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Abstract
Covariance structure analysis or structural equation modeling is critical for political scientists measuring
latent structural relationships, allowing for the simultaneous assessment of both latent and observed vari-
ables, alongside measurement error. Well-specified models are essential for theoretical support, balancing
simplicity with optimal model fit. However, current approaches to improving model specification searches
remain limited, making it challenging to capture all meaningful parameters and leaving models vulnerable
to chance-based specification risks. To address this, we propose an improved Lagrange multiplier (LM) test
incorporating stepwise bootstrapping in LMandWald tests to detect omitted parameters.Monte Carlo sim-
ulations and empirical applications underscore its effectiveness, particularly in small samples and models
with high degrees of freedom, thereby enhancing statistical fit.

Keywords: bootstrap method; covariance structure analysis; LM test; model specification

1. Introduction
Political scientists often work with complicated and abstract concepts like democracy, political effi-
cacy, values, ideology, identity, trust, among others, which are difficult to measure directly (Acock
et al., 1985; Feldman, 1988; Goren, 2005; Davidov, 2009; Pietryka and MacIntosh, 2013). To mea-
sure these concepts, political scientists often use covariance structure analysis (CSA) or structural
equation modeling (SEM) with latent variables to build statistical models that combine multiple
observed indicators, enabling the assessment of underlying theoretical constructs. The versatil-
ity of CSA or SEM is crucial in political science, especially in political psychology. It offers a
rigorous statistical framework for modeling structural relationships, testing mediation, analyzing
latent constructs, and evaluating measurement validity. Additionally, it allows researchers to test
multiple hypotheses about the relationships between latent and observable variables while simul-
taneously accounting for measurement error (Blackwell et al., 2017; Yuan and Liu, 2021; Zheng
and Bentler, 2024). For instance, SEM has been successfully employed in studying diverse rela-
tionships, including the connection between party identification and core values (Goren, 2005),
political conceptualization (Zheng, 2023), political tolerance and democracy theory (Sullivan et al.,
1981), values and support for immigration (Davidov, 2009), the underlying dimensions of racial
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Figure 1. Number of articles published in selected PS journals using SEM.
Note: The data are based on a Google Scholar advanced search covering the years 1990–2020, focusing on publications in The American
Political Science Review, American Journal of Political Science, The Journal of Politics, Political Psychology, Political Behavior, and Public
Opinion Quarterly.

attitudes (DeSante and Smith, 2022), and measurement invariance analysis (Davidov, 2009; Pietryka
and MacIntosh, 2013; Oberski, 2014).

Due to its versatility, CSAor SEMhas shown amodest yet consistent trend in usagewithin political
science research over the past decades. Figure 1 shows the frequency of articles involving SEM across
six political science journals. Data collection, conducted through Google Scholar advanced search,
spans from 1990 to 2020. The keywords used were “structural equation modeling,” “covariance struc-
ture analysis,” and “factor analysis.” Figure 1 illustrates that between 1990 and 2020, the number of
articles utilizing SEM increased in a nearly linear fashion, starting at approximately 10 articles per
year and rising to around 20 articles per year. This trend underscores a sustained interest in applying
this methodology, particularly within political psychology.

As with any modeling technique, the adequate specification of CSA or SEM models is critical for
making sound decisions and drawing valid inferences (Zheng and Bentler, 2024). Identifying suitable
parameters to fit complexmodels becomes particularly challengingwhen dealingwith a large number
of observed variables relative to small sample sizes. In such instances, there’s a heightened chance-
based model risks (a.k.a. capitalizing on chance in psychometric literature), which can compromise
the reliability of the findings (Bentler 2006; Sörbom, 1989; Yuan and Liu, 2021). This pervasive issue
highlights the necessity for robust techniques that can enhance the stability of these models. Unlike
regression models, where the focus is primarily on the relationship between the dependent and key
independent variables, with coefficients holding the most weight, SEM can handle intricate models
with numerous interrelated variables and pathways. It facilitates the examination of complex theo-
retical frameworks.Therefore, researchers’ arguments rely on the underlying structural relationships,
rendering both model specification and fit equally crucial.

This study proposes a novel method, the improved Lagrangemultiplier (LM) test, formodel speci-
fication searches, addressing the challenge of noise interference. Our data-driven specification search
method, using the stepwise bootstrap approach in both LM and Wald tests, effectively identifies
potential omitted parameters, improving the precision of parameter identification. Through a series
of simulation studies and two empirical applications in political science, our results demonstrate that
the improved LM test is particularly reliable when dealing with small sample sizes in models with
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high degrees of freedom. The improved LM test enhances the reliability, validity, and statistical fit of
model specifications while mitigating the risk of being misled by noise, enabling researchers to draw
sound conclusions grounded in solid statistical evidence.

As we will demonstrate later with empirical examples from Huddy and Khatib (2007), Davidov
(2009), and Oberski (2014), the theoretical arguments in these studies are grounded in structural
relationships among sets of latent and observed variables. Inadequate model specification could
undermine these arguments, whereas a well-specified model with robust goodness-of-fit can rein-
force them. For instance,Huddy andKhatib argue that national identity is distinct fromother forms of
national attachment, such as symbolic, constructive, uncritical patriotism, and nationalism, and that
a strong American identity promotes civic involvement. However, the weak 𝜒2 test statistic reported
in their research may call this claim into question. Moreover, the new parameter identified through
the improved LM test not only reinforces Huddy and Khatib’s original argument but also underscores
the significant role of national identity in driving emotional reactions, such as anger—an aspect that
was overlooked in their original model. In Davidov’s (2009) and Oberski’s (2014) models, we focused
exclusively on the German sample and identified two omitted variables that indicate potential model
misspecification. While this misspecification may not be substantial enough to alter the substan-
tive conclusions, including these variables strengthens the authors’ arguments by improving model
fit. If untested, confounding measurement inequivalence with structural differences could lead to
specification issues.

2. Challenges and existing approaches in model specification searches
In this section, we review existing approaches for model specification searches, covering major tests,
their procedures, and model fit evaluations. To evaluate the model fit between the theoretical model
and sample data, researchers must assess the model’s adequacy using goodness-of-fit tests. However,
before trusting the 𝜒2 test statistics and other fit indices, adequate model modification and spec-
ification are necessary. In CSA or SEM, a desirable model fit involves striking a balance between
simplifying the model without compromising the overall fit and improving the model fit without
making it more complicated (Bentler and Chou, 1992; MacCallum et al., 1992). Several critical fac-
tors can affect overallmodel fit, such as poorly specifiedmodels. Typically, researchers specify amodel
based on a priori knowledge and fit it to sample data by estimating parameters. To modify the model,
researchers determine the number of parameters to add or remove from the existing model and then
refit it with the same dataset. If the initial model fit is inadequate, a common practice is to free param-
eter restrictions to enhance the model’s fit to the data (Leamer, 1978; Kaplan, 1988; Sörbom, 1989;
Bentler and Chou, 1992; MacCallum et al., 1992). This process is referred to as model specification
search.

The goal of model specification searches and modifications is to develop a generalizable model
that demonstrates stability. Stability refers to the consistency ofmodel results across repeated samples
(MacCallum et al., 1992). While it is challenging to achieve a perfect model in practice, an acceptable
model specification should consist of a set of parameters supported by substantive theories that also
has an adequate statistical fit (Bentler and Chou, 1992; MacCallum et al., 1992; Yuan et al., 2007;
Chou and Huh, 2012).

The process of modifying and specifying any statistical models can be influenced by idiosyncratic
characteristics of the data, meaning that modifications and specifications that improve the fit of one
modelmaynot necessarily apply to another randomsample from the samepopulation.This challenge,
often referred to as the chance-based model risks, becomes particularly pronounced in large models
with high degrees of freedombut relatively small sample sizes (MacCallum et al., 1992). In such cases,
increased sampling variability in the sample covariance can significantly impact the results of CSA
or SEM analyses, leading to inconsistencies across different samples. Despite the significance of this
issue, there are currently no systematic approaches to enhance model modification and specification
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4 Bang Quan Zheng and Peter Bentler

in CSA or SEM, making it challenging to include all statistically meaningful parameters in the model
without the interference of noise.

Two key considerations for assessing model adequacy are model parsimony and model fit. Model
parsimony refers to the number of free parameters in the model, while model fit is evaluated using
empirical fit indices. Poor model fit can occur in two scenarios: if a model inadequately fits the data
(under-specified), requiring modifications by releasing constraints on fixed parameters in a “for-
ward search,” or if a model fits the data well but has excessive parameters (overfitting), necessitating
simplification through constraints on free parameters in a “backward search.”

2.1. The LM test
In multivariate analysis of CSA or SEM, two commonly used test statistics are the LM test and the
Wald test. The LM test only requires estimating the restricted model, while the Wald test requires a
more comprehensive model. Notably, the statistical theory for the LM test is more complex than for
the Wald test. This study focuses on estimating the restricted model under various constraints. The
LM test is particularly useful for guidingmodel modifications to improve fit, as it identifies the effects
of freeing initially fixed parameters (Lee and Bentler, 1980; Bentler, 1986; Satorra, 1989; Sörbom,
1989; Yuan and Liu, 2021).

Standard LM tests rely on a single snapshot of the initial model, which may not accurately identify
missing parameters in population data. Consequently, model misspecifications can occur, leading to
poor generalization to new samples. This limitation is particularly evident with small sample sizes, as
the effectiveness of model modification using the LM test becomes compromised and susceptible to
random variations (MacCallum et al., 1992; Yuan and Liu, 2021).

Amodel is deemed acceptable when its parameters align with theories and show good statistical fit
to the data (Chou and Huh, 2012). If a model has q free parameters and an additional nondependent
variable, where r < q, the LM test can be used to identify which fixed parameters should be freed for
better model fit. This is done by computing the LM test statistic TLM . The LM test employs forward
specification searching, where a constraint in the initial model is proposed to be freed based on how
much it would enhance model fit.

A model consists of both free and fixed parameters, with the latter included to specify the model.
Let 𝜽 be a vector of constrained estimators of 𝜽 that satisfies the r < q constraints h (𝜽) = 0 when
minimizing the fit function F(𝜽) for a givenmodel.This is equivalent tominimizing the function of a
constrainedmodel while assuming h(𝜽) = 𝜃r = 0.With r constraints, there exists an r×1 constraint
vector h(𝜽)′ = (h1, … , hr). When minimizing the fit function F(𝜽) with constraints of h(𝜽) = 0,
matrices of derivatives g = ( 𝜕F

𝜕𝜽
) and L′ = ( 𝜕h

𝜕𝜽
) exist for the “forward search,” and there will be a

vector of LMs, 𝝀, such that
̂g + ̂L′�̂� = 0 and h (𝜽 ) = 0. (1)

For the LM test to be applicable, several technical regularity conditions must be met, including
the continuity of 𝜕h/𝜕𝜽, model identification, positive definiteness of 𝚺, linearly independent con-
straints, and full rank matrices of derivatives g and L′. In the context of constraints, the asymptotic
covariance matrix can be derived from an information matrixH , augmented by the matrix of deriva-
tives L and a null matrixO. Thus, the sample variance covariance matrix of the estimated parameter,√
n (𝜽 − 𝜽), is given by the inverse of the Fisher information matrix of H(𝜽), associated with q

free parameters in 𝜽 in the case of maximum likelihood (ML) estimation, and R gives the covari-
ance matrix of the LMs

√
n (�̂� − 𝝀), which is derived from the inverse of the information matrix L.

Therefore, we can define

[ H L′

L O ]
−1

= [ H−1 − H−1L′(LH−1L′)−1 H−1L′(LH−1L′)−1

(LH−1L′)−1LH−1 −(LH−1L′)−1 ] = [ M T′

T − R ] . (2)
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Political Science Research and Methods 5

Under regularity conditions and the null hypothesisH(𝜽), the LM test is available in two versions,
and the multivariate LM statistics are asymptotically distributed as a 𝜒2 variate with r degrees of
freedom. They compute all constraints simultaneously:

TLM = n�̂�′R̂
−1

�̂� ∼ 𝜒2
r . (3)

A univariate LM statistic is used to test a single constraint and is distributed as a 𝜒2 variate with
1 df . This test is particularly useful for evaluating whether a specific parameter in the 𝜽r vector is
equal to 0:

TLMi = n�̂�
2
i R̂

−1
�̂�i ∼ 𝜒2

r1. (4)

This is also known as a modification index in the LISREL program (Jöreskog and Sörbom, 1988). For
Equations (3) and (4), r is the number of nondependent constraints, and the matricesH and L′ have
dimensions q × q and q × r, respectively:

�̂� = ( ̂LĤ
−1 ̂L′)

−1
̂LĤ−1 ̂g . (5)

The LM test performance depends on factors like sample size, degrees of freedom, and the number
of variables and parameters. Degrees of freedom are influenced by the number of parameters and
variables. Higher p and lower q result in more degrees of freedom. The LM test considers all possible
paths based on the degrees of freedom. With more degrees of freedom, the number of possible paths
increases, increasing the risk of falsely identifying nonexistent paths in the true model, especially
when there are few missing paths. However, this risk decreases with larger sample sizes, reducing
reliance on chance occurrences.

2.2. The Wald test
The Wald test follows a backward stepwise procedure to identify which free parameter, starting with
the one with the smallest Wald test statistic, should be removed from the model. This is done by
including candidate parameters andperforming univariateWald tests on each. Parameterswith statis-
tically significantWald test values are retained, and the process continues until no further parameters
can be added. The Wald test statistic is calculated as follows:

W = n𝜽
′
r ( ̂LĤ

−1 ̂L′) 𝜽r ∼ 𝜒2
r , (6)

where ̂L is a quadratic form. The closer ̂L is to 0, the more likely it is that the null hypothesis equals
0 will be rejected. The univariate Wald statistics ̂𝜃i for each of the parameters in 𝜽r can be expressed
as

Wi = n ̂𝜃iĤ−1
ii , ̂𝜃i = n𝜃2

i /Ĥii ∼ 𝜒2
i , (7)

where ̂𝜃i is one of the parameters in 𝜽r and Ĥii is the ith parameter in the diagonal of the H matrix.
The computational complexity of the LM and Wald tests depends on the number of free and fixed
parameters in amodel. As the number of parameters increases, estimating and comparing their effects
becomes more computationally demanding. The H matrix, which represents the covariance matrix
of the independent variables, reflects the number of parameters that can be either free or fixed. For a
model with k independent variables, the H matrix will have k2 elements (Chou and Huh, 2012).

2.3. Evaluation of model fit
This study uses ML estimation, the standard method for deriving goodness-of-fit statistics and
parameter estimates in CSA under normal theory. In CSA, a random sample, x ∈{x1, … ., xn} is
assumed to be independently and identically distributed, following amultivariate normal distribution
𝒩[𝝁, 𝚺0]. Here, 𝝁 represents a vector of sample means, and the covariance matrix 𝚺0 is assumed
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6 Bang Quan Zheng and Peter Bentler

positive definite with an unknown population parameter vector 𝜽0 of dimension q × 1, where
𝚺0 = 𝚺 (𝜽0). The sample covariance matrix is:

S = 1
n − 1

n

∑
i=1

(xi − ̄x) (xi − ̄x)′ (8)

where the sample mean ̄x = 1

n

n

∑
i=1

(x1, … ., xn). S serves as an unbiased estimator of the population

covariance 𝚺0.
In confirmatory factor analysis (CFA), a model can be represented as:

xi = 𝝁 + 𝚲𝝃i + 𝝐i, i = 1, … , n (9)

where xi is a random sample, 𝝁 is a sample mean vector, 𝚲 is a matrix of factor loadings, 𝝃i is a vector
of latent factors, and 𝝐i is a vector of residuals. Here, the parameters involved in amodel are contained
in the covariance matrix 𝚺 of the observed variables. 𝚺 = 𝚲𝚽𝚲′ + 𝚿, where 𝚲 again is a factor
loading matrix, and 𝚽 is a covariance matrix of the latent factors, and 𝚿 is a covariance matrix of
unique scores.

The population covariance matrix 𝚺 is modeled as 𝚺(𝜽), where 𝜽 contains free parameters 𝚲, 𝚽,
and 𝚿.The sample covariancematrix S serves as an unbiased estimator of 𝚺, with the null hypothesis
𝚺 = 𝚺(𝜽). An objective function F[𝚺(𝜽), S] measures the discrepancy between 𝚺(𝜽) and S.

This study derives the goodness-of-fit statistic TML using the ML discrepancy function (Jöreskog,
1969), fitting themodel-implied covariancematrix 𝚺(𝜽) to the sample covariancematrix S, as shown
in Equation (10):

FML(𝜃) = log |𝚺(𝜽) − log|S| + tr (S𝚺(𝜽)−1) − p (10)

𝜽ML = argmin FML (𝜽) (11)

The ML fit function FML (𝜽) derives parameter estimates in 𝚺(𝜽) that minimize the test statis-
tic. At its minimum, as shown in Equation (11), 𝜽ML contains parameter estimates �̂�, �̂�, and �̂�.
Using these, we can reconstruct the sample covariancematrix to alignwith themodel-implied covari-
ance 𝚺 (𝜽 ) = �̂��̂��̂�′ + �̂�, assuming the sample-implied matrix matches the population matrix.
If S ≈ 𝚺 (𝜽 ) with p-value > 0.05, the model is considered plausible.

The ML goodness-of-fit test statistic is calculated as:

TML = (N − 1) FML (𝜽 ). (12)

This statistic is the product of FML(𝜽 ) and (N − 1), where N is sample size. As N increases, TML is
expected to asymptotically follow a 𝜒2 distribution with corresponding degrees of freedom.

3. Improved LM test
To overcome the limitations in existing model specification searches, we propose a novel approach
leveraging bootstrap methods for data-driven model specification searches, integrating the LM and
Wald tests. It involves generating multivariate random samples through bootstrap resampling based
on the initial model. We start with a forward stepwise bootstrap resampling method in the standard
LM test. Following this, using the statistically significant results from the bootstrap LM, we apply
a backward stepwise bootstrap Wald test to mitigate overfitting by identifying potential paths that
may not be needed. This iterative workflow strikes a balance between maximizing model fit, which
the LM test emphasizes, and maintaining parsimony, as the Wald test tends to emphasize. We term
this approach the “improved LM test,” offering a valuable tool for enhancing model fit and reducing
chance-based model risks in applied CSA or SEM.
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Political Science Research and Methods 7

The improved LM approach for specification searches involves a multi-stage process. Initially, we
create a hypothetical CFA population model and generate multivariate normal data with varying
sample sizes using theMonteCarlomethod.We then construct amisspecified analysismodel by omit-
ting several true parameters from the population model and fit it to the simulated data. To identify
missing parameters in the measurement model, we conduct a univariate LM test to detect potential
omissions. The parameters are ranked by their 𝜒2 statistics, and we select a series of them as the test-
ing parameters. Next, we perform a multivariate stepwise LM test. This forward stepwise procedure
follows a general-to-specific approach in specification searches within spatial econometrics (Florax
et al., 2003; Mur and Angulo, 2009). To enhance the reliability of LM test results, each sequence in
the forward stepwise LM procedure is based on bootstrap resampling of the initial data. We calculate
the means of the bootstrap LM test statistics and p-values, selecting parameters with p-values< 0.05
for further testing using bootstrap Wald tests to assess their stability.

In the Wald test procedure, we conduct a backward stepwise search by initially including all
LM-based parameters in the model and then sequentially fixing one parameter at a time. This
specific-to-general approach employs bootstrap resampling to compute the mean 𝜒2 test statistics
and p-values. However, applying the Wald test to all missing parameters is generally impractical for
midsize to large models, as the number of possible omitted parameters may exceed the sample size,
resulting in a singular matrix that cannot be inverted. Limiting the Wald test to bootstrap LM-based
selected parameters resolves this issue. We include the bootstrap LM-based parameters in the model
and perform univariate Wald tests on each. By focusing on these parameters, we significantly reduce
the number of elements in the H matrix in Equation (6) related to variances and covariances, as
compared to a full model with all potential missing parameters. This reduction inH matrix elements
facilitates efficient matrix inversion, leading to faster computations and more stable estimates. Thus,
unlike other specification search methods in spatial econometrics, the improved LM test integrates
LM and Wald tests with bootstrap resampling to reduce noise, enhance reliability, and distinguish
between meaningful results and random outcomes. A detailed illustration is provided in the next
section.

4. Simulation and multi-stage process for model specification searches
In this section, we illustrate the improved LM test for model specification, describing the setup of
hypothetical population and analysis models, the simulation procedure, and a multi-stage process
for conducting model specification searches that integrates bootstrap sampling within the LM and
Wald tests.

4.1. Population model and analysis model
The simulation begins with a hypothetical population model consisting of a three-factor structure,
with each factor measured by eight manifest variables, as illustrated in Figure 2. An analysis model,
shown in Figure 3, consists of 3 factors, each linked to 8 indicators, with all factors freely corre-
lated, resulting in a total of 24 variables. The four dashed lines in Figure 2 represent the paths not
included in the analysis model. Omitting four parameters aims to reduce the chance of the initial
model closely resembling the true model. Including many missing parameters can result in a poorly
specified model, potentially rendering LM test results meaningless or falsely indicating statistical
significance by chance (Yuan et al., 2003).

4.2. Monte Carlo simulations
The simulated data are generated using a standard confirmatory factormodel, given by Equation (13):

xi = 𝜦𝝃i + 𝝐i (13)
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8 Bang Quan Zheng and Peter Bentler

Figure 2. Path diagram of the population model.

Figure 3. Path diagram of the misspecified analysis model.

where xi = (xi1, xi2, … xip)
′ is a vector of p observations on person i in a population, and

i = 1, 2, … n. 𝜦 is a matrix of factor loadings, and 𝝐i = (𝜖i1, 𝜖i2, … 𝜖ip)
′ is a vector of error terms,

and var (𝜀) = 𝚿. 𝝃i = (𝜉i1, 𝜉i2,…𝜉im)′ is a vector of latent factors, and var(𝝃) = 𝚽. Each latent factor
𝝃i has a mean and a variance and may correlate with other latent factors 𝝃i; whereas 𝝃i and 𝝐i are
uncorrelated, so that E (𝝃) = 𝝁𝜉, which is the mean of the factors.

With the data generation scheme and populationmodel described above, we simulate a population
and draw samples using Monte Carlo simulation, based on the predefined matrices 𝚲′ and 𝚽:

𝚲′ = ⎡⎢
⎣

0.65 0.65 0.7 0.7 0.7 0.7 0.6 0.5 0.5 0 0 0
0 0 0 0 0 0.5 0 0 0.6 0.6 0.6 0.7
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0.7 0.5 0.5 0.65 0 0 0 0.65 0 0 0 0
0 0 0 0.45 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7

⎤⎥
⎦

,

𝚽 = ⎡
⎢
⎣

1
0.3 1
0.4 0.5 1

⎤
⎥
⎦
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When diag(𝚺) = I, which is an identity matrix, the unique variances can be determined by
𝚿 = I24 − diag (𝚲𝚽𝚲′). Since we are not interested in the mean structure, we set the factor means
𝜇′s = (0, 0, 0). The data generating process consists of two steps. (1) We draw from a multivari-
ate normal distribution with zero mean and covariance matrix 𝚽. Unique factors 𝝐i are drawn from
a multivariate normal distribution with zero mean and covariance 𝚿. Utilizing Equation (13), this
procedure generates multivariate normal observations characterized by a covariance matrix 𝚺 (𝜽).

The data generation and all analyses for this research are conducted using the “lavaan” package
(Version 4.2.3.) (Rosseel, 2012) in R, based on the previously specified population and assuming
multivariate normality.The simulation studies involved sample sizes ofN = 100 to 10,000.Our testing
models consisted of 24 observed variables (p = 24) and 3 latent factors, resulting in a covariance
component of p* = 24(24 + 1)/2 = 300, with 55 free parameters to estimate, and 245 degrees of
freedom. This model size is a good representation of most SEM research.

To assess the stability of the model specifications, we conduct a series of Monte Carlo sim-
ulations using the population model (Figure 2) across different sample sizes and fit the analysis
model (Figure 3). The study includes 12 sample sizes—100, 150, 200, 250, 300, 350, 400, 500, 1,000,
and 2,000—that are selected to reveal important phenomena related to the issues under study. To
evaluate the goodness-of-fit, we employ various methods, including 𝜒2 test statistics, standard devia-
tions of the 𝜒2 test, and the rejection rate. Additionally, we utilize alternative fit measures such as the
comparative fit index (CFI), normed fit index (NFI), and root mean square error of approximation
(RMSEA). However, as the analysis model does not fit the population model, we expect the 𝜒2 test
statistic to be larger than the degrees of freedom and the p-value < 0.05.

4.3. Selection of testing parameters
To commence the specification search, an initial set of parameters is required. The process of select-
ing these parameters begins with an exploratory univariate LM test via model modification indices
(Sörbom, 1989). However, as the data are generated from Monte Carlo simulations, each sample
drawn from the population model will be different, leading to variability in TLMi. For instance, if
we draw 500 samples of the same sample size, we will obtain 500 unique sets of initial testing param-
eters. Nonetheless, there should be a set of common parameters that frequently appear across all
samples, including the true missing parameters. To obtain a more representative set of initial param-
eters, after we simulate the data for 500 trials, we calculate the mean TLMi of each parameter and sort
them in descending order. We then select the top 12 parameters with the largest TLMi to test the pro-
posed improved LM test. The LM test is designed to enhance the fit of the existing model, assuming
it is reasonably well-fitted. Consequently, a sensible model should expect only a few significant omit-
ted parameters. If the count exceeds 12, the model may suffer from severe misspecification issues,
necessitating a new formulation.

4.4. Bootstrap simulation
The bootstrap method efficiently approximates population covariance structures in simulations, pro-
viding a practical alternative when the distribution of the sample is unknown. This approach tackles
numerous challenges that conventional statistical methods encounter. For instance, the bootstrap
approach does not assume normally distributed data. Even in cases where the data are normally dis-
tributed, at a given sample size, the bootstrap often provides more accurate results than those based
on standard asymptotic methods (Yuan et al., 2007).

Let x1, x2, ⋯ , xn denote a sample with a covariance matrix represented as S where its population
counterpart is 𝚺0. The bootstrap method iteratively draws samples from a known empirical distribu-
tion function, effectively substituting it for the population in the bootstrap samples. However, since
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the population covariance matrix 𝚺0 is unknown, an alternative matrix
.
S must be found to serve as

a surrogate for 𝚺0. Consequently, each xi can be transformed into x′
i by:

x′
i =

.
S
1/2

S−1/2xi, i = 1, 2, ⋯ , n (14)

where
.
S
1/2 .

S
1/2

is a p×pmatrix satisfying (S−1/2) (S−1/2)
′
=

.
S. The subsequent steps involve gener-

ating the bootstrap samples by sampling with replacement from (x′
1, x′

2, ⋯ , x′
n), thereby computing

the sample covariance matrix denoted as S* for these bootstrap samples.

4.5. Bootstrap LM test
Chance-based model risks occur when different model fits arise from different samples of the same
population, influenced by factors such as sample size, model complexity, and degrees of freedom.
Significant chance-based model risks imply a higher likelihood of overlooking pathways within the
model. To illustrate, Figure 4 visualizes the relationship between univariate LM tests, parameters,
and various sample sizes. The x-axis represents the distribution of testing parameters, derived from
500 Monte Carlo simulations based on the population and analysis models depicted in Figures 2
and 3. On the other hand, the y-axis illustrates the univariate LM test statistics. Figure 4 highlights
the true missing parameters. As observed, when the sample size is small, the distributions of LM
tests for all parameters exhibit relatively large variations, including the true missing parameters. This
phenomenon arises due to the small sample size relative to the model size and degrees of freedom.
Consequently, the standard LM test faces challenges in distinguishing the true missing parameters
from other parameters or effectively identifying any potential missing paths, presenting an issue due
to its vulnerability to chance-based interpretations. However, as the sample size increases, the vari-
ation in the LM tests for the true missing parameters diminishes. This leads to a clearer distinction
between the true missing parameters and other parameters, reducing the likelihood of being misled
by noise.

In the third stage of our analysis, we employ a forward stepwise approach along with bootstrap
resampling to identify the optimal specifications. While statistically significant large LM test values
are observed, they don’t necessarily imply that the suggested parameters accurately reflect the “true”
values.This is because the data are generally a sample drawn from the larger population. Furthermore,
in real-world data analysis, researchers frequently contendwith finite sample sizes and unknown data
distributions, giving rise to sample-specific errors and characteristics that may impact the model’s
accuracy in reflecting the population. Consequently, the parameters recommended by the standard
LM test might not generalize effectively to different samples. In this regard, bootstrap resampling
can handle the issue of unknown distribution and provide more accurate results than those based on
standard asymptotic properties.

In our approach,we use bootstrap resampling in every forward stepwise procedure.TheLMtest for
a set of omitted parameters can be broken down into a series of 1-df tests. Bentler andDijkstra (1985)
developed a forward stepwise LM procedure, where at each step, the parameter is chosen that will
maximally increase the LM 𝜒2. We will perform the bootstrap LM test by examining two parameters
at a time. At each step, we randomly draw 500 samples with replacements and compute the mean LM
test statistic and its p-value. We will repeat this process by adding another pair of parameters until we
have tested all possible omitted parameters in the analysis model.

It is crucial to perform multiple repetitions of the test during this process as the LM 𝜒2 value can
vary depending on themodel parameters and their correlations with each other. Adding or removing
parameterswill change the covariance structure for the LM test, andhence, the LM test statistic at each
step will provide more accurate information about the remaining missing parameters. We designate
the parameters with p-values less than 0.05 as statistically significant and refer to them as bootstrap
LM-based parameters for the Wald test selection.
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Figure 4. Univariate LM test statistics across varying sample sizes.

4.6. Bootstrap Wald test
The bootstrap LM tests establish a set of parameters for subsequent validation, while the Wald tests
incorporate these recommended parameters and conduct a series of backward stepwise bootstrap
Wald tests. The Wald tests assess whether each initially treated-as-free parameter can be collectively
set to zerowithout a significant loss inmodel fit.This simplifies themodel by removing nonsignificant
parameters and provides further validation. Parameters that are trulymissing exhibit p-values< 0.05,
confirming their significance and justifying their inclusion in the model. Conversely, parameters
that should be excluded from the model yield p-values ≥ 0.05. This integrated approach effectively
addresses the problem of false positives.

5. Simulation results
To evaluate the performance and reliability of the improved LM test, we compare the results across
various sample sizes while maintaining consistent degrees of freedom.The likelihood ratio test (LRT)
is widely regarded as one of the most commonly used methods for assessing the performance of
nested models. In this study, we compare the performances of the improved LM test to LRT for
each sample size (see the Appendix for details on LRT calculation). Table 1 shows consistent perfor-
mance for all models using bootstrapWald tests across different sample sizes, affirming the combined
methodology’s effectiveness. The first column displays the top 12 possible parameters based on uni-
variate LM tests, with the highlighted gray parameters representing known omitted parameters. For
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brevity, themiddle two columns only present the bootstrapWald test (B-Wald) 𝜒2 statistics and their
associated p-values. The last two columns show the LRTs and their associated p-values. Statistically
significant values are highlighted in gray, indicating that their corresponding parameters should be
included in the modified model. For detailed test results, please refer to Table A1 in the Appendix.
As shown in Table 1, the improved LM tests accurately identify omitted parameters across all sample
sizes, consistently outperforming LRTs, especially when sample sizes are small.

5.1. Model specification stability and model fit validity
In this section,we aim to assess the stability of the improvedLM test-suggestedmodel fit over repeated
samples of different sample sizes. A model that fits the data well should follow a standard 𝜒2 distri-

bution, TML
ℒ
→ 𝜒2

df , as N grows larger, demonstrating asymptotic properties (Browne, 1984; Bentler
and Dijkstra, 1985; Jöreskog and Sörbom, 1988). Based on this reasoning, we fit the improved LM
test-suggested model to the simulated data drawn from the population model (Figure 2). If the TML
are close to the degrees of freedom, it provides strong empirical evidence that the improved LM test-
suggested model fits better. To ensure its generalizability, we randomly draw samples of different
sizes from the population model and fit the improved LM test-suggested model. If consistency is
maintained, we are confident that the improved LM test-suggested model is adequate for general use.

The Monte Carlo simulations in this study are based on Equation (13). We conduct 1,000 trials
and calculate the average statistics, which are reported in Table 2. We examine the performance of
the analysis model suggested by the improved LM test by varying the sample sizes from 100 to 10,000.
Since the simulated data are normally distributed, the ML estimator is sufficient to examine the basic
statistical performance and asymptotic properties.

Table 2 presents the mean χ2 test statistics, their mean standard deviations, mean p-values, mean
rejection rates, and the 2.5th and 97.5th percentiles of fit indices (NFI, CFI, and RMSEA) by sample
size. As shown in Table 2, as the sample size increases, all mean statistics test statistics get closer to
the expected values: 𝜒2 = 269, SD = 23.195, p-value = 0.50, and empirical rejection rate is 0.05. Note
that when sample sizes are less than 500, the 𝜒2 test statistics are increasingly inflated, deviating from
the expected value of 245. As documented by previous studies, ML estimator is biased against small
sample sizes (Arruda and Bentler, 2017; Hayakawa, 2019; Zheng and Bentler, 2021, 2023).

In addition, NFI and CFI become closer to 1, and RMSEA is about 0 when the sample sizes are
greater than 200. The collective statistical indicators provide compelling evidence that the improved
LM test effectively detected the omitted parameters in the analysis model and provided a satisfactory
fit to the simulated data. Moreover, the modified model, derived from the specification search results
using the improved LM test, exhibited a robust statistical fit across various sample sizes.

5.2. Robustness of the improved LM test
To test the robustness of the improved LM test, we vary the magnitudes of factor correlations, the
number of indicators per factor from low to high, and factor loadings. First, we find that with more
indicators per factor, it becomes easier to detect omitted parameters. When the number of indicators
per factor is fewer, the statistical power of the improved LM test is weakened, particularly with smaller
sample sizes. Nevertheless, the improved LM test still outperforms the LRT across all sample sizes.
When the number of indicators per factor increases, both the improved LM test and LRT perform
similarly.

Second, when factor correlations are low, the improved LM test becomes more efficient at detect-
ing omitted parameters. The performances of the improved LM test and the LRT become similar
when sample sizes exceed 100. However, with smaller sample sizes, the improved LM test con-
sistently outperforms the LRT. In contrast, when factor correlations are high, increasing potential
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Table 2. Monte Carlo simulation results for asymptotic properties

NFI CFI RMSEA

N χ2 SD P-value Rej. rate 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

100 275.650 25.824 0.184 0.386 0.748 0.836 0.922 1.000 0.000 0.059
150 263.874 22.901 0.277 0.205 0.829 0.885 0.960 1.000 0.000 0.042
200 259.340 24.503 0.332 0.167 0.866 0.913 0.970 1.000 0.000 0.036
250 255.329 22.978 0.371 0.115 0.894 0.929 0.978 1.000 0.000 0.031
300 253.984 23.378 0.394 0.109 0.911 0.939 0.982 1.000 0.000 0.029
400 251.213 22.787 0.424 0.095 0.933 0.954 0.988 1.000 0.000 0.023
500 249.332 22.811 0.442 0.078 0.946 0.963 0.991 1.000 0.000 0.020
800 247.594 22.136 0.467 0.063 0.966 0.976 0.994 1.000 0.000 0.015
1,000 247.450 22.108 0.466 0.052 0.973 0.981 0.996 1.000 0.000 0.014
2,000 247.235 22.054 0.468 0.062 0.986 0.990 0.998 1.000 0.000 0.010
5,000 246.822 22.195 0.477 0.062 0.994 0.996 0.999 1.000 0.000 0.006
10,000 245.462 22.410 0.495 0.054 0.997 0.998 1.000 1.000 0.000 0.004

relationships among factor loadings and residuals, the improved LM test continues to deliver
outstanding performance.

Third, the magnitudes of factor loadings influence the performance of the improved LM test, and
this is dependent on the sample size. When N ≥ 400, the improved LM test delivers efficient and
robust performance compared to the LRT. However, low factor loadings in smaller sample sizes tend
to have a stronger impact on the detection of omitted variables and convergence.We found that when
N < 400, the models encounter convergence issues, mainly because the covariance matrix becomes
not positive definite. In contrast, with high factor loadings, both the improved LM test and LRT
perform well across all sample sizes in this study. Nonetheless, the improved LM test consistently
outperforms the LRT in detecting correct parameters. For the results of the simulation tests, please
refer to the Appendix.

6. Empirical examples
6.1. Example 1: national identity and patriotism
In this study, we evaluate the effectiveness of the improved LM test using a covariance structuremodel
constructed from Huddy and Khatib’s (2007) student data, gathered in 2002. For detailed data col-
lection and student sample information, please refer to page 66 in Huddy and Khatib (2007). This
dataset comprises 341 respondents. The survey questions use a 4-point Likert scale, with response
options ranging from “strongly approve” to “strongly disapprove.” We employ the diagonally weighted
least squares (DWLS) estimator to handle the ordered categorical variables. For brevity, the indicators
and factors are unlabeled here; please refer to the appendix for the survey questions.

The path diagram for the three-factor model is depicted in Figure 5. This model involves a small
sample size (N = 341) relative to a larger number of degrees of freedom (df = 39). The national
identity and patriotism model consists of three latent factors, F1, F2, and F3. These factors represent
the constructs of national identity, symbolic patriotism, and uncritical patriotism, respectively. Each of
these constructs is assessed by a series of indicatorsXi. Factor loadings are denoted by 𝜆i, residuals by
𝜀i, and the residuals of factor by Di. The coefficients 𝛽1, 𝛽2, and 𝛽3 measure the correlations between
the three factors. To evaluate the performance of the improved LM test, we follow the same proce-
dure as employed in the simulated data. The dashed lines in Figure 5 represent the recommended
parameters suggested by the improved LM test.

Table 3 displays the outcomes of three distinct tests: the univariate LM test, bootstrap LM test, and
bootstrapWald test.The bootstrap LM test, executed through a forward stepwise approach, identified
five missing parameters that were statistically significant. The highlighted items indicate the actual
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Figure 5. Path diagram of national identity and patriotism (Huddy and Khatib, 2007).

Table 3. Summary of example 1 test statistics

LM test Bootstrap LM test Bootstrap W test

Parameters LM χ2 P-values LM χ2 P-values Chi-square P-values

1 F2, q27 22.291 0.000 14.221 0.004 5.948 0.081
2 F1, q27 19.856 0.000 13.102 0.005 7.628 0.041
3 q27, q38 10.340 0.001 6.761 0.023 1.554 0.392
4 q37, q38 10.311 0.001 6.670 0.035 0.497 0.601
5 F1, q40 9.749 0.002 6.829 0.038 2.206 0.225
6 q40, q38 7.495 0.006 4.982 0.068
7 q40, q39 6.701 0.010 5.166 0.106
8 F2, q37 6.247 0.012 4.240 0.077
9 q37, q39 6.231 0.013 4.423 0.109
10 q27, q39 5.663 0.017 3.808 0.088

missing parameters, and the items in bold in the bootstrap LM and Wald tests are statistically signifi-
cant.The bootstrapWald test concurred that the parameter 𝜆m (the factor loading linking F1 and q27)
should be included in the original model to improve the model fit. q27 inquires, “How angry does
it make you feel, if at all, when you hear someone criticizing the United States?” Response options
range from extremely angry to not at all. Furthermore, the standardized factor loading of 𝜆m is 0.47
and statistically significant. This indicates that differing levels of national identity (F1) and uncritical
patriotism (F3) are likely to influence feelings of anger. While the addition of this parameter may not
alter the overall substantive conclusion, it provides new insights into the nuances of these latent struc-
tural relationships. However, without including this parameter, Huddy and Khatib’s (2007) original
model suffers from some degree of misspecification.

Table 4 presents the results of our replication study based on Huddy and Khatib’s (2007) research
using the DWLS estimator. In the original study, the 𝜒2 statistic is 65.176 with 40 degrees of freedom,
resulting in a p-value of 0.007. The CFI is 0.997, NFI is 0.992, TLI is 0.996, and the RMSEA is 0.043.
The 𝜒2 test statistic provides limited support for the substantive argument. However, upon introduc-
ing the omitted parameter, 𝜆m, as suggested by the improved LM test, the 𝜒2 test statistic reduces to
27.534, resulting in a p-value of 0.532. The improvement in the 𝜒2 test statistic is crucial as it suggests
that the model-implied covariance structure is highly consistent with the sample covariance struc-
ture.Moreover, the NFI increases to 0.996, the CFI and TLI increase to 1.0, and the RMSEA decreases
to 0. The final column in Table 4 indicates the differences in test statistics and fit indices between the
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Table 4. Comparison of test statistics andmodel fit in example 1

Original model Improved LM test Differences

Chi-square 65.176 37.642 27.534
Degrees of freedom 40 39 1
P-value 0.007 0.532 −0.525
NFI 0.992 0.996 −0.004
CFI 0.997 1.000 −0.003
TLI 0.996 1.000 −0.004
RMSEA 0.043 0.000 0.043

Figure 6. SEM of human value priorities (Davidov, 2009; Oberski, 2014).
Note: Error and factor variances are not shown in the path diagram.

two models, showcasing a significant enhancement in model fit and strengthening the theoretical
argument based on this structural relationship.

6.2. Example 2: SEM of relationship of human value priorities
In another empirical application, we conducted an analysis of the German sample (N = 2919) from
the 2002 European Social Survey, which is a cross-national probability survey. To illustrate the effec-
tiveness of our improved LM test in small sample sizes, we randomly selected 500 observations
from the German sample. Detailed information on data collection procedures and original survey
questions can be found on the ESS website.

To analyze the data, we employed a four-factor SEM model, as depicted in Figure 6, following
standard practice. The model comprises four latent factors represented by ovals, each measured by
multiple indicators. In the original model, factor F3 is predicted by factors F1 and F2, while factor F4 is
predicted by factors F1 and F2. Furthermore, there are correlations between factors F1 and F2, as well
as F3 and F4. To evaluate the effectiveness of our proposed improved LM test approach, we removed
the coefficient parameters between F2 and F3, and between F3 and F4, as indicated by the dash lines
in Figure 6.

Table 5 presents the results of three tests conducted on the model: the LM test, bootstrap LM test,
and bootstrapWald test.The LM test identified the top 10 omitted parameters based on LM test statis-
tics, out of which 2 parameters (F2, F3) and (F3, F4) were the actualmissing parameters.The improved
LM test confirmed the validity of these two parameters and identified four additional parameters
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Table 5. Summary of example 2 test statistics

LM test Bootstrap LM test Bootstrap Wald test

Parameters LM χ2 P-values LM χ2 P-values Chi-square P-values

1 F1, F3 64.563 0.000 63.523 0.000 33.833 0.000
2 F2, F3 64.563 0.000 63.523 0.000 14.780 0.004
3 Rules, Propriety 25.415 0.000 25.920 0.002 23.352 0.001
4 F3, F4 23.890 0.000 23.690 0.000 10.550 0.038
5 F3, Understand 19.611 0.000 20.327 0.003 13.041 0.023
6 Equality, Tradition 14.447 0.000 15.342 0.007 13.599 0.012
7 F2, Richer 13.483 0.000 13.698 0.012 10.895 0.020
8 F1, Rules 12.185 0.000 13.063 0.015 1.180 0.461
9 Environment, Tradition 11.458 0.001 12.283 0.026 6.874 0.103
10 F2, Help others 11.245 0.001 13.235 0.015 6.112 0.103

Table 6. Comparisons of test statistics and fit indices

Original model Modified model Difference

Chi-square 324.224 167.902 156.322
DF 115 109 6
P-value 0.000 0.000 0
NFI 0.844 0.919 −0.075
TLI 0.872 0.962 −0.090
CFI 0.892 0.970 −0.078
RMSEA 0.064 0.035 0.029

(highlighted in bold in the first column in Table 5) from the ten tested in the model. Note that
(F1, F3) is meaningless here because the original research aims to use a unidirectional arrow to indi-
cate the effect of F1 on F3 based on their theoretical argument, while the improved LM test suggests
a correlation instead. Thus, we disregard this suggested omitted parameter. The suggested parameter
(F3, Understand) suggests that attitudes toward immigration may also be influenced by the univer-
salism value, which emphasizes understanding and concern for the welfare of all people, as well
as the influence of self-transcendence. Additionally, the suggested parameter (Equality, Tradition)
indicates that the belief in treating every person equally is correlated with the value placed on tradi-
tion. Naturally, this relationship may vary significantly across different countries and cultures. Such
variations could introduce measurement invariance and model misspecification issues when com-
paring the effects of values on attitudes toward immigration without accounting for these structural
relationships.

To determine whether adding these suggested parameters could improve the model fit, we com-
pared the test statistics and fit indices. Table 6 reports that the original model’s 𝜒2 test is 324.224
with 115 degrees of freedom. However, when we added all the suggested parameters to the model,
the 𝜒2 test decreased to 167.902, a reduction of 156.322, with a loss of only 6 degrees of freedom.
Additionally, the NFI increased from 0.844 to 0.919, TLI increased from 0.872 to 0.962, and the CFI
increased from 0.892 to 0.970, and the RMSEA decreased from 0.064 to 0.035. All these statistics con-
firmed that the improved LM test method yielded favorable results for this model by incorporating
the additional parameters it recommended.

In summary, the improved LM test effectively identified omitted parameters in empirical examples
1 and 2. Incorporating these parameters, as shown inTables 4 and 6, substantially improves the overall
model fit in the 𝜒2 test statistics and fit indices. While these additions may not alter the substantive
conclusions, they enhance confidence in the authors’ arguments and provide new insights into their
theoretical claims. It is important to note, however, that although the improved LM test is a valuable
data-drivenmethod for uncovering hidden parameters, the decision to include suggested parameters
should be guided by strong theoretical justification.
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7. Conclusion
CSA and SEM stand as formidable tools that enjoy wide adoption in the behavioral and social sci-
ences, facilitating the understanding of latent structural relationships among variables. Nevertheless,
the creation of an accurate model proves challenging, and conventional practices occasionally engen-
der the perils of chance-basedmodel risks occurwhendifferentmodel fits arise fromdifferent samples
of the same population, influenced by factors such as sample size, model complexity, and degrees of
freedom. Significant chance-based model risks imply a higher likelihood of overlooking pathways
within the model and undue rejection of the null hypothesis. To surmount these predicaments, the
present study proposed an improved LM test, designed to rectify instances of falsely statistically sig-
nificant parameters and to effectively pinpoint omitted parameters, particularly in scenarios featuring
modest sample sizes.The improved LM test integrates bootstrap LMandWald tests, enhancingmodel
specification searches by accurately identifying missing parameters. This robust framework advances
the field, enabling researchers to effectively model complex phenomena and make well-informed
decisions based on well-specified models.

Though our investigation predominantly centers on a model boasting a substantial number of
degrees of freedom, it is reasonable to anticipate that our approach will likewise prove efficacious for
models featuring fewer degrees of freedom.This expectation stems from the recognition that amodel
with fewer degrees of freedom reduces the likelihood of succumbing to the perils of chance-based
model risks, which occur when different model fits arise from different samples of the same popula-
tion, influenced by factors such as sample size, model complexity, and degrees of freedom. Significant
chance-based model risks imply a higher likelihood of overlooking pathways within the model. Our
confidence in the applicability of this approach is reinforced by replicating empirical examples, such
as Huddy and Khatib’s (2007) model of national identity and patriotism, which involved a small sam-
ple size relative to a larger number of degrees of freedom. Similarly, Davidov’s (2009) and Oberski’s
(2014) SEM models examining the relationship of human value priorities exhibit a moderate sample
size accompanied by a comparatively greater number of degrees of freedom.

Our simulations, which varied the magnitudes of factor loadings, factor correlations, and the
number of indicators per factor, consistently showed that our proposed improved LM test performs
noticeably better than the LRT.These extensive evaluations under various realistic scenarios provided
further insight into the application and effectiveness of the improved LM test. Nevertheless, the sim-
ulation study conducted should not be considered as a comprehensive evaluation encompassing a
broad spectrum of realistic conditions. Similarly, conducting a systematic comparison of the practical
utility of the improved LM test with other testing methods across diverse topics, such as nonnor-
mal data, varying levels of model complexity, degrees of misspecification, and so on, was beyond the
scope of this specific study. However, we remain confident in the contributionsmade by this research.
Future studies could further explore the potential applications and comparative effectiveness of the
improved LM test. Additionally, this test is not limited to CSA and SEM; future research could expand
its use to regression and other domains, offering broader applicability for applied researchers.

Lastly, as numerous scholars have rightly emphasized, researchers bear the crucial responsibility of
interpreting the results yielded by any proposed approach with caution, ensuring they remain aligned
with substantive theory (MacCallum et al., 1992; Bentler 2006). The improved LM test is no excep-
tion. It is vital to recognize that the results of the improved LM test should be considered merely
as a suggestion for including statistically indispensable parameters. The decision to integrate these
parameters into a modified model should be guided by a solid theoretical foundation.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.
2025.27. To obtain replication material for this article, https://doi.org/10.7910/DVN/W77NEA.

Statements and declarations. Thismanuscript has not been submitted for review elsewhere.The researchwas conducted in
adherence to the Ethical Principles of Political Science Research and Methods and Code of Conduct, following all appropriate
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