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TOWARD HILBERT–KUNZ DENSITY FUNCTIONS
IN CHARACTERISTIC 0

VIJAYLAXMI TRIVEDI

Abstract. For a pair (R, I), where R is a standard graded domain of dimen-

sion d over an algebraically closed field of characteristic 0, and I is a graded ideal

of finite colength, we prove that the existence of limp→∞ eHK(Rp, Ip) is equiv-

alent, for any fixed m> d− 1, to the existence of limp→∞ `(Rp/I
[pm]
p )/pmd.

This we get as a consequence of Theorem 1.1: as p−→∞, the convergence

of the Hilbert–Kunz (HK) density function f(Rp, Ip) is equivalent to the

convergence of the truncated HK density functions fm(Rp, Ip) (in L∞ norm) of

the mod p reductions (Rp, Ip), for any fixed m> d− 1. In particular, to define

the HK density function f∞R,I in char 0, it is enough to prove the existence

of limp→∞ fm(Rp, Ip), for any fixed m> d− 1. This allows us to prove the

existence of e∞HK(R, I) in many new cases, for example, when Proj R is a Segre

product of curves.
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§1. Introduction

Let R be a Noetherian ring of prime characteristic p > 0 and of dimension

d, and let I ⊆R be an ideal of finite colength. Then, we recall that the

Hilbert–Kunz multiplicity of R with respect to I is defined as

eHK(R, I) = lim
n→∞

`(R/I [pn])

pnd
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TOWARD HILBERT–KUNZ DENSITY FUNCTIONS IN CHARACTERISTIC 0 159

where I [pn] = the nth Frobenius power of I = the ideal generated by

pnth power of elements of I. This is an ideal of finite colength, and

`(R/I [pn]) denotes the length of the R-module R/I [pn]. This invariant was

introduced by E. Kunz and existence of the limit was proved by Monsky (see

Theorem 1.8 in [Mo1]). It carries information about char p related properties

of the ring, but at the same time is difficult to compute (even in the graded

case), as various standard techniques, used for studying multiplicities, are

not applicable for the invariant eHK .

It is natural to ask whether the notion of this invariant can be extended

to the “char 0” case by studying the behavior of mod p reductions.

A natural way to attempt this, for a pair (R, I) (from now onwards,

unless stated otherwise, by a pair (R, I), we mean that R is a standard

graded ring and I ⊂R is a graded ideal of finite colength), could be as

follows. Suppose that R is a finitely generated algebra and a domain over

a field k of characteristic 0, and I ⊆R is an ideal of finite colength. Let

(A, RA, IA) be a spread of the pair (R, I) (see Definition 3.2), where A⊂ k
is a finitely generated algebra over Z. Then, we may define

e∞HK(R, I) := lim
ps→∞

eHK(Rs, Is),

where Rs =RA ⊗A k̄(s) and Is = IA ⊗A k̄(s), with k̄(s) as the algebraic

closure of k(s) with char k(s) = ps, and s is a closed point of Spec(A)

(the definition is tentative, since the existence of this limit is not known

in general). Or consider a simpler situation: R is a finitely generated Z-

algebra and a domain, I ⊂R, such that R/I is an abelian group of finite

rank. Then, let

e∞HK(R, I) := lim
p→∞

eHK(Rp, Ip), where Rp =R⊗Z
Z
pZ

and Ip = I ⊗Z
Z
pZ
.

In case of dimension R= 1, we know that the Hilbert–Kunz multiplicity

coincides with the Hilbert–Samuel multiplicity; hence, it is independent of p,

for large p.

For homogeneous coordinate rings of plane curves with respect to the

maximal graded ideal (in [T1], [Mo3]), nonsingular curves with respect to

a graded ideal I (in [T2]), and diagonal hypersurfaces (in [GM] and [HM]),

it has been shown that eHK(Rp, Ip) varies with p, and the limit exists as

p→∞. Then, there are other cases where eHK(Rp, Ip) is independent of p:
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160 V. TRIVEDI

plane cubics (by [BC], [Mo2] and [P]), certain monomial ideals (by [Br],

[C], [E], [W]), two-dimensional invariant rings for finite group actions (by

[WY2]), and full flag varieties and elliptic curves (by [FT]). Therefore, the

limit exists in all of these cases.

Since

e∞HK(R, I) := lim
p→∞

lim
n→∞

`(Rp/I
[pn]
p )

(pn)d
,

it seems harder to compute as such, as the inner limit

limn→∞ `(Rp/I
[pn]
p )/(pn)d itself does not seem easily computable (even in

the graded case). In the special situation considered by Gessel and Monsky

(see [GM]), the existence of e∞HK is proved by reducing the problem to

the existence of limp→∞ (`(Rp/I
[p]
p )/pd). To make this invariant more

approachable in a general graded case, the following question was posed in

[BLM] (see the introduction).

Question. Supposing that e∞HK(R, I) exists, is it true that for any fixed

n> 1,

e∞HK(R, I) = lim
p→∞

`(Rp/I
[pn]
p )

(pn)d
?

The main result of their paper was to give an affirmative answer in the

case of a two-dimensional standard graded normal domain R with respect

to a homogeneous ideal I of finite colength. Note that the existence of

e∞HK(R, I), in this case, was proved earlier in [T2].

Recall that for a vector bundle V on a smooth (projective and polarized)

variety, we have the well defined Harder–Narasimhan (HN) data, namely

{ri(V ), µi(V )}i, where ri(V ) = rank(Ei/Ei−1), µi(V ) = slope of Ei/Ei−1,

and

0⊂ E1 ⊂ E2 ⊂ · · · ⊂ El ⊂ V

is the HN filtration of V .

Let Xp = Proj Rp, which is a nonsingular projective curve, and let Ip be

generated by homogeneous elements of degrees d1, . . . , dµ; then, we have

the vector bundle Vp on Xp given by the following canonical exact sequence

of OXp-modules:

0−→ Vp −→⊕iOXp(1− di)−→OXp(1)−→ 0.
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Then, by [T2, Proposition 1.16], there is a constant C determined by

genus of Xp and rank Vp (hence independent of p), such that for s> 1,

(1)

∣∣∣∣∣∣
∑
j

rj(F
s∗Vp)µj(F

s∗Vp)
2 −

∑
i

ri(Vp)µi(Vp)
2

∣∣∣∣∣∣6 C/p.
(Here, F is the absolute Frobenius morphism, and F s is the s-fold iterate.)

Note that the HN filtration and hence the HN data of Vp stabilize for p� 0

(see [Mar]).

Thus, here,

(1) one relates `(Rp/I
[ps]
p ) with the HN data of F s∗Vp, for s> 1 (see [B]

and [T1]);

(2) the HN data of F s∗Vp are related to the HN data of Vp (see [T2]);

(3) the restriction of the relative HN filtration of VA on XA (where VA is a

spread of V0 in char 0) remains the HN filtration of Vp for large p (see

[Mar]).

In particular, for a pair (R, I), where char R= p > 0, with the associated

syzygy bundle V (as above), the proof uses the comparison of `(R/I [ps]) with

the HN data of the syzygy bundle V and the other well behaved invariants

of (R, I) (which have well defined notion in all characteristics and are well

behaved vis-a-vis reduction mod p).

However, note that (3) is valid for dimR> 2, and (2) also holds for

dimR> 3 (proved relatively recently in [T3]). However, (1) does not seem to

hold in higher dimension, due to the existence of cohomologies other than

H0(−) and H1(−) (therefore, one cannot use anymore the semistability

property of a vector bundle to compute h0 of almost all of its twists, by

powers of a very ample line bundle).

In this paper, we approach the problem by a completely different

method (see Corollary 2.12), comparing directly (1/(pn)d)`(R/I [pn]) and

(1/(pn+1)d)`(R/I [pn+1]), for n> 1, taking into account that both are graded.

For this, we phrase the problem in a more general setting: by the theory

of the Hilbert–Kunz (HK) density function (which was introduced and

developed in [T4]), for a pair (Rp, Ip), where Rp is a domain of char p > 0,

there exists a sequence of functions {fn(Rp, Ip) : [0,∞)−→ R}n such that

1

(pn)d
`

(
Rp

I
[pn]
p

)
=

∫ ∞
0

fn(Rp, Ip)(x) dx
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and

lim
n→∞

1

(pn)d
`

(
Rp

I
[pn]
p

)
=

∫ ∞
0

fRp,Ip(x) dx,

where the map

fRp,Ip : [0,∞)→ R is given by fRp,Ip(x) = lim
n→∞

fn(Rp, Ip)(x)

is called the HK density function of (Rp, Ip) (the existence and properties

of the limit defining fRp,Ip are proved in [T4]). We show here that, for each

x ∈ [1,∞),

f∞R,I(x) := lim
p→∞

lim
n→∞

fn(Rp, Ip)(x) exists

⇐⇒ lim
p→∞

fm(Rp, Ip)(x) exists,

for any fixed m> d− 1, where d− 1 = dim Proj R. Moreover, if it exists,

then

f∞R,I(x) = lim
p→∞

fm(Rp, Ip)(x), for any m> d− 1.

The main point (Proposition 2.11) is to give a bound on the difference

‖fn(Rp, Ip)− fn+1(Rp, Ip)‖, in terms of a power of p and invariants that are

well behaved under reduction mod p, where ‖g‖ := sup{g(x) | x ∈ [1,∞)} is

the L∞ norm. Since the union of the support of all fn is contained in a

compact interval, a similar bound (Corollary 2.12) holds for the difference

|`(R/I [pn])/(pn)d − `(R/I [pn+1])/(pn+1)d|. More precisely, we prove the fol-

lowing theorem.

Theorem 1.1. Let R be a standard graded domain of dimension d>
2, over an algebraically closed field k of characteristic 0. Let I ⊂R be

a homogeneous ideal of finite colength. Let (A, RA, IA) be a spread (see

Definition 3.2 and Notations 3.3). Then, for a closed point s ∈ Spec(A), let

the function fn(Rs, Is)(x) : [1,∞)−→ [0,∞) be given by

fn(Rs, Is)(x) =
1

qd−1
`

(
Rs

I
[q]
s

)
bxqc

,

where q = pns , for ps = char k(s), and byc denotes the largest integer 6y and

`(Rs/I
[q]
s )m denotes the length of the mth graded piece of the ring Rs/I

[q]
s .
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Let the HK density function of (Rs, Is) be given by

fRs,Is(x) = lim
n→∞

fn(Rs, Is)(x).

Let s0 ∈ Spec Q(A) denote the generic point of Spec(A). Then, we have the

following.

(1) There exist a constant C (given in terms of invariants of (Rs0 , Is0) of

the generic fiber) and an open dense subset Spec(A′) of Spec(A) such

that for every closed point s ∈ Spec(A′) and n> 1,

‖fn(Rs, Is)− fn+1(Rs, Is)‖<C/pn−d+2
s ,

where ps = char k(s). In particular, for any m> d− 1,

lim
ps→∞

‖fm(Rs, Is)− fRs,Is‖= 0.

(2) There exist a constant C1 (given in terms of invariants of (Rs0 , Is0))

and an open dense subset Spec(A′) of Spec(A), such that for every

closed point s ∈ Spec(A′) and n> 1, we have∣∣∣∣∣ 1

pnds
`

(
Rs

I
[pns ]
s

)
− 1

p
(n+1)d
s

`

(
Rs

I
[pn+1

s ]
s

)∣∣∣∣∣6 C1

pn−d+2
s

.

(3) For any m> d− 1,

lim
ps→∞

[
1

pmds
`

(
Rs

I
[pms ]
s

)
− eHK(Rs, Is)

]
= 0.

As a result, we have the following corollary.

Corollary 1.2. Let R be a standard graded domain and a finitely

generated Z-algebra of characteristic 0, and let I ⊂R be a homogeneous

ideal of finite colength, such that for almost all p, the fiber over p, Rp :=

R⊗Z Z/pZ, is a standard graded ring of dimension d, which is geometrically

integral, and Ip ⊂Rp is a homogeneous ideal of finite colength. Then, we

have the following.

(1) There exists a constant C1 given in terms of invariants of R and I such

that, for n> 1, we have∣∣∣∣∣ 1

pnd
`

(
Rp

I
[pn]
p

)
− 1

p(n+1)d
`

(
Rp

I
[pn+1]
p

)∣∣∣∣∣6 C1

pn−d+2
.

https://doi.org/10.1017/nmj.2018.7 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.7
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(2) For any fixed m> d− 1,

lim
p→∞

[
eHK(Rp, Ip)−

1

pmd
`

(
Rp

I
[pm]
p

)]
= 0.

In particular, for any fixed m> d− 1,

e∞HK(R, I) := lim
p→∞

eHK(Rp, Ip) exists

⇐⇒ lim
p→∞

1

pmd
`

(
Rp

I
[pm]
p

)
exists.

In particular, the last assertion of the above corollary answers the

abovementioned question of [BLM] affirmatively, for all (R, I), where R

is a standard graded domain and I ⊂R is a graded ideal of finite colength.

Moreover, the proof, even in the case of dimension 2 (unlike the proof in

[BLM]), does not rely on earlier results of [B], [T1], and [T2]. In particular,

since we do not use HN filtrations, we do not need a normality hypothesis

on the ring R.

Remark 1.3. If e∞HK(R, I) exists for a pair (R, I), whenever R is

a standard graded domain, defined over an algebraically closed field of

characteristic 0, then one can check that e∞HK(R, I) exists for any pair

(R, I), where R is a standard graded ring over a field k of characteristic 0.

Let R̄=R⊗k k̄. Let {q1, . . . , qr}= {q ∈Ass(R̄) | dim R̄/q = dimR}; then,

we have a spread (A, R̄A, ĪA) of (R̄, Ī) such that {q1s, . . . , qrs}= {qs ∈
Ass(R̄s) | dim R̄s/qs = dim R̄s} (here, qis = qi ⊗k ¯k(s)⊂ R̄). Moreover, for

each i, `((R̄s)qis) = li, a constant independent of s. This implies that

eHK(R̄s, Īs) =

r∑
i=1

lieHK

(
R̄s
qis
,
Īs + qis
qis

)
,

which implies

lim
ps→∞

eHK(R̄s, Īs) =

r∑
i=1

li lim
ps→∞

eHK

(
R̄s
qis
,
Īs + qis
qis

)

=
r∑
i=1

lie
∞
HK

(
R̄

qi
,
Ī + qi
qi

)
.
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Hence, in this situation, one can define

e∞HK(R, I) := e∞HK(R̄, Ī) =

r∑
i=1

lie
∞
HK

(
R̄

qi
,
Ī + qi
qi

)
.

In Section 4, we study some properties of f∞R,I (when it exists), and prove

that f∞R,I behaves well under Segre product (Propositions 4.3 and 4.4). In the

case of nonsingular projective curves (Theorem 4.6), the function fRs,Is −
f∞R,I is nonnegative, continuous, and characterizes the behavior of the HN

filtration of the syzygy bundle of the curve, reduction mod char k(s). Hence,

f(S1#···#Sn)p − f∞S1#···#Sn
= 0 if and only if the HN filtrations of the syzygy

bundles of Proj Si are the strong HN filtrations reduction mod p, for all i.

We give an example to show that, for an arbitrary Segre product of plane

trinomial curves, the function f(S1#···#Sn)p = f∞S1#···#Sn
, for a Zariski dense

set of primes. Moreover, the function f(S1#···#Sn)p 6= f∞S1#···#Sn
, for a Zariski

dense set of primes, if one of the trinomials is symmetric. It is easy to check

that if f∞R,I exists (in L∞ norm), then e∞HK(R, I) exists. One can ask the

converse, that is, the following question.

Question. Does the existence of e∞HK(R, I) imply the existence of f∞R,I?

By Proposition 4.3, an affirmative answer to this question will imply the

existence of the e∞HK for Segre products of the rings for which e∞HK exist.

The author would like to thank the referee for carefully reading the paper,

and for the comments which helped in improving the exposition.

§2. A key proposition

Throughout this section, R is a Noetherian standard graded integral

domain of dimension d> 2 over an algebraically closed field k of char p > 0,

I is a homogeneous ideal of R such that `(R/I)<∞. Let h1, . . . , hµ be

a set of homogeneous generators of I of degrees d1, . . . , dµ, respectively.

Moreover, m denotes the graded maximal ideal of R.

Let X = Proj R; then, we have an associated canonical short exact

sequence of locally free sheaves of OX -modules (moreover, the sequence

is locally split exact),

(2) 0−→ V −→⊕iOX(1− di)−→OX(1)−→ 0,

where OX(1− di)−→OX(1) is given by the multiplication by the ele-

ment hi.
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166 V. TRIVEDI

For a coherent sheaf Q of OX -modules, the sequence of OX -modules

0−→ Fn∗V ⊗Q(m)−→⊕iQ(q − qdi +m)−→Q(q +m)−→ 0

is exact as the short exact sequence (2) is locally split as OX -modules (as

usual, q = pn, and Fn is the nth iterate of the absolute Frobenius morphism).

Therefore, we have a long exact sequence of cohomologies

0 −→ H0(X, Fn∗V ⊗Q(m))

−→ ⊕iH0(X,Q(q − qdi +m))
φm,q(Q)→ H0(X,Q(q +m))

−→ H1(X, Fn∗V ⊗Q(m))−→ · · · ,(3)

for m> 0 and q = pn.

We recall the definition of (Castelnuovo–Mumford) regularity.

Definition 2.1. Let Q be a coherent sheaf of OX -modules, and let

OX(1) be a very ample line bundle on X. For m̃ ∈ N, we say that Q is m̃-

regular (or m̃ is a regularity number of Q) with respect to OX(1) if, for all

m> m̃,

(1) the canonical multiplication map H0(X,Q(m))⊗H0(X,OX(1))−→
H0(X,Q(m+ 1)) is surjective, and

(2) H i(X,Q(m− i)) = 0, for i> 1.

Notations 2.2.

(1) Let

P(R,m)(m) = ẽ0

(
m+ d− 1

d

)
− ẽ1

(
m+ d− 2

d− 1

)
+ · · ·+ (−1)dẽd

be the Hilbert–Samuel polynomial of R with respect to the graded

maximal ideal m. Therefore,

χ(X,OX(m)) = ẽ0

(
m+ d− 1

d− 1

)
− ẽ1

(
m+ d− 2

d− 2

)
+ · · ·+ (−1)d−1ẽd−1.

(2) Let m̄ be a positive integer such that

(a) m̄ is a regularity number for (X,OX(1)), and
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(b) Rm = h0(X,OX(m)), for all m> m̄. In particular, `(R/mm) =

P(R,m)(m), for all m> m̄.

(3) Let l1 = h0(X,OX(1)).

(4) Let n0 > 1 be an integer such that Rn0 ⊆ I, where R=⊕n>0Rn.

(5) We denote dimk Coker φm,q(Q) by coker φm,q(Q).

Remark 2.3.

(1) The canonical map ⊕mRm −→⊕mH0(X,OX(m)) is injective, as R is

an integral domain.

(2) For m+ q >mR(q) = m̄+ n0(
∑

i di)q, we have coker φm,q(OX) =

`(R/I [q])m+q = 0, because mR(q) = m̄+ n0µq + n0(
∑

i(di − 1))q⇒ q −
qdi +m> m̄, for all i. Hence, the map φm,q(OX) is the map

⊕iRq−qdi+m −→Rm+q, where the map Rq−qdi+m→Rm+q is given

by multiplication by the element hqi . Therefore, coker φm,q(OX) =

`(R/I [q])m+q. Moreover, by the proof of Lemma 2.10, we have

`(R/I [q])m+q = 0, as m+ q > m̄+ n0µq.

(3) For CR = (µ)h0(X,OX(m̄)), we have

(4) |coker φm,q(OX)− `(R/I [q])m+q|6 CR,

for all n, m> 0 and q = pn, because

if m+ q < m̄, then

|coker φm,q(OX)− `(R/I [q])m+q| 6 h0(X,OX(m+ q))

6 h0(X,OX(m̄)).

If m+ q > m̄, then h0(X,OX(m+ q)) = `(Rm+q), and therefore

|coker φm,q(OX)− `(R/I [q])m+q| 6
µ∑
i=1

|h0(X,OX(q − qdi +m))

− `(Rq−qdi+m)|.

Now, if q − qdi +m< m̄, then `(Rq−qdi+m)6 h0(X,OX(q − qdi +

m))6 h0(X,OX(m̄)), and if q − qdi +m> m̄, then Rq−qdi+m =

H0(X,OX(q − qdi +m)).

Hence,

|coker φm,q(OX)− `(R/I [q])m+q|6 µh0(X,OX(m̄)).
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168 V. TRIVEDI

Definition 2.4. Let Q be a coherent sheaf of OX -modules of dimension

d̄, and let m̃> 1 be the least integer that is a regularity number for Q
with respect to OX(1). Then, we define C0(Q) and D0(Q) as follows. Let

a1, . . . , ad̄ ∈H0(X,OX(1)) be such that we have a short exact sequence of

OX -modules

0→Qi(−1)
ai→Qi→Qi−1→ 0, for 0< i6 d̄,

where Qd =Q and Qi =Q/(ad̄, . . . , ai+1)Q, for 06 i < d̄, with dim Qi = i.

We define

C0(Q) = min


d̄∑
i=0

h0(X,Qi) | a1, . . . , ad̄ is a Q-sequence as above

 ,

D0(Q) = h0(X,Q(m̃)) + 2(d̄+ 1) (max{q0, q1, . . . , qd̄}) ,

where

χ(X,Q(m)) = q0

(
m+ d̄

d̄

)
− q1

(
m+ d̄− 1

d̄− 1

)
+ · · ·+ (−1)d̄qd̄

is the Hilbert polynomial of Q.

A more general version of the following lemma has been stated and proved

in [T4, Lemma 2.6]. Here, we state and prove a relevant part of it, for a self-

contained treatment (avoiding additional complications).

Lemma 2.5. Let Q be a coherent sheaf of OX-modules of dimension

d̄. Let P be a locally free sheaf of OX-modules that fits into a short exact

sequence of locally free sheaves of OX-modules

(5) 0−→ P −→⊕iOX(−bi)−→ P ′′ −→ 0, where bi > 0.

Then, for µ̃= rank(P ) + rank(P ′′) and for all n, m> 0, we have

h0(X,Q(m+ q))6D0(Q)(m+ q)d̄

and

h0(Fn∗P ⊗Q(m))6 (µ̃)C0(Q)(md̄ + 1).

Proof. Let m̃ be a regularity number for Q; then, by Definition 2.4, we

have

h0(X,Q(m+ q))6D0(Q)(m+ q)d̄ for all n, m> 0.
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Let Qd̄ =Q. Let ad̄, . . . , a1 ∈H0(X,OX(1)), with the exact sequence of

OX -modules

0−→Qi(−1)
ai−→Qi −→Qi−1 −→ 0,

where Qi =Qd̄/(ad̄, . . . , ai+1)Qd̄, for 06 i6 d̄, and realizing the minimal

value C0(Q). Now, by the exact sequence (5), we have the following short

exact sequence of OX -sheaves:

0−→ Fn∗P ⊗Qi −→⊕jQi(−qbj)−→ Fn∗P ′′ ⊗Qi −→ 0.

This implies H0(X, Fn∗P ⊗Qi) ↪→⊕jH0(X,Qi(−qbj)). Therefore,

(6) h0(X, Fn∗P ⊗Qi)6
∑
j

h0(X,Qi(−qbj))6 (µ̃)h0(X,Qi),

as −bj 6 0. Since Fn∗P is a locally free sheaf of OX -modules, we have

0−→ Fn∗P ⊗Qi(m− 1)
ai−→ Fn∗P ⊗Qi(m)−→ Fn∗P ⊗Qi−1(m)−→ 0,

which is a short exact sequence of OX -sheaves. Now, by induction on i, we

prove that, for m> 1,

h0(X, Fn∗P ⊗Qi(m))6 (µ̃)
[
h0(X,Qi) + · · ·+ h0(X,Q0)

]
(mi).

For i= 0, the inequality holds as h0(X, Fn∗P ⊗Q0(m))6 (µ̃)h0(X,Q0) (as

dimQ0 = 0).

Now, for m> 1, by the inequality (6) and by induction on i, we have

h0(X, Fn∗P ⊗Qi(m)) 6 h0(X, Fn∗P ⊗Qi) + h0(X, Fn∗P ⊗Qi−1(1))

+ · · ·+ h0(X, Fn∗P ⊗Qi−1(m))

6 (µ̃)h0(X,Qi) + µ̃[h0(X,Qi−1) + · · ·+ h0(X,Q0)]

× (1 + 2i−1 + · · ·+mi−1)

6 (µ̃)[h0(X,Qi) + · · ·+ h0(X,Q0)]mi.

This implies

h0(X, Fn∗P ⊗Q(m)) = h0(X, Fn∗P ⊗Qd̄(m))6 µ̃C0(Q)md̄,

for all m> 1. Therefore, for all 06 i6 d̄ and for all m> 0, we have

h0(X, Fn∗P ⊗Q(m))6 µ̃C0(Q)(md̄ + 1). This proves the lemma.
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Lemma 2.6. There exists a short exact sequence of coherent sheaves of

OX-modules

0−→⊕pd−1OX(−d)−→ F∗OX −→Q−→ 0,

where Q is a coherent sheaf of OX-modules such that dim supp(Q)< d− 1.

Proof. Note that X = Proj R, where R=⊕n>0Rn, is a standard graded

domain such that R0 is an algebraically closed field. Therefore, there exists

a Noether normalization

k[X0, . . . , Xd−1]−→R,

which is an injective, finite separable graded map of degree 0 (as k is an

algebraically closed field). This induces a finite separable affine map π :

X −→ Pd−1
k = S.

Note that there is also an isomorphism

η :O⊕n0
S ⊕OS(−1)⊕n1 ⊕ · · · ⊕ OS(−d+ 1)⊕nd−1 −→ F∗OS

of OS-modules, where
∑
ni = pd−1.

Now, the isomorphism of η implies that the map

π∗(η) :⊕d−1
i=0OX(−i)⊕ni −→ π∗F∗Os

is an isomorphism of OX -sheaves. Since 06 i6 d− 1, we also have an

injective and generically isomorphic map of OX -sheaves

⊕pd−1 OX(−d)−→⊕d−1
i=0OX(−i)⊕ni .

Composing this map with π∗(η) gives an injective and generically isomorphic

map of OX -sheaves

α :⊕pd−1OX(−d)−→ π∗F∗OS .

Since π is separable, there is a canonical map β : π∗F∗OS −→ F∗OX , of

sheaves of OX -modules, which is generically isomorphic.

Now, we have the composite map

β ◦ α :⊕pd−1OX(−d)−→ π∗F∗OS → F∗OX ,

which is generically an isomorphism. Hence, dim Coker(β ◦ α)< dimX =

d− 1, and the map β ◦ α :⊕pd−1OX(−d)−→ F∗OX is injective, as X is an

integral scheme. This proves the lemma.
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Lemma 2.7. Let

0−→⊕pd−1OX(−d)−→ F∗OX −→Q−→ 0,

as in Lemma 2.6. Then, we have the following.

(1) Q is m̃-regular, where m̃= max{m̄+ d, l1 − 1}, where m̄ and l1 are as

given in Notations 2.2.

(2) For a given d, there exists a universal polynomial function, with rational

coefficients, P̄ d1 (X0, . . . , Xd−1, Y ) (and hence independent of p), such

that

2C0(Q) +D0(Q)6 pd−1P̄ d1 (ẽ0, ẽ1, . . . , ẽd−1, m̄),

where we define (dim supp(Q) = d̄ < d− 1)

C0(Q) = min


d̄∑
i=0

h0(X,Qi) | a1, . . . , ad̄ is a Q-sequence and

Qi =Q/(ad̄, . . . , ai+1)Q


and

D0(Q) = h0(X,Q(m̃)) + 2(d̄+ 1)(max{q0, q1, . . . , qd̄}),

where q0, . . . , qd̄ are the coefficients of the Hilbert polynomial

χ(X,Q(m)).

Proof. (1) The above short exact sequence of OX -sheaves gives a long

exact sequence of cohomologies

· · · −→ ⊕pd−1
H i(X,OX(m− d))−→H i(X,OX(mp))−→H i(X,Q(m))

−→ ⊕pd−1
H i+1(X,OX(m− d))−→ · · · .

However, hi(X,OX(m− d− i)) = 0, for all m> m̄+ d and i> 1, which

implies that if m> m̄+ d, then hi(X,Q(m− i)) = 0, for i> 1, and the

canonical map

f1,m :H0(X, (F∗OX)(m))−→H0(X,Q(m))
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is surjective. Moreover, the canonical map

H0(X, (F∗OX)(m))⊗H0(X,OX(1))−→H0(X, (F∗OX)(m+ 1))

is the same as the canonical map

f2,m :H0(X,OX(mp))⊗H0(X,OX(1))[p] −→H0(X,OX(mp+ p)),

which is surjective for m> m̃. The map f2m fits into the following canonical

diagram:

Rmp ⊗R[p]
1 −→ Rmp+p

↓ ↓
H0(X,OX(mp))⊗H0(X,OX(1))[p] f2,m−→ H0(X,OX(mp+ p)),

where H0(X,OX(1))[p], as a set, is H0(X,OX(1)), and the upper symbol
[p] indicates that the k-space structure is through the pth power map of k,

where the top horizontal map is surjective for m> l1 − 1, and the right

vertical map is identity as mp+ p> m̄. Now, the commutative diagram of

canonical maps

H0(X, (F∗OX)(m))⊗H0(X,OX(1)) −→ H0(X,Q(m))⊗H0(X,OX(1))
↓ f2,m ↓

H0(X, (F∗OX)(m+ 1))
f1,m+1−→ H0(X,Q(m+ 1))

implies that the second vertical map is surjective, for m> m̃, as the maps

f2,m and f1,m+1 are surjective. This proves that Q is m̃-regular. Hence, the

assertion (1).

(2) If

(7) χ(X,Q(m)) = q0

(
m+ d− 2

d− 2

)
− q1

(
m+ d− 3

d− 3

)
+ · · ·+ (−1)d−2qd−2,

then, by Lemma A.1(1) (in the appendix, below),

|qi|6 pd−1P di (ẽ0, . . . , ẽi+1),

where P di (X0, . . . , Xi+1) is a universal polynomial function with rational

coefficients.

https://doi.org/10.1017/nmj.2018.7 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.7


TOWARD HILBERT–KUNZ DENSITY FUNCTIONS IN CHARACTERISTIC 0 173

Now, Q is m̃-regular implies that, for 06 i < d, Qi :=Q/(ad̄, . . . , ai+1)Q
is m̃-regular, for any Q-sequence a1, . . . , ad̄ ∈H0(X,OX(1)). Therefore, the

short exact sequence of OX -modules

0−→Qi+1(−1)−→Qi+1 −→Qi −→ 0

gives the short exact sequence of k-vector spaces

0−→H0(X,Qi+1(m̃− 1))−→H0(X,Qi+1(m̃))−→H0(X,Qi(m̃))−→ 0,

for m> m̃. Hence,

h0(X,Qi) 6 h0(X,Qi(m̃))6 · · ·6 h0(X,Q(m̃)) = χ(X,Q(m̃))

6 |q0|
(
m̃+ d− 2

d− 2

)
+ |q1|

(
m̃+ d− 3

d− 3

)
+ · · ·+ |qd−2|.

This implies that h0(X,Qi)6 pd−1P d(ẽ0, . . . , ẽd−1, m̃), where P d(X0, . . . ,

Xd−1, Y ) is a universal polynomial function with rational coefficients.

Therefore,

C0(Q)6 (d− 1)pd−1P d(ẽ0, . . . , ẽd−1, m̃).

The inequality for D0(Q) follows similarly. This proves the assertion (2) and

hence the lemma.

Lemma 2.8. Given d> 2, there exist universal polynomials P̄ d2 , P̄ d3
∈Q[X0, . . . , Xd−1, Y ] such that, if X is an integral projective variety of

dimension d− 1> 1 with Hilbert polynomial and m̄ as in Notations 2.2,

and if there are short exact sequences of OX-modules

0−→OX(−m0)−→OX −→M1 −→ 0 and

0−→OX −→OX(n2)−→M2 −→ 0,

then

2C0(M1) +D0(M1)6md−1
0 P̄ d2 (ẽ0, . . . , ẽd−1, m̄),

2C0(M2) +D0(M2)6 nd−1
2 P̄ d3 (ẽ0, . . . , ẽd−1, m̄),

where m0 > 0 and n2 > 0 are two integers.
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Proof. Without loss of generality, one can assume that m0 > 1 and

n2 > 1. Since OX is m̄-regular, the sheaf M1 is an m̄+m0-regular

sheaf of OX -modules of dimension d− 2. Therefore, for any M1-sequence

a1, . . . , ad−2, the sheaf of OX -modules M1i :=M1/(ad−2, . . . , ai+1)M1 is

m̄+m0-regular. This implies

h0(X,M1i) 6 h0(X,M1i(m̄+m0))

6 h0(X,M1(m̄+m0))6 h0(X,OX(m̄+m0))

= ẽ0

(
m̄+m0 + d− 1

d− 1

)
− ẽ1

(
m̄+m0 + d− 2

d− 2

)
+ · · ·+ (−1)d−1ẽd−1

6 ẽ2
0

(
m̄+ d+ d− 1

d− 1

)
md−1

0 + ẽ2
1

(
m̄+ d+ d− 2

d− 2

)
md−2

0

+ · · ·+ ẽ2
d−1

6 m0
d−1P̃ d(ẽ0, . . . , ẽd−1, m̄),

where the second last inequality follows as ẽi 6 ẽ2
i and m̄+m0 + k 6 (m̄+

d+ k)m0, for any k > 0, and P̃ d(X0, . . . , Xd−1, Y ) is a universal polynomial

function with rational coefficients.

Let ei(M1) denote the ith coefficient of the Hilbert polynomial of

M1 with respect to the line bundle OX(1). Then, by Lemma A.1, we

have ei(M1)6mi+1
0 P di (ẽ0, . . . , ẽi), where P di (X0, . . . , Xi) is a universal

polynomial with rational coefficients.

Now, the bound for 2C0(M1) +D0(M1) follows. The identical proof

follows for M2.

Notations 2.9. For a pair (R, I), where R is a standard graded ring

of char p > 0 and of dimension d> 2, and I ⊂R is a graded ideal of finite

colength, we define (similarly to the sequence of functions that had been

defined in [T4]) a sequence of functions {fn : [1,∞)→ [0,∞)}n as follows.

Fix n ∈ N and denote q = pn. Let x ∈ [1,∞); then, there exists a unique

nonnegative integer m such that (m+ q)/q 6 x < (m+ q + 1)/q. Then,

fn(x) := fn(R, I)(x) =
`(R/I [q])m+q

qd−1
.

Lemma 2.10. Each fn : [1,∞)−→ [0,∞), defined as in Notations 2.9,

is a compactly supported function such that ∪n>1Supp fn ⊆ [1, n0µ], where

Rn0 ⊆ I and µ> µ(I).
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Proof. Since R is a standard graded ring, for m> n0µq, we have

Rm ⊆ (Rn0)µq ⊆ Iµq ⊆ I [q]. This implies that `(R/I [q])m = 0, if m> n0µq.

Therefore, support fn ⊆ [1, n0µ], for every n> 0. This proves the lemma.

Proposition 2.11. For fn as given in Notations 2.9, we have

(1) |fn(x)− fn+1(x)|6 C/pn−d+2, for every x> 1 and for all n> 0.

(2) In particular, ‖fn − fn+1‖6 C/pn−d+2 and ‖fd−1 − fd‖6 C/p, where

(8) C = 2CR + µ

(
m̄+ n0

(
µ∑
i=1

di

)
+ 1

)d−2

(P̄ d1 + dd−1P̄ d2 + P̄ d3 ),

the integers m̄ and n0 are given as in Notations 2.2, and d1, . . . , dµ are

degrees of a chosen generator of I. Moreover, CR = µh0(X,OX(m̄)), for

X = Proj R, and P̄ d1 , P̄ d2 , and P̄ d3 are given as in Lemmas 2.7 and 2.8.

Proof. Fix x ∈ [1,∞). Therefore, for given q = pn, there exists a unique

integer m> 0, such that (m+ q)/q 6 x < (m+ q + 1)/q and

(m+ q)p+ n2

qp
6 x <

(m+ q)p+ n2 + 1

qp
, for some 06 n2 < p.

Hence,

fn(x) =
1

qd−1
`

(
R

I [q]

)
m+q

and

fn+1(x) =
1

(qp)d−1
`

(
R

I [qp]

)
mp+qp+n2

.

Now, by Equation (4) in Remark 2.3, we have

(9)

∣∣∣∣fn(x)− coker φm,q(OX)

qd−1

∣∣∣∣< CR
qd−1

and

∣∣∣∣fn+1(x)− coker φmp+n2,qp(OX)

(qp)d−1

∣∣∣∣< CR
(qp)d−1

.

Consider the short exact sequence of OX -modules

0−→OX(−d)−→OX −→M1 −→ 0.
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Then, for any locally free sheaf P of OX -modules and for m> 0, we have

the following short exact sequence of OX -modules:

0−→ Fn∗P ⊗OX(−d+m)−→ Fn∗P ⊗OX(m)−→ Fn∗P ⊗M1(m)−→ 0.

Since

coker φm,q(OX) = h0(X,OX(m+ q))−
∑
i

h0(X,OX(m+ q − qdi))

+ h0(X, (Fn∗V )(m)),

we have (by taking P = V and =
∑
OX(1− di), respectively)

|coker φm,q(OX)− coker φm−d,q(OX)|

6 |h0(X,OX(m+ q))− h0(X,OX(m− d+ q))|

+
∑
i

|h0(X,OX(m+ q − qdi))

− h0(X,OX(m− d+ q − qdi))|+ |h0(X, (Fn∗V )(m))

− h0(X, (Fn∗V )(m− d))|

6 h0(X,M1(m+ q)) + h0

(
X,
∑
i

OX(q − qdi)⊗M1(m)

)
+ h0(X, Fn∗V ⊗M1(m)).

Let d− 2 = 0. Then, M1 is a zero-dimensional sheaf, which implies that

h0(X,M1(m)) = h0(X,M1), for every m ∈ Z. Moreover, if P is a locally

free sheaf of OX -modules, then h0(X, P ⊗M1) = (rank P )h0(X,M1).

Therefore, we get

|coker φm,q(OX)− coker φm−d,q(OX)| 6 [1 + µ+ (µ− 1)]h0(X,M1)

= 2µC0(M1).

If d− 2> 0 then, by Lemma 2.5,

|coker φm,q(OX)− coker φm−d,q(OX)|

6D0(M1)(m+ q)d−2 + 2(µ)C0(M1)(md−2 + 1)

6 (µ)[2C0(M1) +D0(M1)](m+ q)d−2.
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Therefore, for d− 1> 1, we have

|pd−1coker φm,q(OX)− pd−1coker φm−d,q(OX)|

6 (µ)[2C0(M1) +D0(M1)](m+ q)d−2pd−1.(10)

Since, for a locally free sheaf P , we have

h0(X, Fn∗P ⊗ (F∗OX)(m)) = h0(X, F (n+1)∗P ⊗OX(mp)),

the short exact sequence

0−→⊕pd−1OX(−d)−→ F∗OX −→Q−→ 0,

as given in the statement of Lemma 2.7, gives a canonical long exact

sequence

0 −→ ⊕H0(X, (Fn∗P )(m− d))−→H0(X, (F (n+1)∗P )(mp))

−→ H0(X, Fn∗P ⊗Q(m)),

which implies (by taking P = V and V =
∑
OX(1− di), respectively)

coker φmp,qp(OX) = h0(X, (F∗OX)(m+ q))

−
∑
i

h0(X, (F∗OX)(q − qdi +m))

+ h0(X, Fn∗V ⊗ (F∗OX)(m+ q)).

Therefore, we have

|pd−1coker φ(m−d),q(OX)− coker φmp,qp(OX)|

6 (µ)[2C0(Q) +D0(Q)](m+ q)d−2.(11)

The short exact sequence of OX -modules

0−→OX −→OX(n2)−→M2 −→ 0

gives

0 −→ H0(X, (F (n+1)∗P )(mp))−→H0(X, (F (n+1)∗P )(mp+ n2))

−→ H0(X, (F (n+1)∗P )⊗M2(mp))−→ · · · ,
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which gives

|coker φmp,qp(OX)− coker φmp+n2,qp(OX)|

6

[
h0(X, F (n+1)∗V ⊗M2(mp)) + h0

(
X,
∑
i

OX(qp− qpdi)⊗M2(mp)

)

+ h0(X,M2(mp+ qp))

]
6 2(µ)C0(M2)((mp)d−2 + 1)

+ (µ)D0(M2)(mp+ qp)d−2.

Therefore,

|coker φmp,qp(OX)− coker φmp+n2,qp(OX)|

6 (µ)[2C0(M2) +D0(M2)](mp+ qp)d−2.(12)

Combining Equations (10)–(12), we get

(A) := |pd−1coker φm,q(OX)− coker φmp+n2,qp(OX)|

6 (µ)[2C0(M1) +D0(M1)](m+ q)d−2pd−1

+ (µ)[2C0(Q) +D0(Q)](m+ q)d−2

+ (µ)[2C0(M2) +D0(M2)](mp+ qp)d−2.

Therefore,

(A) 6 (µ)(m+ q)d−2 [(2C0(M1) +D0(M1))pd−1 + (2C0(Q) +D0(Q))

+ (2C0(M2) +D0(M2))pd−2].

Now, if we denote P̄ di = P̄ di (ẽ0, . . . , ẽd−1, m̃), for i= 1, 2, and 3, then, by

Lemma 2.7,

2C0(Q) +D0(Q)6 pd−1P̃ d1 ,

and, by Lemma 2.8, we have

2C0(M1) +D0(M1)6 dd−1P̃ d2

and

2C0(M2) +D0(M2)6 nd−1
2 P̃ d3 6 p

d−1P̃ d3 ,
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where the last inequality follows as n2 < p. Therefore, we have

(A)6 (µ)(m+ q)d−2[pd−1dd−1P̄ d2 + pd−1P̄ d1 + pd−1pd−2P̄ d3 ].

Now, multiplying the above inequality by 1/(qp)d−1, we get∣∣∣∣coker φm,q(OX)

qd−1
− coker φmp+n2,qp(OX)

(qp)d−1

∣∣∣∣
6 (µ)

(m+ q)d−2

qd−1
[dd−1P̄ d2 + P̄ d1 + pd−2P̄ d3 ].

Moreover, by Remark 2.3,

m+ q > m̄+ n0

(∑
i

di

)
q + q⇒ coker φm,q(OX)

= coker φmp+n2,qp(OX) = 0.

Furthermore, m+ q 6 m̄+ n0(
∑

i di)q + q,⇒ (m+ q)d−2 6 L0q
d−2, where

L0 =

(
m̄+ n0

(∑
i

di

)
+ 1

)d−2

.

Therefore, for every m> 0 and n> 1, where q = pn, we have

|coker φm,q(OX)/qd−1 − coker φmp+n2,qp(OX)/(qp)d−1|

6 ((µ)L0q
d−2[dd−1P̄ d2 + P̄ d1 + pd−2P̄ d3 ])/qd−1

6 ((µ)L0[dd−1P̄ d2 + P̄ d1 + P̄ d3 ]pd−2qd−2)/qd−1.

Now, by Equation (9), we have

|fn(x)− fn+1(x)| 6 CR
qd−1

+
CR

(qp)d−1
+ (µ)L0[dd−1P̄ d2 + P̄ d1 + P̄ d3 ]

pd−2

q

6 C
pd−2

q
,

where C = 2CR + (µ)L0(dd−1P̄ d2 + P̄ d1 + P̄ d3 ), which proves the proposition.
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Corollary 2.12. There exists a constant C1 = P d4 (ẽ0, ẽ1, . . . , ẽd, m̄) +

(n0µ− 1)C, where C is as in Proposition 2.11, and P d4 (X0, . . . , Xd, Y ) is a

universal polynomial function with rational coefficients such that, for n> 1,∣∣∣∣ 1

(pn)d
`

(
R

I [pn]

)
− 1

(pn+1)d
`

(
R

I [pn+1]

)∣∣∣∣6 C1

pn−d+2
.

Proof. Note that

∞∑
m=0

1

pnd
`

(
R

I [pn]

)
m+q

=

∫ ∞
1

fn(x) dx=

∫ n0µ

1
fn(x) dx,

where the last equality follows from Lemma 2.10. Hence,∣∣∣∣ 1

(pn)d
`

(
R

I [pn]

)
− 1

(pn+1)d
`

(
R

I [pn+1]

)∣∣∣∣
6

∣∣∣∣ 1

pnd
`

(
R

mpn

)
− 1

p(n+1)d
`

(
R

mpn+1

)∣∣∣∣
+

∣∣∣∣∫ n0µ

1
fn(x) dx−

∫ n0µ

1
fn+1(x) dx

∣∣∣∣ .
If pn 6 m̄, then∣∣∣∣ 1

pnd
`

(
R

mpn

)
− 1

p(n+1)d
`

(
R

mpn+1

)∣∣∣∣ 6
∣∣∣∣∣P(R,m)(m̄)

pnd
+
P(R,m)(m̄

2)

p(n+1)d

∣∣∣∣∣
6
P(R,m)(m̄

2)

pn
,

where P(R,m) is the Hilbert polynomial of R with respect to m. If pn >

m̄, then there exists a universal polynomial function P d6 (X0, . . . , Xd) with

rational coefficients such that

L.H.S.6

∣∣∣∣∣P(R,m)(p
n)

pnd
−
P(R,m)(p

n+1)

p(n+1)d

∣∣∣∣∣6 P d6 (ẽ0, ẽ1, . . . , ẽd)

pn
.

Therefore, combining this with Proposition 2.11, part (1), we get a universal

polynomial function P d4 (X0, . . . , Xd, Y ) with rational coefficients such that∣∣∣∣ 1

(pn)d
`

(
R

I [pn]

)
− 1

(pn+1)d
`

(
R

I [pn+1]

)∣∣∣∣6 P d4 (ẽ0, ẽ1, . . . , ẽd)

pn
+

(n0µ− 1)C

pn−d+2
.

Since d> 2, the corollary follows.
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§3. Hilbert–Kunz density function and reduction mod p

Remark 3.1. Let R be a standard graded integral domain of dimension

d> 2, with R0 = k, where k is an algebraically closed field. Let N = `(R1)−
1; then, we have a surjective graded map k[X0, . . . , XN ]−→R of degree 0,

given by Xi mapping to generators of R1. This gives a closed immersion

X = Proj R−→ PNk such that OX(1) =OPN
k

(1) |X . Therefore, if

PR,m(m) = ẽ0

(
m+ d− 1

d

)
− ẽ1

(
m+ d− 2

d− 1

)
+ · · ·+ (−1)dẽd

is the Hilbert–Samuel polynomial of R, with respect to m, then, the Hilbert

polynomial for the pair (X,OX(1)) is

χ(X,OX(m)) = ẽ0

(
m+ d− 1

d− 1

)
− ẽ1

(
m+ d− 2

d− 2

)
+ · · ·+ (−1)d−1ẽd−1.

Since R is a domain, the canonical graded map R=⊕mRm −→
⊕mH0(X,OX(m)) is injective.

Let IX be the ideal sheaf of X in PNk ; then, we have the canonical short

exact sequence of OPN
k

-modules

0−→ IX −→OPN
k
−→OX −→ 0,

and the image of the induced map fm :H0(PNk ,OPN
k

(m))−→
H0(X,OX(m)) is Rm. Now, by Exp XIII, (6.2) (in [SGA 6]), there

exists a universal polynomial P d5 (t0, . . . , td−1) with rational coefficients

such that the sheaf IX is m̄= P d5 (ẽ0, . . . , ẽd−1)-regular. Therefore, the map

fm is surjective for m> m̄.

In particular, we have

(1) Rm =H0(X,OX(m)), for all m> m̄, and

(2) the sheaf OX is m̄-regular with respect to OX(1).

Next, we recall a notion of spread.

Definition 3.2. Consider the pair (R, I), where R is a finitely gen-

erated Z>0-graded d-dimensional domain such that R0 is an algebraically

closed field k of characteristic 0, and I ⊂R is a homogeneous ideal of finite

colength. For such a pair, there exist a finitely generated Z-algebra A⊆ k,

a finitely generated N-graded algebra RA over A, and a homogeneous ideal
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IA ⊂RA such that RA ⊗A k =R and I = Im(IA ⊗A k). We call (A, RA, IA)

a spread of the pair (R, I).

Moreover, if, for the pair (R, I), we have a spread (A, RA, IA) as above

and A⊂A′ ⊂ k, for some finitely generated Z-algebra A′, then (A′, RA′ , IA′)

satisfy the same properties as (A, RA, IA). Hence, we may always assume

that the spread (A, RA, IA) as above is chosen such that A contains a given

finitely generated Z-algebra A0 ⊆ k.

Notations 3.3. Given a spread (A, RA, IA) as above, for a closed

point s ∈ Spec(A), we define Rs =RA ⊗A k̄(s) and the ideal Is = Im(IA ⊗A
k̄(s))⊂Rs. Similarly, for XA := Proj RA, we define Xs :=X ⊗ k̄(s) =

Proj Rs, and, for a coherent sheaf VA on XA, we define Vs = VA ⊗ k̄(s).

Remark 3.4. Note that for a spread (A, RA, IA) of (R, I) as above,

the induced map π̃ :XA := Proj RA −→ Spec(A) is a proper map; hence, by

generic flatness, there is an open set (in fact nonempty as A is an integral

domain) U ⊂ Spec(A) such that π̃ |π̃−1(U): π̃
−1(U)−→ U is a proper flat

map. Therefore (see [EGA IV, 12.2.1]), the set

{s ∈ Spec(A) |X ⊗Spec(A) Spec(k(s)) is geometrically integral}

is a nonempty open set of Spec(A). Hence, by replacing A by a finitely

generated Z-algebra A′ such that A⊂A′ ⊂ k (if necessary), we can assume

that π̃ is a flat map such that for every s ∈ Spec(A), the fiber over s is

geometrically integral.

Therefore, for any closed point s ∈ Spec(A) (i.e., a maximal ideal of A),

the ring Rs is a standard graded d-dimensional ring such that the ideal

Is ⊂Rs is a homogeneous ideal of finite colength. Moreover, Xs is an integral

scheme over k̄(s).

Proof of Theorem 1.1. For given (R, I), and a given spread (A, RA, IA),

we can choose a spread (A′, RA′ , IA′), where A⊂A′, such that the induced

projective morphism of Noetherian schemes π̃ :XA′ −→A′ is flat, and,

for every s ∈ Spec(A′), the scheme Xs is an integral scheme over k̄(s) of

dimension = d− 1. Let RA′ =⊕i>0(RA′)i, and let (RA′)1 be generated by

N elements as an A′-module. Then, the canonical graded surjective map

A′[X0, . . . , XN ]−→RA′

gives a closed immersion XA′ = Proj RA′ −→ PNA′ such that OXA′ (1) =

OPN
A′

(1) |XA′ . Let Xs =XA′ ⊗ k̄(s). Then, Xs = Proj Rs, and OXs(1) is the
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canonical line bundle induced by OXA′ (1). Let s0 = SpecQ(A) = SpecQ(A′)

be the generic point of Spec(A′). We now have the following.

(1) The Hilbert polynomial for the pair (Xs,OXs(1)) is

χ(Xs,OXs(m)) = ẽ0

(
m+ d− 1

d− 1

)
− ẽ1

(
m+ d− 2

d− 2

)
+ · · ·+ (−1)d−1ẽd−1,

where the coefficients ẽi are as above for (X,OX(1)) (from char 0).

In particular, dim Xs = d− 1 and we have the following.

(2) By Remark 3.1, there exists m̄= P d5 (ẽ0, . . . , ẽd−1) such that (Rs)m =

H0(Xs,OXs(m)) for all m> m̄, and (Xs,OXs(1)) is m̄-regular.

(3) Moreover, by the semicontinuity theorem (Chapter III, Theorem 12.8

in [H]), by shrinking Spec(A′) further, we have hi(Xs,OXs(m̄)), and

h0(Xs,OXs) is independent of s, for all i> 0.

(4) Again, by shrinking Spec(A′) (if necessary), can choose n0 ∈ N such

that (RA′)
n0
1 ⊆ IA′ . This implies that (Rs)

n0
1 ⊆ Is, for all s ∈ Spec(A′).

Let s ∈ Spec(A′), and let ps = char k(s). We sketch the proof of the

existence of the map fRs,Is : [1,∞)→ R and its relation to eHK(R, I)

(note that we have proved this in a more general setting in [T4]). By

Proposition 2.11, for any given s, the sequence {f sn}n of functions is

uniformly convergent. Let fRs,Is(x) = limn→∞ fn(Rs, Is)(x). This implies

that limn→∞
∫∞

1 fn(Rs, Is)(x) =
∫∞

1 fRs,Is(x), as, by Lemma 2.10, there is

a compact set containing ∪nsupp fn(Rs, Is). On the other hand,

eHK(Rs, Is) = lim
n→∞

1

pnds
`

(
Rs

I
[pns ]
s

)

= lim
n→∞

1

pnds
`

(
Rs

m
pns
s

)
+ lim
n→∞

1

pnds

∑
m>0

`

(
R

I
[pns ]
s

)
m+pns

=
e0(Rs)

d!
+ lim
n→∞

∫ ∞
1

fn(Rs, Is)(x) dx

=
e0(Rs)

d!
+

∫ ∞
1

fRs,Is(x) dx,

where ms is the graded maximal ideal of Rs and e0(Rs) denotes the Hilbert–

Samuel multiplicity of Rs with respect to ms.
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Now, by Proposition 2.11, there exists a constant

C = 2CRs + µ

(
m̄+ n0

(
µ∑
i=1

di

)
+ 1

)d−2

(P̄ d1 + dd−1P̄ d2 + P̄ d3 ),

which is independent of the choice of s in Spec(A′) (as CRs =

µh0(Xs,OXs(1))), such that

(13) ‖fn(Rs, Is)− fn+1(Rs, Is)‖6 C/pn−d+2
s , for all n> 1.

In particular, for given m> d− 1,

‖fm(Rs, Is)− fRs,Is‖6
[
C

ps
+
C

p2
s

+
C

p3
s

+ · · ·
]

1

p
m−(d−1)
s

6
2C

pm−d+2
s

.

As s→ s0, we have ps = char k(s)→∞, which implies

(14) for any m> d− 1, we have lim
ps→∞

‖fm(Rs, Is)− fRs,Is‖= 0.

This completes the proof of Assertion (1) of the theorem.

It is easy to check that there exists a universal polynomial function

P̄ d9 (X0, . . . , Xd) with rational coefficients such that for C2 := P̄ d9 (ẽ0, . . . , ẽd)

we have ∣∣∣∣ 1

pnds
`

(
Rs

m
pns
s

)
− e0(Rs)

d!

∣∣∣∣6 C2

pns
.

Moreover, for every n> 1, the function fn(Rs, Is) has support in the

compact interval [1, n0µ]. Therefore,

(A1) :=

∣∣∣∣∣ 1

pnds
`

(
Rs

I
[pns ]
s

)
− 1

p
(n+1)d
s

`

(
Rs

I
[pn+1

s ]
s

)∣∣∣∣∣
6

∣∣∣∣ 1

pnds
`

(
Rs

m
pns
s

)
− e0(Rs)

d!

∣∣∣∣
+

∫ n0µ

1
|fn(Rs, Is)(x)− fn+1(Rs, Is)(x)| dx.

By (13), we have

(A1)6
C2

pns
+

(2C)(n0µ− 1)

pn−d+2
s

.

This proves Assertion (2). Now, similarly, Assertion (3) easily follows

from (14).

Proof of Corollary 1.2. This is easy to deduce from Theorem 1.1.
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§4. Some properties and examples

Throughout this section, R is a standard graded integral domain of

dimension d> 2, with R0 = k, where k is an algebraically closed field of

characteristic 0, and I ⊂R is a homogeneous ideal of finite colength. Our

choice of spread satisfies conditions as given in Remark 3.4.

Definition 4.1. We denote f∞R,I = limps→∞ fRs,Is , if it exists, where for

(R, I), the pair (Rs, Is) is given as in Definition 3.2 and Notations 3.3.

Definition 4.2. For a choice of spread (A, RA, IA) of (R, I), as in

Remark 3.4, and a closed point s ∈ Spec(A), we define FRs : [0,∞)−→
[0,∞) as

HSd(Rs)(x) = FRs(x) = lim
n→∞

Fn(Rs)(x),

where Fn(Rs)(x) =
1

qd−1
`(Rs)bxqc and q = pns .

One can check that

FRs : R→ R is given by FRs(x) = 0 for x < 0,

and FRs(x) = e0(R)xd−1/(d− 1)! for x> 0,

where e0(R) is the Hilbert–Samuel multiplicity of R with respect to

m. Hence, we denote FRs(x) = FR(x). Moreover, for any n> 1, we have

limps→∞ Fn(Rs)(x) = FRs(x) = FR(x).

Proposition 4.3. Let R and S be standard graded domains, where R0 =

S0 = k, where k is an algebraically closed field of characteristic 0 with I ⊂R
and J ⊂ S homogeneous ideals of finite colength, respectively. Then,

f∞R,I(x) and f∞S,J(x) exist ⇒ f∞R#S,I#J(x) exists,

where R#S =⊕m>0Rm ⊗k Sm. Moreover, in that case, we have

f∞R#S,I#J(x) = FS(x)f∞R,I(x) + FR(x)f∞S,J(x)− f∞R,I(x)f∞S,J(x).

In particular, f∞−,− satisfies a multiplicative formula on Segre products.

Proof. Let us denote f∞ = f∞R,I and g∞ = f∞S,J . For q = pns , where ps =

char k(s), we denote fsn = fn(Rs, Is) and gsn = fn(Ss, Js), where s ∈ Spec(A)

denotes a closed point and (A, RA, IA) and (A, SA, JA) are spreads.
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For any n> 1, we have

fn(Rs#Ss, Is#Js)(x) = Fn(Rs)(x)gsn(x) + Fn(Ss)(x)f sn(x)− fsn(x)gsn(x).

For a spread (A, RA, IA), let n0 and µ be positive integers such that

(RA)1
n0 ⊆ IA and (SA)1

n0 ⊆ JA, and also µ(IA), µ(JA)6 µ. Then, by

Lemma 2.10,

(15)
⋃

n>0,s∈Spec(A)

Support (fsn)
⋃ ⋃

n>0,s∈Spec(A)

Support (gsn)⊆ [1, n0µ].

Moreover, there is a constant C1 such that, for any n> 1 and every closed

point s ∈ Spec(A), we have

fsn(x)6 Fn(Rs)(x)6 C1 and gsn(x)6 Fn(Ss)(x)6 C1,

for all x ∈ [1, n0µ].

Since f∞ and g∞ exist, by Theorem 1.1(1), for given n> d1 + d1 − 2, we

have

lim
ps→∞

f sn = f∞ and lim
ps→∞

gsn = g∞.

Therefore, by (15), for given n> d1 + d2 − 2, we have

lim
ps→∞

Fn(Rs)(x)gsn(x) + Fn(Ss)(x)fsn(x)− fsn(x)gsn(x)

= FR(x)g∞(x) + FS(x)f∞(x)− f∞(x)g∞(x).

Hence, for any n> d1 + d2 − 2,

lim
ps→∞

fn(Rs#Ss, Is#Js)(x) = FR(x)g∞(x) + FS(x)f∞(x)− f∞(x)g∞(x).

Now, by Theorem 1.1(1), the proposition follows.

Proposition 4.4. Let the pairs (R, I) and (S, J) be as in Proposi-

tion 4.3. Let (A, RA, IA), (A, SA, JA) be spreads for (R, I) and (S, J),

respectively, and let s ∈ Spec(A) be a closed point. Suppose that fRs,Is > f
∞
R,I

and fSs,Js > f
∞
S,J . Then,

(1) fRs#Ss,Is#Js > f
∞
R#S,I#J . Moreover,

(2) if in addition Is ∩ (Rs)1 6= 0 and Js ∩ (Ss)1 6= 0, then

fRs,Is = f∞R,I and fSs,Js = f∞S,J ⇐⇒ fRs#Ss,Is#Js = f∞R#S,I#J .
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Proof. (1) Let us denote f∞ = f∞R,I and g∞ = g∞(S, J), and denote f s =

fRs,Is and gs = fSs,Js .

We know, by the multiplicative property of the HK density functions (see

[T4, Proposition 2.18]), that

fRs#Ss,Is#Js(x) = FR(x)gs(x) + FS(x)fs(x)− fs(x)gs(x)

= (FR(x)− fs(x))gs(x) + FS(x)fs(x)

> (FR(x)− fs(x))g∞(x) + FS(x)fs(x)

= FR(x)g∞(x) + f s(x)[FS(x)− g∞(x)]

> FR(x)g∞(x) + f∞(x)[FS(x)− g∞(x)]

= f∞R#S,I#J(x),

where the third and fifth inequalities hold as FR(x)> fs(x) and FS(x)>
gs(x), for every s ∈ SpecA, and the last equality follows from Proposi-

tion 4.3.

(2) Suppose that I and J are the ideals of R and S, respectively, and

s ∈ Spec(A) is a closed point such that Is ∩ (Rs)1 6= 0 and Js ∩ (Ss)1 6= 0.

Then, we make the following claim.

Claim. FR(x)> f s(x) and GS(x)> gs(x), for all x> 1.

Proof of the Claim. It is sufficient to prove that FR(x+ 1)> f s(x+ 1), for

x > 0. Choose an integer n0 such that x> 1/pn0
s , where ps = char k(s). Let

q = pns for some n. For a given nonzero y ∈ Is ∩ (Rs)1, we have an injective

map of the Rs-linear map (R is a domain)⊕m>0(Rs)m −→⊕m>0(I
[q]
s )m+q, of

degree q, given by the multiplication by element yq. Therefore, `(I
[q]
s )m+q >

`(Rs)m, for all m> 0. Since bxqc=m if and only if b(x+ 1)qc=m+ q, we

have `(I
[q]
s )b(x+1)qc > `(Rs)bxqc. Hence, `(Rs/I

[q]
s )b(x+1)qc 6 `(Rs)b(x+1)qc −

`(Rs)bxqc.

Therefore, fn(Rs, Is)(x+ 1)6 Fn(Rs)(x+ 1)− Fn(Rs)(x).

However,

lim
n→∞

Fn(Rs)(x) = FRs(x) =
e0(R)xd−1

(d− 1)!
>

1

(d− 1)!

e0(R)

(pn0
s )d−1

> 0,

where d= dimR. This implies that f s(x+ 1) = fRs,Is(x+ 1)< FR(x+ 1).

This proves the claim.
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Now, retracing the above argument, we note that fRs#Ss,Is#Js = f∞R#S,I#J

if and only if

[FR(x)− fs(x)]gs(x) = [FR(x)− fs(x)]g∞(x)

and

[FS(x)− g∞(x)]fs(x) = [FS(x)− g∞(x)]f∞(x).

Hence, by the above claim, we have fs(x) = f∞(x) and gs(x) = g∞(x) for

all x > 1. For x= 1, we have FR(x) = fs(x) = f∞(x) and FS(x) = gs(x) =

g∞(x). This proves the proposition.

Example 4.5. Let R be a two-dimensional standard graded normal

domain, where R0 = k is an algebraically closed field of char 0. Let I =

m⊂R be the graded maximal ideal of R generated by h1, . . . , hµ of degree

1. Let X = Proj R be the corresponding nonsingular projective curve, and

let

0−→ V −→⊕µOX −→OX(1)−→ 0

be the canonical short exact sequence of locally free sheaves of OX -modules.

(Moreover, the sequence is locally split exact.)

Let (A, RA, IA) and (A, XA, VA) denote spreads for (R, I) and (X, V ),

respectively. Then, we have an associated canonical exact sequence of locally

free sheaves of OXA
-modules

(16) 0−→ VA −→⊕µOXA
−→OXA

(1)−→ 0.

Restricting to the fiber Xs, we have the following exact sequence of locally

free sheaves of OXs-modules:

(17) 0−→ Vs −→⊕µOXs −→OXs(1)−→ 0.

Moreover, we can choose a spread (A, XA, VA) such that there is a

filtration

0 = E0A ⊂ E1A ⊂ · · · ⊂ ElA ⊂ El+1A = VA

of locally free sheaves of OXA
-modules such that

0 = E0s ⊂ E1s ⊂ · · · ⊂ Els ⊂ El+1s = Vs

is the HN filtration of the vector bundles over Xs for s ∈ Spec A.

https://doi.org/10.1017/nmj.2018.7 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.7


TOWARD HILBERT–KUNZ DENSITY FUNCTIONS IN CHARACTERISTIC 0 189

Theorem 4.6. Let (R, I), (A, RA, IA), and (A, XA, VA) be given as

above. Then, for every closed point s ∈ Spec(A), we have

(1) fRs,Is > f
∞
R,I and

(2) fRs,Is = f∞R,I if and only if the filtration

0 = E0s ⊂ E1s ⊂ · · · ⊂ Els ⊂ El+1s = Vs

is the strongly semistable HN filtration of Vs on Xs. That is, for every

n> 1,

0 = Fn∗E0s ⊂ Fn∗E1s ⊂ · · · ⊂ Fn∗Els ⊂ Fn∗El+1s = Fn∗Vs

is the HN filtration of Fn∗Vs.

Proof. We fix such an s ∈ Spec A and let d= deg Xs (d independent

of s), and let the HN filtration of Vs be

0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ El+1 = Vs.

By [L, Theorem 2.7], there is n1 > 1 such that Fn1∗Vs has the strong HN

filtration. (Note that n1 may depend on s.)

Then, by [T2, Lemma 1.8], for ps = char k(s)> 4(genus(Xs))rank(Vs)
3,

the HN filtration of Fn1∗Vs is

0 = E00 ⊂ E01 ⊂ · · · ⊂ E0t0 ⊂ E0,(t0+1) = Fn1∗E1 = E10 ⊂ · · · ⊂

Ei−1(ti−1+1) = Fn1∗Ei = Ei0 ⊂ Ei1 ⊂ · · · ⊂ Eiti ⊂ Ei(ti+1)

Ei(ti+1) = Fn1∗Ei+1 = Ei+1,0 ⊂ · · · ⊂ Fn1∗Vs.

Let, for i> 0 and j > 1,

aij =
1

pn1
s
µ(Eij/Ei,j−1) and rij = rank(Eij/Ei,(j−1)).

Let

µ0 = 1, and, for i> 1, let µi = µ(Ei/Ei−1) and ri = rank(Ei/Ei−1).

Note that, for any i> 1, the only possible inequalities are

a01 > µ1 > a0,(t0+1) > · · ·> ai0 > µi+1 > ai,(ti+1),
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and also note that aij 6 0. By [T2, Lemma 1.14], for a given i,

(18) aij = µi+1 +O(1/ps),

where, by O(1/ps), we mean O(1/ps) = C/ps, where |C| is bounded by a

constant depending only on the degree of X and rank of V (and hence is

independent of ps).

Claim. If 1− aij0/d6 x < 1− ai(j0+1)/d, for some i> 0 and j0 > 1, then we

have the following.

(1) −[aijrij + d(x− 1)rij ] =−[µi+1rij + d(x− 1)rij ] +O(1/ps), for any

16 k 6 ti + 1, and −[aijrij + d(x− 1)rij ]6 0 if k 6 j0.

(2) −
∑

k>j0+1[aikrik + d(x− 1)rik]>−[µi+1ri+1 + d(x− 1)ri+1].

We skip the proof of the claim.

We also recall that, for x, as in the above claim, by [T4, Example 3.3],

we have

fRs,Is(x) =−
∑

j>j0+1

[aijrij + d(x− 1)rij ]−
∑

k>i+1,j>1

[akjrkj + d(x− 1)rkj ].

Let x> 1; then, 1− µi/d6 x < 1− µi+1/d, for some i> 0. (Note that

−µi > 0.) Now, there are three possibilities.

(1) 1− µi/d6 x < 1− ai−1,(ti−1+1)/d. Then,

1− ai−1,j0

d
6 x < 1−

ai−1,(j0+1)

d
, for some j0 > 1,

and

fRs,Is(x) = −
∑

j>j0+1

[ai−1,jri−1,j + d(x− 1)ri−1,j ]

−
∑
k>i+2

[µkrk + d(x− 1)rk].

Therefore, by the above claim part (2),

fRs,Is(x)>−
∑
k>i+1

[µkrk + d(x− 1)rk].

(2) 1− ai−1,(ti−1+1)/d6 x < 1− ai1/d. Then,

fRs,Is(x) =−
∑
k>i+1

[µkrk + d(x− 1)rk].
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(3) 1− ai1/d6 x < 1− µi+1/d. Then

1− aij0
d
6 x < 1−

ai,(j0+1)

d
, for some j0 > 1,

and

fRs,Is(x) =−
∑

j>j0+1

[aijrij + d(x− 1)rij ]−
∑
k>i+2

[µkrk + d(x− 1)rk].

Therefore, again by the above claim part (2),

fRs,Is(x)>−
∑
k>i+1

[µkrk + d(x− 1)rk].

By (18), we have that f∞R,I = limps→∞ fRs,Is exists, and

16 x < 1− µ1/d ⇒ f∞R,I(x) =−

[∑
i>1

µiri + d(x− 1)ri

]
,

1− µi/d6 x < 1− µi+1/d ⇒ f∞R,I(x) =−

 ∑
k>i+1

µkrk + d(x− 1)rk

.
This implies that fRs,Is > f

∞
R,I for 16 x < 1− al,(tl+1)/d, and fRs,Is = f∞R,I =

0 otherwise. This proves part (1) of the theorem.

(2) If Vs has strongly semistable HN filtration, then it is obvious that

fRs,Is = f∞R,I . Let, as before, n1 be such that Fn1∗V has a strongly semistable

HN filtration in the sense of [L, Theorem 2.7].

If the HN filtration of Vs is not strongly semistable, then

0 = Fn1∗E0 ⊂ Fn1∗E1 ⊂ · · · ⊂ Fn1∗El ⊂ Fn1∗El+1 = Fn1∗V

is not the HN filtration of Fn1∗V . Therefore, there exists i> 0 such that

Fn1∗Ei = Ei0 ⊂ Ei1 ⊂ · · · ⊂ Fn1∗Ei+1,

where Ei1 ⊂ Fn1∗Ei+1. Since ai1 > µi+1, one can choose 1− ai1/d < x0 6
1− µi+1/d6 1− ai2/d. Now,

fRs,Is(x) = −
∑
j>2

[aijrij + d(x− 1)rij ]−
∑
k>i+2

[µkrk + d(x− 1)rk] .

= [ai1ri1 + d(x− 1)ri1]−
∑
k>i+1

[µkrk + d(x− 1)rk]> f∞R,I .

This proves the theorem.
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Corollary 4.7. Let C1 = Proj S1, . . . , Cn = Proj Sn be nonsingular

projective curves, over a common field of characteristic 0. Suppose that each

syzygy bundle VCi, given by

0−→ VCi −→H0(Ci,OCi(1))⊗OCi −→OCi(1)−→ 0,

is semistable. (For example, if degOCi(1)> 2genus(Ci), then VCi is

semistable; see [PR] and [T6, Lemma 2.1].)

Then, there is n0 such that for all p> n0 we have

(1) f(S1#···#Sn)p(x)> f∞S1#···#Sn
(x) and

(2) f(S1#···#Sn)p(x) = f∞S1#···#Sn
(x), for all x ∈ R, if and only if (mod p)

reduction of the bundle V1 � · · ·� Vn is strongly semistable on (C1 ×
· · · × Cn)p.

In particular,

(1) e∞HK(S1# · · ·#Sn) exists and eHK((S1# · · ·#Sn)p)> e∞HK
(S1# · · ·#Sn), and

(2) eHK((S1# · · ·#Sn)p) = e∞HK(S1# · · ·#Sn) if and only if (mod p)

reduction of the bundle V1 � · · ·� Vn is strongly semistable on (C1 ×
· · · × Cn)p,

where the HK density functions and HK multiplicities are considered with

respect to the ideal m1# · · ·#mn for the graded maximal ideals mi ⊂ Si.

Proof. The proof follows by Proposition 4.4 and Theorem 4.6.

Remark 4.8. With the notations and assumptions as in the corollary

above, one can easily compute f∞S1#···#Sn
, in terms of ranks of Vi and degrees

of Ci. In particular, if d1 = deg C1 and d2 = deg C2, with r = rank V1 > s=

rank V2, then it follows that

e∞HK(S1#S2) =
d1d2

3
+ d1d2

[
1

2s
+

1

6s2
+

1

6r2
+

s

6r2

]
.

Notations 4.9. Let R= k[x, y, z]/(h) be a plane trinomial curve of

degree d. That is, h=M1 +M2 +M3, where the Mi are monomials of

degree d. As given in [Mo2, Lemma 2.2], one can divide such an h into

two types.

(1) h is irregular; that is, one of the points (1, 0, 0), (0, 1, 0), (0, 0, 1) of P2

has multiplicity > d/2 on the plane curve h. Here, we define λR = 1.
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(2) h is regular and hence is one of the following types (up to a change of

variables).

(a) h= xa1ya2 + yb1zb2 + zc1xc2 , where a1, b1, c1 > d/2. Here, we

define α= a1 + b1 − d, β = a1 + c1 − d, ν = b1 + c1 − d, and λ=

a1b1 + a2c2 − b1c2.

(b) h= xd + xa1ya2za3 + ybzc, where a2, c > d/2. Here, we define α=

a2, β = c, ν = a2 + c− d, and λ= a2c− a3b.

We denote λh = λ/a, where a= g.c.d.(α, β, ν, λ).

Corollary 4.10. Let S1, . . . , Sn be a set of irreducible plane trinomial

curves given by trinomials h1, . . . , hn of degree d1, . . . , dn > 4, respectively,

over a field of characteristic 0. Then, there are spreads {(Ai, SiA,miA)}i
such that for every closed point s ∈ Spec(A),

(1) fs(S1# · · ·#Sn)(x) = f∞S1#···#Sn
(x), for all x ∈ R, if char k(s)≡

±1 (mod l.c.m.(λh1 , . . . , λhn)), where λhi is given as in Notations 4.9.

In particular, there are infinitely many primes ps = char k(s) such that

the function f(S1#···#Sn)ps
− f∞S1#···#Sn

= 0. Moreover,

(2) if, in addition, one of the curves, say S1, is given by a symmetric

trinomial h1 = xa1ya2 + ya1za2 + za1xa2 such that d 6= 5, then

fs(S1# · · ·#Sn)(x0)> f∞S1#···#Sn
(x0), if char k(s)≡±l (mod λh1),

for some x0 ∈ R and for some l ∈ (Z/λh1Z)∗. In particular, there are

infinitely many primes ps = char k(s) such that fs(S1# · · ·#Sn)−
f∞S1#···#Sn

6= 0.

Proof. We can choose spreads (A, SiA) with the property that

char k(s)>max{d1, . . . , dn}2, for every closed point s ∈ Spec(A). Now,

for any irreducible plane curve given by S = k[x, y, z]/(h), let S −→ S̃ be

the normalization of S. Then, it is a finite graded map of degree 0 and

Q(S) =Q(S̃) such that S̃ is a finitely generated N-graded two-dimensional

domain over k. Now, for pairs (S,m) and (S̃,mS̃), we can choose a spread

(A, SA,mA) and (A, S̃A,mS̃A) such that for every closed point s ∈ Spec(A),

the natural map Ss = SA ⊗ k(s)−→ S̃A ⊗ k(s) is a finite graded map of

degree 0. This implies, for every x> 0,

lim
q→∞

1

q
`

(
Ss

m[q]

)
bxqc

= lim
q→∞

1

q
`

(
S̃s

mS̃
[q]
s

)
bxqc

,
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as kernel and cokernel of the map Ss −→ S̃s are zero-dimensional. Therefore,

fSs,ms = fS̃s,mS̃s
and f∞S,m = f∞

S̃,mS̃
. This also implies that eHK(Ss,ms) =

eHK(S̃s,mS̃s). (This inequality about eHK can also be found in [Mo1,

Lemma 1.3], [WY1, Theorem 2.7], and [BCP].) Let π : X̃s = Proj S̃s −→
Xs = Proj Ss be the induced map. We also choose a spread (A, XA, VA),

where VA is given by

0−→ VA −→OXA
⊕OXA

⊕OXA
−→OXA

(1)−→ 0

and gives the syzygy bundle Vs with its HN filtration as given in Exam-

ple 4.5.

This gives a short exact sequence of sheaves of OX̃s
-modules

0−→ π∗Vs −→OX̃s
⊕OX̃s

⊕OX̃s
−→OX̃s

(1)−→ 0.

Moreover, X̃s is a nonsingular curve. If S is regular trinomial given by

h, then, by [T5, Theorem 5.6], the bundle π∗(Vs) is strongly semistable,

provided that char k(s)≡±1 (mod 2λhs). Therefore, by Theorem 4.6,

we have fS̃s,mS̃s
= f∞

S̃,mS̃
. This implies that fSs,ms = f∞S,m, for char k(s)≡

±1 (mod 2λSs).

If S is an irregular trinomial, then, by [T5, Theorem 1.1], π∗V has an HN

filtration 0⊂ L⊂ π∗V . Therefore, 0⊂ Ls ⊂ π∗Vs is the HN filtration and

hence the strong HN filtration (as rank V = 2), for π∗Vs, for every closed

point s ∈ Spec A. In particular, by Theorem 4.6, fSs,ms = f∞S,m, for all such

s. Now, assertion (1) follows by Proposition 4.4(2).

If S1 = k[x, y, z]/(h1), where h1 is as in statement (2) of the corol-

lary, then π∗Vs is semistable, but not strongly semistable, if char k(s)≡
±2 (mod λh1s). In particular, by Corollary 4.7, fS1s,mS1s

> f∞S1s,mS1s
, for

such s. Therefore, the statement (2) follows from Proposition 4.4(2).

Appendix A

Lemma A.1. For an integer d> 2, there exist universal polynomi-

als P di , P ′di in Q[X0, . . . , Xi], where 06 i6 d− 2, such that if, for

a pair (X,OX(1)), we have X an integral projective variety of char

p > 0 and dimension d− 1, and Q a coherent sheaf of OX-modules of

dim(Supp)Q= d− 2 and with the following respective Hilbert polynomials

(where dim suppQ6 d− 2):

χ(X,OX(m)) = ẽ0

(
m+ d− 1

d− 1

)
− ẽ1

(
m+ d− 2

d− 2

)
+ · · ·+ (−1)d−1ẽd−1
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and

χ(X,Q(m)) = q0

(
m+ d− 2

d− 2

)
− q1

(
m+ d− 3

d− 3

)
+ · · ·+ (−1)d−2qd−2,

then we have the following.

(1) For 06 i6 d− 2, we have |qi|6 pd−1P di (ẽ0, . . . , ẽi+1), if there is a

short exact sequence of OX-modules

0−→⊕pd−1OX(−d)−→ F∗OX −→Q−→ 0.

(2) For 06 i6 d− 2, we have |qi|6mi+1
0 P

′d
i (ẽ0, . . . , ẽi), if Q fits in the

short exact sequence

0−→OX(−m0)−→OX −→Q−→ 0

or in the short exact sequence

0−→OX −→OX(m0)−→Q−→ 0

of OX-modules.

Proof. Assertion (1): Note that for m ∈ Z, we have

(A.1) χ(X,Q(m)) = χ(X, OX(mp))− pd−1χ(X,OX(m)).

We can express, for 16 n6 d− 1,

(Y + n) · · · (Y + 2)(Y + 1) =

n∑
j=0

Cnj Y
j ,

where Cnn = 1, and, for j < n, the coefficient Cnj is in the set{∑
xi11 · · · x

in
n

∣∣∣∑ il = n− j, 06 j < n6 d− 1, {x1, . . . , xn}

= {1, . . . , n}
}
.

Now, expanding Equation (A.1), we get
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ẽ0

(d− 1)!
[Cd−1
d−2m

d−2(pd−2 − pd−1) + Cd−1
d−3m

d−3(pd−3 − pd−1)

+ · · ·+ Cd−1
0 (1− pd−1)]

+ · · ·+ (−1)iẽi
(d− 1− i)!

[Cd−1−i
d−1−im

d−1−i(pd−1−i − pd−1)

+ Cd−1−i
d−2−im

d−2−i(pd−2−i − pd−1)

+ · · ·+ Cd−1−i
0 (1− pd−1)] + · · ·+ (−1)d−1ẽd−1[(1− pd−1)]

=
q0

(d− 2)!
[Cd−2
d−2m

d−2 + Cd−2
d−3m

d−3 + · · ·+ Cd−2
0 ]

− q1

(d− 3)!
[Cd−3
d−3m

d−3 + Cd−3
d−4m

d−4 + · · ·+ Cd−3
0 ] + · · ·

+
(−1)i−1qi−1

(d− 1− i)!
[Cd−1−i
d−1−im

d−1−i + Cd−1−i
d−2−im

d−2−i + · · ·+ Cd−1−i
0 ]

+ · · ·+ (−1)d−2qd−2.

We prove the result for qi, by induction on i. For i= 0, comparing the

coefficients of md−2 on both sides, we get

(pd−2 − pd−1)

[
ẽ0

(d− 1)!
Cd−1
d−2 −

ẽ1

(d− 2)!

]
=

q0

(d− 2)!
,

which implies

|q0|6 pd−1(|ẽ0|Cd−1
d−2 + |ẽ1|)6 pd−1(ẽ2

0C
d−1
d−2 + ẽ2

1).

Comparing coefficients of md−i, we get

(pd−i − pd−1)

×
[

ẽ0

(d− 1)!
Cd−1
d−i −

ẽ1

(d− 2)!
Cd−2
d−i + · · ·+ (−1)i−1 ẽi−1

(d− i)!
Cd−1−i
d−i

]
=

q0

(d− 2)!
Cd−2
d−i −

q1

(d− 3)!
Cd−3
d−i + · · ·+ (−1)i

qi−2

(d− i)!
Cd−id−i .

This implies that

|qi−2| 6 pd−1[|ẽ0|Cd−1
d−i + |ẽ1|Cd−2

d−i + · · ·+ |ẽi−1|Cd−1−i
d−i ]

+ [|q0|Cd−2
d−i + |q1|Cd−3

d−i + · · ·+ |qi−3|Cd+1−i
d−i ].
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However,

pd−1[|ẽ0|Cd−1
d−i + |ẽ1|Cd−2

d−i + · · ·+ |ẽi−1|Cd−1−i
d−i ]

6 pd−1[ẽ2
0C

d−1
d−i + ẽ2

1C
d−2
d−i + · · ·+ ẽ2

i−1C
d−1−i
d−i ].

Now, the proof follows by induction.

Assertion (2): For m0 = 0, the statement is true vacuously. Therefore, we

can assume that m0 > 1. Now,

χ(X,Q(m)) = q0

(
m+ d− 2

d− 2

)
− q1

(
m+ d− 3

d− 3

)
+ · · ·+ (−1)d−2qd−2,

=
q0

(d− 2)!
[Dd−2

d−2m
d−2 +Dd−2

d−3m
d−3 + · · ·+Dd−2

0 ]

− q1

(d− 3)!
[Dd−3

d−3m
d−3 +Dd−3

d−4m
d−4 + · · ·+Dd−3

0 ]

+ · · ·+ (−1)i−1qi−1

(d− 1− i)!
[Dd−1−i

d−1−im
d−1−i +Dd−1−i

d−2−im
d−2−i

+ · · ·+Dd−1−i
0 ] + · · ·+ (−1)d−2qd−2,

where Dk
j belongs to the set{∑

xi1 · · · xikk
∣∣∣∑ il = k − j 06 j 6 k 6 d− 2,

{x1, . . . , xk}= {1, . . . , k}
}
.

On the other hand,

χ(X,OX(m))− χ(X,OX(m−m0))

=
ẽ0

(d− 1)!
[Cd−1
d−1 (m0)(md−2 + · · ·md−3m0 + · · ·+md−2

0 )

+ Cd−1
d−2 (m0)(md−3 +md−4m0 + · · ·+md−3

0 ) + · · ·+ Cd−1
1 (m0)]

− ẽ1

(d− 2)!
[Cd−2
d−2 (m0)(md−3 + · · ·md−4m0 + · · ·+md−3

0 )

+ Cd−2
d−3 (m0)(md−4 +md−5m0 + · · ·+md−4

0 ) + · · ·+ Cd−2
1 (m0)]

+ · · · .
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Again, we prove the result for qi, by induction on i. Comparing the

coefficients for md−2, we get

q0

(d− 2)!
Dd−2
d−2 =

ẽ0

(d− 1)!
Cd−1
d−1m0⇒ |q0|6 ẽ0

Cd−1
d−1m0

|Dd−2
d−2|

6 ẽ2
0m0.

Comparing the coefficients of md−i, where 26 i6 d, we get

q0

(d− 2)!
Dd−2
d−i −

q1

(d− 3)!
Dd−3
d−i + · · ·+ (−1)i−2 qi−2

(d− i)!
Dd−i
d−i

=
ẽ0

(d− 1)!
(Cd−1

d−1m
i−1
0 + Cd−1

d−2m
i−2
0 + · · ·+ Cd−1

d−i+1m0)

− ẽ1

(d− 2)!
(Cd−2

d−2m
i−2
0 + Cd−2

d−3m
i−3
0 + · · ·+ Cd−2

d−i+1m0)

+ · · · (−1)i−2 ẽi−2

(d+ 1− i)!
(Cd−i+1

d+1−i ).

This implies that

|qi−2||Dd−i
d−i| 6 |ẽ0|(Cd−1

d−1m
i−1
0 + · · ·+ Cd−1

d−i+1m0)

+ |ẽ1|(Cd−2
d−2m

i−2
0 + · · ·+ Cd−2

d−i+1m0)

+ · · ·+ |ẽi−2|(Cd+1−i
d+1−i )

+ (|q0||Dd−2
d−i |+ |q1||Dd−3

d−i |+ · · ·+ |qi−3||Dd+1−i
d−i |).

Now, the proof follows by induction.

ForQ such that 0−→OX −→OX(m0)−→Q−→ 0, we have χ(X,Q(m−
m0)) = χ(X,OX(m))− χ(X,O(m−m0)), so we get the same bounds for

the qi in terms of the ẽj as above except that now Dn
j is in the set{∑

xi11 · · · x
in
n

∣∣∣∣∣
n∑
l=1

il = n− j, 06 j 6 n,

{x1, . . . , xn}= {1−m0, . . . , n−m0}

}
.

Hence, the lemma follows.
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