
their result does not imply the existence of maximal fixed points. 

Remark 3. In view of the above two remarks, results of Pelczar (7; 8) and 
Wolk (11), and hence the classical theorem of Tarski (9), become special cases 
of Corollary 1 ; for an up-to-date account of related results, we refer to van der 
Walt (10). 

THEOREM 2. Let X be a complete semi-lattice, and F be a non-empty family of 
commuting isotone mappings of X into itself. If C\feF Pf ^ 0, then there exists 
a greatest common fixed point. 

Proof. By Theorem 1, P i / € F $f ^ 0 and hence a = sup H / € F $f exists. 
For a n y / G F, clearly/(a) > a. Now by Theorem 1 again there is an element 
b G n / € F <£>/ such that b > f(a) > a; consequently / (a ) = a for all / G F, 
proving the assertion. 

Remark 4. Theorem 2 also extends the above-mentioned result of DeMarr 
(4, Theorem 1), since for any subset S ÇZ X, sup 5 G S is certainly a maximal 
element of S. 

THEOREM 3. Let X be a partially ordered set and let / , g be two commutative 
isotone mappings of X into itself. Let h = f o g. If $h ^ 0 and sup $h G $n, 
then <$>, H &, 7* 0. 

Proof. Let a = sup $h. S ince / and g commute with h, f(a) and g (a) both 
belong to $h. Thus, f(a) < a and g (a) < a. Since / , g are isotone, we have 

a = h (a) = g(f(a)) < g (a) and a = h (a) = f(g(a)) < f(a) ; 

hence g (a) = f(a) = a. 

As an immediate consequence of Theorems 2 and 3, we obtain the following 
corollary, which also generalizes results mentioned in Remark 2. 

COROLLARY 2. Let X be a complete semi-lattice and f be an isotone mapping of 
X into itself. If Pfn ^ fdfor some positive integer n, then <£/ =é 0. 
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Remark 5. It is clear that the above results may be formulated dually. In 
fact, part of the results in (4) are stated dually as compared to assertions 
presented here. Since the procedure of such a formulation is obvious (8), the 
details will be omitted. 

Remark 6. We also note that the notion of chain-completeness is called 
chain-compactness in (4). 

THEOREM 4. Let X be a partially ordered set and F be a non-empty family of 
commuting antitone mappings of X into itself. If sup Pf G Pf and mif(Pf) < 
sup P/for some f Ç F, then there exists a unique common fixed point of F. 

Proof. Let a = sup Pfl and b = inî f(Pf). Since / is antitone, f(a) < f(x) 
for all x G Pf, and hence/(a) < b. By hypothesis a < / ( a ) , and b < a. Thus 
b = a, and f(a) = a. Now suppose that c £ $/• Since c < a, we have 
a = f(a) < f(a) = c- Finally, for any g (E F we have g (a) £ $/. Since / has 
exactly one fixed point, namely a, g (a) —a for all g (z F. 

Remark 7. Theorem 4 reduces to a result of Pelczar (8, Theorem 4) if F 
consists of one single mapping. 

THEOREM 5. Let X be a relatively complemented well-ordered-complete lattice 
and let f be a mapping of X into itself satisfying: 

(i) fQUX£A x) ~ f~^x£Af(x) for every well-ordered subset A of X, 
(ii) f(x) H x 9* 0 if x y± 0. 

Then f has a unique fixed point. 

Proof. By (i), / is in particular an antitone mapping. Denote the ordinals 
by Greek letters, £, 77, f, a, r, /x, v, and </>. Let Xo = /(e) . For each ordinal £, 
we define inductively x% = KJv<^f2(xv). (This definition is justified since X 
is well-ordered complete.) I t is easy to see that x% < xç if £ < f. Hence there 
must exist an ordinal <£, such that X0 > x^ for each ordinal £, from which 
it readily follows that/2(x^) = x^. We also claim that/(x<r) > xT for any pair 
of ordinals <r, r. To prove this, we proceed by induction and assume that 
/(#M) < ^ f° r e v e r Y M a n d all v < r. Observe that for each pair of ordinals 
a-, r, we have 

/(*.) =/( u/2(*j) = nfM > uf\x,) = xr, 
which proves the assertion. Denote x^ by y. We have/2(y) = y and 3/ < / (y) . 
From (ii), it follows that f(e) 5* 0, and hence y 5* 0. Since X is relatively 
complemented, there exists z £ X such that z\J y = f(y) and s C\ y = 0. By 
(i), we have y = /2(;y) = /(y U z ) = /(y) C\f(z) and hence 

/ (s) ^ 2 = ^ 2 = 0. 

We may now conclude from (ii) that z = 0 and f(y) = y. To complete the 
proof, choose b £ X such that f(b) = b. From b < e, we can again prove by 
transfinite induction that b > 3/, from which we obtain ô — f(b) < / (^) = y. 
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By a similar argument to that given in Theorem 4, we may extend the above 
result as follows. 

COROLLARY 3. Let X be a relatively complemented well-ordered-complete lattice 
and let F be a non-empty family of commutative mappings of X into itself. If 
there exists f G F satisfying the assumptions (i) and (ii) of Theorem 5, then 
nfeF $f ^ 0. 

Remark 8. Restricting Theorem 5 to the case that X is a Boolean algebra 
and / is a mapping satisfying the stronger hypothesis that condition (i) holds 
for every subset A C X, we obtain a solution to a recent problem proposed 
by Forcade (5). 

Remark 9. On account of these results, some applications of Tarski's fixed 
point theorem may readily be generalized; cf. (4; 6; 8). 
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