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We identify forcing mechanisms that separately amplify subsonic and supersonic features
obtained from a linearised Navier–Stokes based model for compressible parallel boundary
layers. Resolvent analysis is used to analyse the linear model, where the nonlinear terms of
the linearised equations act as a forcing to the linear terms. Considering subsonic modes,
only the solenoidal component of the forcing to the momentum equations amplify these
modes. When considering supersonic modes, we find that these are pressure fluctuations
that radiate into the free stream. Within the free stream, these modes closely follow the
trends of inviscid Mach waves. There are two distinct forcing mechanisms that amplify the
supersonic modes: (i) the ‘direct route’, where the forcing to the continuity and energy
equations and the dilatational component of the forcing to the momentum equations
directly force the mode; and (ii) the ‘indirect route’, where the solenoidal component of
the forcing to the momentum equations force a response in wall-normal velocity, and this
wall-normal velocity in turn forces the supersonic mode. A majority of the supersonic
modes considered are dominantly forced by the direct route. However, when considering
Mach waves that are, like in direct numerical simulations, forced from the buffer layer of
the flow, the indirect route of forcing becomes significant. We find that these observations
are also valid for a streamwise developing boundary layer. These results are consistent
with, and extend, the observations in the literature regarding the solenoidal and dilatational
components of velocity in compressible turbulent wall-bounded flows.
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1. Introduction

We can broadly categorise the flow features in compressible wall-bounded flows into
two different kinds: (i) subsonic features that have equivalents in incompressible flows
and (ii) supersonic features that have no such equivalents. First, consider the subsonic
features. Studies have confirmed the presence of the ubiquitous streaky structures of
incompressible flows in compressible flows as well; structures such as the near-wall streaks
in the buffer layer of the flow (Kline et al. 1967) and the large-scale and very-large-scale
structures in the logarithmic regions of these flows (see Smits, McKeon & Marusic (2011)
and references therein). There is an ongoing debate on how the length scales of these
structures change with increasing Mach number and wall cooling (e.g. Smits et al. 1989;
Ganapathisubramani, Clemens & Dolling 2006; Smits & Dussauge 2006; Duan, Beekman
& Martín 2010, 2011; Duan & Martin 2011; Pirozzoli & Bernardini 2011; Williams et al.
2018; Bross, Scharnowski & Kähler 2021).

Now consider the second kind of flow features, i.e. the supersonic features that have no
equivalents in incompressible flows. Here, we consider the eddy Mach waves, which are
free stream pressure fluctuations, and a majority of this manuscript will focus on these
structures. These pressure fluctuations cause practical difficulties within wind tunnels
used to measure the transition behaviour of test vehicles. The pressure disturbances are
radiated from the boundary layers formed on the walls of the wind tunnel and thereafter
impact transition measurements (e.g. Laufer 1964; Wagner, Maddalon & Weinstein 1970;
Stainback 1971; Pate 1978; Schneider 2001). Studies (based on acoustic analogies) have
inferred the location of the sources that radiate these Mach waves to be within the buffer
layer of the boundary layer (Phillips 1960; Ffowcs Williams 1963; Duan, Choudhari & Wu
2014). With increasing Mach number, the intensity of these pressure radiations increases,
and they also have larger propagation velocities and shallower orientation angles in the
free stream (Laufer 1964; Duan, Choudhari & Zhang 2016). Wall cooling also impacts this
radiation (Zhang, Duan & Choudhari 2017). Experimental measurements of these free
stream radiations are notoriously challenging (e.g. Laufer 1961; Kendall 1970; Stainback
1971; Donaldson & Coulter 1995), and direct numerical simulation (DNS) that properly
resolves these structures is expensive owing to the requirement of computational boxes
with a large wall-normal extent (e.g. Hu, Morfey & Sandham 2006; Duan et al. 2014,
2016; Zhang et al. 2017). It is therefore crucial to obtain models that faithfully represent
these structures. Empirically obtained correlations such as the Pate’s correlation (Pate &
Schueler 1969) are the typical methods by which the effects of these disturbances are
currently modelled for practical purposes.

The literature described above focused on experiment-based and DNS-based
investigations of compressible wall-bounded flows. The mathematical modelling of the
flow is yet another method that has been employed to analyse these flows, and this
will be the approach that will be pursued in the current manuscript. Models have been
used to analyse the routes through which these flows transition to turbulence, and one
such route is provided by the unstable eigenvalues that emerge from the compressible
Navier–Stokes equations linearised around laminar mean profiles. We can categorise these
unstable eigenvalues into two different kinds: (1) the first mode eigenvalues, which have
an equivalent in the incompressible regime; and (2) the higher mode eigenvalues, which
do not have an equivalent in the incompressible regime (e.g. Lees & Lin 1946; Lees
& Reshotko 1962; Mack 1965, 1975, 1984; Malik 1990; Ma & Zhong 2003; Özgen &
Kırcalı 2008; Fedorov & Tumin 2011). Apart from this analysis of eigenvalues, more
recent studies have focused on the non-modal mechanisms that provide an additional
route to transition. These non-modal mechanisms can be studied by either computing the
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optimal initial perturbations that leads to maximum transient growth (e.g. Chang et al.
1991; Balakumar & Malik 1992; Hanifi, Schmid & Henningson 1996; Tumin & Reshotko
2001, 2003; Zuccher, Tumin & Reshotko 2006; Tempelmann, Hanifi & Henningson 2012;
Bitter & Shepherd 2014, 2015; Paredes et al. 2016; Bugeat et al. 2019; Kamal et al. 2020,
2021) or, as will be pursued in this manuscript, by computing the optimum response of
the linearised equations to a forcing (e.g. Cook et al. 2018; Dwivedi et al. 2018; Bugeat
et al. 2019; Dawson & McKeon 2019; Dwivedi et al. 2019). These studies showed that the
lift-up mechanism that is responsible for amplifying the ubiquitous streaky structures in
incompressible wall-bounded flows, also amplify streaky structures in the compressible
counterparts of these flows (e.g. Balakumar & Malik 1992; Hanifi et al. 1996; Tumin &
Reshotko 2001, 2003; Zuccher et al. 2006; Tempelmann et al. 2012; Bitter & Shepherd
2014, 2015; Paredes et al. 2016; Bugeat et al. 2019). (See Fedorov (2011) and references
therein for a review regarding the transition of laminar compressible flows.)

Two more recent studies that consider the modelling of these flows, and that are
particularly relevant to the current work, are the studies by Bugeat et al. (2019) and Bae,
Dawson & McKeon (2020b) that considered laminar and turbulent compressible boundary
layers, respectively. These studies used the resolvent analysis framework, where nonlinear
terms of the linearised Navier–Stokes equations are considered to be a forcing to the linear
equations (e.g. Hwang & Cossu 2010; McKeon & Sharma 2010; Moarref et al. 2013; Zare,
Jovanović & Georgiou 2017; Towne, Lozano-Durán & Yang 2020; Morra et al. 2021). For
compressible boundary layers, Bugeat et al. (2019) and Bae et al. (2020b) identified two
different kinds of modes that are amplified by the resolvent operator. The first among these
are the subsonic modes, identified as the streaks and the first modes by Bugeat et al. (2019),
and these modes have equivalents that have been studied in the incompressible regime
(e.g. Mack 1984; Hwang & Cossu 2010; McKeon & Sharma 2010; Sharma & McKeon
2013; Moarref et al. 2014). In turbulent boundary layers, Bae et al. (2020b) found that
these subsonic modes can be scaled using the semi-local scaling of compressible flows
(Trettel & Larsson 2016) such that they follow the trends of the incompressible modes
well. The trends of these modes can therefore be predicted using tools developed for
the incompressible regime (Dawson & McKeon 2020). The second among the two sets
of identified modes are the supersonic modes (Bugeat et al. 2019; Bae et al. 2020b).
Crucially, these modes are related to the higher order Mack modes (Bugeat et al. 2019;
Bae et al. 2020b) identified in the seminal work by Mack (1984), and we will explore
this relationship further in the current study. Resolvent analysis predicts the increasing
significance of these modes with increasing Mach number (Bae et al. 2020b), consistent
with DNS (Duan et al. 2016). These trends of the subsonic and supersonic modes also
hold more generally for the case of boundary layers over cooled walls with a range of
wall-cooling ratios (Bae, Dawson & McKeon 2020a).

So far, we have seen that there are both subsonic and supersonic features in compressible
boundary layer flows, and that these two features are captured by the mathematical
modelling technique of resolvent flow analysis where the nonlinear terms act as a
forcing (Bugeat et al. 2019; Bae et al. 2020b). Here, we therefore ask the following
question: can we isolate the different forcing mechanisms that generate these subsonic and
supersonic modes? Recent studies have shown that understanding the forcing mechanisms,
and thereby effectively modelling these mechanisms, is crucial for understanding and
building practically useful linearised Navier–Stokes based models of flows (e.g. Jovanović
& Bamieh 2005; Zare et al. 2017; Amaral et al. 2021; Morra et al. 2021; Nogueira
et al. 2021; Holford, Lee & Hwang 2023). The technique of breaking the forcing into
components and analysing the parts has provided insights into various aspects of turbulent
flows. For instance, this approach has explained the increased prevalence of channel-wide
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structures in Couette flows when compared with Poiseuille flows (Illingworth 2020);
why the turbulent kinetic energy in wall-bounded flows peaks at a specific wall-normal
location (Morra et al. 2021; Nogueira et al. 2021); how a small fraction of the full
forcing, which can be empirically modelled, generates the acoustic radiations in a jet
(Karban et al. 2023) etc. Here, to analyse the forcing, we will use resolvent analysis.
Different from Bugeat et al. (2019) and Bae et al. (2020b), we concentrate on identifying
the specific components of the forcing to the resolvent operator (i.e. the nonlinear
terms of the linearised equations) that are responsible for amplifying the subsonic and
supersonic modes, separately. The Helmholtz decomposition of the forcing to the resolvent
operator proves to be an instrumental tool for this purpose. The aim is to acquire a
fundamental physical understanding of the different amplification mechanisms in the flow
through identifying the mechanisms associated with individual forcing components. For
the majority of the manuscript, we will consider the simple case of a boundary layer
flow with a time-invariant mean flow that varies only in one inhomogeneous spatial
(wall-normal) direction, which makes the mathematical analysis tractable and insightful.
We also show that the conclusions drawn are applicable for the more general case of a
boundary layer with a two-dimensional (2-D) mean flow that varies in two inhomogeneous
spatial (streamwise and wall-normal) directions.

Here, we find that the subsonic modes in the compressible flow are forced by the
solenoidal component of the forcing alone. The Mach waves, however, have two routes
through which they can be amplified: (i) the direct route, where the dilatational component
of the forcing to the momentum equations and the forcing to the density and temperature
equations are active; and (ii) the indirect route, where the solenoidal forcing excites the
Mach waves. In other words, when focusing on the indirect route, the dilatational response
from a solenoidal forcing is considered. We find that, while the direct route is the dominant
mechanism for amplifying the Mach waves, the indirect route plays a significant role for
the Mach waves that are forced by the buffer layer of the flow. While there are alternate
insightful analysis techniques that have been used to probe the different mechanisms in
these flows, such as the examination of the interaction of vortical and acoustic mechanisms
through DNS and linear stability theory by Unnikrishnan & Gaitonde (2019), to the best
of our knowledge, these techniques do not explain the two distinct routes of forcing the
Mach waves and the different regions of the flow where these mechanisms operate.

The organisation of the rest of this paper is as follows. We will start with a description
of the resolvent analysis of the linearised Navier–Stokes equations and its numerical
implementation in § 2. Section 2.5 will then discuss Helmholtz decomposition, a technique
that will be frequently employed in this manuscript. In § 3, the subsonic modes will be
considered, and the forcing mechanisms that amplify the subsonic modes will be the topic
of § 3.2. In § 4, we will then shift our focus to the supersonic resolvent modes, i.e. the
resolvent Mach waves. The free stream contribution of these modes and the effect of
viscosity on these modes will be discussed in §§ 4.1 and 4.2, respectively. The two routes
of amplifying the Mach waves will be discussed in § 5 and the contribution of the two
routes across a wide parameter regime will be considered in § 6. In § 7, we will discuss the
resolvent Mach waves alongside trends of these waves that are known from DNS. Finally,
in § 8, we show that the conclusions drawn are also valid for a boundary layer flow with a
two-dimensional mean profile, before concluding the manuscript in § 9. Although most of
the study focuses on a Mach 4 and friction Reynolds number 400 turbulent boundary
layer over an adiabatic wall, the discussions are more generally applicable to laminar
compressible boundary layers (Appendix C) as well as turbulent boundary layers both
over adiabatic and cooled walls, for a range of Mach numbers (§ 6).
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2. Methods

2.1. Linear model
We consider a compressible boundary layer with the streamwise, wall-normal and
spanwise directions given by x, y and z, respectively. Although the development of the
boundary layer in the streamwise direction is an important parameter to consider (e.g.
Bertolotti, Herbert & Spalart 1992; Govindarajan & Narasimha 1995; Ma & Zhong 2003;
Ran et al. 2019; Ruan & Blanquart 2021), as a first approximation, here, we invoke the
parallel flow assumption, where we assume that this streamwise development is slow and
therefore neglect its effects. We briefly consider the impact of the streamwise development
on the discussions here in § 8 and hope to report on this in more detail in the near future
(Stroot & McKeon 2022; Stroot, Madhusudanan & McKeon 2023). Under this parallel
flow assumption, along with the spanwise, the streamwise is also a homogeneous direction,
and the mean streamwise velocity Ū( y), temperature Θ̄( y), density ρ̄( y) and pressure
P̄( y) are functions of the wall-normal direction alone. Additionally, under this assumption,
the mean wall-normal V̄( y) and spanwise W̄( y) velocities are zero. Fluctuations are
defined with respect to these mean quantities, where u, v and w represent the velocity
fluctuations in the streamwise, wall-normal and spanwise directions, respectively, and
ρ, θ and p represent the density, temperature and pressure fluctuations, respectively.
A subscript ‘∞’ denotes free stream quantities and a subscript ‘w’ denotes quantities at
the wall. The velocities are non-dimensionalised by U∞, the length scales by the boundary
layer thickness δ and temperature by Θ∞. A superscript ‘+’ indicates normalisation of
velocities and length scales by the friction velocity uτ and the friction length scale μw/uτ ,
respectively. Here, μ is the first coefficient of viscosity.

The non-dimensional numbers that define the problem are: (1) the Reynolds number,
defined as Re = ρ∞U∞δ/μ∞; (2) the free stream Mach number, defined as Ma =
U∞/(γRΘ∞)1/2, where γ is the specific heat ratio and R is the universal gas constant;
and (3) the Prandtl number Pr = μ∞cp/κ∞, defined using specific heat ratio cp and the
thermal conductivity κ . A friction Reynolds number is also defined as Reτ = ρwuτ δ/μw.
Throughout this study, Pr = 0.72 and γ = 1.4 are kept fixed. Flows over both adiabatic
walls as well as over cooled walls are considered, and boundary layers over cooled walls
are characterised by the ratio Θw/Θad, where Θw is the wall temperature and Θad is the
wall temperature in the case of the flow over adiabatic walls. For most of this work, we
consider a Ma = 4, Reτ = 400 turbulent boundary layer over an adiabatic wall. However,
we will show that the substance of the discussion here is applicable to turbulent boundary
layers over adiabatic as well as cooled walls and over a range of Mach numbers (in § 6), as
well as to laminar boundary layers (in Appendix C).

We linearise the Navier–Stokes equation around the mean state (Ū( y), 0, 0, ρ̄( y), Θ̄( y))
and obtain the equations for the fluctuations as

ρ̄
∂ui

∂t
= −ρ̄Ū

∂ui

∂x
− ρ̄

dŪ
dy
vî − 1

γMa2

[
Θ̄
∂ρ

∂xi
+ dΘ̄

dy
ρ ĵ + ρ̄

∂θ

∂xi
+ dρ̄

dy
θ ĵ

]

+ 1
Re

[
∂μ̄

∂Θ̄

dŪ
dy

(
∂θ

∂y
î + ∂θ

∂x
ĵ
)

+ ∂2μ̄

∂Θ̄2

dΘ̄
dy

dŪ
dy
θ î + ∂μ̄

∂y

(
∂ui

∂y
+ ∂v

∂xi

)

+∂ λ̄
∂y
∂uk

∂xk
ĵ + ∂μ̄

∂Θ̄

d2Ū

dy2 θ î + μ̄
∂2ui

∂xj∂xj
+ (μ̄+ λ̄) ∂

2uj

∂xj∂xi

]
+ fui, (2.1a)

1003 A31-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1171


A. Madhusudanan, G. Stroot and B.J. McKeon

Θ̄
∂ρ

∂t
= −Θ̄Ū

∂ρ

∂x
− Θ̄

dρ̄
dy
v − ∂ui

∂xi
+ fρ, (2.1b)

ρ̄
∂θ

∂t
= −ρ̄Ū

∂θ

∂x
− ρ̄

dΘ̄
dy
v − (γ − 1)

∂uj

∂xj

+ γ

PrRe

[
2
∂μ̄

∂y
∂θ

∂y
+ ∂2μ̄

∂Θ̄2

(
dΘ̄
dy

)2

θ + μ̄
∂2θ

∂xj∂xj
+ ∂μ̄

∂Θ̄

d2Θ̄

dy2 θ

]

+ γ (γ − 1)Ma2

Re

[
2μ̄

dŪ
dy

(
∂u
∂y

+ ∂v

∂x

)
+ ∂μ̄

∂Θ̄

(
dŪ
dy

)2

θ

]
+ fθ . (2.1c)

Here, all the nonlinear terms of the equation are represented by f = ( fu, fv, fw, fρ, fθ ),
where fu, fv and fw represent the nonlinear terms in the momentum equations, and fρ and
fθ represent the nonlinear terms in the continuity and the energy equations, respectively.
In (2.1), (u1, u2, u3) represents (u, v,w) and (x1, x2, x3) represents (x, y, z). (It should
be noted that, for this linearisation, we have not assumed the fluctuations to be small
and, instead, they can assume any arbitrary value). Unit vectors along x, y and z are î,
ĵ and k̂, respectively. In addition to the equations in (2.1), we also have the linearised
equation of state p = ρ̄θ + Θ̄ρ. The equations are scaled such that the mean pressure
P̄ = 1 and, therefore, the mean density is related to the mean temperature as ρ̄ = 1/Θ̄ .
The mean viscosity is obtained as a function of temperature using the Sutherland
formula μ̄ = Θ̄3/2(1 + C)/(Θ̄ + C), where C = 110.4K/Θ∞. The second coefficient of
viscosity is given as λ = −2/3μ. The subsonic lift-up mechanism (Landahl 1980) and
critical-layer mechanism (McKeon & Sharma 2010), as well as the supersonic Mach
wave generation mechanism (Mack 1984), are easily expressed in terms of the primitive
variables (u, v,w, ρ, θ) used here. In the future, it would be interesting to see how the
discussions here are impacted with a different choice of variables (Karban et al. 2020).

2.2. Resolvent operator
We use the linearised equations in (2.1) to derive the resolvent operator for the flow. For
this, u, ρ, θ and f are considered in terms of their Fourier transforms in the homogeneous
streamwise and spanwise directions, as well as in time,

l(x, y, z, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
l̂( y; kx, kz, ω) exp((ikxx + ikzz + iω)) dkx dkz dω. (2.2)

Here, l represents u, ρ, θ or f , and ·̂ represents their Fourier transforms. (kx, kz) are the
streamwise and spanwise wavenumbers, (λx, λz) are the corresponding wavelengths and
ω is the temporal frequency. The wavenumbers are non-dimensionalised by (1/δ) and the
wavelengths by δ. The temporal frequency ω can be written in terms of a phase speed c as
ω = −ckx. In terms of these Fourier transforms, (2.1) are written as

iωq̂ = A(kx, kz)q̂ + f̂ . (2.3)

The matrix A contains the finite-dimensional discrete approximations of the linearised
momentum, continuity and energy equations from (2.1) in terms of the Fourier transforms,
where the derivatives (∂/∂x, ∂/∂y, ∂/∂z) become (ikx, ∂/∂y, ikz) (for the different terms of
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the matrix A, see Dawson & McKeon 2019). The vector q̂ = (û, v̂, ŵ, ρ̂, θ̂ ) contains the
state variables and f̂ = ( f̂u, f̂v, f̂w, f̂ρ, f̂θ ) the nonlinear terms of the equations.

To analyse (2.3), we need to choose a norm and here we employ the commonly adopted
Chu norm E defined as (Chu 1965; Hanifi et al. 1996)

E = 1
2

∫ ∞

0
ρ̄(û∗û + v̂∗v̂ + ŵ∗ŵ)+ Θ̄

γ ρ̄Ma2 ρ̂
∗ρ̂ + ρ̄

γ (γ − 1)Θ̄Ma2
θ̂∗θ̂ dy, (2.4)

where ·∗ represents a complex conjugate. The Chu norm as well as the weights
corresponding to the non-uniform grid used here are incorporated within a weight matrix
W . The discrete inner product used becomes 〈q̂1, q̂2〉 = q̂∗

1W q̂2. Equation (2.3) can now
be re-written as

q̂ =
[
W 1/2 (iωI − A(kx, kz))

−1 W −1/2
]

︸ ︷︷ ︸
H(kx,kz,ω)

f̂ , (2.5)

where I is the identity matrix. The transfer kernel H(kx, kz, ω) is the resolvent operator of
the flow and it maps the nonlinear terms f̂ to the state variables q̂.

One of the benefits of using resolvent analysis is the ability to ‘mask’ the resolvent.
Whereas the full resolvent admits a response and forcing in the entire spatial domain
considered, the masked resolvent, when the masking is in the response, restricts the
response to lie within a specific wall-normal region. If the masking is in the forcing, the
forcing in the model is restricted to lie within a specific wall-normal region. For instance,
we can consider the resolvent where the response lies solely in the free stream, or where the
forcing lies exclusively in the buffer layer of the flow (see § 7). For this masking, matrices
B and C are introduced to (2.3) such that

iωp̂ = A(kx, kz)p̂ + Bf̂ , q̂ = Cp̂. (2.6a,b)

If B and C equal identity, we get back (2.3). To restrict the forcing or response to defined
wall-normal regions, weightings, such as those introduced by Nogueira et al. (2020), can
be incorporated in B or C . The masked resolvent operator Hmask(kx, kz, ω) then becomes

q̂ = C
[
W 1/2 (iωI − A(kx, kz))

−1 W −1/2
]

B︸ ︷︷ ︸
Hmask(kx,kz,ω)

f̂ . (2.7)

2.3. Singular value decomposition of the resolvent operator
To analyse the resolvent operator in (2.5), we perform a singular value decomposition
(SVD)

H(kx, kz, c) =
5N∑
i=1

ψ i( y)σiφi( y). (2.8)

Here, N represents the number of grid points used to discretise the wall-normal direction.
The singular values σi are arranged such that σi � σi+1. The left singular vectorsψ i( y) are
the resolvent response modes and the right singular vectors φi( y) are the resolvent forcing
modes. Therefore, a forcing to the resolvent operator along φi will give a response along
ψ i amplified by a factor of σi. The most sensitive forcing direction is φ1 that is associated
with the largest singular value σ1, and the corresponding most amplified response direction
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is ψ1. If we assume that the forcing f̂ in (2.5) is unit-amplitude and broadband across
(kx, kz), then the regions of the wavenumber space where σ1 is high represents structures
that are energetic.

The right and left singular vectors form a complete basis. Therefore, any forcing f̂ and
any response q̂ can be expressed in terms of these basis vectors as

f̂ =
∑

i

χiφi and û =
∑

i

χiσiψ i. (2.9a,b)

Let us assume the forcing is approximately stochastic and therefore does not have any
preferred direction. Then, in scenarios where σ1 � σi /= 1, it is possible that a rank-1
model, where f̂ ≈ χ1φ1 and û ≈ χ1σ1ψ1 captures the flow reasonably well (Beneddine
et al. 2016; Towne, Schmidt & Colonius 2018). This is indicative of the existence of a
dominant physical mechanism that is giving rise to the resolvent amplification (such as
the critical layer mechanism of McKeon & Sharma 2010). To analyse if such a rank-1
approximation is valid, Moarref et al. (2014) introduced the metric LR = σ 2

1 /
∑

i σ
2
i ,

which denotes the fraction of energy that is captured by the first resolvent mode alone.
Here, LR is bounded between 0 and 1, and the region of the (λx, λz) space where LR is
high indicates the region where a rank-1 approximation of the resolvent operator is valid.
The resolvent operator remains low-rank in the wavenumber space where, from DNS and
experiments of incompressible flows, we know most of the turbulent kinetic energy resides
in the flow (e.g. Moarref et al. 2014; Bae et al. 2020b).

2.4. Numerical set-up for the resolvent operator
A summation-by-parts finite difference scheme with N = 401 grid points is used to
discretise the linear operator A (2.3) in the wall-normal direction (Mattsson & Nordström
2004; Kamal et al. 2020). To properly resolve the wall-normal direction, we employ a grid
stretching technique that gives a grid that goes from 0 to at least ymax = 4δ, with half the
grid points used clustered below yhalf = 1δ (Malik 1990). The stretched grid y in terms
of equidistant points 0 � y′ � 1 is given as y = ay′/(b − y′), with a = ymaxyhalf /( ymax −
2yhalf ) and b = 1 + a/ymax (e.g. Malik 1990; Kamal et al. 2020). Compressible boundary
layer flows have pressure fluctuations that radiate into the free stream. These radiations
are waves that have wall-normal wavelengths that are a function of their streamwise and
spanwise wavenumbers kx, kz and phase speed c. For the discussions in this work, it is
important to properly resolve these pressure fluctuations. Therefore, it is important to
consider their wall-normal wavelengths l, and this l can be analytically approximated as
a function of (kx, kz, c) (see (4.3) and (7.1)). Since there is a large range of l that exists
in the flow, it would be challenging to resolve all of the waves using a fixed ymax and any
reasonable number of wall-normal grid points N. Therefore, for these modes, we use a
ymax that varies with (kx, kz, c) such that if ymax = 4δ is not sufficient to resolve at least 3l,
ymax is increased to be 3l. (In Appendix B, we include a discussion on the grid convergence
obtained.) To keep the forcing to the resolvent consistent across (kx, kz, c), all modes are
forced only until 3δ, with a weighting as introduced by Nogueira et al. (2020) used to set
the forcing beyond 3δ to zero.

Following Mack (1984) and Malik (1990), the boundary conditions enforced at the wall
are û(0) = v̂(0) = ŵ(0) = θ̂ (0) = 0. The wall-normal momentum equation at the wall is
used to get the boundary condition on density, which, along with the temperature boundary
condition, determines boundary condition for pressure. Since at the free stream we can
assume that the equations are inviscid, Thompson boundary conditions derived from the
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Resolvent-based perspective on the generation of Mach waves

inviscid equations are enforced here (Thompson 1987; Kamal et al. 2020). Additionally, a
damping layer is also required at the free stream to remove spurious numerical oscillations
that arise from the finite difference operator (Appelö & Colonius 2009) (see Appendix B
for a discussion regarding this damping layer). Mean profiles that are required as input
to the linear model in (2.1) are obtained from the DNS studies of Bernardini & Pirozzoli
(2011), Duan et al. (2014, 2016) and Zhang et al. (2017).

There is some arbitrariness to the choice of wall-normal extent ymax and the details of
the damping layer used for the wall-normal grid. However, the results presented here are
reasonably insensitive to variations in these choices. This has been discussed in detail in
Appendix B.

2.5. Helmholtz decomposition
As the final topic in the methods section, let us briefly look at Helmholtz decomposition,
a technique that will be used frequently in this manuscript. The Helmholtz decomposition
can be performed on any vector field. Consider a vector q = (qx, qy, qz). The Helmholtz
decomposition of q gives two components such that q = qs + qd. The two components are:
(i) the solenoidal component qs = (qs

x, qs
y, qs

z), which is divergence-free, i.e. ∇ · qs = 0;
and (ii) the dilatational component qd = (qd

x , qd
y , qd

z ), which is curl-free ∇ × qd = 0.
Helmholtz decomposition is only unique with a defined boundary condition, and the
boundary conditions that are imposed here are qs

y( y = 0) = 0 and qd
x( y = 0) = qd

z ( y =
0) = 0 (Bhatia et al. 2012). As an example, consider the velocity field u from an
incompressible flow. Since the flow is divergence free, for this case, u = us and ud = 0.

In § 3.1, we will use Helmholtz decomposition of the first resolvent response mode ψ1
to find the solenoidal and dilatational components of this mode. In §§ 3.2 and 5, we will
instead focus on the Helmholtz decomposition of the first resolvent forcing mode φ1. This
thereafter enables us to look at the response to the solenoidal φs

1 and the dilatational φd
1

components of this forcing mode, separately. The response to φs
1 can be obtained as Hφs

1
and to φd

1 as Hφd
1.

3. Comparing compressible and incompressible resolvent operators

In this section, we compare the resolvent norms obtained from the incompressible and
the compressible resolvent operators. This comparison is similar to that by Bae et al.
(2020b), however, in addition to the low-rank map that was compared by Bae et al.
(2020b), here, we also look at the leading resolvent norm, which is important for the
discussions. In figure 1, an Reτ = 450 incompressible resolvent operator is shown in
panels (a,c) and an Ma = 4 compressible resolvent operator at a comparable Reynolds
number (Reτ = 400) is in panels (b,d). In figure 1(a,b), the leading resolvent norm σ1 in
(2.8) is shown with respect to the streamwise and spanwise wavelengths (λx, λz), for a fixed
value of c = Ū( y+ ≈ 15). The colour-scale used in the figure is logarithmic. While the
full Chu norm (2.4) is used for the compressible case, the kinetic energy norm is used for
the incompressible case and this difference does not significantly impact the discussions
here. In figure 1(a), the grey contour line indicates a third of the maximum energy of
the incompressible case. The same contour line (computed from the incompressible case)
is also shown in figure 1(b). The green contours at the top right-hand corner for the
compressible case in figure 1(b) indicates the region of the wavenumber space that is
unstable. In figure 1(c,d), we compare the low-rank maps LR = σ 2

1 /(
∑

i σ
2
i ) (see § 2.3)

that shows the fraction of energy captured by the leading resolvent mode at each (λx, λy, c).
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Figure 1. (a,b) Leading resolvent gain σ1 as well as (c,d) fraction of energy captured by the leading resolvent
mode LR = σ 2

1 /(
∑

i σ
2
i ) as a function of the streamwise and spanwise wavelengths (λx,λz) at a fixed phase

speed c ≈ Ū( y+ = 15). (a,c) An incompressible boundary layer with Reτ = 450 and (b,d) a compressible
boundary layer with Ma = 4 and Reτ = 400 over an adiabatic wall. The black dashed line in panels (b,d)
indicates the relative Mach number equal to unity. The green contours at the top right-hand corner for the
compressible case indicates the region of the wavenumber space that is unstable. The grey contour line in
panel (a) indicates a third of the maximum energy in the incompressible case, and the same contour (computed
from the incompressible case) also appears in panel (b) for comparison. The diamond (�) in panels (a,b) and
the square (�) and circle (•) in panel (b) indicate the modes that are discussed in later figures.

The black dashed line in figure 1(b) indicates the region where the free stream relative
Mach number is equal to unity Ma( y → ∞) = 1, where Ma( y) is a local Mach number
at a particular wall height y defined for each (λx, λy, c) as

Ma( y) = Ma
Θ̄( y)1/2

[
kx

k

(
Ū( y)− c

)]
. (3.1)

The relative Mach number Ma( y) is the projection of the phase speed relative to the mean
flow (Ū( y)− c) in the direction of the streamwise wavenumber kx/k (Mack 1984). For the
flows considered here, at a particular (λx, λy, c), the maximum value of Ma( y) is Ma(∞).
Above the black dashed line in figure 1(b), Ma(∞) > 1. Below this line, Ma(∞) < 1.
In § 4, we will see that the supersonic resolvent modes, which is the main subject of the
discussions in the current work, can only exist when Ma(∞) � 1 and therefore can only
exist above the black dashed line in figure 1(b) (Bae et al. 2020b).

Before considering these Mach waves in detail, let us briefly consider the region below
the black dashed line, i.e. the subsonic modes. We note that the most amplified subsonic
modes are linearly stable, i.e. do not fall within the green contour lines in figure 1(b).
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Figure 2. Leading resolvent response for the modes indicated by the diamonds (�) in figure 1(a,b). The
mode corresponds to λx = 5, λz = 0.5 and c = Ū( y+ ≈ 15). The wall-normal profile of the (a) streamwise,
(b) wall-normal and (c) spanwise velocities. The solid lines in panels (a–c) represent the mode from a
compressible boundary layer with Ma = 4 and Reτ = 400 and the black dashed lines represent the mode
from an incompressible boundary layer with Reτ = 450. The profiles of (d) density and (e) temperature for
the compressible case.

To compare these subsonic modes with the incompressible case, between figures 1(a) and
1(b), we compare the regions of high amplification and between figures 1(c) and 1(d), we
compare the regions where the resolvent operator is low-rank. Below the black dashed
line, the trends of the incompressible and the compressible resolvent operators are similar.
This suggests that within this region of the wavenumber space of the compressible flow,
the mechanisms that are active are the same as in incompressible flows.

For further comparison, consider the structure with λx = 5, λz = 0.5 and c = Ū( y+ ≈
15) (indicated by diamonds (�) in figure 1a,b). The leading resolvent mode for the
structure is shown in figure 2. The three components of velocity are compared in
panels (a–c), with the solid coloured lines representing the compressible mode and the
black dashed line representing the incompressible mode. For both compressible and
incompressible cases, the modes are localised and reside within the boundary layer
(the y-axis terminates at 0.5δ), and there are no significant differences between the
incompressible and compressible structures. This similarity between the compressible and
incompressible resolvent operators was explored by Bae et al. (2020b), where they showed
that when the compressible modes are scaled using the semi-local scaling of compressible
flows (Trettel & Larsson 2016), they collapse well onto the modes from the incompressible
flow. Of course, in the case of the compressible flow, there are the additional components
of temperature and density, and these are shown in figures 2(d) and 2(e). Temperature and
density also show localised profiles within the boundary layer.

3.1. Helmholtz decomposition of the resolvent response
We can attempt to isolate these incompressible-like subsonic modes from the compressible
effects in the flow by doing a Helmholtz decomposition of the velocity components
û = (û, v̂, ŵ) of the leading resolvent mode ψ1. As described in § 2.5, the Helmholtz
decomposition gives: (i) a solenoidal component ûs and (ii) a dilatational component ûd

(in an incompressible flow, ûd = 0). In figure 3, the full kinetic energy in figure 3(a) is
compared with the kinetic energy of ûs in figure 3(b) and of ûd in figure 3(c). The grey
contour in figure 3(b) is the same as that shown in figure 1(a) and indicates the region of
the wavenumber space where the incompressible resolvent is reasonably amplified.

The solenoidal response in figure 3(b) looks similar to the response of the
incompressible flow in figure 1(a). Subsonic modes, i.e. the modes below the Ma(∞) =
1 line, have solenoidal velocity, consistent with observations from DNS (Yu, Xu &
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Figure 3. Kinetic energy of (a) the leading resolvent response ψ1 and of (b) the solenoidal and (c) the
dilatational component of the velocity from ψ1 as a function of the streamwise and spanwise wavelengths
(λx, λz) and a fixed phase speed c = Ū( y+ ≈ 15). The grey contour line in panel (b) is the same as that shown
in figure 1(a) and shows the kinetic energy for the incompressible case at a third of the maximum.

Pirozzoli 2019). Notably, in figure 3(b), ûs captures some of the energy in modes above
the Ma(∞) = 1 line where supersonic mechanisms are active. The grey contour line
indicates that this occurs in the region where subsonic mechanisms are also active. These
modes therefore have both the subsonic as well as supersonic mechanisms active. The
co-existence of two amplification mechanisms provides an explanation for the observed
decrease in the low-rank behaviour of these modes in figure 1(d). However, the most
interesting consequence of this co-existence of mechanisms is that it provides an additional
route for amplifying the supersonic resolvent modes. This amplification route will be
explained in § 5.2 and its potential importance to the real flow will be discussed in § 7.

3.2. Forcing to the subsonic modes: Helmholtz decomposition of resolvent forcing
In this section, we take the comparison between the compressible and incompressible
operators one step further. For incompressible resolvent operators, if we consider
Helmholtz decomposition of the forcing to the momentum equations f̂u, it is known that
only the solenoidal component of the forcing f̂ s

u has any active influence in amplifying
resolvent modes (Rosenberg & McKeon 2019; Morra et al. 2021). Although f̂ d

u is not
zero in the real flow (i.e. the divergence of the full forcing ∇ · f̂u /= 0), this component
cannot directly excite a response in velocity (Rosenberg & McKeon 2019; Morra et al.
2021). Here, we ask if this property of incompressible flows carries over to the subsonic
modes of compressible flows. We will take f̂ u from the leading resolvent forcing mode
φ1 (the suboptimal modes are considered in Appendix A). A Helmholtz decomposition
of this resolvent forcing mode gives the solenoidal component f̂ s

u = ( f̂ s
u , f̂ s

v , f̂ s
w) and the

dilatational component f̂ d
u = ( f̂ d

u , f̂ d
v , f̂ d

w). We will consider the response to the solenoidal
component alone through f̂1 = ( f̂ s

u , f̂ s
v , f̂ s

w, 0, 0), and the response to the dilatational
component along with the forcing to the density f̂ρ and temperature f̂θ equations through
f̂2 = ( f̂ d

u , f̂ d
v , f̂ d

w, f̂ρ, f̂θ ). The response to f̂1 is obtained as H f̂1 and to f̂2 as H f̂2.
In figures 4(a)–4(e), for the same structure as in figure 2, the five components of the

leading resolvent response mode in black is compared with the response to f̂1 in blue
and to f̂2 in red. We see that the response is almost entirely captured by the solenoidal
component of the forcing. To see that this is more generally true, in figure 4( f –j), the
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Figure 4. Response of the resolvent operator to the full leading resolvent forcing mode φ1 (black) as
well as the response to the two components of the forcing f̂1 (blue) and f̂2 (red). Subsonic modes with
(λx, λz, c) = (5, 0.5, Ū( y+ ≈ 15)) for two compressible boundary layers: (a–e) Ma = 4, Reτ = 400 over an
adiabatic wall (the mode indicated by the (�) in figure 1b) and ( f –j) Ma = 6, Reτ = 450 withΘw/Θad = 0.25.
(a, f ) Streamwise, (b,g) wall-normal and (c,h) spanwise velocities as well as the (d,i) density and (e, j)
temperature.

same comparison is shown for an Reτ = 450 boundary layer with a higher Mach number
of Ma = 6, over a cooled wall with wall-cooling ratio Θw/Θad = 0.25. Here again, we
see that the solenoidal component of the forcing captures a majority of the response.
Therefore, like in the incompressible case, the subsonic resolvent modes are actively
forced only by the solenoidal component of the forcing; and this is true both for flows
over adiabatic and cooled walls.

4. Mach wave radiation from the resolvent operator

We will now focus on the region of the wavenumber space that falls above the Ma(∞) = 1
line in figure 1(b). The amplification in this region is largely due to supersonic resolvent
modes. In this section, the connection between these resolvent modes and the relative
Mach number defined in (3.1) is first established. We will then focus on the contribution
of these modes to the free stream fluctuations of the boundary layer in § 4.1 and the effect
of viscosity on these modes in § 4.2. Thereafter, from § 5 onward, we will concentrate on
the forcing mechanisms that amplify these modes.

These supersonic modes above the Ma(∞) = 1 line are pressure fluctuations that radiate
into the free stream and they occur due to the Mach wave radiation mechanism as explained
by Mack (1984). We will briefly follow the derivation of the Mach wave radiation by Mack
(1984), with the difference of keeping the nonlinear terms as a forcing f , rather than
setting them to zero as done by Mack (1984). This will enable us to later isolate the two
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routes by which the Mach waves can cause high resolvent amplification: (i) the direct route
(§ 5.1) and (ii) the indirect route (§ 5.2).

As done by Mack (1984), let us for simplicity consider the inviscid form of the governing
equations Fourier transformed in (x, y). As in (2.1), the nonlinear terms in the equations
and any external disturbances to the flow are denoted as the unknown forcing f̂ , therefore
giving

iρ̄(kxŪ − ω)ûi = −ρ̄ dŪ
dy
v̂ î − 1

γMa2
∂

∂xi
p̂ + f̂ui, (4.1a)

iρ̄(kxŪ − ω)θ̂ = Θ̄
∂ρ̄

∂y
v̂ − (γ − 1)∇ · u + f̂θ , (4.1b)

iΘ̄(kxŪ − ω)ρ̂ = −Θ̄ ∂ρ̄
∂y
v̂ − ∇ · u + f̂ρ. (4.1c)

Here, u = (u1, u2, u3) = (u, v,w) and we have used ρ̄Θ̄ = 1 to write −ρ̄∂Θ̄/∂y =
Θ̄∂ρ̄/∂y. Pressure fluctuation p̂ can be written using the linearised equation of state as
p̂ = Θ̄ρ̂ + ρ̄θ̂ . Using (4.1b) and (4.1c), and computing ∇ · u from (4.1a), we rewrite this
equation for p̂ as

−∂
2p̂
∂y2 + k2(1 − Ma

2
)p̂ = iγMa2

[
2kxρ̄

dŪ
dy

+ dρ̄
dy
(kxŪ − ω)

]
v̂

− γMa2∇ · f̂u + iMa2ρ̄(kxŪ − ω)
(

f̂θ + f̂ρ
)
. (4.2)

Here, k2 = k2
x + k2

z and f̂u = ( f̂u, f̂v, f̂w). (Please see Mack (1984) for a more complete
derivation.) Note that in (4.2), Ma denotes the free stream Mach number and Ma denotes
the relative Mach number Ma( y) defined in (3.1). Following Mack (1984), let us consider
the unforced equation within the free stream. In this case, the first term on the right-hand
side of (4.2) is zero since the terms within the square brackets are zero in the free
stream. The second and third terms are zero since we are considering the unforced
equations. Therefore, the right-hand side of (4.2) goes to zero. For this equation, when
Ma( y) > 1, we obtain a wave equation with solutions of the form

p̂M = iγMa2
(

kxŪ − ω

k

)
exp

(
−k

(
1 − Ma

2
)1/2

y
)
. (4.3)

These are the Mach waves of the flow derived by Mack (1984) as solutions of the inviscid
unforced free stream equations when Ma(∞) > 1. From (4.3), we get both upstream
and downstream inclining waves, but only the downstream inclining waves satisfy the
boundary conditions and therefore become valid solutions (Mack 1984).

Going back to figure 1(b), the supersonic resolvent modes are amplified only when
Ma(∞) � 1 suggesting that these resolvent modes are Mach waves (Bae et al. 2020b).
To show that this is indeed the case, let us compare resolvent modes with (4.3). We pick
the (λx, λy) marked by a square (�) in figure 1(b) and the pressure (ψ1)p from the leading
resolvent mode of this structure is computed using the density (ψ1)ρ and the temperature
(ψ1)θ components as (ψ1)p = Θ̄(ψ1)ρ + ρ̄(ψ1)θ . The real part of (ψ1)p is shown as the
red solid line in figure 5(a). In the same figure, the real part of the Mach wave obtained
using (4.3) is also shown in black (the amplitude and phase of the Mach wave is fixed to
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Figure 5. Leading resolvent response for the mode indicated by the square (�) in figure 1(b). The mode
corresponds to λx = 5, λz = 3.5 and c = Ū( y+ ≈ 15) for a compressible boundary layer with Ma = 4 and
Reτ = 400 over an adiabatic wall. (a) Wall-normal profile of the real part of the pressure from the resolvent
mode (red) compared with the pressure fluctuations from the inviscid Mach wave (black dashed) given by
(4.3). (b) Pressure fluctuations in an x–y plane with red (positive) and blue (negative) contours showing the
real part of the pressure fluctuation from the resolvent mode and the black contour lines indicating the pressure
fluctuations from the inviscid Mach wave at ±0.5 of the maximum. (c) Wall-normal profile of the streamwise
(blue), wall-normal (green) and spanwise (orange) velocities, as well as the density (purple) and temperature
(brown). The grey shaded regions indicate the boundary layer thickness.

be the same as the resolvent mode at some arbitrary wall height, here y = 5). To further
compare, figure 5(b) shows the negative (blue) and the positive (red) pressure fluctuations
from the resolvent mode (ψ1)p in a streamwise wall-normal (x–y) plane at a fixed spanwise
location (here z = 0). The black line-contours represent the Mach wave from (4.3) (the
contours represent ±0.5 of the maximum value). From these figures, first we observe
that, far from the wall, these resolvent modes are outgoing waves that radiate into the
free stream. Additionally, we also note that, within the free stream, the resolvent modes
closely follow the behaviour of the inviscid Mach wave. This further suggests that the
Mach waves are responsible for the high resolvent amplification in the wavenumber region
where the free stream relative Mach number is greater than 1, i.e. Ma(∞) � 1. For the sake
of completeness, the velocity, density and temperature components of this mode are also
shown in figure 5(c), and we see that these components also oscillate in the free stream.

So far, Ma( y) ≥ 1 just provides a condition for which we get modes that radiate into the
free stream. The mechanism by which these modes cause high resolvent amplification is
not obvious, and this will be discussed in § 5. Before that, we will briefly consider: (i) the
contribution of these modes to the free stream disturbances of the boundary layer in § 4.1
and (ii) the impact of viscosity on these resolvent modes in § 4.2.

4.1. Contribution to the boundary layer and free stream
A crucial detail about these Mach waves is that, within the wavelength range considered
here, these resolvent Mach waves are the the only modes that contribute to the response
in the free stream. To illustrate this, in figure 6, the response to the masked resolvent is
considered. The masking is done by introducing a weighting to the resolvent operator, as
done by Nogueira et al. (2020) (see § 2.2). To obtain figure 6(a), the resolvent is masked
such that it gives a response only within the boundary layer, i.e. in the region y � δ99,
and for figure 6(b), the response is restricted to the free stream, i.e. y > δ99. First, from
figure 6(a), we observe that the subsonic modes lie within the boundary layer, consistent
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Figure 6. Masking of the resolvent operator to give a response (a) within the boundary layer (i.e. y � d99) and
(b) within the free stream (i.e. y > d99), separately. The leading resolvent gain σ1 from the masked operators
is shown as a function of the streamwise and spanwise wavelengths λx and λz and for a fixed phase speed
c = Ū( y+ ≈ 15). The dashed black line represents the relative Mach equal to unity line.

with the observations in § 3. The contribution to the free stream in figure 6(b) then comes
solely from the Mach wave resolvent modes. Therefore, the resolvent Mach waves are the
only contributors to the free stream fluctuations from the resolvent, at least within the
wavenumber space considered here.

4.2. Effect of viscosity on resolvent Mach wave amplification
From figure 1(b), we see that the most linearly amplified supersonic modes are those
that lie close to the Ma(∞) = 1 line, and here we explore why this is the case. For the
flows considered here, the maximum Ma( y) for the modes at the Ma(∞) = 1 line is 1 at
y = δ99. Therefore, these modes have Ma( y) < 1 within the boundary layer, i.e. Ma( y <
δ99) < 1. Mach waves only start radiating from the wall height where Ma( y) � 1. Hence,
these modes near the Ma(∞) = 1 line only start radiating at or near y = δ99, and they
therefore do not have a presence within the boundary layer. These modes then exist in
a region of the flow where the effect of viscosity is negligible. In contrast, supersonic
modes that have Ma(∞) > 1, i.e. fall much above the Ma(∞) = 1 line, start radiating
from within the boundary layer. These modes therefore experience the dampening effects
of viscosity. This difference could explain why the most amplified supersonic modes lie
close to the Ma(∞) = 1 line.

To illustrate this, in figure 7, we compare the responses from the regular resolvent
operator (black solid line) to fictional resolvent operators with viscosity artificially
decreased to 1/10 (red dash-dotted line) and 1/100 (blue dash-dotted line) times the
original value (note that these operators are not physical and are used here only for
illustrative purposes). We saw in § 4.1 that only the Mach waves contribute to the free
stream response from the resolvent. Therefore, to focus solely on the Mach waves, here,
we ‘mask’ the resolvent such that the response from the resolvent is restricted to lie only
in the free stream (see § 2.2). The vertical black dashed line represents Ma(∞) = 1 and
we are only interested in the region to the right of this line. First, let us address the jagged
response from the regular resolvent. Although mathematically we can have Mach waves at
a continuous range of temporal frequencies (4.3), because of our discretised operators, we
only resolve a discrete set of these frequencies in our linear operator. The jagged response
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Figure 7. Leading resolvent amplification for modes with λx = 1 and c ≈ Ū( y+ = 15) as a function of λz.
The solid line is obtained from the regular resolvent operator masked to give a response only within the free
stream. The dashed lines are obtained from the fictional resolvent operators with viscosity artificially decreased
to 1/10 (red line) and 1/100 (blue line) times the original value. The inset represents a zoomed-in version of
the boxed region in the plot. The dashed line represents Ma(∞) = 1.

therefore comes about because of the proximity (or remoteness) of the selected ω to the
nearest resolved frequency in the linear operator (Bae et al. 2020b).

From this figure, we see that the amplification of the mode at the Ma(∞) = 1 line
(see inset of the figure which zooms in on this mode) is not significantly affected by
the reduction in viscosity. However, when Ma(∞) > 1, reducing the dampening effect
of viscosity results in more amplified modes. This suggests that the negligible effect
of viscosity on the supersonic modes that lie at or close to the Ma(∞) = 1 line is the
reason why these modes are the most linearly amplified. These observations also suggests
that, if in the future, the linearised equations augmented with an eddy-viscosity profile
is used to study these free stream fluctuations (e.g. Del Álamo & Jiménez 2006; Pujals
et al. 2009; Hwang & Cossu 2010), the amplification of modes with Ma(∞) > 1 could
potentially be impacted, although their mode shapes within the free stream will likely not
be affected (since eddy viscosity in the free stream will be zero). However, analysing the
eddy viscosity based operator is beyond the scope of the current manuscript and is left for
the future.

5. Two routes of forcing resolvent Mach wave radiation

The Ma( y) ≥ 1 just provides a condition for which we get modes that radiate into the
free stream. The mechanism by which these modes cause high resolvent amplification
is not obvious. There are two routes, (i) direct and (ii) indirect, through which these
Mach waves can cause high resolvent amplification, and here we will consider these
two routes separately. In this section, two different supersonic resolvent modes from an
Ma = 4, Reτ ≈ 400 turbulent boundary layer over an adiabatic wall are taken as examples:
(i) ‘MW1 (Mach wave 1)’ with λy = 3.5 in § 5.1 (the square � in figure 1b) and (ii) ‘MW2’
with λy = 10 in § 5.2 (the circle (•) in figure 1b). Both the modes have the same λx = 5
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and c ≈ U( y+ = 15). MW1 is chosen such that it falls close to the Ma(∞) = 1 line, while
MW2 is taken such that it lies further away from the Ma(∞) = 1 line. This choice has two
significant consequences. First, modes that lie close to the Ma(∞) = 1 line have higher
amplifications relative to other supersonic modes (see figure 1b and § 4.2). Therefore,
MW1 has a higher resolvent amplification when compared with MW2. Second, the Mach
wave radiates only when Ma( y) � 1. For MW1, the free stream relative Mach number
Ma(∞) (i.e. the maximum value of Ma( y)) is close to 1 and, therefore, the mode starts
radiating from near y = δ99 (see § 4.2). However, MW2 has Ma(∞) greater than 1 and,
therefore, the mode starts radiating from well within the boundary layer (see § 4.2). We
will see that this difference impacts the forcing mechanisms active for these modes. In this
section: (1) the ‘direct route’ of forcing the Mach waves will be discussed in § 5.1 using
MW1 and (2) the ‘indirect route’ in § 5.2 using MW2. In § 6, we will look at the relative
contributions of these two forcing routes across (λx, λy, c).

5.1. Direct route of forcing resolvent Mach wave radiation
To probe the direct forcing route, consider the equations for the Mach waves (4.2) in the
free stream. Consider the inverse of the resolvent operator L = H−1, where Lq̂ = f̂ , (2.5).
The SVD of this operator gives L = ∑5N

i=1 φ
′
iσ

′
iψ

′
i. For the inviscid case, solutions from

(4.3) p̂M( y) are solutions of L. Another way of saying this is that a singular vector of L,
with a corresponding singular value of σ ′

i = 0, has pressure equal to p̂M( y).
For the case of finite Reynolds numbers considered here, viscosity will damp these

modes. Therefore, singular vectors with pressure p̂M( y) will have singular values σ ′
i close

to 0, but not 0. Let us now consider the SVD of the resolvent operator H in terms of the
SVD of L = H−1. This gives H = ∑5N

i=1 ψ
′
i(1/σ

′
i )φ

′
i. There is 1/σ ′

i that appears in the
SVD of H . Therefore, singular vectors of L with pressure p̂M( y), which have σ ′

i close to
0, will now appear as highly amplified singular vectors of H . This is how the Mach waves
p̂M( y) cause high resolvent amplification. Note that this mechanism can amplify (λx, λy)
modes that are linearly stable. In figure 1(b), the green contour lines show the region of
the (λx, λy) space that is linearly unstable and we observe that there are supersonic modes
outside of this region, i.e. that are linearly stable, but still have high resolvent amplification.

From (4.2), we see that, within the free stream, the pressure cannot be forced by v̂
(since all the terms within the square brackets are zero in the free stream). Therefore, only
∇ · f̂u, f̂θ or f̂ρ can excite the waves. Now consider the Helmholtz decomposition of f̂u
that gives the solenoidal f̂ s

u and dilatational f̂ d
u components. Since, by the definition of the

Helmholtz decomposition, ∇ · f̂ s
u = 0, only the dilatational component f̂ d

u can force these
modes. To excite the Mach waves in the free stream, we therefore need a forcing in f̂ d

u , f̂θ
or f̂ρ .

To illustrate this, in figures 8(a)–8(e), we consider the supersonic mode MW1 (modes
MW1 and MW2 are defined at the beginning of § 5). The five components of the full
leading resolvent response ψ1 are shown in black (suboptimal modes are considered
in Appendix A). The forcing f̂ to this resolvent mode is the leading resolvent forcing
mode φ1. In red is the response to f̂ d

u , f̂ρ and f̂θ , i.e. the forcing to the resolvent is
f̂2 = ( f̂ d

u , f̂ d
v , f̂ d

w, f̂ρ, f̂θ ). In blue is the response to the remaining components of the forcing
f̂ s
u , i.e. the resolvent forcing is f̂1 = ( f̂ s

u , f̂ s
v , f̂ s

w, 0, 0). From figures 8(a)–8(e), we see that f̂2
is responsible for capturing the majority of the energy, and f̂1 plays an insignificant role for
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Figure 8. Response of the resolvent operator to the full leading resolvent forcing mode f̂ = φ1 (black) as
well as the response to the two components of the forcing f̂1 (blue) and f̂2 (red). Further, the contribution
of f̂ d

u alone is shown in a lighter shade of green and that of (fρ ,fθ ) is shown in a darker shade of green.
Two compressible boundary layers are considered: (a–e) Ma = 4, Reτ = 400 over an adiabatic wall and ( f –j)
Ma = 6, Reτ = 450 with Θw/Θad = 0.25. Modes that fall close to the relative Mach equal to unity lines
are shown: mode (λx, λz, c) = (5, 3.5, Ū( y+ ≈ 15)) for the Ma = 4 case (the mode indicated by the square
(�) in figure 1b) and mode (λx, λz, c) = (5, 1.6, Ū( y+ ≈ 15)) for the Ma = 6 case. (a, f ) Streamwise, (b,g)
wall-normal and (c,h) spanwise velocities as well as the (d,i) density and (e, j) temperature.

these modes. (The reason for why the contribution of f̂1 in figures 8a–8e, although small,
is still non-zero, is explained in § 5.2.) Further, the contribution of f̂ d

u alone is shown in a
lighter shade of green and that of (fρ, fθ ) is shown in a darker shade of green. For the mode
MW1, we note that both these components contribute almost equally to the response.

To access the more general applicability of the discussions here, in figures 8(f )–8(j), we
also look at a supersonic mode for an Reτ = 450 boundary layer flow at a higher Mach
number of Ma = 6 and over a cooled wall with Θw/Θad = 0.25. Here again, we choose a
mode that falls close to the relative Mach equal to unity line which for c ≈ U( y+ = 15)
and λx = 5 corresponds to λz = 1.6. We observe similar trends as in figures 8(a)–8(e),
where f̂2 amplifies the mode. Therefore, wall cooling does not affect the trends discussed
here.

5.2. Indirect route of forcing resolvent Mach wave radiation

So far, we considered mode MW1 and found that mainly the forcing components f̂ d
u , f̂θ or

f̂ρ excite the mode. Let us now consider mode MW2 where this is not the case. Figure 9
is the equivalent of figures 8(a)–8(e), but for mode MW2. The five components of the full
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Figure 9. Response of the resolvent operator to the full leading resolvent forcing mode f̂ = φ1 (black) as well
as the response to the two components of the forcing f̂1 (blue) and f̂2 (red). Further, the contribution of f̂ d

u alone
is shown in a lighter shade of green and that of (fρ, fθ ) is shown in a darker shade of green. A supersonic mode
with (λx, λz, c) = (5, 10, Ū( y+ ≈ 15)) for a compressible boundary layer over an adiabatic wall with Ma = 4,
Reτ = 400 is considered (the mode indicated by the circle (•) in figure 1b). (a) Streamwise, (b) wall-normal
and (c) spanwise velocities as well as the (d) density and (e) temperature.

leading resolvent mode of MW2 is shown in black, along with the response to f̂1 in blue
and f̂2 in red (the definitions of f̂1 and f̂2 are the same as in § 5.1). Unlike for MW1, for
MW2, we find that f̂1 (blue line), and therefore the solenoidal component of the forcing to
the momentum equations, f̂ s

u , plays a significant role in capturing the mode. The question
then is, why does f̂ s

u excite MW2, but not MW1?
To understand this, first, from (4.2), we note that wall-normal velocity v̂ can excite

the resolvent Mach waves. Second, from figure 1(b), we note that both MW1 and
MW2 lie within the grey contour line, which represents the region where incompressible
mechanisms are reasonably active. Therefore, a possible route through which f̂ s

u can excite
Mach waves is as follows: incompressible-like mechanisms cause f̂ s

u to excite a response
in v̂, which in turn excites the Mach waves. Here, we will call this the indirect route of
forcing the Mach waves. However, this mechanism still does not explain the differences
between the trends in the forcing to MW1 and MW2, specifically, why the indirect route
is prominent for MW2 and not for MW1.

To probe this, in figure 10(a), we consider MW1 and in figure 10(b) we consider MW2.
Two separate profiles are plotted in these figures. The first profile, p̂M( y), is obtained from
the analytic expression for the Mach wave radiation (4.3), and indicates the wall-normal
region where these Mach waves exist. The red dashed line represents the wall height
above which the relative Mach number Ma( y) � 1 and, therefore, p̂M( y) starts radiating
only from this wall height. To compute the second profile, (ψ in

1 )v( y), we consider a
fictional incompressible resolvent operator H in (i.e. the resolvent operator at Ma = 0),
but with the mean velocity profile Ū from the compressible case. In effect, H in captures
the mechanisms that would hypothetically be active in an Ma = 0 flow that maintains
the compressible mean velocity profile (H in is not physically relevant and is used here
only for illustration). In other words, H in should be able to approximately capture the
incompressible mechanisms in this flow. The profile (ψ in

1 )v( y) is the wall-normal velocity
component of the leading resolvent mode obtained from H in. Finally, the red shaded region
represents the overlap between p̂M( y) and (ψ in

1 )v( y) (in this region, Ma( y) � 1 and,
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Figure 10. Analytical Mach wave p̂M( y) in (4.2) and (ψ in
1 )v( y) the wall-normal velocity obtained from the

incompressible resolvent with the compressible mean H in for the modes (a) MW1 and (b) MW2. The grey
shaded region represents the region within the boundary layer. The red shaded region represents the overlap
between p̂M( y) and (ψ in

1 )v( y), where Ma( y) � 1 and therefore p̂M( y) exists, and (ψ in
1 )v( y) is at least 10 % of

its maximum value.

therefore, p̂M( y) exists, and (ψ in
1 )v( y) is at least 10 % of its maximum value). We see

that, since MW2 starts radiating from well within the boundary layer, this region of
overlap is significantly higher for the mode. The v̂ generated through incompressible-like
mechanisms forced by f̂ s

u can therefore much more efficiently drive the Mach waves in
MW2, in comparison with MW1. This provides a possible explanation for why f̂ s

u plays
a significant role in exciting MW2. The relatively small overlap observed in the case of
MW1 also explains why the solenoidal component gives a small but non-zero response
(blue line) in figures 8(a)–8(e).

From this, we see that there are two factors that are responsible for this indirect forcing.
(1) The modes should have active incompressible-like mechanisms. This is true for both
MW1 and MW2, and can be measured by the leading singular value of H in, σ in

1 (λx, λy, c).
(2) There should be an overlap between p̂M( y) and (ψ in

1 )v( y). This is more significant for
MW2 and can be measured using a projection of (ψ in

1 )v onto p̂M( y) defined as

η(λx, λy, c) =

(∫ yf

0
p̂M( y)(ψ in

1 )
∗
v( y)

)2

∫ yf

0
p̂M( y)p̂∗

M( y)
∫ yf

0
(ψ in

1 )v( y)(ψ in
1 )

∗
v( y)

. (5.1)

Therefore, if this mechanism is indeed responsible for amplification, then the mode should
have a higher value of (σ in

1 )
2η. The wall height yf is the height until which we force the

resolvent and here, yf = 3 (see § 2.4). The value of (σ in
1 )

2η is approximately 102 for MW1
and 202 for MW2, showing that the indirect route is more active for MW2 (although
computing this number shows that this route is not completely absent for MW1, but just
less significant). We will use this metric (σ in

1 )
2η in § 6.

6. Contribution of the direct and indirect forcing mechanisms

So far, we have considered a decomposition of the forcing to the resolvent into two
components: (1) f̂1 = ( f̂ s

u , f̂ s
v , f̂ s

w, 0, 0), which contains the solenoidal component of the
forcing to the momentum equations; and (2) f̂2 = ( f̂ d

u , f̂ d
v , f̂ d

w, f̂ρ, f̂θ ), which contains the
dilatational component of the forcing to the momentum equations as well as the forcing to
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Figure 11. Chu norm of the response of the resolvent operator to (a,d) the full leading resolvent forcing mode
φ1 as well as the two components of the forcing (b,e) f̂1 and (c, f ) f̂2 in two ways: (a–c) as a function of
the streamwise and spanwise wavelengths (λx, λz) at a fixed phase speed c = Ū( y+ ≈ 15) and (d–f ) as a
function of phase speeds and spanwise wavelengths (c, λz) at a fixed streamwise wavelength λx = 5. The
vertical dash-dotted line in panel (a) indicates λx = 5 and in panel (d), indicates c = Ū( y+ ≈ 15). The solid
black contours in panel (b) indicate −1 : 1 : 2 contours of log10((σ

in
1 )

2η). The dashed black contour lines
indicate the relative Mach equal to unity.

the density and temperature equations. Subsonic modes are forced by f̂1. However, there
are two routes through which the supersonic modes can be forced: the direct route, where
f̂2 is active, and the indirect route, where f̂1 plays a significant role. So far, we have only
looked at individual (λx, λy, c) modes and the purpose of this section is to analyse the
relative importance of f̂1 and f̂2 over a range of (λx, λy, c).

In figure 11, for the case of a turbulent boundary layer at Ma = 4 and Reτ = 400, the
full resolvent response in figure 11(a,d) is compared with responses to f̂1 in figure 11(b,e)
and f̂2 in figure 11(c, f ). Figure 11(a–c) shows the responses as a function of (λx, λz) at
a fixed phase speed of c = U( y+ ≈ 15). To consider a range of c, figure 11(d–f ) shows
the responses as a function of c and λz, at a fixed value of λx = 5. (The values of c in
figures 11(d)–11(f ) are taken only until 0.75, since the amplification of the subsonic streaks
with c > 0.75 is too high to be clearly depicted along with the lesser amplified supersonic
modes.) The black contour lines represent −1 : 1 : 2 contours of log10((σ

in
1 )

2η) which, as
seen in § 5.2, indicate the region where (i) incompressible-like mechanisms are active and
(ii) (ψ in

1 )v projects onto p̂M( y) (see § 5.2). The black dashed lines in the figures (or curves
in the case of figure 11d–f ) indicates relative Mach number equal to unity Ma(∞) = 1.
Note that the colour scales in this figure are logarithmic.

From figures 11(b) and 11(e), we observe that f̂1 captures the responses in the subsonic
modes, i.e. the responses in the region below the Ma(∞) = 1 line. Figures 11(c) and
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Figure 12. For a turbulent boundary layer with Ma = 6, Reτ = 450 and Θw/Θad = 0.25, the Chu norm of
the response of the resolvent operator to (a) the full leading resolvent forcing mode φ1 as well as the two
components of the forcing (b) f̂1 and (c) f̂2 as a function of the streamwise (λx) and spanwise (λz) wavelengths
for a fixed value of phase speed c = Ū( y+ ≈ 15). The dashed lines indicate the relative Mach number equal to
unity.

11(f ) show that f̂2 captures the majority of the response in the supersonic modes,
i.e. the responses in the region above the Ma(∞) = 1 line. This is especially true when
considering the most amplified supersonic modes that are near the Ma(∞) = 1 line,
consistent with observations in § 5. Also in line with § 5, from figures 11(b) and 11(e), we
note that there is a small set of supersonic modes where the contribution of f̂1 is not zero.
The black contour lines in figure 11(b) follow the trends of these modes, which suggests
that an incompressible-like mechanism is active, and this mechanism can force the Mach
waves. Therefore, the indirect route of forcing (§ 5.2) is active for these modes.

In figure 12, we consider an Ma = 6, Reτ = 450 turbulent boundary layer over a cooled
wall with wall-cooling ratio Θw/Θad = 0.25, with figures 12(a), 12(b) and 12(c) showing
responses to the full forcing, to f̂1 and to f̂2, respectively. We observe that the same trends
as observed for the Ma = 4 boundary layer is valid here, indicating that wall cooling
does not impact the trends discussed. These discussions are also equally valid for laminar
compressible boundary layers, and Appendix C briefly discusses this case. Another point
to note is that we have so far only discussed the most amplified first resolvent mode, and
Appendix A contains a brief discussion on the effect of the different components of the
forcing on the sub-optimal resolvent modes.

From these observations, we see that within the majority of the wavenumber space
above the Ma(∞) = 1 line, the contribution of f̂2 is orders of magnitude higher than the
contribution of f̂1 (given that the colour scale is logarithmic). This is especially true for the
most amplified resolvent modes that lie close to the Ma(∞) = 1 line. However, this does
not mean that the contribution of f̂1 is not significant for supersonic modes. In the next
section, we will discuss a comparison with DNS, where f̂1 can be seen to play a dominant
role in exciting the supersonic modes of the flow.

7. Resolvent Mach waves and Mach waves from DNS: a discussion

In this section, we will discuss the resolvent Mach waves alongside trends of these
waves that are known from DNS (e.g. Duan et al. 2014, 2016; Zhang et al. 2017). The
turbulence within the boundary layer forces Mach wave radiation. DNS studies show that
with increasing Ma, the free stream inclination angles of these Mach waves decrease and
their propagation velocities increase (Duan et al. 2016). However, increasing wall cooling
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Figure 13. Response of the masked resolvent; the response is masked to lie solely within the free stream and
the forcing to lie within y+ < 30. The Chu norm of the response of the resolvent operator to (a) the full leading
resolvent forcing mode φ1 as well as the two components of the forcing (b) f̂1 and (c) f̂2 as a function of the
streamwise (λx) and spanwise (λz) wavelengths for a fixed value of phase speed c ≈ Ū( y+ = 15). The Ma = 4,
Reτ = 400 turbulent boundary layer over an adiabatic wall is considered. The dashed black line indicates the
relative Mach number equal to unity line.

does not seem to impact propagation speeds of the waves, but the inclination angles
are reported to be slightly steeper (Zhang et al. 2017). Crucially, these studies employed
acoustic analogy based arguments, and identified the sources of these waves to lie within
the buffer layer of the flow.

To analyse these Mach waves that are radiated by the buffer layer, we have to move away
from using resolvent analysis over the entire wall-normal domain, as has been done in
previous works (e.g. Bugeat et al. 2019; Bae et al. 2020b). We will instead use the ‘masked
resolvent’, where the forcing and the response to the resolvent is masked, i.e. restricted to
lie in particular wall-normal regions of the flow. First, considering the response, Mach
wave responses alone are of interest here and we have observed that these Mach waves
are the sole contributors to the free stream resolvent response (see § 4.1). Therefore, the
resolvent response can be masked such that it lies within the free stream alone. Next,
considering the forcing, DNS studies have shown that the sources to these waves lie within
the buffer layer of the flow (e.g. Duan et al. 2014, 2016; Zhang et al. 2017). Therefore, the
resolvent forcing can be masked such that it is localised within the buffer layer. So we are
here considering the resolvent operator such that its forcing can only lie within y+ < 30
and the response within y > δ99. The weighting function introduced by Nogueira et al.
(2020) is used to mask the resolvent (see § 2.2).

Figure 13 shows the response to such a masked resolvent, with figures 13(a), 13(b)
and 13(c) showing the response to the full forcing, to f̂1 and to f̂2, respectively. Here,
c = Ū( y+ ≈ 15) is taken from within the buffer layer. Comparing figure 13(a) with
figure 11(b), the response of the masked resolvent is concentrated in the region where
we found that the indirect route of forcing is significant. Additionally, from figures 13(b)
and 13(c), we see that f̂1 captures almost all of the response. Therefore, based on the
discussions in § 6, we can postulate that the indirect route of forcing amplifies these modes.
Purely from a resolvent perspective, we can therefore hypothesise that the Mach wave
radiation due to the turbulence within the buffer layer of the boundary layer is generated
due to the indirect route of forcing as described in § 5.2.

Presuming the accuracy of this hypothesis, both the indirect route of Mach wave forcing
and the subsonic modes are forced by the solenoidal component of the forcing. This could
potentially reduce the problem of modelling the full high-rank nonlinear forcing in these

1003 A31-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1171


Resolvent-based perspective on the generation of Mach waves

flows to the simpler problem of modelling only the lower-rank solenoidal component of
the forcing.

7.1. Inclination angle of the supersonic resolvent modes
DNS studies have investigated the free stream inclination angles of the Mach wave
radiation generated from the boundary layer (e.g. Duan et al. 2014; Zhang et al. 2017).
Although DNS datasets show some degree of variability in the free stream inclination
angles observed, these studies consistently emphasise the existence of a statistically
dominant angle. When considering the Mach waves from the resolvent model, we can use
the fact that these waves are pressure oscillations of the form given by (4.3) and compute
the free stream inclination angle of these Mach waves as

∠FS = tan−1

⎛
⎝ −1j√

1 + (λx/λz)2 − Ma2(1 − c)2

⎞
⎠ . (7.1)

At a fixed Mach number, we see that the inclination angle depends on the aspect ratio
λx/λz and the phase speed c of the mode. From the resolvent, we therefore have a range
of inclination angles. The mechanism that picks out the statistically dominant inclination
angles found in DNS is still not clear. To probe into this mechanism, in the future, there
is a requirement of comparing DNS data with the resolvent model. More specifically,
constructing a resolvent-based low-order model of the free stream radiations using DNS
data from the buffer layer alone will potentially elucidate the mechanism that is responsible
for the selection of a predominant angle in DNS studies. This detailed comparison with
DNS, however, is beyond the scope of the current manuscript, and is left as an important
future direction of work.

Although we cannot do a one-to-one comparison with DNS, we can still compare some
of the trends observed in DNS with that from the resolvent model. For this, in figure 14,
the solid lines show the inclination angles of the resolvent free stream radiation computed
from (7.1) as a function of Mach number for a range of aspect ratios and phase speeds. The
phase speed increases in the direction of the arrow in figure 14 and, for each phase speed,
lighter coloured lines represent larger aspect ratios. First, we observe that phase speeds
have a more prominent impact on the free stream inclination angles, when compared with
aspect ratios. Second, from (7.1), we observe that wall cooling does not have a direct
impact on the inclination angles of the structures. It only has an indirect effect through a
control on the values of c that can be admitted for these waves (through the differences
in mean profiles due to wall cooling). Finally, we note that, in general, the inclination
angles obtained from the model decrease with increasing Mach number, and this trend is
consistent with DNS (Duan et al. 2014).

The markers show the values of the average free stream inclination angles that are
obtained from DNS (Duan et al. 2014; Zhang et al. 2017) from an Ma = 2.5 flow over an
adiabatic wall, and an Ma = 6 flow with two wall-cooling ratios of Θw/Θad = 0.76 and
0.25 (indicated by the two markers at Ma = 6). The intervals plotted show the range of
inclination angles predicted by the resolvent under two assumptions: (1) the phase speed
lies within the buffer layer Ū( y+ ≈ 10) � c � Ū( y+ ≈ 20) and (2) the aspect ratio is
zero, since from figure 13, the most amplified resolvent modes that can be forced from
the buffer layer tend to have large λz (also see Bugeat et al. 2019). It could be argued that
when the effect of wall cooling is not significant (green and blue markers), the average
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Figure 14. Inclination angle of the inviscid Mach waves given by (7.1) with respect to Mach number for a
range of aspect ratios and phase speeds. Three different phase speeds of c = 0.3, 0.5 and 0.7 increasing in
the direction of the arrow and three different values of aspect ratios λx/λz = 0, 0.5 and 1.0 are considered.
The markers indicate the average inclination angles of the Mach waves from DNS reported in the literature
(Duan et al. 2014; Zhang et al. 2017). The DNS data at Ma = 6 are for the case of cooled walls, and the
two markers indicate two different ratios of Θw/Θad = 0.76 (blue) and 0.25 (red). The intervals represent
the range of inclination angles predicted by the resolvent model under two assumptions: (1) kz = 0 and (2)
Ū( y+ = 10) � c � Ū( y+ = 20).

inclination angles obtained from DNS fall roughly within the range of inclination angles
that are observed from the model. However, there are major discrepancies. First, the range
of inclination angles predicted for Ma = 2.5 is too large for any meaningful comparison to
be made. Second, DNS predicts an increase in the inclination angle with increasing wall
cooling, while resolvent predicts the opposite trend, i.e. a decrease in the inclination angle.

These differences could be due to several reasons and some of them are: (1) the
assumption of phase speeds and aspect ratios that we have considered for plotting the
intervals are oversimplified; or (2) the rank-1 resolvent model that we have used here is
not sufficient. However, the most obvious restriction in comparing the inclination angles,
as done here, is the assumption that all (kx, kz, c)modes are forced equally. This cannot be
true, since the dominant turbulent structures within the boundary layer will determine the
extent to which these modes are forced. These turbulent structures can also be impacted by
wall cooling, thereby influencing the dominant angles of these radiations. To address this,
there is again the need to construct resolvent-based low-rank models of the free stream,
and this is an important future direction of work.

8. Mach wave radiation from a streamwise developing boundary layer

The aim of this section is to briefly show that the mechanisms generating the Mach wave
radiations, as discussed here, can be generalised to a streamwise developing boundary
layer. In this case, the mean velocity is a function of the streamwise and wall-normal
directions Ū(x, y). Unlike in the case of the one-dimensional (1-D) boundary layer, for the
growing boundary layer, the wall-normal mean velocity V̄(x, y) is not zero. Without the
simplifying assumptions for the 1-D boundary layer, the inviscid equations for pressure in
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(4.2) will now become

ω2p − 2ωŪi
∂p
∂xi

+ ŪiŪj
∂p

∂xi∂xj
+ Ūi

∂Ūj

∂xi

∂p
∂xj

+ γω
∂Ūj

∂xj
p + γ Ūi

∂Ūj

∂xj

∂p
∂xi

− γ
∂Ūi

∂xj

∂Ūj

∂xi
p − 1

M2
∂Θ̄

∂xj

∂p
∂xj

− Θ̄

M2
∂2p

∂x2
j

= γ

[
2
∂Ūi

∂xj

∂

∂xi
+ ∂2Ūi

∂xi∂xj

]
uj

+
[
ω + Ūi

∂

∂xi

] (
Θ̄fρ + fθ

) − γ
∂fui

∂xi
. (8.1)

Here, (x1, x2, x3) = (x, y, z), (u1, u2, u3) = (u, v,w), (Ū1, Ū2, Ū3) = (Ū, V̄, 0) and
( fu1, fu2, fu3) = ( fx, fy, fz). A Fourier transform is taken in the homogeneous spanwise
direction z. Within the free stream, the left-hand side of (8.1) can be solved using
separation of variables to obtain solutions of the form (Mack 1990)

p(x, y) = A exp(rxx) exp(ryx). (8.2)

Here, A is a constant at (kz, ω), and rx and ry can be obtained by solving the ordinary
differential equations obtained from the separation of variables. These wavenumbers
follow one of these two sets of quadratic equations: (i) c1r2

x − c3rx − l1 = 0 and c2r2
y +

(c5rx − c4)ry + (l1 + c6) = 0 or (ii) c2r2
y − c4ry − l2 = 0 and c1r2

x + (c5ry − c3)rx +
(l2 + c6) = 0. The constants depend on the mean free stream quantities alone as c1 = (1 −
1/M2), c2 = (V̄2∞ − 1/M2), c3 = 2ω, c4 = 2ωV̄∞, c5 = 2V̄∞ and c6 = (ω2 − k2

z /M
2),

where V̄∞ represents the free stream wall-normal velocity normalised by U∞. By varying
the constant l1 (or l2), we can get a family of solutions at a range of (rx, ry). Therefore, for
the streamwise developing boundary layer, we can obtain wave-like solutions within the
free stream, consistent with the observations for the 1-D case in the rest of the manuscript
(Mack 1990).

Now considering the right-hand side of (8.1) and comparing it with the 1-D boundary
layer (4.2), we can obtain similar observations. There are two routes of forcing. First, the
dilatational part of the forcing to the momentum equations f̂ d (obtained through ∂fui/∂xi),
along with the forcing to the continuity fρ and energy fθ equations, can directly force the
pressure waves. This gives the direct route of forcing as in § 5.1. Second, the solenoidal
component of the forcing can generate a response in velocity uj, which in turn can force
the pressure equations within the boundary layer. (Although uj cannot be assumed to be
zero in the free stream, the terms within the square brackets that multiply with uj can be
assumed to be zero in this region.) This gives us the indirect route of forcing as in § 5.2.
Consistent with prior observations from the 1-D case, the indirect route of forcing involves
the mean shear profiles and can therefore be expected to be dominant in the buffer layer
where this mean shear is high.

As done in § 4, to confirm if these conclusions derived from the inviscid solutions do
indeed capture features of the resolvent at a finite Reynolds number, figure 15 shows a 2-D
resolvent mode. To obtain the 2-D resolvent mode, the linearised discrete Navier–Stokes
equations contained in the matrix A in (2.3) are now constructed using the 2-D mean
profiles Ū(x, y) and V̄(x, y) obtained from Duan et al. (2016). The derivatives are now
(∂/∂x, ∂/∂y, ∂/∂z) = (∂/∂x, ∂/∂y, ikz). The boundary conditions in the free stream are
the same as for the 1-D resolvent (see § 2.4). The inlet and outlet boundary conditions are
the non-reflecting Navier–Stokes characteristic boundary conditions (Poinsot & Lele 1992)
with damping sponges to prevent any reflections (Freund 1997). For the 2-D resolvent, at
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Figure 15. Leading resolvent response mode obtained from the 2-D resolvent analysis for spanwise
wavenumber kz = 12.62 and temporal frequency ω = 3.15. (a,d) Full response, with the resolvent masked
such that the response is solely in the free stream. Also shown are the responses to the forcing (b,e) f̂1 and
(c, f ) f̂2. The modes obtained from two different masking for the forcing are shown: (a–c) the forcing lies
throughout the boundary layer and part of the free stream, here until y ≤ 3, and (d–f ) the forcing lies within
the buffer layer, y+ ≤ 30. Note, for clarity, only the free stream and a subset of the streamwise domain used to
compute the resolvent is shown here. The approximate streamwise wavenumber kx and phase speed c obtained
using a Fourier transform of the mode, are also shown. The contour lines in panels (a,d) show the analytical
solution obtained by solving the inviscid pressure equations in the free stream, with red and blue contour lines
representing positive and negative pressure fluctuations, respectively.
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a particular value of (kz, ω), we obtain a range of modes at different kx that includes both
subsonic and supersonic modes. To obtain just the Mach wave radiation that is of interest
here, we will therefore consider the resolvent with the response masked such that it lies
only in the free stream.

Figures 15(a) and 15(d) show the pressure obtained from the 2-D resolvent mode as the
filled contours. Note, for clarity, only the free stream and a subset of the streamwise domain
used to compute the resolvent is shown in the figure. The line contours represent the
solution to the inviscid free stream pressure equation (8.2). The constant for the quadratic
equation l1 (or l2) is fixed such that rx (or ry) matches the streamwise (or wall-normal)
wavenumber of the resolvent mode in the free stream, which is obtained from a Fourier
transform. Here, red and blue represent positive and negative fluctuations, respectively.
An Ma = 5.86, Tw/Tad ≈ 0.76, T∞ = 55 K boundary layer is considered here. A temporal
frequency ω = 3.15 is chosen, since, from DNS, we know that this frequency is energetic
in the free stream (Duan et al. 2016), and a spanwise wavenumber of kz = 12.62 is chosen.
The dash-dotted line represents the Mach angle computed as sin−1 (1/Ma). Unlike in the
1-D resolvent, due to the finite nature of the domain, the forcing is restricted to a finite
streamwise extent and, therefore, the radiation from the resulting response modes will be
restricted by the Mach angle (note, as seen in the figure, the inclination angle of the mode
can be different from this Mach angle). The forcing and response are not masked in the
streamwise direction. Two options for masking the forcing in the wall-normal direction are
used: (i) in figures 15(a)–15(c), the forcing is allowed to lie anywhere within the boundary
layer or part of the free stream, i.e. at y ≤ 3; and (ii) in figures 15(d)–15(f ), the forcing lies
exclusively within the buffer layer of the flow, i.e. y+ � 30. The response to the forcing f̂1
is shown in figures 15(b) and 15(e), and to f̂2 in figures 15(c) and 15(f ).

First, from figures 15(a) and 15(d), we see that the inviscid equations do match the
resolvent modes reasonably well. This shows that, like we observed for the 1-D resolvent,
the 2-D resolvent also admits wave-like solutions in the free stream, which can be
analytically modelled as solutions to the inviscid free stream equations. Second, comparing
figures 15(b) and 15(c), we see that when the forcing is allowed reach to y = 3, f̂2
contributes dominantly to the mode. In other words, in this case, through the direct route,
the dilatational component of the forcing to the momentum equations, and the forcing to
the energy and continuity equations force the mode. However, from figures 15(e) and 15(f ),
we see that this observation is no longer true when the forcing is within the buffer layer
alone. In this case, through the indirect route, the solenoidal component of the forcing to
the momentum equations f̂1 dominates the response.

Therefore, similar to the 1-D resolvent, there are two routes through which the Mach
waves in the 2-D resolvent can be forced: (i) the direct and (ii) the indirect route. The
indirect route likely becomes more important when considering modes forced by the buffer
layer of the flow. This is consistent with the results obtained from the 1-D resolvent, and
therefore shows that, in this case, the conclusions drawn here from the 1-D resolvent
analysis are valid for the trends from the 2-D resolvent. Also consistent with the 1-D
resolvent, by varying kz, we can obtain modes (at a range of kx) with different ratios
of the solenoidal to the dilatational responses (not shown here for brevity). It would be
interesting, in the future, to understand how the pressure radiations obtained in (8.2) may
relate to mechanisms where the spatial modulation of wavepackets leads to radiation (e.g.
Reba, Narayanan & Colonius 2010; Jordan & Colonius 2013). A detailed analysis of the
2-D resolvent is therefore important and is a crucial future direction of work.
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9. Conclusions

We identified the forcing mechanisms that separately amplify the subsonic and the
supersonic modes in a linearised Navier–Stokes equations-based model of compressible
boundary layer flows. The resolvent analysis framework was used for this purpose, where
the nonlinear terms of the linearised momentum (f̂u), continuity (f̂ρ) and temperature (f̂θ )
equations were treated as a forcing to the linearised equations. To identify the separate
forcing mechanisms that are active, we use a Helmholtz decomposition of f̂u that gives
two components: (i) the divergence-free solenoidal component f̂ s

u and (ii) the curl-free
dilatational component f̂ d

u .
First, considering the subsonic modes, these are structures localised within the boundary

layer and are similar to structures in the incompressible flow (figures 2 and figure 6).
The velocity fluctuations of these structures are divergence-free (figure 3). Only the
solenoidal component of the forcing to the momentum equations f̂ s

u can amplify these
modes (figure 11). All the other components of forcing, which includes the dilatational
component f̂ d

u as well as f̂ρ and f̂θ , play a negligible role in amplifying the subsonic modes.
This is consistent with what has been previously observed in the incompressible regime
(e.g. Rosenberg & McKeon 2019). It is interesting that similar trends are here obtained for
compressible flows as well.

Now considering the supersonic modes, i.e. the resolvent Mach waves, these modes are
pressure fluctuations that radiate into the free stream of the boundary layer (figure 5).
These modes contribute to the energy in the free stream of the flow (figures 6). The
most amplified resolvent Mach waves start radiating from the edge of the boundary layer,
where the dampening effect of viscosity is negligible. Importantly, within the free stream,
these resolvent modes closely follow the trends of the inviscid Mach waves (Mack 1984).
We identified two routes through which these modes can be amplified: (i) the ‘direct route’,
where f̂ d

u , f̂ρ and f̂θ directly force these modes; and (ii) the ‘indirect route’, where f̂ s
u

forces a response in wall-normal velocity v̂ through incompressible-like mechanisms and
this v̂ in turn forces the supersonic mode. The direct route of forcing appears dominant
for a majority of the supersonic modes considered. However, the indirect route plays
the dominant role for Mach waves that are forced by the buffer layer of the flow. This
distinction is crucial since DNS studies have found that the buffer layer of compressible
boundary layers contains the sources that generate the Mach waves found in the free stream
(e.g. Duan et al. 2014). We also show that these observations are more generally true for a
streamwise developing boundary layer as well.

These observations, as well as preliminary discussions regarding the free stream
inclination angles of these resolvent modes, show that, in the future, constructing
resolvent-based low-rank models of free stream disturbances in the real flow is crucial
for further understanding and modelling of these structures. Additionally, considering the
role of the solenoidal component of the forcing in exciting the subsonic modes and the
supersonic modes from the buffer layer, it would be interesting to see how much of the flow
can be modelled by considering this solenoidal component of the forcing alone, instead of
the much higher-rank full forcing.
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Appendix A. Suboptimal modes

So far, we have only considered the leading resolvent mode. For the sake of completeness,
in this section, we will briefly consider the effect that the different forcing components
have on the suboptimal modes while noting that for a more complete understanding of if,
and how many, suboptimal modes should be considered, we will require resolvent-based
reconstructions of DNS data. In figure 16, the first 10 resolvent modes, i.e. those
corresponding to σ1–σ10 in (2.8) are shown. Two (kx, kz) pairs are considered: (i) the
subsonic mode indicated by the diamond (�) in figure 1(b) is shown in figure 16(a) and
(ii) the supersonic mode MW1 indicated by the square (�) in figure 1(b) is shown in
figure 16(b). The Chu norm of the response to the full resolvent forcing is depicted in
black, while the response to f̂1 is shown in blue and to f̂2 is shown in red. (The energy
of the full response is equal to the sum of the energies of the responses to f̂1 and f̂2, and
twice the cross-correlation between these responses. While the energies of the responses
to f̂1 and f̂2 are positive, their cross-correlation can be negative. This is why, for certain
modes such as for the N = 4 mode in figure 16(b), energy of the response to f̂1 or f̂2 is
higher than the full response in black.)

Considering the response of the subsonic mode in figure 16(a), we find that the first
three modes are captured by the solenoidal component of the forcing (the red dots are
not visible for N = 1, 2 since they fall below the range of the y-axis shown in the figure).
When considering the supersonic mode, we find that the second resolvent mode is captured
by the solenoidal component of the forcing. This brings us back to the observation that
MW1 exists in a region of the wavenumber space where both incompressible-like and
purely compressible mechanisms coexist, and also that incompressible-like mechanisms
can excite compressible modes. The compressible mechanisms forced by the direct route
are most active for the mode considered here, and therefore appears as the first resolvent
mode. For the current work, we leave the discussion of the suboptimal modes at this point,
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Figure 16. Chu norm of the response of the resolvent operator to the full resolvent forcing mode φi (black) as
well as the two components of the forcing f̂1 (blue) and f̂2 (red) for the first 10 resolvent modes. (a) Subsonic
mode considered in figure 4 and (b) supersonic mode considered in figure 8.
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Figure 17. Real and imaginary parts of the pressure from the leading resolvent response for a supersonic
mode. The mode corresponds to λx = 5, λz = 3.5 and c = Ū( y+ ≈ 15) for a compressible boundary layer
over an adiabatic wall with Ma = 4 and Reτ = 400 (the mode indicated by the square (�) in figure 1(b)).
The modes obtained using three different grids are shown: (i) Case 1, the grid used in this work but without a
damping layer; (ii) Case 2, the grid used in this work with N = 401, ymax = 4δ and ymax = 3l in the subsonic
and supersonic regions, respectively; and (iii) Case 3, with N = 601, ymax = 5δ and ymax = 4l in the subsonic
and supersonic regions, respectively.

while noting that this topic requires further investigation, especially when constructing
resolvent-based low-rank models of the free stream.

Appendix B. Grid convergence

To discretise the equations in (2.1) in the wall-normal direction, we use a
summation-by-parts finite difference scheme with N = 401 grid points. A grid stretching
method is employed to properly resolve the wall-normal direction (Mattsson & Nordström
2004; Kamal et al. 2020) (see § 2.4). This grid stretching introduces spurious numerical
oscillations in the modes obtained. Following Appelö & Colonius (2009), a damping
layer along with an artificial viscosity is used to remedy these spurious oscillations. The
role of this damping layer is to slow down the waves within it and to implement it, we
use the damping layer and artificial viscosity defined by Appelö & Colonius (2009) (for
the damping layer, equation (4) of Appelö & Colonius (2009) with p = 4, q = 4 and
εL = 10−4 is used, and for the artificial viscosity, equation (9) from the reference with
K = [0] and γk = 0.15 is used). It is ensured that at least 20 grid points are included
within the damping layer.

It is important to consider whether the grid stretching and the introduction of the
damping layer impact the conclusions drawn in the current work. To investigate this, in
figure 17, the real and imaginary parts of the pressure obtained from the leading resolvent
response for the supersonic mode λx = 5, λy = 3.5 and c ≈ U( y+ = 15) are shown. Three
grids are considered in figure 17: (i) Case 1 (grey solid line), the same grid as that used
in this work, but without a damping layer; (ii) Case 2 (red solid line), the grid used in this
work with N = 401 and ymax = 4δ for the subsonic modes and ymax = 3l for the supersonic
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Figure 18. Pressure fluctuations obtained from the leading resolvent response for a supersonic mode with
the red and blue contours representing positive and negative pressure fluctuations, respectively. The mode
corresponds to λx = 5, λz = 3.5 and c = Ū( y+ ≈ 15) for a compressible boundary layer over an adiabatic
wall with Ma = 4 and Reτ = 400 (the mode indicated by the square (�) in figure 1b). The strength of the
damping layer used increases from (a) 0.15 to (b) 0.5 and then to (c) 1.5.

101

100

λz

λz

λx λx λx

10–1

101

100

10–1

10–1 100 101 10–1 100 101 10–1 100 101

10–1 100 101 10–1 100 101 10–1 100 101

101

100

10–1

101

100

10–1

101

100

10–1

101

101

102

103

104

101

102

103

104

100

10–1

(e) ( f )

(b)(a)

(d )

(c)

Figure 19. Chu norm of the response of the resolvent operator to (a,d) the full leading resolvent forcing mode
φ1 as well as the two components of the forcing (b,e) f̂1 and (c, f ) f̂2 as a function of the streamwise (λx) and
spanwise (λz) wavelengths for a fixed value of phase speed c = Ū( y+ ≈ 15). The Ma = 4, Reτ = 400 turbulent
boundary layer over an adiabatic wall (that was also considered in figure 11) is shown. (a–c) Responses obtained
using N = 601 grid points and a ymax = 5δ in the subsonic region and ymax = 4l in the supersonic region.
(d–f ) Responses obtained with a grid where the strength of the damping layer is increased to γk = 1.5 (from
the γk = 0.15 used for figure 11). These responses are compared with those shown in figures 11(a)–11(c) to
illustrate the insensitivity of the obtained results to the grid used. The dashed lines in all figures indicate the
relative Mach number equal to unity line.

modes (where l is the wavelength of the Mach waves); and (iii) Case 3 (blue dashed line),
with N = 601 and ymax = 5δ for the subsonic modes and ymax = 4l for the supersonic
modes. The red shaded regions towards the free stream indicate the extent of the damping
layer for Case 2, and the blue shaded region indicates the damping layer for Case 3 (since
the number of points in the damping layer is fixed to be 20, the wall-normal extent of
the damping layer changes with N). To keep the comparison consistent across the three
cases, all the responses are set to zero within the red shaded region and beyond into the
free stream. Considering the grey lines from Case 1, where no damping layer or artificial
viscosity is included, we observe sawtooth oscillations that arise due to the grid stretching.
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Figure 20. Chu norm of the response of the resolvent operator to (a) the full leading resolvent forcing mode
φ1 as well as the two components of the forcing (b) f̂1 and (c) f̂2 as a function of the streamwise (λx) and
spanwise (λz) wavelengths for a fixed value of phase speed c = 0.5. The Ma = 8, Re = 1000 laminar boundary
layer over an adiabatic wall is considered. This figure is equivalent to figure 11 for the case of a laminar flow.
The dashed lines indicate the relative Mach number equal to unity line.

From the modes obtained with damping layers, we note that this damping removes the
sawtooth oscillations. Comparing the responses from Case 2 and Case 3, we notice that
there are small differences between the modes. This is probably expected given that the
extent of the damping layer is different for the two cases. Importantly, these differences do
not impact the conclusions drawn in the current work. To see this, in figures 19(a)–19(c),
we reproduce figures 11(a)–11(c) using a higher number of grid points and a larger ymax.
In other words, the data plotted in figures 19(a)–19(c) are computed using the grid Case 3,
while the data in figures 11(a)–11(c) were computed using the grid Case 2. We see that
there are no significant differences that arise due to an increase in the number of grid
points as well as an increase in the maximum extent of the wall-normal grid.

To investigate the effect of the damping layer a little further, in figure 18, the real part
of the pressure obtained using the grid Case 2 is shown, with the strength of the artificial
viscosity increasing moving from left to right. We notice that there is a beating in the
pressure fluctuations that is made worse as the strength of this artificial viscosity increases.
This is likely due to reflections introduced by the artificial viscosity. This shows that
we should exercise caution when introducing artificial viscosity (removing the artificial
viscosity is not a valid option since it will re-introduce the sawtooth oscillations). However,
the results in the current work are not affected by the strength of the artificial viscosity.
To illustrate this, in figures 19(d)–19(f ), we reproduce figures 11(a)–11(c) with a grid that
uses a stronger artificial viscosity (the strength is determined by the value of γk, which
increases from 0.15 in figures 11(a)–11(c) to 1.5 in figures 19(d)–19(f ). There are no
significant differences introduced by this change in the strength of the damping layer.

The main conclusions drawn in the current work are therefore not significantly impacted
by changes in the grid used.

Appendix C. Laminar boundary layer

We will also briefly consider the case of a laminar compressible boundary layer and
show that the trends discussed here are more generally applicable to compressible
laminar boundary layers as well. The Reynolds number for the laminar case is defined
as Re = U∞l/ν∞, where the reference length scale is defined as l = (xν∞/U∞)1/2.
The mean streamwise velocity Ū and temperature T̄ profiles for the compressible
laminar boundary layers that are required as input to the model are obtained from the
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Mangler–Levy–Lees similarity profiles as done by Malik (1990). In figures 20(a)–20(c),
we reproduce figures 11(a)–11(c) for the case of an Ma = 8 and Re = 1000 laminar
compressible boundary layer. We see that, similar to the case of the turbulent flow, f̂1
and f̂2 approximately capture the subsonic and supersonic regions, separately.
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MOARREF, R., JOVANOVIĆ, M.R., TROPP, J.A., SHARMA, A.S. & MCKEON, B.J. 2014 A low-order
decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26
(5), 051701.

MOARREF, R., SHARMA, A.S., TROPP, J.A. & MCKEON, B.J. 2013 Model-based scaling of the streamwise
energy density in high-Reynolds number turbulent channels. J. Fluid Mech. 734, 275–316.

MORRA, P., NOGUEIRA, P.A.S., CAVALIERI, A.V.G. & HENNINGSON, D.S. 2021 The colour of forcing
statistics in resolvent analyses of turbulent channel flows. J. Fluid Mech. 907, A24.

NOGUEIRA, P.A.S., CAVALIERI, A.V.G., HANIFI, A. & HENNINGSON, D.S. 2020 Resolvent analysis in
unbounded flows: role of free-stream modes. Theor. Comput. Fluid Dyn. 34 (1), 163–176.

NOGUEIRA, P.A.S., MORRA, P., MARTINI, E., CAVALIERI, A.V.G. & HENNINGSON, D.S. 2021 Forcing
statistics in resolvent analysis: application in minimal turbulent Couette flow. J. Fluid Mech. 908, A32.

ÖZGEN, S. & KIRCALI, S.A. 2008 Linear stability analysis in compressible, flat-plate boundary-layers. Theor.
Comput. Fluid Dyn. 22 (1), 1–20.

PAREDES, P., CHOUDHARI, M.M., LI, F. & CHANG, C.-L. 2016 Optimal growth in hypersonic boundary
layers. AIAA J. 54 (10), 3050–3061.

PATE, S.R. 1978 Dominance of radiated aerodynamic noise on boundary-layer transition in supersonic-
hypersonic wind tunnels. Theory and application. Tech. Rep. AEDC-TR-77-107. Arnold Engineering
Development Center Arnold AFB TN.

PATE, S.R. & SCHUELER, C.J. 1969 Radiated aerodynamic noise effects on boundary-layer transition in
supersonic and hypersonic wind tunnels. AIAA J. 7 (3), 450–457.

PHILLIPS, O.M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9 (1),
1–28.

PIROZZOLI, S. & BERNARDINI, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds
number. J. Fluid Mech. 688, 120.

POINSOT, T.J. & LELE, S.K. 1992 Boundary conditions for direct simulations of compressible viscous flows.
J. Comput. Phys. 101 (1), 104–129.

PUJALS, G., GARCÍA-VILLALBA, M., COSSU, C. & DEPARDON, S. 2009 A note on optimal transient growth
in turbulent channel flows. Phys. Fluids 21 (1), 015109.
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